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Abstract

Variability characterization and analysis in advanced technologies are needed to en-
sure robust performance as well as improved process capability. This thesis presents
a framework for device variability characterization and analysis. Test structure and
test circuit design, identification of significant effects in design of experiments, and
decomposition approaches to quantify variation and its sources are explored. Two ex-
amples of transistor variability characterization are discussed: contact plug resistance
variation within the context of a transistor, and AC, or short time-scale, variation
in transistors. Results show that, with careful test structure and circuit design and
ample measurement data, interesting trends can be observed. Among these trends
are (1) a distinct within-die spatial signature of contact plug resistance and (2) a
picosecond-accuracy delay measurement on transistors which reveals the presence of
excessive external parasitic gate resistance. Measurement results obtained from these
test vehicles can aid in both the understanding of variations in the fabrication process
and in efforts to model variations in transistor behavior.
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Chapter 1

Introduction

In 1965, Gordon Moore observed that every 18 months, the density of transistors on

a die increased by a factor of two [7]. This observation, which has been rebranded

"Moore's Law" by the microelectronics industry consumers, has propelled the micro-

electronics industry forward at an astonishing pace over the past 30 years. However,

the challenges of integrating billions of transistors on a single die are becoming in-

creasingly difficult to overcome. Fabricating two nominally identical transistors so

that they behave identically is not possible due to imperfections and non-uniformities

in the manufacturing process, also known as process variations. With smaller transis-

tors and increased transistor density, the effect of process variations is more significant

and meeting performance and yield specifications is increasingly challenging.

One example of process variations becoming more significant with scaling involves

transistor gate length. Transistor gate length is a key parameter, along with gate

pitch, that ultimately determines overall transistor density. For this reason, the min-

imum feature size able to be fabricated for a given process technology, which is used

to create a transistor gate, is also known as the gate "critical dimension" (CD). A

technology node is defined as the minimum half-pitch between two features that is

printable for that given technology. The technology node therefore serves as a mea-

sure of achievable transistor density for a given technology. Shown in Figure 1-1 is the

polysilicon CD target window for Intel at their different technology nodes to achieve

yield and performance specifications for that node [1]. As the technology node be-
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Figure 1-1: Polysilicon CD window versus technology node in Intel's manufacturing
process [1]. Shrinking upper and lower bounds on allowable critical dimensions present
a significant challenge to transistor scaling.

comes more (smaller number), the window of allowable polysilicon CD, represented

by the red line upper and lower control limits, shrinks. For previous technology nodes

such as 0.35pum, process variations which cause the CD to differ across multiple tran-

sistors is more tolerable because there is more margin for variations in CD. However,

for advanced technology nodes such as 32nm and 22nm, the CD can only vary by

a small amount, which is difficult to achieve in the presence of process variations.

As an example, from Intel's 130nm to the 32nm technology node, both the scaling

factor for the channel length and the bounds on the upper and lower control limits,

have been the same (around 0.7) [8]. This indicates that the percentage tolerance

limits on channel length as calculated from the nominal value are staying the same

as technology scales.

Fabricating nominally identical transistors which behave identically has become

more difficult due to scaling for other reasons as well. For example, the number of

dopants in the transistor channel must be controlled to within certain boundaries

to ensure performance and yield specifications are met. Figure 1-2 shows Intel's

simulated distribution and location of dopants within the channel of a transistor

[2]. Random dopant fluctuation (RDF) is a form of process variation resulting in

variations in the number or location of dopant atoms implanted into the channel of

each transistor. For previous technology nodes where the channel had a large area and



Figure 1-2: Random dopant fluctuation [2], causing the number of dopants and their
locations in the within the channel of a transistor to vary from transistor to transistor.

the average number of dopants was large, the statistics of large numbers meant that

the distribution of the number of dopants for multiple transistors was very tight with a

small variance. In that case, RDF did not have a significant effect. However, when the

transistor shrinks, the average number of dopants in the channel decreases, as shown

in Figure 1-3 [2]. Consequently, there is less of an averaging effect when observing the

number of dopants across multiple transistors. These increased deviations relative to

the mean are larger, which in turn makes RDF more problematic. This is a difficult

challenge because overcoming process variations in order to control the number or

location of dopants in the transistor channel so precisely is difficult.
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Figure 1-3: Number of dopants decrease as a function of technology node, which
means that random dopant fluctuations in advanced technology nodes cause increased
deviations relative to the mean [2].



With continued Moore's Law scaling, one can expect that process variations will

play a more significant role in ultimately determining the performance and yield of

a chip designed using a particular technology. To demonstrate this more clearly, it is

useful to determine how both the absolute and relative variations of input parameters

scale with technology, as well as the nature of the relationship between the input

parameters and the performance and yield. First, the relative variation of a device

parameter, represented by the quantity ", may scale with technology node in multiple

ways. It may decrease, increase, or remain constant with technology scaling. Second,

the relationship between the device parameter and the performance metric of interest

may be linear, sublinear, or superlinear. Four examples are shown for hypothetical

input parameters and relationships to the output performances in Figures 1-4, 1-5,

1-6, and 1-7.

Constant a scaling,
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Figure 1-4: Constant standard deviation with scaling and linear relationship between
input parameter and output performance. An input parameter which has these char-
acteristics does not pose a variation or yield-related challenge to technology scaling.

Each device parameter which impacts performance, and whose variation impacts

yield, can be categorized in this manner. For example, the scaling of channel length

variation with technology can be characterized as having a constant relative standard

deviation with respect to the mean channel length for a given technology. In addi-
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Figure 1-5: Constant relative standard deviation with scaling and linear relationship
between input parameter and output performance. An input parameter which has
these characteristics does not pose a variation or yield-related challenge to technology
scaling.
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Figure 1-6: Constant standard deviation with scaling and superlinear relationship
between input parameter and output performance. An input parameter which has
these characteristics poses significant variation and yield-related challenges to tech-
nology scaling because the relative variation in output performance increases as the
technology scales.
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Figure 1-7: Constant relative standard deviation with scaling and superlinear re-

lationship between input parameter and output performance. An input parameter
which has these characteristics poses variation and yield-related challenges to tech-

nology scaling because the relative variation in output performance increases as the

technology scales.

tion, the relationship between channel length and performance, or more specifically

saturation current in this case, can be described as superlinear. Because the device

saturation current depends inversely on the channel length of the device, a percent

deviation from a smaller nominal channel length will result in a larger percent de-

viation in saturation current than that caused by the same percent deviation from

a larger nominal channel length. Similarly, the number of dopants in the channel

play a significant role in determining threshold voltage, and consequently, leakage

current. The number of dopants scaled with technology in a constant standard devi-

ation manner, but the relationship between threshold voltage and leakage current is

exponential in nature. Therefore, it can be concluded that random dopant fluctua-

tion will cause more variation with technology scaling. Considering these effects along

with variations in other device parameters, it is apparent that process variations will

play a more significant role in determining yield and performance as the technology

continues to scale.

Another source of motivation is that new devices and process technologies are



being explored in order to continue Moore's Law scaling. These novel approaches

are likely to be sensitive to process variations, both well-studied and new. With

that serving as motivation, this thesis contributes test circuit-based methodologies to

characterize such variations and statistical analysis tools to better understand them.

1.1 Thesis Organization

Challenges associated with addressing process variation are presented in Chapter 2.

Previous work in the development of test structures to characterize transistor vari-

ations is described and a classification of transistor parameters for the purposes of

variation-related analysis is introduced. Two ways of coping with variation, namely

modeling and mitigation, are discussed. On the modeling front, methodologies to in-

corporate variation in existing component models as well as techniques for fast circuit

simulation using such variation-aware models are described. Variation-based models

for unit process steps in IC manufacturing are also discussed. On the mitigation front,

existing techniques to reduce transistor variation in two different areas are presented:

design for manufacturability (DFM) and process control.

Chapter 3 presents a test structure-based methodology for characterizing contact

plug resistance. After motivating the need for such work, a test structure is presented

along with a variation decomposition methodology. Then, silicon measurement results

from a test chip are presented and various trends are described. The chapter concludes

with a discussion on the need for variability-aware models for future technologies.

The need for the analysis of AC, or short time-scale, performance variations in

transistors is motivated and an array-based test structure to characterize them is

presented in Chapter 4. Such short time-scale variations in transient behaviors can

be caused by variations in device geometries, parasitics, or other device parameters. A

design-time optimization is used to make the test circuit sensitive to individual device

AC variations, and simulation results are shown which illustrate the effectiveness of

the measurement technique. Furthermore, the implementation and fabrication of

a test chip are outlined along with details regarding the measurement setup and



methodology.

Then, Chapter 5 continues the discussion on AC variation analysis by introducing

another test circuit to characterize the same. A ring oscillator-based test structure

is introduced and simulations are shown which confirm the high sensitivity of the

measurement technique to AC variation sources. Then, silicon measurement results

from a test chip are presented and analyzed.

Finally, Chapter 6 concludes with a summary of this thesis and thoughts for future

work in this area to address the challenges outlined earlier.



Chapter 2

Addressing Process Variation in

Deeply-Scaled Technologies

Addressing the impact of process variation in deeply-scaled technologies requires a

multi-pronged approach involving variability characterization, variation-aware mod-

eling, and techniques for mitigation. Such an approach is necessary whether the

issues involving process variation are tackled at the process, device, circuit, or sys-

tem level. This discussion will focus on the challenges of addressing variation in

devices, although a fair bit of overlap will inevitably exist with the process and cir-

cuit levels. A diagram of how such a multi-pronged approach might work is shown in

Figure 2-1. The problem of addressing process variation in deeply-scaled transistors

begins with variability characterization, which will be discussed in more detail in Sec-

tion 2.1. The combination of test structure design and statistical metrology serves

this function. Then, the results of the variability characterization and analysis can

be fed into two different areas. One area is in variation modeling (Section 2.2). For

device-level variation trends, the variations caused by different processing steps such

as lithography, etch, oxide growth, ion implantation, annealing, and polishing can

be modeled. In addition, the devices themselves lend themselves to variability-aware

compact modeling, which works towards modeling variations in device performance

due to variations in transistor parameters. Finally, the results of variability charac-

terization of devices can also lead to techniques for mitigation. In the device and
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Figure 2-1: Multi-pronged approach for addressing process variation in deeply-scaled
technologies: modeling, characterization and mitigation.

circuit spectrum, design for manufacturability, or DFM, is based on improving circuit

performance and yield by employing design techniques informed by variability data.

In the IC manufacturing process, statistical process control is used to improve yield

by ensuring that steps in the manufacturing process will meet relevant specification

bounds. This control is guided by results of variability characterization of the process

steps through the use of test structures. A detailed discussion on mitigating variation

will be presented in Section 2.3.

2.1 Characterization of Process Variation in De-

vices

The characterization of process variation in deeply-scaled devices involves two ma-

jor components: test structure design/measurement and variability decomposition.

Before delving into the realm of existing research in these areas, it is useful to clas-

sify transistor parameters into different groups to better understand the challenges

of device variability characterization. The classification outlined in the following sec-

tion also helps to understanding the compact modeling of variation in devices, as the

characterization and modeling efforts are generally closely coupled.



2.1.1 Classification of Transistor Parameters

The characterization of a set of transistors and the determination of the distribution

of one or more parameters requires an understanding of four mostly non-intersecting

sets of transistor parameters: physical device parameters, device model parame-

ters, device-measurable parameters, and geometry-based layout parameters. Some

of these key parameters are shown in Table 2.1 and are discussed in more detail in

Section 2.1.1.

Relevant Device-Related Parameters
Physical Device Device Model Device-Measurable Layout
channel doping threshold voltage saturation current channel length

dopant locations carrier mobility drain leakage current channel width
oxide thickness intrinsic gate cap. gate leakage current source/drain areas
channel length source/drain resistance DIBL coefficient well proximity
channel width other parasitic RC sub-threshold swing distance to shapes

cutoff frequency pattern density
unity gain frequency

Table 2.1: Classification of device-related parameters to enable the understanding of
challenges involved in device variability characterization.

Physical device parameters are physical (non-electrical or structural) parameters

whose values are the direct result of the process steps involved during transistor

fabrication. Channel doping concentration, NA, locations of the dopant atoms, gate

oxide thickness, t,., effective channel length, Leff, and channel width, W, are some

fundamental transistor parameters which may differ from transistor to transistor due

to variations in the manufacturing process.

Device model parameters are those which are derived from physical device param-

eters and geometry-based layout parameters and used to model transistor behavior.

Some of these parameters include threshold voltage, VT, electron or hole mobility,

p, intrinsic gate capacitance, COG, source-drain resistance, Rd, and various parasitic

resistances and capacitances associated with the extrinsic portion of the transistor.

Device-measurable parameters are those which can be relatively easily charac-

terized by low or high-frequency electrical voltage or current-based measurements

of a device. Some of these parameters include drain saturation current, ID,sat, off-



state leakage current, Ioff, drain induced barrier lowering (DIBL) coefficient, r, sub-

threshold swing, S,_th, cutoff frequency, fT, and unity gain power frequency, fmax.

These measurements can usually be made using dedicated probe pads for each tran-

sistor during in-line testing.

Geometry-based layout parameters are those which can be manipulated at the

integrated circuit-design level. While, for a particular transistor type, a circuit de-

signer cannot change the gate oxide thickness or channel doping for each individual

transistor, geometry-based layout parameters may be changed. Some of these layout

parameters may include the drawn channel length, Ldawn, the channel width, W,

the area of the source and drain regions, the number of contacts and their locations

within the source and drain regions, the proximity of the transistor to a well, the

separation distances to nearby polysilicon, active, and shallow trench isolation (STI)

shapes, and effective pattern density.

2.1.2 Challenges in Variability Characterization

Two challenges in variability characterization and modeling stem from the previous

discussion involving the classification of transistor parameters.

First, the relationship between device-measurable parameters and device model

parameters is interdependent and correlated. As a result, building a test structure

which determines the variances of a set of device-measurable parameters may not

necessarily lead to the determination of the variances of a set of device model pa-

rameters. Careful test structure design and circuit simulation are often required to

determine variances in model parameters with confidence.

Second, the relationship between the physical device structure parameters and

the device model parameters is also interdependent and correlated by nature. There-

fore, attributing a variation in a device-measurable parameter to variations in one or

more physical device parameters requires a carefully planned design of experiments,

adequate replication, and a sound variation decomposition methodology.



2.1.3 Test Structures for Device Variability Characterization

With the challenges in variability characterization now described, it is important

to discuss test structures to characterize such device variability which have been

developed over the years. While the characterization of individual transistors by using

dedicated pads has its advantages in ease of design and measurement, statistical data

necessary for variation analysis cannot be obtained without adequate replication. The

variability characterization of deeply-scaled transistors can be performed in two ways.

The first can be described as isolation-based characterization, in which an isolated

parameter which has an impact on the overall transistor variation is characterized.

Examples of such parameters are threshold voltage and channel length. The second is

to obtain a more holistic or broad set of measurements on each of multiple transistors.

This would include test structures that, for example, measure the I-V characteristics

of multiple transistors in an array.

Isolation-based Test Structures

One important parameter in devices as they have scaled has been the threshold voltage

(VT). Because variability in device performance and leakage has increased substan-

tially due to VT variation as technology has scaled, a number of test structures have

been developed to characterize it. For example, [9] uses a test structure comprised

of an array of devices whose individual off-state leakage currents are measured by an

on-chip integrating analog-to-digital converter. Then, device equations are used to

obtain relative intrinsic threshold voltage values for each device. Another approach,

presented in [10], focuses on monitoring VGS for each transistor in an individually

addressable array for a fixed current and then correlating that value back to the

threshold voltage of the device.

Another important transistor parameter is its gate length, which can change across

transistors due to variations in the lithography and etch processes. In order to deter-

mine the critical dimension (CD) variability for a given technology, a test structure

was designed in [11] which measured the CD of multiple polysilicon lines through



electrical resistance measurements.

Another variation-related issue, particularly for analog circuit and memory ap-

plications, is matching between two or more identically designed devices. Therefore,

a significant amount of work has been done to characterize the mismatch between

transistors. For example, [12] discusses a test circuit that uses current mirrors to

characterize transistor mismatch in the sub-threshold region of operation. More re-

cently, a large addressable array of devices was characterized to assess the impact of

different doses of implantation on the mismatch in both individual device threshold

voltage and leakage current [13]. In this work, the leakage current of each device was

measured while using techniques to cancel the off-state leakage of the other devices

in the array which were not being measured.

More recently, studies have also been done to analyze the impact of other sources

of variation. One such source is the rapid thermal annealing (RTA) process. Differ-

ent pattern densities of polysilicon or shallow trench isolation (STI) may change the

annealing temperature and therefore transistor properties. This is illustrated in simu-

lation results performed by Intel, which shows that the annealing temperature during

the RTA process varies across a die when dummy polysilicon is not used to create a

uniform polysilicon density (Figure 2-2). However, a uniform pattern density makes

the temperature profile across the die more uniform. To investigate the consequences

of this effect, a test structure was designed to determine the impact of different pat-

tern densities on doped poly-silicon sheet resistance, gate length, transistor currents,

and ring oscillator frequencies [14]. Each structure was carefully designed to maximize

the impact of potential RTA-induced variations by modulating the pattern densities

accordingly. In addition, the impact of shallow trench isolation (STI) edge effects on

transistor variability was also characterized in [15]. In this work, a mismatch sweep

analysis technique is used, in which intentionally dissimilar pairs of transistors are

laid out and measurement results are used to quantify the impact of STI-induced

stress variations.

While most of the previously discussed structures focus on front-end-of-line (FEOL)

variations, a significant amount of research has also been done on investigating back-
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Figure 2-2: Simulations showing the effect of polysilicon pattern density variations
on spatial RTA temperature distribution [3]. Before optimization to obtain uniform
polysilicon pattern density across the chip area, the simulated RTA temperature is
significantly higher for regions of low polysilicon pattern density than for regions of
high polysilicon pattern density. After optimization, the temperature gradient across
the chip is reduced.

end-of-line (BEOL) variations. One such example involves the building of a test

structure to investigate variations in the chemical-mechanical polishing (CMP) pro-

cess due to layout-based pattern-dependent effects such as feature area, density, and

pitch [16].

Holistic-based Test Structures

A variety of test structures have been designed which obtain I-V characteristics of

multiple transistors located in an array or a bank. Often, one primary objective of

such a test structure is to quickly gather data for a large number of devices so as

to enable in-line characterization. Such is the case in [17] and [18], where a scribe

line test structure is built for product wafer monitoring which obtains I-V character-

istics for transistors quickly by using parallel testing methods and pad multiplexing.

Similarly, an integrating ADC-based approach for obtaining I-V characteristics of

multiple transistors was employed in [19]. In addition, an array of devices which



included transistors, capacitors, resistors, and ring oscillators, was designed in [20] as

a comprehensive test vehicle for technology characterization. Leakage-minimization

and noise immunity techniques were employed in order to obtain high-accuracy cur-

rent and voltage measurement for the various test blocks.

2.1.4 Statistical Metrology to Enable Variation Analysis

Once measurement data is obtained from any test vehicle, one primary objective is

to use the measurement results to obtain information about the potential variation

sources at work, their relative magnitudes, and relationships among them. To perform

such a task generally requires the use of statistical tools to determine the relationships

between input design parameters, such as transistor size, surrounding layout geome-

tries, or layout pattern density, and measured output parameters, such as threshold

voltage, channel length, saturation current, gate capacitance, or transistor delay.

In [21], the concept of statistical metrology as it applies to the semiconductor

manufacturing process is introduced. Furthermore, the term "statistical metrology"

is defined as "the body of methods for understanding variation in micro-fabricated

structures, devices, and circuits." For the purposes of this discussion, we use the

term as a way to express the methodologies by which statistical measurements are

interpreted to obtain useful information. Reference [21] also motivates the need for

statistical data analysis techniques to aid in increasing process yield by analyzing the

case of interlayer dielectric thickness (ILD) variations due to variations in the chem-

ical mechanical polishing (CMP) process. More recently, motivation for improved

statistical analysis tools has come from the need to determine the root cause of large

device variations which have a significant impact on yield and performance when the

cause is difficult to predict due to the interactions of multiple process steps and pa-

rameters. A case study to determine the source of a large bipolar junction transistor

leakage current variation in Motorola's manufacturing process is presented in [22]. In

this study, a "blind" approach where the measurement data is analyzed in a pure sta-

tistical fashion without interpreting the meaning of any of the measurements was able

to determine the root cause more quickly than the conventional design of experiments



(DOE) approach. Ideally, the use of a good DOE combined with good pure statistical

techniques should serve to optimize process control and process optimization.

One such methodology which combines a DOE with statistical analysis techniques

is used to analyze wafer-level, die-level, and wafer-die interaction components of vari-

ation in the CMP process by employing filtering, spline, and regression-based ap-

proaches as well as spatial Fourier transform methods [23]. Another use of statistical

metrology is in analyzing the line edge roughness (LER) of critical dimension fea-

tures. In [24], the line edge roughness of multiple features are characterized using

scanning electron microscopy (SEM). The measurement results were then fitted to an

analytical model for LER, considering the impact of correlations of edge roughness

between both sides of the feature. Such an analysis can also be considered a spatial

variation analysis, but at a much shorter length scale.

Lately, several efforts to analyze measurement results have been focused on the

within-die spatial variation component. For example, I-V characteristics of multiple

transistors in an array were used to fit channel length, threshold voltage, and mobility

parameters in a BSIM4 model, as described in [25]. Then, spatial correlation analysis

was performed to determine that, in the 65nm node, unlike that of a previously char-

acterized 130nm technology, the spatial correlation of channel length was negligible.

In addition, a mathematical construct to ensure the extraction of valid spatial corre-

lation functions was presented in [26]. In this work, techniques to extract both a valid

spatial-correlation function and a valid spatial-correlation matrix in the presence of

measurement noise are presented. Finally, a technique for the extraction and model-

ing of non-stationary spatial variations is presented in [27]. Edge-detection algorithms

for detecting sharp transitions in measurement data, methods for chip-partitioning

into non-overlapping regions, and the development of a quantitative measure of sta-

tionarity are presented.



2.2 Modeling Device Variation

With the development of various test structures to measure process-induced variations

in devices and methodologies to extract key statistical trends, it becomes important

to model these device or structure variations for two main purposes. The first is

to enable process control and process optimization, especially through the use of

variation-based models of unit processes in the manufacturing line. The second is to

enable the mitigation of process variation effects through techniques such as design

for manufacturability (DFM). In addition, developing compact models for variation

at the device level will enable the development of similar models at the circuit level,

which then lends itself to circuit-level variation mitigation techniques. The discussion

of variation modeling is divided into two parts: variation modeling for devices and

variation modeling for unit processes.

2.2.1 Variation-Aware Modeling for Devices

Because the literature on variation-aware device modeling is vast and wide-ranging,

a few examples which illustrate some of the main modeling techniques commonly

employed will be discussed. The introduction of the Pelgrom model for transistor

matching, motivated by the need for transistor matching for analog applications, has

been a key enabler for more advanced variation models for devices. The Pelgrom

model for transistor matching states that the standard deviation of the difference in

threshold voltage of two nominally identical devices is inversely proportional to the

square root of the transistor area, with a proportionality constant, AVT. Shown in

Figure 2-3 is a plot of oA, versus 1 for a set of n-channel MOSFETs fabricated

in a 0.18pm process. Analytical models, particularly those which help to understand

threshold variation, have been instrumental in understanding how to design transis-

tors with less variation and how to design circuits for manufacturability and yield. For

example, the dependence of transistor threshold voltage on different channel-depth

doping profiles was studied in [28] by analyzing and simulating continuous doping

profiles. Studies on threshold voltage variation have also involved the "atomistic"
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Figure 2-3: Transistor matching as it relates to device area [4]. The standard deviation
of the difference in threshold voltage between two identically designed transistors is
inversely proportional to the square root of the transistor area. Therefore, the scaling
of transistors to smaller dimensions increases the threshold voltage mismatch between
them.

simulation-based approach, in which a 3D atomistic simulation of a transistor is per-

formed, and by solving Poisson's equation at each point in the 3D mesh [29]. Using

this approach, it was determined that, not only the number of dopants, but also

the position of the dopants within the channel, determine and affect the threshold

voltage of a transistor. Bottom-up variability modeling approaches such as these,

which generally do not require silicon measurements, are useful in calibrating and

fitting compact device models such as BSIM and PSP to measurement data due to

the additional insight which they can provide.

Variation models based on silicon measurement data, both for threshold voltage

and for transistors as a whole, have been developed. For example, Intel published

results of their measurement and modeling of threshold voltage variations in a 150nm

high performance logic technology [30]. Intrinsic and extrinsic sources which con-

tributed to threshold voltage variation were modeled, leading to the conclusion that

some component of the variation depends on transistor width or length, although

the majority of the variation is still due to random dopant fluctuation, which de-



pends on the device area. In [31] and [32], techniques such as principle component

analysis (PCA) and the backward propagation of variance (BPV) are used in order

to develop variability-aware compact models from silicon measurement data for the

BSIM4 and PSP models, respectively. While these techniques are effective to some

degree, the correlation among parameters in the compact models as well as the large

number of parameters make it difficult to model variation in a stable and accurate

fashion. Improving such variability extraction and fitting techniques therefore re-

mains a challenge and continues to draw a great deal of attention. The challenges

and possible future strategies for variability-aware compact modeling in both BSIM

and PSP are outlined in [33]. One such challenge, among others, is the need to ac-

commodate non-Gaussian distributions for model parameters in order to model the

tails of distributions accurately.

Other variation-aware modeling approaches, such as those for the back-end-of-

line (BEOL) process, have also been widely studied. For example, a capacitance

solver which enables variation-aware extraction by using an incremental approach is

described in [34]. The ability to quickly extract parasitic variations in the interconnect

is greatly improved by the proposed floating random walk-based algorithm.

In addition, new sources of variation which may have an impact in advanced tech-

nologies have also been investigated. In high-K metal-gate technologies, the variation

in the metal-gate work function caused by varying grain orientations contributes to

threshold voltage variation. This effect is modeled at a device level in [35], and the

implications of such variations on sub-threshold leakage current and SRAM perfor-

mance and yield are demonstrated. As new concepts in device integration lead to

new transistors, other variations will likely require similar efforts in device variation

modeling.

2.2.2 Variation Modeling for Unit Processes

Variation modeling for processes in the semiconductor manufacturing process are im-

portant for maintaining process control and maximizing yield. While such models can

also extend to the manufacturing tools themselves, analyzing effects such as drift over



time and tool-to-tool variations, the focus of this discussion is on the manufacturing

process step itself. One example of a wide range of efforts to model variation in the

manufacturing process is in that of chemical mechanical polishing (CMP). In CMP,

either an oxide or metal is planarized across the wafer surface by removing the extra

material by polishing the wafer with a pad. However, due to differences in pattern

density across the wafer, the residual thickness of the patterned features may not all

be the same. The case of interlayer dielectric (ILD) thickness variation is analyzed in

[36] and a closed-form model for the variation is presented.

Lithography and the patterning of sub-wavelength features is also made more chal-

lenging by variation sources such as the exposure dose variations and focus variations.

Consequently, it has become important to accurately model variations in the lithog-

raphy process, particularly to better perform optical proximity correction (OPC) and

employ other resolution enhancement techniques (RET). In [37], an analytical model

for the variations in feature shapes due to defocus and dose variations is described.

Furthermore, the model is used to develop a variation-aware OPC algorithm which

can result in printed features that more closely represent the intentions of the design.

2.3 Mitigating Process Variation

Process variations can be mitigated at multiple levels in the design hierarchy. While

numerous techniques for mitigating variation at the circuit level and the system level

have been developed, the section will focus on the techniques for mitigating variation

at the process level and the device level.

2.3.1 Mitigation at the Process Level

Statistical process control and feedback control is one way to mitigate variation at

the process level. For example, a technique for using feedback control for a plasma

etch process is described in [38]. In [39], the temperature post-exposure bake (PEB)

process was optimized according to the density of features in the region. While taking

into account these density variations, added variations caused later in the etching



process were also handled in the optimization scheme. This results in better CD

uniformity across a wafer according to simulation and silicon measurement results.

2.3.2 Mitigation at the Device Level

The mitigation of process variation at the device level is closely coupled with circuit

design techniques through the concept of design for manufacturability (DFM). One

set of DFM techniques involve transistor layout methodologies which focus on mit-

igating process variation. For example, placing dummy polysilicon gates at the left

and right sides of transistors is one way ensure that the local layout non-uniformities

which can create different stress profiles for different transistors do not occur. More

recently, other layout DFM approaches have included fixed-grid and single-orientation

polysilicon and metal lines, multiple contacts and vias connecting different intercon-

nect metallization layers, and the use of stricter overall design rules for spacing be-

tween features. An example of the use of some of these DFM rules used by Intel in

their SRAM cell design is shown in Figure 2-4 [3]. In fact, this example illustrates

90nm - tall 65nm - wide 45nm - wide
1.0 pm2  0.57 pm2  w/ patterning enhancement 0.346 pm2

Figure 2-4: Example of how DFM is used in Intel's SRAM cell design from 90nm to
45nm nodes [3]. The implementation of single-orientation polysilicon, relaxed pitch
features, and a polysilicon endcap process which results in square polysilicon ends
can be seen as the SRAM cell scales from the 90nm node to the 45nm node.

both DFM-related process variation techniques, such as the use of single-orientation

polysilicon and relaxed pitch features, and process-level mitigation techniques such

as the use of a special polysilicon end-cap process which results in square ends rather

than rounded ends. The implementation of such design rules is designed to mitigate

the systematic variation caused by irregular geometries which change from transistor

to transistor. DFM strategies can also be used to improve the number of yielding



die on a wafer for various product applications. For example, the authors in [40] use

a design-time methodology in which yield-friendly layouts of IP cores are optimally

mixed into the design, trading off area, performance, and power.

2.4 Summary

This chapter has outlined the challenges in addressing process variation in deeply-

scaled semiconductor manufacturing technologies. The characterization, modeling,

and mitigation of these variation sources have been well-documented in the litera-

ture thus far. However, there is an increasing need for new techniques and ideas in

these areas as the variation problem becomes larger. The complexity of the manu-

facturing process and the engineering required to design a robust modern transistor

further motivate the need for new ways to overcome variation for future technology

generations.
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Chapter 3

Contact Plug Resistance

Variability

Variability characterization and modeling in advanced technologies are needed to en-

sure robust performance as well as improved process capability - and methods for

the measurement, analysis, and mitigation of variation in devices, interconnects, and

circuits are starting to emerge [41] [42]. Key elements of these "statistical metrology"

methods include test structure and test circuit designs to gather the large amounts

of data required; statistical analysis techniques, including identification of signifi-

cant effects in spatial design of experiments, variation decomposition, and spatial

correlation approaches to quantify variation and its sources; and finally, modeling to

understand the impact and implications of variation on devices, circuits, and systems.

In this chapter, we review and extend these approaches for one important component:

contact plug resistance in advanced MOSFETs.

A great deal of work focuses on the characterization and modeling of variability

in MOSFETs. In particular, threshold voltage and channel length are two device pa-

rameters which have been studied extensively. With increased scaling, however, the

parasitic components of the MOSFET are playing a more significant role in determin-

ing the performance of a device. Parasitic resistance components resulting from the

gate-to-source/drain overlap regions, source/drain extensions, and contact regions are

growing in magnitude relative to the intrinsic resistance associated with the channel of



the MOSFET. High frequency device characteristics are also increasingly determined

by parasitic capacitances associated with the charge storage not only in the chan-

nel, but elsewhere in the device as well. As new materials and processing techniques

are being investigated to reduce these parasitic effects, it will become important to

accurately assess and model the variability in these contacts.

Furthermore, a variability characterization technique and a decomposition method-

ology associated with it is important for contacts and vias in emerging technologies.

Whereas in conventional silicon CMOS processes, the contact resistance can be as

low as 10, in an emerging technology such as carbon nanotube vias, the resistance

can be significantly higher and more variable [43, 44, 45]. The circuit and variation

analysis tools developed in this chapter for the analysis of traditional tungsten plugs

in silicon CMOS processes may be adapted to emerging technologies where variations

may be more significant.

The rest of this chapter is organized as follows. Section 3.1 discusses the impor-

tance of a contact in the context of device operation. Section 3.2 reviews existing

methods for contact resistance characterization and modeling. Section 3.3 describes

a new arrayed test structure for contact plug resistance variability characterization.

Sections 3.4, 3.5 and 3.6 present statistical analysis techniques and measurement re-

sults. Section 3.7 underscores the need for variability-based models, and Section 3.8

concludes.

3.1 Contacts in a Device Context

In the context of a transistor, the contact plays a critical role in that it serves as the

connection between the transistor itself and the surrounding interconnect or other

devices. In other words, the contact is necessary in order to send and receive electrical

signals to and from the source, drain, and gate terminals of a transistor. For the

source and drain terminals, the contact is generally comprised of a silicide material

to form the interface between the semiconductor active region and the metal which

is the contact plug. A different type of contact or silicide may be used in order to



contact a polysilicon gate, and these may also differ from those used to contact metal

gates which exist in a high-K metal gate technology. An example of how source-

drain contacts are used in a transistor is shown in Figure 3-1. The contact plug itself

RACC

Figure 3-1: Contact in the context of a transistor and relevant extrinsic parasitic re-
sistances [5]. The parasitic resistance components which most significantly involve the
contact are RCONTACT, RsILICIDE, and RINTERFACE. However, other choices, such
as that to use elevated source-drain regions, can significantly impact the magnitude
of these parasitics and others.

is shown in yellow, which is then connected to the silicide (green) which is formed

just above the active region. The silicide-diffusion interface, shown in light blue, is

modeled with a resistance, RINTERFACE. An electrical signal must travel from the

edge of the transistor channel to the top of the contact or set of contacts before it

reaches the first metallization layer, upon which it can traverse through various vias

and upper-level metallization layers before it must go through another contact or set

of contacts to access another transistor terminal. The work in this chapter focuses on

the characterization of the contact plug resistance of multiple contacts in a transistor

context and will be described in more detail in the upcoming sections.

3.2 Background Work

The interface between the device and local metallization layers is critical in under-

standing the performance and robustness of a MOSFET. Consequently, increasing at-

tention has been paid to the analysis of contact resistance, which represents a growing

proportion of the total on-resistance associated with a transistor. ITRS projections



predict that the contact resistance will double every technology generation [46]. This

is partially due to the higher aspect ratios required for contact plugs in advanced

technologies. Methods for contact characterization and analysis can be categorized

into four areas: fabrication and measurement of individual contacts, failure and de-

fect analysis, analytical modeling, and arrayed test structures for characterization of

parametric variability. Details of each of these areas are discussed in the subsequent

sections.

3.2.1 Individual Contact Measurement

A key step in the development of any process involves the characterization of indi-

vidual components, such as transistors, diffusion resistors, or metallization layers. In

this context, the fabrication of contacts and the measurement of its resistance has

been performed and reported in the literature several times. Measurement techniques

for the measurement of a single contact can generally be classified as using either a)

the transfer-length method, or b) the four-terminal probe method, both of which

will be described in the following subsections. In addition to these techniques, SEM

images can be used to inspect the physical quality of an individual contact. Contact

chains can also be used to measure the series resistance of multiple contacts and there-

fore obtain an average contact resistance [47]. These techniques involving individual

contact measurements tends to consume a great deal of both on-chip and off-chip

resources due to the use of large, dedicated pad structures; as a result, opportunities

for variability characterization, which requires measurements of many contacts, are

limited.

Transfer Length Method

In terms of characterizing contact resistivity, one of the first major breakthroughs

was the transfer-length method, or TLM, which enabled the determination of contact

resistivity by obtaining the resistances of many different sized contacts and using

analytical equations to determine the resistivity [48]. The derivation of the analyt-



ical equation stems from a resistor-grid model of the metal-semiconductor contact

interface as shown in Figure 3-2.

dx

V(O) G' V(x)

1(0) R'

x=0 .. x=d

1(x)

Figure 3-2: Resistor-grid model of metal-semiconductor contact [6]. R' is the re-
sistivity of the doped silicon source/drain junction and G' is the resistivity of the
metal-semiconductor contact interface.

Here R' is the resistivity of the doped silicon source/drain junction, and G' is the

resistivity of metal-semiconductor contact interface. The metal resistivity is negligible

compared to the other two, so it is neglected in this analysis. Based on simple

Kirchoff's law current equations, the contact resistance, Rc, is

RScLT d
Re = coth- (3.1)

We LT

where LT = pc/Rsc is the characteristic contact transfer length, Rc is the sheet

resistance of the diffusion layer directly beneath the contact area, We is the contact

width, and d is the contact length [6]. The transfer length method was extended for

the analysis of silicided diffusion regions in [49]. More recently, technology scaling

has demanded smaller dimensions for contacts, as well as design rules which allow for

only one specific contact size. Nevertheless, recent efforts to accurately characterize

the contact resistivity have been successful despite these trends [50]. For example,

in [51], the TLM was combined with analysis of various geometries to determine the

specific contact resistance of NiSi and PtSi silicides.



Four-Terminal Probe Method

Another common method used to determine contact resistance is the four-terminal

Kelvin resistor method. This test structure uses four terminals which are all connected

to the device under test - in this case, a contact [52]. With this structure, it

is relatively simple to obtain the contact resistance, but more difficult to obtain the

specific contact resistivity. This is because the current flow through the contact is non-

uniformly distributed throughout its area, which presents problems when coupling

this method with the TLM in order to obtain pc. A test structure was developed

in a 0.8[tm technology to determine the distribution of contact resistances for an

array of 4k contacts in [53]. The results indicated a Gaussian distribution of contact

resistances for any given contact size. Some work has also focused on refining each of

these methods by eliminating parasitic components which could lessen the accuracy

of the resistivity measurement, or on developing a unified approach to accurately

extract specific contact resistance [54] [55].

3.2.2 Failure and Defect Analysis

A more comprehensive approach for individual contact characterization is failure and

defect analysis, which is useful for functional yield estimation. Thus, a variety of test

structures are available to characterize resistances, in order to quantify the failure or

defect rate of contacts or vias. These structures seek to capture the functional yield of

the contacts, e.g., by detecting open contacts with extremely high resistance, rather

than trying to determine parametric yield by obtaining a distribution of individual

contact resistances. The advent of these types of test structures has been due to

the increasing complexity and density of integrated circuits and the possibility that

a small number of contact or via failures could jeopardize proper operation. In [56],

a passive multiplexing approach was developed in order to quickly and accurately

characterize contact and via fail-rates. Using bit-lines and word-lines and testing a

number of combinations of interconnect paths, highly resistive contacts were detected.

The cause for the open contact and via failures was found to be partly due to a lack



of tungsten within the plug which was to be filled. Another test structure, described

in [57], implemented an efficient methodology to characterize open contact and via

failures by using a pyramidal architecture scheme. SEM results indicated that the

highly resistive contacts and vias were caused by three major process failures: voiding

failures, etching failures, and resistive failures. These techniques for failure and defect

analysis are useful in capturing functional yield, but the increasing parametric vari-

ability in advanced technologies requires other techniques for parametric variability

characterization.

3.2.3 Analytical Modeling

For contact resistance modeling, the TLM remains useful as an accurate method for

modeling contact resistance. However, due to the differences in device geometries as

a result of scaling, such models have been adjusted to include sidewall interface resis-

tance, dopant redistribution calculations, and various nuances in process steps. For

example, in [58], the contact resistance is modeled as part of an effort to accurately

model the entire series resistance of a device. An effort to include the sidewall contact

resistance contribution is made in [59], since the contact width is shrinking. Analyt-

ical modeling of contact resistance is oftentimes folded into the analytical modeling

of extrinsic resistance in a MOSFET. Such modeling efforts are beneficial in under-

standing the physical nature of the contact resistance and its interactions with other

variables, but it is also important for these efforts to be extended to account for the

increasing variability which is present in advanced technologies.

3.2.4 Arrayed Test Structures

Arrayed test structures are helpful in gathering variability data for contact resis-

tances. In [60], a test structure was designed to assess the resistance of individual

contacts located within transistors. Results showed that the distribution of resis-

tances is Gaussian, but that the means can also change due to different device layout

configurations. When the data gathering process is sufficiently fast, this rapid char-



acterization of many contacts can be helpful in assessing variability. The remainder

of this chapter will focus on a test chip which has also been designed and measured

for contact plug resistance variability characterization.

3.3 Test Structure for Contact Plug Resistance Vari-

ability Characterization

A test chip has been implemented in a 90nm bulk CMOS technology to determine

the characteristics of contact plug resistance variability and the layout-based design

parameters which can affect it. The resistance is obtained by a current-force, voltage-

sense approach, similar to the four-terminal probe method used for individual contact

characterization, which is multiplexed across over 40,000 devices under test. A con-

tact measurement bank comprised of 36,864 DUTs is implemented where only contact

plug resistances are measured. In addition, a simultaneous measurement bank com-

prised of 3,760 DUTs is implemented where measurements are performed for both

contact plug resistance and current through the transistor in which the contact is

located. Section 3.3.1 describes the test circuit used for the contact measurement

bank, Section 3.3.2 describes the test circuit used for the simultaneous measurement

bank, Section 3.3.3 discusses the measurement accuracy of the test circuits, and Sec-

tion 3.3.4 describes the design of experiments used for the test structure.

3.3.1 Contact Plug Resistance Measurement Circuit

Figure 3-3 shows a three-dimensional view of the device under test and the current flow

through it. The current is forced into the silicide region through one contact and out of

the region through the other contact (yellow), which is the contact to be characterized.

The voltage is tapped across the two terminals of the contact, emanating in the

two voltage outputs, VOUTL and VOUTH. The current is guided to a sink device

transistor where it then flows to ground. The resistance is directly proportional to

VOUTH - VOUTL with a proportionality constant of 1/IF, the inverse of the forced
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Figure 3-3: Three-dimensional transistor view with path of current flow through
contact to determine contact resistance of middle contact under test (yellow). The
gate is switched off so no current flows from the source to the drain of the transistor
itself.

current. The multiplexing scheme, shown in Figure 3-4, features three DUT access

transmission gates which are enabled by the outputs of row and column decoders.

In addition to this scheme, each row contains its own high-V transmission gate to

adequately minimize leakage current paths. The analog-to-digital conversion of the

voltage outputs is performed off-chip, and digital output enables fast characterization

of contact plug resistances.

3.3.2 Simultaneous Contact and Device Measurement Cir-

cuit

The test circuit for the simultaneous measurement of contacts and devices is shown

in Figure 3-5. The gate of the transistor in which the contact is located is connected

to a multiplexing transmission gate switch, M4, which is then connected off-chip to a

configurable gate voltage. The sources of all DUTs are connected to the output of an

operational amplifier through a snaking wire which then loops back and connects to

the negative input of the same op-amp. The positive input is connected to an external

source-meter which provides the desired source voltage on the DUT for measurement.
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Figure 3-4: Test circuit to measure contact plug resistances in an arrayed set of DUTs.
Three transmission gate switches are used to control access to the VOUTL, VOUTH, and

IF- Off chip-analog-to-digital converters are used to sense the output voltages.



This configuration, used previously in [61] is used to eliminate the IR drop within the

interconnect between the pad of the forced source voltage and the DUT source. The

drain node of the transistor is also forced in a similar way, except that the voltage is

only applied to contact A (top-most contact). This is because the contacts are not

shorted together through M1 because the contact plug resistance measurement still

needs to be made.

Three off-chip resistors are used to measure the I-V current through the DUT.

The resistance value chosen for a particular current depends on the magnitude of the

current and is controlled through Dmeas. For smaller currents, the smallest resistor is

used, while for larger currents, the largest resistor is used. The voltages across these

resistors is measured through an off-chip analog-to-digital converter (ADC). Then

this voltage is divided by the value of the resistor to determine the current through

the DUT.

V
MI F

M2

+VDRAIN

+ VSOURCE

Figure 3-5: Test circuit to measure both contact plug resistances and transistor I-V
characteristics for an arrayed set of DUTs. An additional transmission gate switch
is used to control the gate voltage of the transistor DUT and off-chip operational
amplifiers are used to force the source and drain voltages to their desired values. The
device current is measured through the measurement of voltage across an off-chip
resistor that is located in the current path of the DUT transistor.



3.3.3 Measurement Accuracy

The measurement accuracy of contact plug resistances in the contact-only bank is

determined by two factors. The first factor is the difference in voltage which appears

between the two terminals of the DUT contact of interest and the voltage that ap-

pears at the inputs of the off-chip analog-to-digital converter. The second factor in

determining measurement accuracy is the difference between the current which flows

through the DUT contact of interest and the current which is sensed at the drain

of the sink transistor using an off-chip source-meter. Simulations indicate that the

combined measurement error resulting from these two sources is bounded by 0.01Q.

3.3.4 Design of Experiments

The design of experiments for this test chip includes five key layout design parameters:

contact-to-gate distance (deg), contact-to-diffusion edge distance (dc), metallization

layer to contact overlap for the y-dimension (d,), the number of contacts in the source

diffusion region (N,), and the number of contacts in the drain diffusion region (Nd).

These parameters are shown pictorially with reference to the DUT in Figure 3-6.

In addition, DUTs with contacts located in both NMOS and PMOS transistors are

used. The contact which is measured is always on the drain side of the device. A

DUT type is one which consists of some particular combination of these five layout

design parameters. The chip contains a total of 55 types of devices under test. The

chip also contains 256 rows and 144 columns of DUTs, for a total of 36,864 resistance

measurements.

Figure 3-7 shows pictorially the first three layout parameters to be examined and

the corresponding sets of values chosen. A comprehensive list of the input variables

used in the design of experiments and their corresponding possible values is shown in

Table 3.1.



Figure 3-6: Geometry-based variables in the DOE (half transistor shown for sim-
plicity). Contact-to-gate distance, (deg), contact-to-diffusion edge distance (ded), and
metallization layer to contact overlap for the y-dimension (d0 ) are varied to determine
any possible impact on contact plug resistance.

Design of Experiments:
Distance Parameters Used
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Figure 3-7: Design of experiments for contact resistance variability analysis. Values
are chosen such that many DUT geometries exist at or near "nominal" case of d =
80nm, dc = 40nm, and do = 10nm.
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Layout Design Parameter Values
dcg (nm) de (nm) d, (nm) NC,left, NC,right

80 40 0 3,3
90 50 10 4,4
100 60 20 5,5
120 80 - 3,4
160 120 - 4,3
200 160 - -

- 200 - -

Table 3.1: Layout design parameter values chosen for the DOE: 4 factors and 55 DUT
types representing a subset of all possible combinations of these 4 factors.

3.4 Variation Decomposition Methodology

In order to analyze the measurement data, a variation decomposition methodology

has been developed which uses the concept of spatial correlation to uncover within-

die systematic spatial trends. Because the arrangement of DUTs within the die is

periodic, spatial correlation analysis can also reveal trends in contact plug resistance

based on DUT type. This decomposition methodology is used to determine the

magnitude and nature of the different effects which contribute to variation in the

measurement data.

3.4.1 Spatial Correlation Computation

Before the overall methodology is described, it is important to define the concept

of spatial correlation as it applies to this measurement data. A spatial correlation

coefficient is computed for a set of distances, starting from 0pJm to the longest distance

between any pair of DUTs on a single chip, at a reasonably chosen interval to see

any possible trends. The spatial correlation coefficient for each distance is computed

as follows. Let R(x, y, c) represent the contact plug resistance of the DUT located

at (x, y) on chip c. Then, for a given distance, d, a set of all non-intersecting pairs

{Ri, Rj} for which Equation 3.2 is satisfied is computed.

d - 6 < (x - xy) 2 + (y, - yj) 2 < d + (3.2)



Then, the pairwise spatial correlation coefficient, p(d), is computed for the set of

pairs using Equation 3.3.

E(Ri - pR)(Rj - pR 3) (33)
CRi rRj

When computed for many distances, the spatial correlation coefficients, p(d), can

be plotted versus the DUT separation distance, d. The magnitude of these coefficients

and the associated confidence intervals can help to determine the nature of systematic

trends if they exist.

Although there is a distinction between spatially correlated versus uncorrelated

variation and systematic versus random variation, the results of spatial correlation

analysis can still help to determine systematic trends within the measurement data.

Therefore, a large spatial correlation coefficient may not indicate a pure spatial trend

but rather a systematic effect possibly due to layout patterns, within-die edge effects,

or die-to-die variations.

3.4.2 Decomposition of Variation Sources

Once spatial correlation analysis shows that a possible systematic trend exists, the

p(d) is inspected to determine the possible systematic effect at work. Figure 3-8

shows how spatial correlation analysis is used to enable the identification of systematic

variations.

Starting from the original set of data, the spatial correlation coefficients are com-

puted. If there are statistically significant coefficients, this indicates a possible sys-

tematic source of variation. Upon identification of the variation source, a residual

data set is computed by subtracting the mean of the set of data to which each

R(x, y, c) belongs from its original value. This process continues until no statisti-

cally significant spatial correlations can be found in the residual measurement data.

The sources of variation identified for this data set, in order from most significant

systematic contribution to least significant systematic contribution to total variance,

are the following: die-to-die variation, within-die layout-dependent systematic varia-
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Figure 3-8: Spatial correlation analysis-based variation decomposition methodology.
Spatially correlated contact plug resistance values can indicate the presence of a
systematic trend, which can be subtracted from the measured data points to obtain
a residual resistance map, for which the same analysis can be performed until there
is no significant spatial correlation detected.

tion, within-die position-dependent variation. The remaining variation is categorized

as random, spatially uncorrelated variation.

Equation 3.4 describes the decomposition of the resistance value of a single DUT

into its respective components.

R = MtDIE(R) + gTYPE(R) + ,UX,Y(R) + E (3.4)

Each measured DUT resistance, R, has the following properties within the context of

the decomposition. First, the die in which the DUT is located is denoted as DIE(R).

Next, the geometric type as determined by the values for each variable in the DOE

is TYPE(R). Finally, the within-die x and y coordinates of the DUT with reference

to the entire chip, with the bottom left corner of the chip area being (0,0) are X(R)

and Y(R), respectively.



3.4.3 Analysis of Variance (ANOVA)

In order to determine the existence and/or nature of any cross-term effects on the

value of a DUT resistance, it is necessary to perform an analysis of variance on the

measurement data. A three-way ANOVA with single factor and two-factor inter-

actions were considered, where the three factors were the DUT source-drain width,

Wsd, the Mi-CA overlap distance in the y-direction, d0, and the die on which the

DUT is located. Results of this analysis, shown in Figure 3-9 indicate that there are

no statistically significant coefficients for the interaction terms which contribute to

the variance of the measurement data. The die on which the DUT is located, the

sd width 6.5508 3 2.18361 2353.02 0
do 0 0 0 0 NaN
die 5.6987 25 0.22795 245.64 0
sd width*do 0.2367 6 0.03945 42.51 0
sd width*die 0.1782 175 0.00102 1.1 0.1838
do*die 0.0286 50 0.00057 0.62 0.9848
Error 5.8696 6325 0.00093
Total 32.6003 6590

Figure 3-9: ANOVA results on wafer-level measurement data of contact plug resis-
tance. The largest sum of squares terms are those coming from the source-drain width
parameter, the die parameter, and the error term for unexplained variance. The sum
of squares of the three interaction terms are much smaller in comparison.

source-drain width of the DUT in which the contact is located, and other variations

unexplainable by the factors (likely random variation), contribute the most to the

total variation of contact plug resistance.

3.5 Statistical Analysis Results

Measurement results are reported for a total of 23 die. The results will be described in

five sections: overall trends, die-to-die trends, within-die systematic layout-dependent

trends, within-die systematic position-dependent trends, and random spatially un-

correlated variations which are highlighted by the comparison of measurements from



outlier and non-outlier die. The percentage of total variation contributed by each

of these variation sources, in addition to that contributed by other small systematic

effects, is shown in Figure 3-10.

Die-to-die 0.4% 155%
Layout-dependent
Position-dependent 0.9%
Random

=Other systematic

55.3%
27.9%

Figure 3-10: Contribution of each variation source to total variation in contact plug
resistance. More than half of the total variance can be attributed to die-to-die vari-
ations, while over 25% of the variance comes from the layout-dependent systematic
component. Random within-die variation represents roughly 15% of the total vari-
ance.

3.5.1 Overall Trends

The summary of the statistics on contact plug resistance are as follows. The mean

contact plug resistance over all measurements made on all die on the wafer is 14.36Q.

The standard deviation of contact plug resistance over all measurements made is

0.92Q, which results in a j = 6.15%. This indicates that, for this 90nm technology,

while the percentage variation on the contact plug resistance is substantial, its overall

impact on the transistor source-drain parasitic resistance variation is still small due to

the comparatively small contact plug resistance mean. However, the methodologies

used in order to uncover systematic and spatial trends in the measurement data are

applicable to a wide variety of potential data sets. Furthermore, transistor dimension

scaling and the use of new types of contact plugs, materials, and silicides in future

technologies may increase the amount of observed variation in contact plug resistance.

For this measured data, the distribution of contact plug resistance over a single die

is nearly Gaussian, while the distribution of contact plug resistance over the entire



wafer is not quite Gaussian due to the presence of multiple variation sources which

affect the contact plug resistance values.

Figure 3-11 shows the distribution of contact plug resistances over a single die.

In addition, Figure 3-12 shows a normal probability plot of the same data points,

normalized to standard deviation values of contact plug resistance. This plot indi-

cates that the data points are nearly normally distributed, but the presence of some

systematic effects introduces non-normality into the data, including a slightly larger

than Gaussian upper tail.
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Figure 3-11: Distribution of measured contact plug resistances across one die.

The wafer-level distribution of measured contact plug resistance is shown in Fig-

ure 3-13. The normal probability plot for the same distribution can be seen in Fig-

ure 3-14, where indications of non-normality can be seen at several points in the

distribution, likely as a result of one or more systematic variation sources.

3.5.2 Die-to-Die Trends

To observe die-to-die variation, the wafer level-normalized average die contact plug

resistance is plotted on a spatial wafer map in Figure 3-15 for 43 measured die.

For this plot, 43 die are shown because the DUTs have been measured from the

simultaneous measurement bank. This is to more clearly show any possible wafer-
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Figure 3-12: Normal probability plot of contact plug resistance measurements over
one die.
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Figure 3-13: Distribution of measured contact plug resistances over the entire wafer,
which has a mean of 14.36Q and a standard deviation of 0.92Q.
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Figure 3-14: Normal probability plot of contact plug resistance measurements over
the entire wafer show that the distribution is not Gaussian. In this case, this is due
to the presence of various systematic effects due to various factors.

level trends in the data. However, the data used in the decomposition come from

the contact-only bank, for which 23 die are measured. Because no systematic wafer-

level trend is seen, we can assume that the die-to-die variation is largely random and

therefore the die mean can be subtracted to remove the effect from the data. With

more measured die on the wafer and/or more wafers, it may be possible to determine

that a systematic wafer-level variation exists with a higher confidence. In this case, a

wafer-level variation model which had a systematic component could be constructed.

Then, the corresponding variations could be subtracted out using such a model in

order to arrive at the residual variation data.

3.5.3 Within-Die Systematic Layout-Dependent Trends

This analysis focuses on variations arising from the design of experiments in layout

parameters. Because a large number of replicated DUT types are available (both

within each die, and for 23 die), it is possible to obtain quite tight confidence intervals

on the estimation of mean and variance of resistance for each DUT type, enabling

us to identify any systematic effect of different layout parameters on the mean and

variance of the contact plug resistance. Two notable effects are those of dcg and
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Figure 3-15: Wafer map of average die contact plug resistance for 43 measured die.
Given the observed data, no statistically significant wafer-level trend is observed.
Some outlier die are located at the corners of the wafer.

dcd. Figure 3-16 shows the resistance mean and standard deviation as a function

of the distance between the contact and the polysilicon gate with all other layout

parameters held constant. The values of the other layout parameters are dcd = 40nm,

do = 10nm, and N, = Nd = 3, and only contacts within NMOS devices are included.

Figure 3-17 shows the normalized resistance mean and normalized standard deviation

as a function of the distance between the contact and the edge of the diffusion region.

In this case, the other layout parameters which are held constant are The values of

the other layout parameters are dc, = 80nm, d. = 10nm, and N, = Nd = 3, and

only contacts within NMOS devices are included here as well. Both the mean and

standard deviation are plotted with 95% confidence intervals represented by the error

bars attached to each point. Resistance values are normalized to the global wafer

mean.

Results show an increase in resistance with both increasing dc and ded. However,

there appears to be no clear significant change in the variance when plotted against

these distances.
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Figure 3-16: A plot of contact plug resistance resistance mean and standard deviation
versus dcg shows an increase in mean contact plug resistance for those contacts which
are located further away from the polysilicon gate of the transistor. However, the
standard deviation of the measured resistance does not change as a function of deg.
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Figure 3-17: A plot of resistance mean and standard deviation versus dc shows an
increase in mean contact plug resistance for those contacts which are located further
away from the edge of the diffusion region of the transistor. However, the standard
deviation of the measured resistance does not change as a function of dca.
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3D Device Simulations

Device simulations are performed to better understand the nature of this mean shift

in the plug resistance. Using the 3D Sentaurus device simulator, the resistance is

observed as a function of both dd and deg. The structure shown in Figure 3-18 is

simulated to determine the distribution of electrostatic potential at the silicon inter-

face in the source-drain region. Current enters the transistors through an orthogonal

1F 'SINK

Figure 3-18: A 3D structure closely replicating the test structure design is used
for device simulations. Determining the current flow and electrostatic potentials at
the surface of the silicide region can help to understand systematic trends in the
measurement data.

M1 wire just as in the implemented test circuit and flows only through the contacts

A and B. No current flows through contact C because it is simply a tap whose voltage

should be identical to that of the bottom contact B.

When this structure is simulated in two different configurations, a different dis-

tribution of electrostatic potentials is seen at the bottom silicon surface of contact

B. For a "narrow" structure, which corresponds to the DUT type with design pa-

rameters of deg = 80nm and da,1 = 40nm, the current flow is restricted because of

the relatively narrow source-drain region, as shown in Figure 3-19. Consequently,

the electrostatic potential surrounding contact B is asymmetric and the electrostatic

potential throughout the area below contact C is low. This results in a smaller dif-
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Figure 3-19: A contour plot of electrostatic potential at silicon surface of a narrow
diffusion region shows that current crowding occurs near the top of contact B, re-
sulting in some difference in average electrostatic potential between contacts B and
C.

ference between the average electrostatic potentials at the surfaces of contacts B and

C, which in turn results in a measured contact resistance that is smaller than what

one would ideally measure by observing a single contact in isolation.

In contrast, when a "wide" structure is used, the opposite effect is seen. For the

simulation shown in Figure 3-20, the design parameters are dc9 = 280nm and dc =

160nm.

Because of the large area in the x-direction for current to flow, the electrostatic

potential at the bottom surface of contact B is more symmetric than in the case of

the "narrow" structure. The potential at contact C matches closely with that of the

boundary of contact B. The difference between the average electrostatic potentials at

the bottom of contacts B and C as a result is larger than in the case of the "nar-

row" structure. This larger difference in voltage then maps to a measured resistance

which is larger than what one would ideally measure by observing a single contact in

isolation, since the resistance is measured as A.

When the actual measured contact plug resistances from the test chip are plotted,
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Figure 3-20: A contour plot of electrostatic potential at silicon surface of a wide
diffusion region shows that less current crowding occurs because of the large amount
of diffusion area through which current can flow. In this case, the difference in average
electrostatic potential between contacts B and C changes from its value in the case
of a narrow diffusion region.

a clear trend is seen as shown in Figure 3-21. This trend is consistent with the

3D device simulation results, which suggest that the amount of current crowding

due to the source-drain widths of the DUT causes different contact plug resistance

measurements.

Because the underlying variable governing the current flow through the contacts

is actually the total width of the source-drain region, the measurement results from

the test chip have been replotted using this parameter as the control variable, where

the source-drain width, Wd is described by Equation 3.5, where we represents the

width of the contact, which in the case of this technology is 120nm.

Wsd = dc + dcd + wc (3.5)

The asymptotic nature of the measured resistance as the Wd increases confirms

the conceptual notion that, for increasingly larger source-drain widths, the overall

effect on the measured resistance diminishes.
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Figure 3-21: A plot of contact plug resistance as a function of source-drain width
shows that the average measured plug resistance increases with larger source-drain
widths. For very large widths, the average resistance approaches an asymptotic value.

3.5.4 Within-Die Systematic Position-Dependent Trends

When the systematic layout-dependent induced variability components (summarized

in the Section 3.5.4) are subtracted off the total resistance distribution die pattern,

the remaining portion of the data exposes any systematic (repeatable) within-die

trends. To do this, the type mean-subtracted resistance is computed for each DUT.

The type mean-subtracted resistance is the measured resistance minus the average

resistance of all DUTs of the same type as itself. Some insight is obtained when the

resulting mean-subtracted resistance is plotted for each column, with all DUTs in

that column averaged. This is done in Figure 3-22 for each of the 144 rows with 95%

confidence intervals on the column averages. The resistances are plotted as a fraction

shift from the wafer global mean. Clearly, two regions of resistance exist with a sharp

change at around x = 121Opm. The average over all contact plugs on the left side of

the chip, where x < 1210Am, is noticeably greater than the average over all devices

on the right side of the chip, where x > 1210pm. Furthermore, the change in average

plug resistance is quite abrupt. While all of the previously seen trends with regards

to layout design parameters can still be seen for DUTs in each of the two sides of the



chip, there appears to be an offset. The average resistance measured for DUTs on

the right side of the chip is 1.3% lower that for those located on the left side of the

chip.
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Figure 3-22: Residual resistance as a function of column (x-location) shows two dis-
tinct regions of plug resistance. Contact plugs located at x > 1210pm have an average
resistance which is 1.3% lower than those located at x < 1210p1m.

Though the source of this variation is unclear, it is possible to identify some steps

in the manufacturing process which may result in a change of this magnitude and

abruptness. One possibility is that an unintentional error or offset occurred during

the software-based mask generation process. For example, a previously unnoticed

software bug may have caused the optical proximity correction algorithm to shape

contacts slightly differently for one side of the reticle versus another. The magni-

tude of such a difference which would corresponds to the measured difference in plug

resistance would be approximately 1.4nm in a single direction.

Another possibility may be related to variability resulting from a step-and-scan

exposure system used during lithography processes [62]. Because the variability only

occurs in the x-direction and not in the y-direction, the optical scan direction would

have been the vertical y direction, while the slits would have been organized in the

horizontal x direction. The two distinctly different regions in terms of contact plug



resistance suggest that a total of two slits were- part of this particular die (part of a

larger multi-project die) on the reticle. The resulting effect is a critical dimension

change from one side of the die to the other side of the die. This critical dimension

change may then manifest itself in terms of a change in the cross-sectional area of the

contact plug, thus changing the total resistance. If this is indeed the case, the contact

width would have changed by approximately 0.7% in order to explain the observed

resistance change.

3.5.5 Random Spatially Uncorrelated Variation

While the examination of systematic components of contact plug resistance variabil-

ity is important, the analysis of random components is also critical for both modeling

and for understanding the variation sources. When the systematic components are

mean-subtracted from the resistance data as previously described in the variation

decomposition methodology (Figure 3-8), what remains is "unexplained" or random

variation in contact plug resistance. To analyze the nature of this variability, and

in particular to understand if some remaining correlated spatial variation remains,

contact-to-contact spatial separation distance correlation analyses can be performed.

An important observation below is that systematic spatial trends (such as those dis-

cussed earlier) can appear to be spatially correlated variations, if they are not pre-

viously identified and removed. Thus, spatial correlation analysis can serve as a

tool by which potential spatial trends can be "flagged" for investigation, removal, or

mitigation.

First, to understand the effects of non-removed systematic components on spatial

correlation analysis, the distance-dependent spatial correlation coefficient has been

plotted for the nominal device type on all die with 95% confidence intervals on each

coefficient in Figure 3-23(a). Because the systematic die-to-die component is not

removed (mean-subtracted), we see some small positive correlation for small distances

as well as some small negative correlation for large distances. In this case, what

appears to be spatially correlated random variation is actually systematic variation

which has not been removed prior to the correlation analysis.
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In Figure 3-23(b), the same analysis is done, except the (x, y) location mean is

subtracted from each point before the correlation is computed. Here, the small posi-

tive correlation at small distances could be the result of either some subtle systematic

trends which have not been accounted for, or truly spatial correlation. An illustration

of the effect of a substantial spatial trend is seen in Figure 3-23(c), which shows the

correlation coefficient as a function of separation distance for contacts located only on

the die which is at the edge of the wafer. The 95% confidence intervals in this plot are

substantially wider, because the data set includes resistance values from only one die

as opposed to all the die. Here, we see both positive correlation at small separation

distances and negative correlation at large separation distances, despite the fact that

the location means have been subtracted off. This large spatial correlation is due to

the unique systematic gradient in contact plug resistance on this die, shown earlier

in Figure 3-24(b).

Wafer-Level Edge Effects

To examine the nature of the wafer-level edge effect determined by the spatial correla-

tion analysis, it can be useful to look at the raw measurement data. While nearly all

of the other die show a systematic pattern similar to that seen in Figure 3-24(a), the

particular die located at the edge of the wafer shows a systematic pattern as depicted

in Figure 3-24(b). This indicates that some wafer-level or wafer-edge variation may

be affecting the contact plug resistance in this die. Once again, measurements of die

from multiple wafers would be useful in determining the cause of this variation.

3.5.6 Spatial Correlation Via Sparse Regression

An alternative approach to uncovering systematic trends in measurement data is

based on analysis in the frequency domain. A frequency-domain analysis is per-

formed using a discrete cosine transform (DCT) based method, as described in [63].

When the coefficients are determined using an error-minimizing algorithm such as Si-

multaneous Orthogonal Matching Pursuit (S-OMP) [64], periodic systematic trends
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Figure 3-24: Spatial maps of contact plug resistance for both a normal die and die
located at edge are shown. The outlier die located at the edge of the wafer has an
additional systematic spatial trend.

can be determined. Using this algorithm on the raw contact plug resistance measure-

ments reveals the systematic within-die spatial trend in the data. Figure 3-25 shows

the DCT coefficients when the S-OMP based algorithm is used on the data. The

results from the algorithm show that the dominant source of within-die systematic

variation is that caused by the different layout types of the DUTs. This is clear when

comparing the systematic variation determined by the DCT coefficients in Figure 3-

26(a) with Figure 3-26(b), which plots the type of each DUT versus its location on

the chip.

3.6 Simultaneous Bank Measurement Results

To determine if there is a significant interaction between the contact plug resistance

and the DUT current, the simultaneous bank data is analyzed. Results indicate that

the device current is correlated with the contact plug resistance, as shown in Figure 3-

27. However, the direction of the trend is opposite to what one might expect. For

lower values of contact plug resistance, the device current tends to be smaller, while

for higher values of contact plug resistance, the device current tends to be larger.

The correlation coefficient between the two parameters is 0.33. In addition, a 95%

confidence interval bound is drawn in red around the data points.
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Figure 3-25: DCT coefficients from applying S-OMP-based algorithm on raw mea-
surement data reveal the periodic patterns present in the DUT array due to the
repeating order of DUT types in the layout.
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Figure 3-26: A die-level map showing systematic layout-dependent trends in contact
plug resistance, created from the extracted DCT coefficients from the measurement
data, matches the distribution map of DUT types across the chip.

.

0.95

0.9

0.85



NMOS I D(Vgs= 1.0V, Vds = 0.2V) vs. RC

095*
o

0.9 0.95 1 1.05 1.1 1.15

Normalized RC

Figure 3-27: A scatter plot of normalized contact plug resistance versus normalized
transistor current, measured at V, = 1.OV and V, = 0.2V. A positive correlation of
0.33 exists between the two variables.

When a set of such a correlation coefficient is computed for multiple values of

V, and V 8, it can be plotted as shown in Figure 3-28. Figure 3-28 shows that

the highest correlations between contact plug resistance and device currents occur

in the linear region of operation, where V, is large and V, is small. Based on this

trend, we can conclude that the cause of this correlation is the different amounts

of unintentional stress induced by the STI regions surrounding the transistor due to

the difference in source-drain widths among different DUT types. The correlation

between the contact plug resistance value and the drain current is a by-product of

the relationship between contact plug resistance and source-drain width, discussed

earlier in Section 3.5.4. This hypothesis is further supported by Figure 3-29, which

shows a clear dependence of device current on DUT source-drain width, where the

magnitude of current variation is similar to that observed in the plug resistance versus

device current correlation scatter plot. In addition, the fact that the NMOS currents

increase with larger source-drain widths (longer distance from gate to STI edge) while

the PMOS currents increase with smaller source-drain widths (shorter distance from

gate to STI edge) is consistent with an STI-related stress effect [65].
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Figure 3-28: Correlation coefficients between measured device currents at various
operating points and measured contact plug resistance. Correlations are strongest in
the linear region of operation (low values of V, and high values of VS).

Future DOEs of this design may include more replicates of transistors with iden-

tical source-drain widths but different contact-to-gate and contact-to-diffusion edge

distances in order to obtain more measurement samples which focus on the possible

impact of the contact plug on device current.

3.7 Need for Variability Models

Results from the previous section motivate the need for variability models which

can capture systematic effects in contacts accurately, including small but important

choices made in the local layout. As technology scales, parameters such as contact

resistance are becoming more critical to the operation of the transistor. The issues

of increasing contact plug resistance and higher variability have presented concerns

that scaling past the 65nm node while continuing with the same contact plug process

steps may result in intolerably high resistances [66]. While efforts have been made to

improve the materials and process steps which are used to form these contacts, par-

allel efforts are needed to model the variability present in these contacts. Advances

in both numerical modeling and compact modeling are necessary to capture these

variations.
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Current state-of-the-art device models for transistors such as BSIM are lacking in

their ability to adequately model contact resistance variability as part of the transis-

tor. While some functionality exists in terms of choosing some geometric parameters

such as the type of contact (wide or point contact) and type of connection to the

source/drain regions (isolated or shared), a more accurate variation-aware model will

be needed to capture the impact of all these layout configurations on variability. In

addition, many layout parasitic extraction tools do not consider the impact of the

source/drain contacts during their analysis.

In terms of analytical or numerical modeling of contacts, work has been done to

model the total extrinsic resistance of a MOSFET [67] [68]. In addition, analyti-

cal models have been derived for accurately determining the parasitic capacitances

associated with the source/drain contacts [69]. The analytical models were veri-

fied by 3-D Monte Carlo simulation results. Work has also been done to perform

sensitivity analysis of contacts with respect to different geometries using device simu-

lations [70]. In addition, methods for fast variation-aware extraction of capacitances

have been proposed which effectively take into account geometric perturbations [71].

Fast variation-aware extraction tools such as these will be necessary in the future due

to increased variability and aggressive scaling. More work is necessary, however, to

generate accurate variability-based models for contacts and to integrate them into

the design framework.

3.8 Summary

Because of the growing impact of contact variability in advanced technologies, it

is necessary to understand the nature of this variability. While several methods

have been developed to study individual contact resistance, as well as to understand

failures and defects, new methods are necessary to accurately analyze the parametric

variability in these structures. In this context, a test structure has been designed,

fabricated, and measured which enables the characterization of contact plug resistance

variability. The application of statistical analysis techniques reveal both die-to-die



and within-die variability, as well as wafer-level edge effects, affecting contact plug

resistance. In addition, spatial correlation analysis was performed to uncover further

possible trends in the data. For future technologies, it will become necessary to have

adequate numerical and compact models for robust design.



Chapter 4

Array-Based Test Structure for AC

Variability Characterization

Variability in FET devices and interconnect have become an increasing concern with

technology scaling [72]. Traditional sources of variability in devices, e.g. saturation

current, threshold voltage, and channel length, have been well-studied and charac-

terized [9] [73] [19]. However, with further scaling and technology development, the

presence of other sources of variability is possible. Some of these other sources may

only be seen at high frequencies or at short time domains [74]. Thus, they may not

be captured by the measurement of the aforementioned device characteristics. Exam-

ples of some device parasitics whose variability may cause such an effect are shown

in Figure 4-1.

The work presented in this chapter addresses this problem by designing a simple

test circuit which specifically focuses on the measurement of device delays which are

greater than those attributable to known DC device parameters. The results of these

measurements will be comprised of a histogram of propagation delays through three

different types of devices under test (DUTs). These results can then be compared

with those generated from the simulations using models developed for known DC

effects.

Existing techniques for on-chip AC device characterization include ring oscillator

frequency measurements and S-parameter measurements using a network analyzer
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Figure 4-1: Some AC-relevant parasitics in a conventional MOSFET. The characteris-
tics of such parameters are difficult to capture by performing DC measurements on the
transistor, and therefore other characterization techniques which involve transients
or high frequency operation are necessary.

[75] [76][77]. For the case of the ring oscillator frequency measurements, the measured

output parameter, frequency, is usually a function of the average delay among all

the ring oscillator stages, rather than a single transistor delay. Therefore, the goal

of gathering statistical data, which can reveal information about the performance of

many nominally identical individual transistors, is difficult to achieve. When using a

network analyzer to perform S-parameter measurements on a single transistor, pad

limitations make it difficult for hundreds of transistors to be measured. In addition,

measurement setup is often time-consuming and difficult. Obtaining statistics which

can reveal information about variability is also difficult using this technique. Charge-

based capacitance measurement techniques have also been used to measure MOSFET

C-V characteristics [78], but a pure gate capacitance measurement may not provide a

complete representation of the device AC characteristics. The approach for designing

a test circuit which is capable of characterizing AC device variations is shown in

Figure 4-2.

This chapter presents a simple test circuit which successfully measures the indi-

vidual delays of each transistor in a large array. Section 4.1 presents the array-based

test circuit, which has been designed in such a way that the overall delay reflects the

AC characteristics of the device under test (DUT) rather than the DC characteristics

of the DUT or the characteristics of other transistors or interconnect along the delay
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Figure 4-2: A proposed test circuit design approach which measures delay variation
among multiple transistors, but for which the delay is primarily due to targeted
AC variation sources rather than all sources including DC sources such as threshold
voltage and channel length.

path. By optimizing the number of devices in the array and properly sizing the aux-

iliary devices used for signal propagation and switching, simulation results show that

over 90% of the variability measured will be attributable to DUT variation rather

than other device or interconnect variation. In addition, the AC characteristics of the

DUT will be primarily reflected in the measured output data rather than traditional

DC characteristics.

4.1 Array-Based Test Circuit

In this array-based test circuit, shown in Figure 4-3, an array of devices under test

(DUTs) is implemented with the inputs and outputs of each DUT connected together.

The input is fed by a clock source oscillator with the select signal of one DUT enabled

and all others disabled. A scan chain is used to select the DUT which is to be

measured. A delay detector, described in Section 5.4, performs a delay measurement

for each DUT. Using these building blocks, the test circuit measures the relative delay

of each DUT as compared to the other DUTs in such a way that the measured delay

quantities primarily reflect the transistor's AC characteristics.

Three versions of DUT arrays are implemented. The first is a transmission gate

array, shown in Figure 4-4. The second and third are NMOS and PMOS arrays,
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Figure 4-3: Array-based test circuit schematic consisting of a clock source, an array
of DUTs, and a delay detector. The relative delay mismatches through all DUTs in
the array are measured by comparing the arrival time of node B, the DUT output,
with the arrival time of node C, a common reference.

respectively, with each DUT preceded by a transmission gate switch, shown in Fig-

ures 4-5 and 4-6.

4.1.1 DUT Array

The total delay difference between the clock source tapping point, labeled node A,

and the delayed clock, labeled node B, can be represented by Equation 4.1.

Dtota = DbufferedIC + DDUT (4.1)

Because from node A, there is an optimized clock tree distribution with large buffers,

any variability in these paths will not have a large impact on the total delay of

the path. However, because of the small size of the DUT transistor as well as the

large parasitic load which it must drive (the parasitic drain capacitances of the other

DUTs and the interconnect), the DUT variability will have dominate the total delay

of the path, as desired. Simulation results show that, when applying Monte Carlo-

clock source
A
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Figure 4-4: Schematic of a transmission gate DUT array. In this case, both the DUT
select enable device and the DUT are the same transmission gate.

Figure 4-5: Schematic of an NMOS DUT array. The input clock has access to the gate
of one of the NMOS DUTs, controlled by the DUT select input and the transmission
gates, and the output node is connected to a weak PMOS pull-up transistor to enable
the output to swing high.



Figure 4-6: Schematic of a PMOS DUT array. The input clock has access to the gate
of one of the PMOS DUTs, controlled by the DUT select input and the transmission
gates, and the output node is connected to a weak NMOS pull-down transistor to
enable the output to swing low.

based variation to the DUT, the overall delay changes by a factor of 60 more than

it does when applying variation to all the other devices and interconnect RC values.

Therefore, as the number of devices in the array increases, the more sensitive the

overall delay of the path is to the DUT.

However, there is a tradeoff when adding too many devices, as illustrated by

Figure 4-7. As the number of devices increases, the transition at the output node of

the DUT becomes slower due to a larger parasitic capacitance on that node. This is

problematic because during the latter part of the transition, the delay is dominated

by the saturation current, which is primarily a function of DC transistor parameters.

Because the goal of this test circuit is to characterize AC variability, which occurs

on a short time scale, the interesting range of the transient response is just after

the input switches at either the gate or the source. Therefore, it is advantageous to

have the appropriate number of devices which both maximizes the sensitivity of the

overall delay to DUT variation and maximizes the impact of DUT AC variability as

compared to DC variability. The number of DUTs in the array has been optimized

to achieve this, as discussed next for each type of DUT. Quantitative optimization
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Figure 4-7: Tradeoff involving number of DUTs in array versus AC variability cap-
tured. A large number of DUTs results in a large load capacitance, which makes
the overall transition at the drain dominated by DC variation sources. On the other
hand, a small load capacitance results in a DUT delay which is too small and whose
variability can be overwhelmed by external variation sources.

results are shown in Section 4.1.2.

Transmission Gate DUT Array

For the transmission gate DUT array, an array of transmission gate devices is used.

The W/L ratios of both the NMOS and PMOS transistors in the transmission gates

are 32. These dimensions maximize the amount of possible AC variability between

these devices while minimizing the amount of threshold voltage, channel length, and

saturation current variability between them. The transmission gate is used as a DUT

cell in itself because simulation results show that it will yield information regarding

the AC variability of the combined pair of NMOS and PMOS devices which comprise

it. In addition, this array is required because they become switches for the NMOS

and PMOS DUT arrays, but they may have small delay variations of their own.

NMOS and PMOS DUT Arrays

For the NMOS DUT array, an array of NMOS devices is used, with each device

preceded by a transmission gate switch. When a DUT is not selected, the transmission



gate is switched off so that no current passes through the DUT. When the DUT is

selected, the transmission gate is turned on and it acts as a DC switch. A shared

PMOS pull-up device, which is always drawing current, is employed in order to ensure

that the output swing starts from the supply voltage for the high-to-low output

transition. Because the pull-up device is shared among all the DUTs, the same

amount current is drawn for each of the devices as it is being measured. And thus,

variability is not introduced due to the pull-up device. The NMOS DUTs are sized

with a W/L ratio of 32, while the PMOS pull-up device is sized with a W/L ratio of 6.

The DUT sizes are chosen such that the relative magnitude of possible AC variation

as compared to DC variation would be large. The PMOS DUT array is simply the

dual of the NMOS DUT array. While the statistics obtained from this array will

represent a convolution of the transmission gate variance and the NMOS or PMOS

DUT variance, because the transmission gate is driving such a small load (only the

DUT), the overwhelming proportion of the variance in delay (over 99%) will be due

to the DUT variance.

4.1.2 Design Optimization for AC Variability Measurement

In order to quantitatively arrive at the optimal condition shown in Figure 4-7, a

design optimization is performed on the number of DUTs in an array. If the number

of DUTs in the array is too small, the amount of replication will be insufficient for

adequate statistical confidence. For larger array sizes, two 1,000 point Monte Carlo

simulations are performed for each DUT array size. In the first, a DC variability

model is used for the DUTs. In the second, both a DC variability model and an

AC variability model are used for the DUTs. The AC variability model is based

on the possible range of AC effects within the transistor for which characterization

is desirable. The variance in DUT delay is determined for the case of each model

applied. Figure 4-8 plots the percentage of variability reflected by AC variation in

the DUT delay as a function of the number of DUTs in the array. Because there is

a sharp drop-off in the fraction of total variation that is due to possible AC effects

as a function of the number of DUTs in the array, the optimal point to choose for
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Figure 4-8: DUT array optimization for AC variability characterization shows that
128 DUTs ensures that 98% of the variance in delay is attributable to AC variation
sources.

the number of DUTs occurs just before this drop-off. This way, we have sufficient

replication for statistical significance, sufficient delay through the DUT such that it

is not overwhelmed by outside variations, and the capturing of variability which is

primarily due to possible AC effects (over 98%). For this reason, 128 DUTs are used

in each array.

To illustrate this example further, Figure 4-9 shows simulation results of delay

distributions due to DC variation sources and DC and AC variation sources for two

different array sizes: 8 DUTs and 1024 DUTs. In both histograms, many outliers of

large DUT delays which exist in the case of all variation have not been plotted so as

to show the main trend more clearly. In the case of 8 DUTs, the AC characteristics

distinguish themselves from the DC characteristics when observing the delay distri-

bution of DUTs. This means that the measured results from the test structure would

reveal the presence of any AC variability within the transistors down to the extent to

which it has been modeled for these simulations. In contrast, the presence or absence

of AC variability does not change the distribution of delays very much in the case of

1024 DUTs, which means that the test structure would not perform nearly as well in

terms of decoupling possible AC variability from known sources of DC variability.

This can be seen more clearly in Figure 4-10. Drawn in each plot is a red line which
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Figure 4-9: Simulated DUT delay distributions for different array sizes and variabil-
ity sources. In the case of 8 DUTs, the distribution of delays when AC variation
sources are imposed differs significantly from that when only DC variation sources
are imposed. However, in the case of 1024 DUTs, the distributions are more similar
to each other.

qualitatively describes the standard deviation at which the delay distribution of the

DUT when subject to all variation sources separates itself from the delay distribution

when only subject to DC variation sources.

4.1.3 Signal Propagation

Because of the need to minimize any variability due to the differences in devices

and interconnect along the signal path, a balanced H-tree with optimized buffers

is implemented for the input signal path. As shown in Figure 4-11, two stages of

inverters are used in addition to an H-tree distribution in order to equalize as much

as possible the delay between the input node, A, and any of the output branches.

Simulation results using variability models which arise from known DC sources for

both the buffers and the interconnect lines show that the variance in delay due to

the mismatch in this H-tree signal distribution is less than 5% of the total variance,

which is dominated by the variability in the DUT. This also includes the mismatch

between the slew rates at the various output branches due to the variability in drive
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Figure 4-10: Variation in relative delay as a function of number of DUTs - DC
variations imposed versus all variations imposed. The point at which the distributions
deviate from one another is qualitatively marked in red.
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Figure 4-11: A buffered H-tree for input signal propagation into transmission gate
array.

On the output side, no buffering is required since the large parasitic capacitance

is beneficial towards maximizing the sensitivity of the measured delay to the DUT

variability. Therefore, a simple interconnect H-tree is used to connect the drains of

all the DUTs together. By using such a tree, the signal propagation delay from the

output of any DUT to the shared output terminal will be matched well enough so that

the resulting mismatch does not overwhelm the DUT variability. Simulations results

show that the variance in delay resulting from the mismatch in such an H-tree is less

than 5% of the total delay variance. Once again, this confirms that the predominant

source of delay variability in this test circuit is the DUT.

4.1.4 Delay Measurement Circuit

For each array of DUTs, the delay measurement is performed as shown in Figure 4-

12. Delay measurements from the input to the output of each DUT are made in the

following manner. Two signals are observed at the output of the array. The first

comes from the connection to the DUT outputs, while the second is a delayed version

of the common clock source input. Because these two signals have the same frequency

and only differ in that one is a time-delayed version of the other, one can determine

the delay differential between them by connecting them as the two inputs to a logic



gate. The output of the logic gate is a pulse whose duty cycle is proportional to the

delay difference between the two signals, and therefore the logic gate output can be

filtered by a simple RC network, and the resulting DC voltage can be measured off-

chip. When this measurement is performed for all DUTs, the relative delay variation

between the DUTs can be quantified. For the transmission-gate and PMOS arrays, a

filter
H-Tree input (B)
Array output (C) DC Voltage (D)

Figure 4-12: Delay measurement technique using a logic gate followed by a first-order
low-pass RC filter (NAND can be replaced with NOR depending on whether the
falling or rising edge needs to be characterized).

NAND gate is used in order to capture the delay through the DUT which involves the

rising edge at the output node of the DUT. For the NMOS array, a NOR gate is used

in order to capture the delay through the DUT which involves the falling edge at the

output node of the DUT. One logic gate input is tapped directly from the beginning

of the input signal H-tree and then delayed by an inverter chain which is shared by

the entire array. The other logic gate input is tapped from the shared node of the

output signal H-tree. The inverter chain is long enough so that the transition at node

A does not occur until the transition at node B, which comes from the output of the

DUT array, is complete. Because the logic gate is shared among all the DUTs within

an array, the offset caused by the propagation delay through it is the same for all

DUT selections. The output of this gate is a periodic waveform whose duty cycle is

directly proportional to the delay between nodes B and C. Because the variability in

this delay for different DUTs is dominated by the DUT variability itself, measuring

the duty cycle of this waveform for every DUT will result in a statistical distribution

of delays which will reveal the DUT variability.

The duty cycle of the signal at the logic gate output is measured by using an RC

filter. A 190kQ on-chip resistor is used along with an on-chip MOM capacitor with

sufficiently large value to provide enough filtering to limit the output swing to 20mV

peak-to-peak. The drive strength of the logic gate is large enough that the voltage



swing directly at its output node is within 0.5mV of the rail values. This ensures

that the accuracy of the filtered DC voltage value is not significantly affected by any

resulting nonlinearities due to insufficient drive strength of the logic gate.

The relevant waveforms in the delay measurement scheme are shown in Figure 4-

13. The labels A, B, and C refer to the nodes labeled in Figure 4-3.

I I I

Clock at H-
Tree Input

(A)

PMOS DUT
Array Output I I

(B) | |

Reference I
Node
(C) | ,

I I - -

NAND
Output DC

(D) I I

Figure 4-13: Waveforms describing the operation of the delay measurement technique.
Nodes B and C are the inputs to a NAND gate, whose output is shown in D. The
low-pass filter then produces an average DC voltage, VDC.

4.1.5 Measurement Setup and Methodology

The measurement setup and methodology is as follows. An off-chip clock source will

be sent onto the chip and into the H-tree signal propagation tree. Since the frequency

of this signal is known a priori, it does not need to be measured on the chip. The

limitations on the clock frequency depend on the rise and fall time at the heavily

loaded DUT array output, which in the case of the NMOS and PMOS DUT arrays, is

made larger by the pull-up and pull-down devices, respectively. The frequency to be

used for the transmission gate array is 1GHz, while the frequency to be used for the

NMOS and PMOS DUT arrays is 100MHz. Then, one of the the DUTs in an array

will be selected using the scan-chain setup and the average voltage of the output of

the duty cycle measurement logic gate will be measured. Because the measurement

of delay variability among many devices is the goal of this test chip, absolute delay

through a single DUT is not characterized. The inverter chain is shared and has the
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same delay for all DUTs and the H-tree signal propagation tree has minimal delay

variation along its branches. Therefore, the delay can be measured using Equation 5.5,

where VDD is the supply voltage and VSS is the ground voltage, VDC is the measured

average DC voltage, and T is the period of the input signal.

DELAY= T (1 - VDC ) (4.2)
\ VDD - VSSI

As an example, when the input clock source is running at a frequency of 1GHz and

the supply voltage is 1V, the sensitivity of this measurement technique is 1 ps/mV.

4.1.6 Measurement Accuracy

The accuracy of the delay measurement technique is limited by the NAND or NOR

delay detector which is shared at the output of all the DUTs. Because the logic gate

does not have infinite current drive, the linearity of the average DC voltage value with

respect to the duty cycle at the input is dependent upon two parameters. First is each

of the pull-up and pull-down drive strengths of the delay detector logic gate (either

NAND or NOR). Second is the value of the resistor immediately following the NAND

gate. Because the resistor is designed to have a significantly large value, the main

limitation in accuracy comes from the finite drive strength of the gate. Figure 4-14

Calculated vs. Simulated DUT Delay
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Figure 4-14: Limitations on accuracy of delay measurement technique. For up to
30ps of relative delay mismatch, the error in measurement is bounded by 2ps.
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shows a plot of the delay calculated based on observing the average DC voltage at the

output and using Equation 5.5 and comparing its value to the actual simulated delay

between the DUT output and the reference node. The blue points show the results

of the simulations, while the red line shows the ideal case of perfect measurement

accuracy. The delay measurement is accurate to within 2ps for up to 30ps of relative

delay variations.

4.1.7 Test Chip

A test chip has been implemented in an advanced IBM CMOS SOI process technology.

Each of the three array banks contain 128 DUT cells and 4 dummy DUT cells to

ensure similar surrounding areas for each DUT. The size of each DUT cell is 1.44pm

x 1.00pm. The test circuit layout, shown in Figure 4-15, occupies an area of 400pum x

20pm, with each of the three DUT arrays occupying one-third of the total area. The

three on-chip diffusion resistors occupy an area of 100pm x 0.5pm each. The on-chip

MOM capacitors, which use three metal layers, occupy an area 200pm x 4 p1m each.

Each DUT is accessed using a scan chain-based approach. The test circuit has been

designed using just four metal layers, enabling in-line measurements relatively early

in the manufacturing process.

4.2 Summary

A test structure that measures the AC variability characteristics of MOSFETs in an

advanced CMOS SOI technology has been designed. Simulation results show that

over 90% of the measured variance will be attributable to the variability within the

device under test rather than other devices or interconnect. Furthermore, the number

of DUTs in the array has been optimized to ensure that the AC characteristics of

the DUT transistors will be primarily reflected in the delay measurement output

rather than DC characteristics. In addition, only a single DC voltage measurement

is required for each device under test, which enables a simple characterization flow.
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Figure 4-15: The array-based test circuit layout is divided into three blocks: PMOS
DUT array, NMOS DUT array, and transmission gate DUT array. A scan chain is
implemented in the vertical direction which controls DUT access for all blocks.
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Chapter 5

Ring Oscillator-Based Test

Structure

5.1 Introduction

Variability in FET devices have become an increasing concern with technology scal-

ing [72]. Traditional sources of variability in devices, e.g. saturation current, thresh-

old voltage, and channel length, have been well-studied and characterized [9] [73] [19].

However, with further scaling and technology development, the presence of other

sources of variability is possible. Some of these other sources may only be seen at

high frequencies or at short time domains [74]. Thus, they may not be captured by

the measurement of the aforementioned device characteristics. This work addresses

this problem by designing a ring oscillator-based test circuit which specifically focuses

on the measurement of the difference between gate-to-drain and source-to-drain prop-

agation delay in a transistor. The results of these measurements will be comprised of

a histogram of propagation delay differences through different types of devices under

test (DUTs). These results can then be compared with those generated from the

simulations using models developed for known DC effects.

Existing ring oscillator-based techniques for on-chip device characterization are

presented in [79][76][80][81]. In [79], the C-V characteristics of transistors are ex-

tracted by observing ring oscillator frequency, but the output represents the average
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of many devices under test. In [76] and [80], the output also represents the average

performance of multiple devices. In [81], a technique is used to determine the delay of

a single inverting or non-inverting gate, and variability measurements are made on the

delays of many such gates. For the ring oscillator frequency measurements for which

the frequency is a function of the average performance of multiple devices, rather than

that of a single device, gathering statistical data is difficult to achieve. For the case in

which individual gate delays are measured, the delays depend on DC characteristics

such as threshold voltage, channel length, and saturation current of the transistors,

as well as AC characteristics. In this work, a circuit is designed whereby only the

AC characteristics of a single transistor within a ring oscillator is measured. Further-

more, many replicates of the structure allow statistics to be obtained to determine

AC variability.

When using a network analyzer to perform S-parameter measurements on a single

transistor, as in [77], pad limitations make it difficult for hundreds of transistors to

be measured. In addition, measurement setup is often time-consuming and difficult.

Obtaining statistics which can reveal information about variability is also difficult

using this technique. Charge-based capacitance measurement techniques have also

been used to measure MOSFET C-V characteristics [78], but a pure gate capacitance

measurement may not provide a complete representation of the device AC character-

istics.

5.2 Transistor Propagation Delay

Observing the propagation delay of an ideal step input voltage between two termi-

nals of a transistor is one way to characterize the high-frequency behavior of such a

transistor. Two such metrics of propagation delay are illustrated in Figure 5-1 for an

example NFET. A similar illustration can be shown for a PFET. When the source

terminal of the transistor is tied to the ground voltage and the gate terminal is con-

nected to a pulsed voltage, the delay between the rising edge at the gate terminal

and the subsequent falling edge at the drain terminal can be described as the gate-
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Figure 5-1: Propagation delay metrics which characterize the short time-scale behav-
ior of a transistor.

to-drain propagation delay, or tgd, of the transistor, as shown in Figure 5-1(a). In

this case, the initial operating condition of the transistor of interest is VGS = 07 and

VDS = VDD. Similarly, when the gate terminal is connected to the supply voltage

and the source terminal is connected to a pulsed voltage, the delay between the falling

edge at the gate terminal and the falling edge at the source terminal can be described

as the source-to-drain propagation delay, or tsd, as shown in Figure 5-1(b). In this

case, the initial operating condition of the transistor of interest is VGS = 0V and

VDS = V since there is a threshold voltage drop between the source and drain nodes

when there is no current through the transistor. These two metrics provide slightly

different information regarding the high-frequency characteristics of the transistor.

This is due to the slightly different parasitic capacitances and resistances which are

involved with each metric. However, some transistor parameters such as threshold

voltage and channel length are likely to influence both metrics in a similar manner

and to a similar degree.

For this reason, a new metric, tmeas, is defined in Equation 5.1 for the case of a

PMOS device, where the propagation delays involving low-to-high transitions at the
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drain node are considered.

tmeas = tgd,H - tsd,H (5.1)

By measuring tmeas,, the relative sensitivity to variations in AC parameters is magni-

fied, while the relative sensitivity to variations in DC parameters such as threshold

voltage and channel length is reduced, as will be discussed in detail in Section 5.6.

5.3 Test Circuit Description

A ring oscillator is implemented with a device under test (DUT) acting as a pass gate

between two of the stages in the oscillator, as shown in Figure 5-2. A PMOS DUT

is used in this example and all forthcoming discussions will assume a PMOS DUT.

However, an NMOS DUT can be substituted by simply changing the weak pull-down

transistor to a weak pull-up transistor and by connecting the pass switch to VDD

instead of ground. The ring oscillator operates in two modes: pass and wait. In the

refclk Twait, T ass
ctr

pass wait

A t AB H
VDD G DM

B

Figure 5-2: Ring oscillator-based test circuit for AC variability characterization, which
operates in two modes and requires two clock period measurements and a delay mea-
surement in order to characterize the DUT.

pass mode, the pass switch is enabled and the wait switch is disabled, so the gate

of the DUT is always on and it acts as pass gate. A weak NMOS pull-down device

is connected to the drain terminal of the DUT in order to assist the PMOS DUT

in passing high-to-low transitions to its drain node. The relevant signal waveforms

during the pass mode are shown in Figure 5-3. Because the gate of the DUT is always
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Vd Pos. edge triggered by V, Vd Neg. edge triggered by V,

Figure 5-3: Waveforms at PMOS DUT terminals during pass mode, in which both
transitions at the drain of the DUT are triggered by transitions at the source of the
DUT.

on, both low-to-high and high-to-low transitions at the drain of the DUT are triggered

by transitions at the source of the DUT. The RO period of oscillation during the pass

mode can be characterized by Equation 5.2.

Trass = E (tinv,L + tinv,H ) ~+ tsd,H ~+ tsd,L (5.2)

In the wait mode, the pass switch is disabled and the wait switch is enabled.

In this mode, the gate of the DUT is controlled by a delayed and inverted version

of the input to the source. When there is a high-to-low transition at the source,

the gate is on and as a result there is a high-to-low transition at the drain as well.

However, when there is a low-to-high transition at the source, the gate is off and so

the drain does not switch from low-to-high. Instead, the signal at the drain remains

low and waits until the gate turns on as a result of the path through the inverter or

chain of odd-numbered inverters, x1. When the gate turns on, the drain finally then

switches from low-to-high. Figure 5-4 illustrates the waveforms during the wait mode

operation. The RO period of oscillation during the wait mode can be characterized by

Equation 5.3, where tAB,H referS to the delay between the signal at the DUT source

going high and the signal at the DUT gate going low.

Twan = (tinv,L + inv,H ) ~+ tgd,H ~+ tsd,L ~+ t AB,H (5.3)

Substituting Equations 5.2 and 5.3 into Equation 5.1 gives the relationship between
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Vd Neg. edge triggered by V, Vd Pos. edge triggered by V1

Figure 5-4: Waveforms at PMOS DUT terminals during wait mode, in which one
transition at the drain of the DUT is triggered by a transition at the source of the
DUT, while the other transition at the drain of the DUT is triggered by a transition
at the gate of the DUT.

the desired quantity tmea, and the measurable quantities, shown in Equation 5.4.

tmeas = Twait - Tass - tAB,H (5.4)

The DUT parameter tmeas is obtained by performing RO frequency measurements,

either on- or off-chip, to measure Twait and Tpa,,, and by performing a delay measure-

ment, described in Section 5.4, to measure tAB,H-

Multiplexing is performed among multiple RO blocks for statistical characteriza-

tion of individual DUTs, as shown in Figure 5-5. Each RO is accessed using a scan

en[O]

rI]

n[n] ro~nJ )i-

diV16 ro out
-I divl6o

Figure 5-5: Array of RO blocks for statistical characterization of DUT AC perfor-
mance. Both the ring oscillator period and delay measurement pins are shared out-
puts, while each RO is accessed through an enable signal controlled by a scan chain.

chain-based approach, with the RO enabled by using a NAND gate as a substitute

110

ro[O]



for one of the inverter stages. All ROs share a common frequency divide-by-16 block,

whose output is propagated off-chip for frequency measurement.

5.4 Delay Measurement Circuit

The delay measurement circuit consists of a logic gate followed by an RC filter in

order to obtain an average DC value, as shown in Figure 5-6. For the case of a

*0

Figure 5-6: Delay measurement using a logic gate and RC filter, which converts the
delay between two signals into a pulse whose duty cycle is proportional to the delay,
and the converts the pulse into a DC voltage whose value is also proportional to the
delay.

PMOS DUT, using a 2-input NAND gate with the two inputs being the gate and

source terminals of the DUT, the output of the NAND gate will be a pulse whose

duty cycle is directly proportional to the delay between the two signals. When this

pulse is subsequently filtered by using the RC circuit, the average DC voltage will be

proportional to the duty cycle of the NAND gate output. Therefore, the delay can be

measured using Equation 5.5, where VDD is the supply voltage and Vss is the ground

voltage, VDC is the measured average DC voltage, and T is the period of either of the

two input signals (both will have the same period).

tAB=T 1- VDCS (5.5)
VDD - Vss/

Each ring oscillator, which contains one DUT, has its own delay measurement

circuit which includes a 30kQ diffusion resistor. However, the capacitance is shared
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by all the DUTs and is comprised of parasitic wire and pad capacitances. The logic

gate is sized such that the 3c- error in the delay measurement as a result of DUT-to-

DUT logic gate mismatch is bounded by 0.5ps. The combination of the NAND drive

strength and resistor value are sufficient to drive the NAND output to within 0.5mV

of the rail values.

5.5 Test Circuit for Compensation of SOI Varia-

tions

In partially-depleted SOI technologies, the quantity tmeas will have a history effect

component to it since the average floating gate-to-body voltage on the DUT during

the pass and wait modes is different. Whereas in the pass mode for a PMOS device

the gate voltage is held at OV, in the wait mode the gate voltage alternates between

OV and VDD with a duty cycle slightly greater than 50%. Thus, in order to produce

substantially the same duty cycle during the pass mode while not altering the circuit

operation, an XOR gate is configured between two of the ring oscillator stages with

the output coupled to the pass switch, as shown in Figure 5-7. This artificially creates

a duty cycle of about 50% for the DUT gate voltage but does not functionally alter

the pass mode of operation. During those times where the output of XOR gate is

high, an inverter and NMOS switch disables the pull down device and prevents the

drain voltage of the DUT from being reset to ground in the pass mode. The relevant

waveforms during the operation of this circuit is shown in Figure 5-8.

5.6 Simulation Results

In order to better understand and quantify the ring oscillator-best test circuit, simu-

lations are performed for multiple reasons. All simulations of the ring oscillator-based

test circuit are performed using an advanced PD-SOI CMOS technology. The dis-

cussion of the simulation results are divided into two parts. The first part describes

simulations performed for two purposes: (a) to measure the accuracy of the output
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VDD I

Figure 5-7: Modification of pass mode operation to minimize variations due to SOI
history effect difference between modes. The XOR gate before the pass switch only
affects the pass mode of operation, while leaving the wait mode of operation un-
changed.

Vg high during periods
of no transition at VS

Vg

V

Vd

Vd Pos. edge triggered by V, Vd Neg. edge triggered by V,

Figure 5-8: Waveform at PMOS DUT terminals during pass mode in SOI history
effect-compensated test circuit. The average duty cycle of V, is similar in both the
pass and wait modes of operation by creating periods during which time the DUT
gate is switched off when it does not affect the propagation of the source signal to
the drain.
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tmea, derived from RO frequencies and a delay measurement, and (b) to verify the sen-

sitivity of the measured output parameter, tmea,, towards AC variations as compared

to DC variations from parameters such as threshold voltage and channel length. The

next part is focused on determining the sensitivity of the output parameter, tmeain

the absence of AC variations.

5.6.1 RO-Based Test Circuit Accuracy and Sensitivity

Tranie Respon

pass wai- VG

Vs

1 5

0 -

-.5 1.0 2.0 3.0 4.0
time (nts)

(a) NMOS DUT waveforms during pass and wait modes.

VDDL, pass wait

G

(b) Ring oscillator sub-block for NMOS DUT.

Figure 5-9: Ring oscillator waveforms for NMOS DUT type show how the transitions
occur during the two modes of operation.

Figure 5-9(a) shows the simulation of an NMOS DUT in the configuration depicted

by Figure 5-10(b). Here, gate of the DUT is always enabled during the pass mode,

allowing the drain node to follow the source node without any external delays. In

the wait mode, after the low-to-high transitions at the source and drain nodes of the

DUT, the gate is disabled. Then, some time after the source node changes, the gate
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once again goes high, allowing the drain node to go low. However, because of the pull-

up device that is connected to the drain of the DUT, the drain does not transition

all the way down to the ground voltage. Instead, the value at the drain node is

approximately 130mV when it swings low. However, this does not have an effect

on the measurement accuracy since the voltage to which the drain swings is nearly

identical during the pass and wait modes. Shown in Figure 5-10 are the analogous

waveforms for a ring oscillator containing a PMOS DUT. In this case, one difference

from the ring oscillator containing the NMOS DUT is that there is a pull-down device

connected to the DUT drain rather than a pull-up device. This causes the drain node

to only reach approximately 0.9V rather than the supply rail of 1.0V. In addition, the

high-to-low transition at the gate node triggers the drain node transition because the

DUT is a PMOS device. However, the similarities between the NMOS and PMOS

ring oscillators are enough that, based on the waveforms shown, the measurement

technique and calculations for tmeas can be identical except for the need to change

the edge directions.

To determine accuracy, the RO circuit is simulated with static power supply varia-

tion due to current differences in the pass and wait modes, mismatch between NAND

gates as well as mismatch between RO stages. Results show that the difference be-

tween the directly simulated tmea, of the DUT and the derived tmea, using Equation 5.4

is bounded by 1ps.

For the sensitivity analysis, two sets of 1000-point Monte Carlo simulations are

performed on the circuit. In the first set of simulations, only DC mismatch variations

in parameters such as threshold voltage and channel length are imposed on the DUT.

In the second set of simulations, both DC and AC variations are imposed on the

DUT. Results show that 99.96% of the total variance in the output parameter tmeas

is attributable to the input AC variation sources imposed on the DUT, while the

remainder is attributable to DC variation sources. The AC variability model for the

DUT is based on the possible range of AC effects within the transistor for which

characterization is desirable. Figure 5-11 shows that the cumulative distribution of

tmeas when subject to all variation sources is distinguishable at a value around 0.5a
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(a) PMOS DUT waveforms during pass and wait modes.
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(b) Ring oscillator sub-block for PMOS DUT.

Figure 5-10: Ring oscillator waveforms for PMOS DUT type show
occur during the two modes of operation.
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Q-Q Plot of tmeas: 1000-Point Monte Carlo
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Figure 5-11: Quantile-quantile plot showing tmeas distributions under DC variations
and all variations. The distribution of tmea. when the DUT is subject to all variation
sources deviates from the case of only DC variation sources at a low standard deviation
value.
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when compared to that when subject to only DC variation sources.

In addition, a comparison with the array-based test circuit described in the previ-

ous chapter reveals that the ring oscillator-based test structure is much more sensitive

to, and therefore more capable of measuring, AC variations. While 90% of the total

variation in the output parameter is due to AC variations in the array-based test

structure, almost all (99.97%) of output parameter variation in this work is due to

AC variations in the DUT rather than DC variations. The tradeoff is with the sim-

plicity of design. While the design of the array-based circuit is more straightforward

and requires less time and simulation effort, the RO-based circuit is more complex

and requires more careful simulation to ensure proper operation which allows for high

sensitivity to AC variation sources.

5.6.2 Sensitivity of tmeas in the Absence of AC Variations

In the absence of significant on-chip AC variations from transistor to transistor, it

becomes useful to examine the sensitivity of the RO-based test circuit to the remaining

DC sources of variation. In order to do this, simulations have been performed which

show how the variance of the output parameter, tmeas, relates to the variance of input

device parameters, namely threshold voltage (VT), channel length (L), and channel

width (W).

Figure 5-12 shows the distribution of normalized tmea, values for the device under

test when subject to different variation sources. For each histogram, a set of 1,000

Monte Carlo simulations has been done using mismatch variations only. When the

DUT is subject to variations in only transistor width, the value of tmea, does not devi-

ate substantially from its mean. Furthermore, when the DUT is subject to variations

in only transistor length, the resulting variation in tmea, is slightly larger, but still

relatively small. The largest spread in the value of tmea, occurs when the threshold

voltage, VT, is varied.

The same conclusions can be drawn from analyzing Figure 5-13. The normal

probability plot of tmea, when subject to different DC variation sources indicates that

the output parameter is most sensitive to threshold variations rather than channel
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Figure 5-12: Simulation results showing a plot of the distribution of tmea, when only
certain DC variation sources are present. These results indicate that threshold voltage
is the parameter to which the output parameter tmeas is most sensitive.

Q-Q Plot of tmeas: 1000-Point Monte Carlo
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Figure 5-13: A normal probability plot showing the simulated decomposition of dif-
ferent DC variation sources and how sensitive tmeas is to each of them. Threshold
voltage variation is the DC source predominantly captured by the output parameter,
tmeas.
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length or channel width variations. Therefore, in the absence of actual AC variations,

the ring oscillator-based test circuit measurement output is likely to characterize

variations in device threshold voltage. If AC variations are present, however, the test

circuit is highly sensitive to these and enables characterization of these AC variations.

5.7 Test Chip

Two test chips have been implemented which contain this ring oscillator-based test

circuit. One is in an advanced CMOS PD-SOI technology and occupies an area of

1600pm x 20pjm. The other is in a TSMC bulk 65nm CMOS technology and occupies

an area of 1800pm x 50pm. The forthcoming details regarding the test chip layout

refer to the design in the advanced CMOS PD-SOI technology. The layout of a single

RO is shown in Figure 5-14. The ring oscillator stages occupy significant area due to

Figure 5-14: Ring oscillator layout showing the device under test (DUT), inverter
stages, a logic block, and the resistor used for the delay measurement block.

the extra capacitive loads after each stage to slow down the period of oscillation. In

addition, the resistor after the NAND delay measurement circuit also occupies a large

area relative to that of the DUT. Four blocks, each containing 128 ring oscillator cells,

are used. Both NMOS and PMOS DUTs used for each of the blocks are sized with

W/L = 8, which is a common ratio used in standard cell logic for this technology.

The four blocks are comprised of ROs containing NMOS and PMOS DUTs as well as
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SOI-compensated ROs containing NMOS and PMOS DUTs, as shown in Figure 5-

15. The test circuit has been designed using just four metal layers, enabling in-line

measurements relatively early in the manufacturing process.

PMOS

NMOS DUT
Array

PMOSXORDUT
Array

Divider DUT Array

Figure 5-15: Test circuit layout which includes four ring oscillator blocks which char-
acterize NMOS DUTs and PMOS DUTs in both standard and SOI-compensated
configurations.

5.8 Measurement Results

Measurement results have been obtained for 40 die on a single wafer fabricated in

a TMSC 65nm bulk CMOS technology. Because the technology is not SOI-based,

the RO DUTs with the modification for SOI have not been included. Therefore,

a block 96 ROs containing PMOS DUTs and a block of 96 ROs containing NMOS

DUTs have been implemented. In each of the two blocks, two identifier ROs have been

implemented. These identifier ROs have DUTs which contain a 30k2 p+-polysicilicon

resistor in series with the polysilicon gate. This is to replicate a possible source

of AC variation which would be difficult to detect with either DC current-voltage

measurements or a pure capacitance-based measurement. A schematic and layout of

an example identifier RO are shown in Figures 5-16 and 5-17, respectively.
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Figure 5-16: Schematic of identifier RO block, which includes an external gate resistor
in series with the gate of the DUT.

Additional
reoistor in
series with 1
DLT gate

Figure 5-17: Layout of identifier RO block, which includes a 30ko polysilicon resistor
connected to the gate of the DUT.
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5.8.1 Off-Chip Measurement Accuracy

The measurement accuracy for the RO clock periods is determined by a combination

of the amount of time used to count, clock jitter, and possible clock drift due to

external sources such as small physical movements in probe connections, drifts in

the ground voltage due to sharing ground with an FPGA, and low frequency noise.

The clock periods measured for a single DUT multiple times has a variance which

is 2% of the variance in clock period across all DUTs. Therefore, the clock period

measurement is replicable enough that the predominant source of variation seen in

the measurements is actually due to the difference in DUTs rather than measurement

noise. A similar analysis of the average DC voltage measurement shows that the

variance due to measurement noise is 3% of the variance in average DC voltage across

all DUTs. When the computation is performed to calculate tmea, for each DUT, the

variance due to measurement noise increases to 5% of the total variance across all

DUTs. These percentages can be reduced by noise mitigation techniques such as

power and ground shielding both on and off-chip, as well as stabilizing any sources

which result in clock period drift across millisecond time-scales.

5.8.2 Single-Die Results

A plot of the three output variables, Tpass, Twait, and tAB, are shown in Figure 5-18.

Clearly, the two RO clock period measurements, Tass and Twait, are highly correlated

across different DUTs because they are two periods measured from the same DUT.

In addition, the clock period measured in the wait mode is always higher than that

measured in the pass mode. This is due to the additional time that the signal has to

wait at the source of the DUT for the gate of the DUT to turn on. Finally, tAB is

measured for each DUT by measuring the average DC voltage of the filtered NAND

or NOR gate output and using Equation 5.5 to compute tAB.

Because the variable which is highly sensitive to potential DUT AC variations is

tmeas, its value is calculated for each DUT in the chip for PMOS devices and plotted

in Figure 5-19. In this plot, the location two identifier devices for the PMOS block

122



PMOS Ring DUTs: Chip 2

E 4

200 400 600 800 1000
x-location (prm)

1200 1400

Figure 5-18: Measured output parameters for PMOS DUTs on a single chip show the
values of the three measurement parameters for each DUT.

PMOS tmeas: Chip 2

200 400 600 800 1000
x-location (sim)

1200 1400

Figure 5-19: tmea, for PMOS DUTs on a single chip, calculated from the direct
measurement results in Figure 5-18. Identifier DUTs which exhibit larger values of
tmeas are clearly distinguishable from other data points.
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is clear based on the large value of tmea, when compared to the other DUTs. This

is expected behavior and matches simulation results because when a large resistor is

placed in between the gate access point and the actual polysilicon gate, the gate-to-

drain delay will increase much more than the source-to-drain delay. The increase in

gate-to-drain delay is a direct result of the parasitic RC component generated from

the external gate resistance. Any increase in source-to-drain delay, however, is due

to a second-order feedback effect which slightly changes the gate voltage for a small

period of time when the source transitions. This difference is captured by tmea, for

the DUT measurements in the identifier ROs.

5.8.3 Wafer-Averaged Results

Figure 5-20 shows the average value of tmea, over all 40 die the DUT located at each

x-coordinate. In this plot, the location of the identifier devices is more clear due to

the averaging of measurement noise by the analysis of multiple measurements. In

addition, the average value of tmea, is different for NMOS and PMOS devices, which

is related to the device design points chosen in the technology for each of the two

device types. Furthermore, two apparent systematic trends are evident in the data.

tns: Wafer Average
160

140-1--- NMOS
-e-PMOS

120-

100

E40

20

0

-20-

200 400 600 800 1000 1200 1400
x-location (pm)

Figure 5-20: twea, for all DUTs averaged over 40 die on wafer shows the presence
of identifier DUTs more clearly, in addition to some weak systematic trends due to
power supply variations.
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First, a small trend exists where each consecutive group of 8 DUTs has a similar value

for tweas. This is likely due to the fact that, in the layout, the ROs are grouped in

sets of 8, and each set of eight ROs shares a buffer to direct the frequency output to

the clock divider. The number of buffers necessary to direct the output to the divider

depends on the sub-block in which the RO of interest is located. Hence, the IR drop

in the power supply, which affects the RO frequency in both the pass and wait modes

of operation, is dependent on the sub-block in which the RO is located.

5.8.4 Multiple Operating Voltage Results

A robust test circuit should ideally be able to operate over a wide range of supply

voltages while still obtaining meaningful and accurate measurement results. This

section discusses the particular relevance of the supply voltage issue with regards

to the RO-based test circuit. For the 65nm implementation of the test circuit, the

schematic for the PMOS DUT-based RO is shown in Figure 5-21. In addition, the

NMOS DUT-based RO is shown in Figure 5-22. Various circuit techniques are used

en_nj_

pass'

Figure 5-21: Schematic for PMOS DUT-based RO, showing
as well as their relative sizes.

all transistors and gates

to ensure that the ring oscillator frequency is low enough that, during the pass and
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pass'

Figure 5-22: Schematic for NMOS DUT-based RO, showing all transistors and gates
as well as their relative sizes.

wait modes of operation, the rising and falling voltage waveforms for each stage are

identical. The first such technique is the use of a high-V stacked inverter and a

capacitive load for the device m. Some critical layout-based transistor parameters for

each transistor/gate in both the NMOS DUT and PMOS DUT-based ring oscillator

are shown in Table 5.1. The second technique used to obtain a slow RO frequency is

the use of dual supply voltages. While the gates near the DUT are operated at VDD

= 1.2V, the other gates in the RO path are operated at VDDL, which can range from

0.9V to 1.OV. Without such a reduction in supply voltage, the ring oscillator would be

too fast, causing differences in stage delays between the two modes of operation. If the

supply voltage is reduced further, near-threshold effects manifest themselves, causing

larger variations in frequency and increased sensitivity to supply voltage variations.

In addition, other inconsistencies are observed during the measurement of the test

circuit at low supply voltages for which the causes have not been determined.

Measurement results for tmeas are shown for all PMOS DUTs measured on a single

chip at different values of VDDL in Figure 5-23. While the average absolute value of

this quantity tends to change in a non-systematic manner depending on the supply

voltage used, the identification of outlier devices is still clear. These shifts in the
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RO-based Test Structure Transistor Parameters
Device W,/L, (nm) W,/L, (nm) VT Load cap.

m 120/180 120/180 high-V 900/60 NMOSCAP
dl 120/60 400/60 standard-VT none
dh 400/60 120/60 standard-VT none

t-gate 200/60 200/60 standard-VT none
1x NAND 520/60 390/60 standard-VT none

pull-up 200/60 - standard-V none
pull-down - 160/60 standard-VT none

DUT 200/60 200/60 standard-VT none
Ox 260/60 195/60 standard-VT none
1x 520/60 390/60 standard-VT none
3x 1560/60 585/60 standard-VT none
4x 2080/60 780/60 standard-VT none
12x 6240/60 2340/60 standard-VT none

Table 5.1: Transistor and gate parameters for ring oscillator-based test circuit.

average value of tmeas may be attributable to a combination of effects, including but

not limited to the amount of supply voltage noise and IR drop, the different behavior

of the driving devices to the gate and drain nodes of the DUT caused by the difference

between VDDL and VDD, and different rise and fall time behavior of the output of the

DUT due to the supply voltage of the 3x inverter following it. The test circuit can be

improved by performing simulations to better understand these trade-offs and choose

an optimal pair of supply voltages which results in high sensitivity to possible AC

effects as well as consistency over a range of voltages similar to those selected. Results

for tmeas in the case of an NMOS DUT are shown in Figure 5-24. The results are

similar to those of the PMOS DUT except that the DUT-to-DUT random variance

is larger, making it slightly more difficult to distinguish the presence of identifier

devices.

5.8.5 Potential Circuit Impact and Implications

In order to demonstrate how it is possible to quantify the impact of AC variations on

circuit-level variation, it is useful to simulate a 7-stage ring oscillator for which each

device is subject to AC variations. The amount of AC variations to which each device
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PMOS tmeas: Chip 2

200 400 600 800 1000
x-location (pm)

1200 1400

Figure 5-23: tmeas for multiple VDDL values for PMOS DUT shows that the identifier
is distinguishable at all voltages, but some voltage-dependent effects also change the
measurement values relative to one another.

NMOS tmeas: Chip 2
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Figure 5-24: tmea, for multiple VDDL values for NMOS DUT shows that the identifier
is distinguishable at all voltages, but some voltage-dependent effects also change the
measurement values relative to one another.
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is subject is derived from the measurement results from the test chip on tweas. The

steps involved in constructing the simulation platform are the following: a) take the

variance on the tmeas data and assume it is completely due to AC variation sources,

b) calculate the amount of variation in the AC sources which would produce the

magnitude of observed tmeas variation in the output measurement data, and c) scale

the variances of the AC parameters to enable a simulation study in a 32nm CMOS

technology.

A 7-stage ring oscillator implemented by scaled versions of the DUTs from the

measured test chip to a 32nm technology node with a supply voltage of 1.OV is

simulated and subject to AC variations. Because the percentage of tmeas variation

due to AC sources as opposed to DC sources, systematic effects, or measurement noise

is difficult to determine without additional measurement data, this study assumes that

all the variation in tmea, is due to AC sources. This provides an upper bound on the

impact of AC variations on the ring oscillator.

7-Stage RO Frequency Distribution
120.

p=14.2 GHz
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Figure 5-25: Simulation study of a 7-stage ring oscillator frequency variation due to
AC variation sources equal to that measured from the test chip, scaled to a 32nm
technology node. Results indicate that the frequency has a 2 = 1.6%.

The simulation results are shown in Figure 5-25. The results indicate that the

frequency has a 2 = 1.6%. The same study can be done for other circuit blocks, and

can be expanded to different-sized transistors in the case that additional measurement
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data were available for other DUT sizes. In addition, these simulations can be refined

when provided with additional information regarding the amount of AC variations

actually captured in the measurement data.

5.9 Summary

This chapter presents a ring oscillator-based test circuit for characterizing AC device

variations across multiple individual devices. By operating the RO in two different

modes, the difference between the gate-to-drain delay (tgd) and source-to-drain delay

(tsd) is obtained for a single DUT transistor which is gating the RO. The required

measurements are two frequency measurements and a DC voltage measurement. Sim-

ulations indicate that the measurement output is highly sensitive to possible AC

variations in the device under test, and silicon measurement results show that the

presence of an external parasitic 30kQ gate resistor is detected by the measurement.

Such a high gate resistance would be difficult to detect with only DC current-voltage

measurements or pure capacitance measurements.
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Chapter 6

Conclusions

The contributions of this thesis, conclusions from the work, and possibilities for future

work in this area will be discussed in this chapter.

6.1 Contributions

This thesis has developed a framework for device variability characterization and

analysis. The impact of process variation in devices has been characterized with test

circuits, and the measurement results have been analyzed through the use of a decom-

position methodology to uncover systematic trends and determine their causes. This

framework can aid both in the understanding of variations in the fabrication process

and in efforts to model variations in transistor behavior. The detailed contributions

are summarized as follows.

First, a test chip was designed, fabricated, and measured in a 90nm CMOS tech-

nology in order to understand parametric variations in contact plug resistance. The

application of statistical analysis techniques, including a variation decomposition

methodology, revealed both geometry-dependent and position-dependent within-die

systematic trends. In addition, spatial correlation analysis was performed to uncover

further possible trends in the data, such as the presence of any outlier die. The

methodologies used to design such a test chip and the ways in which design chal-

lenges were overcome are applicable to a large subset of test structures for device or
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component characterization. For example, the use of high-V multiplexing switches

to limit leakage currents coming from a large number of off-state devices under test

can be used in the design of any variability characterization test chip that is sensitive

to total current values. In addition, practically speaking, the boundaries established

between on-chip and off-chip components for the contact plug resistance test architec-

ture stem from a general set of guidelines which state that non-essential components

should be placed off-chip when there is no trade-off in speed, accuracy, or any other

testing metric. This allows for the design of simple circuits on-chip and leverages the

use of a wide range of state-of-the-art special purpose ICs which can modularize the

design architecture and enable easier debugging of the testing infrastructure. The

statistical techniques for variation decomposition, which involve the use of spatial

variation analysis to uncover systematic trends, can be employed to analyze the re-

sults of other test structures which have a regular, repeatable spatial DUT layout

patterns.

Second, a test structure was designed to measure the AC, or short time-scale,

characteristics of transistors. Such AC effects are difficult to detect through stan-

dard DC measurements such as I-V characterization, or even pure capacitance-based

measurements such as charge-based capacitance measurement (CBCM). Therefore,

an array-based test structure was designed for which the variance in the output pa-

rameter, relative delay, was comprised of over 95% AC device variations, while the

remainder was due to other variation sources. Furthermore, only a single DC voltage

measurement is required for each DUT, which enables simple in-line characterization.

Test structures are beneficial when attempting to assess the variance of individual

transistor performance, especially early in the development of a new and advanced

technology in which device and parameter variations are larger than they are later in

the development of the technology.

Finally, a ring oscillator-based test structure was also developed for AC variability

characterization in transistors. In order to obtain a higher sensitivity towards pos-

sible AC variations within the device under test, a metric was created that reflected

AC, or short time-scale, transistor performance variations. The difference between
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the gate-to-drain and source-to-drain delay of an individual device was measured by

implementing a ring oscillator that operates in two different modes. This difference,

defined as mme, is highly sensitive to AC variations - 99.97% of the variance in this

parameter is due to variance in the AC characteristics of the DUT. Silicon measure-

ment results from a 65nm test chip show that the addition of an external parasitic gate

resistance is detectable by the test structure. Because this test structure is sensitive

to possible AC variations in devices, such a circuit can be used to characterize the AC

variations of devices in any advanced or emerging technology which may be sensitive

to them. In addition, a framework for incorporating the measurement results of such

test circuits into existing variability-aware device models was explored. Using the

results from these test chips along with those from other test chips focused on char-

acterizing DC variations such as those due to threshold voltage and channel length,

one can develop a unified variation model which describes the relative magnitudes of

DC and AC variation for a given technology.

6.2 Conclusions

The conclusions of this thesis are multi-fold. This work shows that test structures

can be developed for the analysis of variation sources which may not be typically in-

vestigated because of its relatively small contribution to total device variation when

compared to traditional sources such as threshold voltage, channel length, and oxide

thickness variations. Furthermore, in order to understand the nature of these varia-

tions, techniques such as variation decomposition can be utilized. The use of a design

of experiments helps to determine the nature of impact of certain variation sources.

Coupling these new test structure designs with existing structures for variability

characterization can prove to be useful in analyzing variation for advanced technolo-

gies. Combining isolation-based test structures with holistic-based ones allows for

both the diagnosis of specific variation sources and their impacts and the benchmark-

ing of a technology with regards to variation.

The analysis of the two examples of variation sources discussed in this work -
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contact plug resistance and AC variations - can be extended for other sources of

variation. In FinFETs and tri-gate transistor technologies which use a high-K metal-

gate process, for example, the metal-gate work function variation can be a significant

contributor to threshold voltage variation. Additionally, the fin thickness and fin

height variation will have an impact on the effective channel length and width of the

transistor. Contacts to the source-drain region may have variable parasitics due to

multiple sources such as variations in the doping concentration and the distance to

the fin, which may impact the parasitic capacitance. Such variations can be charac-

terized, analyzed, and modeled in a similar manner to that done in this work: (1)

develop a test structure whose output parameter is highly sensitive to the variation

source of interest, (2) design a multiplexing scheme without introducing new varia-

tion sources which affect the measurement result, (3) create a design of experiments

which will help to understand how the variation changes under different conditions,

and (4) employ statistical techniques to decompose variation obtained from silicon

measurement results.

6.3 Future Work

Future work in this area would involve the refinement of the test structures developed

in this work as well as the design of new test structures to analyze variability in

devices. With the emergence of new device structures such as FinFETs, tri-gate

transistors, and gate-all-around (GAA) silicon nanowire FETs, parametric variation

can present itself in a large number of different areas. Understanding these variations

will be a key in continuing Moore's Law scaling. In addition, variation-aware modeling

of such transistors will be critical in enabling the design of circuits and systems that

meet yield and performance specifications. Within this context of emerging devices

which will likely come to the forefront of the semiconductor industry in the years to

come, the possibilities for future work can be categorized into those which fall under

the characterization, modeling, and mitigation realms.

134



6.3.1 Characterization

In the area of statistical characterization of transistors for variation analysis, the

need for new isolation-based test circuits will likely continue due to the drastic changes

which will have to be made to the transistor architecture in order to continue Moore's

Law scaling. After an initial functional yield ramp-up, the parametric variations in

these devices must be well-characterized for both process optimization and varia-

tion modeling purposes. Test structures that can isolate key variation sources as

well as test structures that can benchmark the variability characteristics for a given

technology will be necessary. In addition, algorithms to optimally select a design of

experiments based on expected variations will be important as the number of vari-

ation sources and their interactions grows larger. Finally, statistical techniques for

systematic variation decomposition of test circuit measurement results in the face of

large random variations, undesired systematic trends, limited replication and DOE,

and measurement noise can prove to be useful in understanding variations.

6.3.2 Variation-Aware Modeling

The opportunities for improving the variation-aware modeling of transistors are nu-

merous. First, the development of a variation-aware compact model of a transistor

whose parameters can be modulated at multiple levels of the parameter hierarchy

is desirable. For example, information regarding the statistical distribution of the

number of dopants in the channel obtained from atomistic simulation results could

be fed into such a model as easily as the measured distribution of intrinsic thresh-

old voltages obtained from a test chip. This kind of flexibility is key in making use

of variation-related measurement data as well as physical or analytical models and

simulation results. Tools can also be improved which focus on the back propagation

of variance from measurement data to the variance in device parameters which are

most relevant. Because of the significant amounts of interaction between a given set

of measurement outputs and the device parameters involved in determining their val-

ues, such methods would be useful in taking measurement data from test circuits and
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developing useful device models from those data sets.

Furthermore, the coupling between variation-aware models and circuit-level sim-

ulation can be improved. Because the nature of circuit simulation will increasingly

revolve around concepts such as process variation, reliability, and yield, a robust

framework for circuit simulation which incorporates statistics information is neces-

sary. The idea of alternatives to the traditional but time-consuming Monte Carlo

simulation approach, which has already been an area of interest for many years,

should continue to present opportunities for future work.

6.3.3 Mitigation of Variation

In IC manufacturing, the first major steps taken towards mitigating process varia-

tion were targeted at the manufacturing process itself. Statistical process control,

feedback and feed-forward mechanisms, and innovations such as the use of resolution

enhancement techniques for lithography and chemical mechanical polishing for met-

allization were developed. More recently, steps have been taken at the device and

circuit design levels to reduce variations. Design for manufacturability has become

necessary to achieve yield and performance specifications. In these areas, opportuni-

ties for further research exist because of the emergence of new devices - new tradeoffs

will manifest themselves and will require careful analysis to determine the DFM rules

associated with them. However, the most significant need and opportunity for future

work in variability mitigation is at the circuit and system levels. While the variability

reduction through the use of process- and device-domain techniques is becoming in-

creasingly incremental, the reductions as a result of compensation and adaptation at

the circuit and system levels can be significantly larger. The implementation of such

techniques, which in the past have largely been focused on adaptive body biasing,

multiple supply voltage islands, etc., can potentially be extended to optimizing circuit

topologies and designing variation-aware system architectures.
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