
Exact Decoding of Phrase-Based Translation Models

through Lagrangian Relaxation

by

Yin-Wen Chang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2012

MASSACHUSETTS INSTM E
OF TECHNOLOGY

MAR 2 0 2012

UBRARIES

ARCHIVES

@ Massachusetts Institute of Technology 2012. All rights reserved.

A uthor
Department of Electrical Engineering and Computer Science

December 9, 2011

I A

C ertified by
Michael Collins

Associate Professor
Thesis Supervisor

'_ /_1

Accepted by........................
LI liolodziej ski

Chairman, Department Committee on Graduate Theses

2

Exact Decoding of Phrase-Based Translation Models through

Lagrangian Relaxation

by

Yin-Wen Chang

Submitted to the Department of Electrical Engineering and Computer Science
on December 9, 2011, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

This thesis describes two algorithms for exact decoding of phrase-based translation models,
based on Lagrangian relaxation. Both methods recovers exact solutions, with certificates
of optimality, on over 99% of test examples. The first method is much more efficient than
approaches based on linear programming (LP) or integer linear programming (ILP) solvers:
these methods are not feasible for anything other than short sentences. We compare our
methods to MOSES [6], and give precise estimates of the number and magnitude of search
errors that MOSES makes.

Thesis Supervisor: Michael Collins
Title: Associate Professor

4

Acknowledgments

First of all, I would like to thank my advisor Michael Collins. Working with him lets me

experience the excitement of doing research. My group mate Sasha also provides invaluable

resources on this project. I am looking forward to continueing working with them.

I also want to thank my former advisor Patrick Jaillet and Cynthia Rudin. Working with

them enlightens me on the usefulness of machine learning.

My friends Ann, Dawsen, Owen, Sarah, Yu are great companies in my daily life at

MIT. With Sarah, I saw the beauty of algorithms, and Yu often gives great suggestions

in both research ideas and course projects. I would like to thank my Friends and former

labmates in Taiwan, Peng-Jen, Cho-Jui, Kai-Wei, Hsiang-Fu, Li-Jen, Rong-En, Wen-Hsin

and Ming-Hen who have given me great support while I tried to adjust to the new life in

Boston.

Finally, I would like to thank my parents and sister for their support on many aspects of

life, throughout the years of my pursuit of education.

6

Contents

1 Introduction 15

1.1 Related W ork 17

2 A Decoding Algorithm based on Lagrangian Relaxation 19

2.1 The Phrase-based Translation Model . 19

2.2 A Decoding Algorithm based on Lagrangian Relaxation 21

2.2.1 An Efficient Dynamic Program 22

2.2.2 The Lagrangian Relaxation Algorithm 25

2.2.3 Properties . 26

2.2.4 An Example Run of the Algorithm 29

2.3 Relationship to Linear Programming Relaxations 29

2.3.1 The Linear Programming Relaxation 29

2.3.2 The Dual of the New Optimization Problem 31

2.3.3 The Relationship between the Two Primal Problems 33

2.3.4 An Example . 35

2.4 Tightening the Relaxation . 38

2.4.1 An Example Run of the Algorithm with Tightening Method 40

2.5 Speeding up the DP: A* Search . 41

2.6 Experim ents . 43

2.6.1 Comparison to an LP/ILP solver 44

2.6.2 Comparison to MOSES . 45

3 An Alternative Decoding Algorithm based on Lagrangian Relaxation 49

3.1 An Alternative Decoding Algorithm based on Lagrangian Relaxation 49

3.1.1 The Inner Subgradient Algorithm for arg max,,j f'(y) 56

3.1.2 A Different View . 57

3.2 Tightening the Relaxation . 58

3.3 Experiments . 61

3.3.1 Complexity of the Dynamic Program 61

3.3.2 Time and Number of Iterations . 61

3.4 Conclusion . 63

4 Conclusion 67

List of Figures

2-1 An example illustrating the notion of phrases and derivations used in this

thesis. 2 1

2-2 An example of an ill-formed derivation in the set Y'. Here we have y(1) =

y(5) = 0, y(2) = y(6) = 1, and y(3) = y(4) = 2. Some words are trans-

lated more than once and some words are not translated at all. However,

the sum of the number of source-language words translated is equal to 6,

which is the length (N) of the sentence. 24

2-3 The decoding algorithm. a' > 0 is the step size at the t'th iteration 25

2-4 An example run of the algorithm in Figure 2-3. For each value of t we show

the dual value L(ut-), the derivation y', and the number of times each

word is translated, yt(i) for i = 1... N. For each phrase in a derivation

we show the English string e, together with the span (s, t): for example,

the first phrase in the first derivation has English string the quality and,

and span (3, 6). At iteration 7 we have yt(i) = 1 for i = 1... N, and the

translation is returned, with a guarantee that it is optimal. 27

2-5 A decoding algorithm with incremental addition of constraints. The func-

tion Optimize(C, u) is a recursive function, which takes as input a set of

constraints C, and a vector of Lagrange multipliers, u. The initial call to

the algorithm is with C = 0, and u = 0. a > 0 is the step size. In our ex-

periments, the step size decreases each time the dual value increases from

one iteration to the next. 40

2-6 An example run of the algorithm in Figure 2-5. At iteration 32, we start

the K = 10 iterations to count which constraints are violated most often.

After K iterations, the count for 6 and 10 is 10, and all other constraints

have not been violated during the K iterations. Thus, hard constraints for

word 6 and 10 are added. After adding the constraints, we have yt(i) = 1

for i = 1... N, and the translation is returned, with a guarantee that it is

optim al. 4 1

2-7 Percentage of sentences that converged with less than certain number of

iterations/constraints. 44

3-1 An example illustrating the notion of leaves and trigram paths used in

this thesis. The path qi is NULL since vi and v2 are in the same phrase

(1, 2, this must). The path q2 specifies a transition (2, 5) since vi is the end-

ing word of phrase (1, 2, this must), which ends at position 2, and v2 is the

starting word of the phrase (5, 5, also), which starts at position 5. This is

the same derivation as in Figure 2-1. 50

3-2 The decoding algorithm. a' > 0 is the step size at the t'th iteration 54

3-3 The procedure used to compute arg maxYES L(y, A, y, U, v) = arg max :g 0.

y in the algorithm in Figure 3-2. 55

3-4 The decoding algorithm. a' > 0 is the step size at the t'th iteration 59

List of Tables

2.1 Table showing the number of iterations taken for the algorithm to converge.

x indicates sentences that fail to converge after 250 iterations. 97% of the

examples converge within 120 iterations. 42

2.2 Table showing the number of constraints added before convergence of the

algorithm in Figure 2-5, broken down by sentence length. Note that a

maximum of 3 constraints are added at each recursive call, but that fewer

than 3 constraints are added in cases where fewer than 3 constraints have

count(i) > 0. x indicates the sentences that fail to converge after 250

iterations. 78.7% of the examples converge without adding any constraints. 42

2.3 The average time (in seconds) for decoding using the algorithm in Figure 2-

5, with and without A* algorithm, broken down by sentence length and the

number of constraints that are added. A* indicates speeding up using A*

search; w/o denotes without using A*. 43

2.4 Average and median time of the LP/ILP solver (in seconds). % frac. indi-

cates how often the LP gives a fractional answer. Y' indicates the dynamic

program using set Y' as defined in Section 2.2.1, and Y" indicates the dy-

namic program using states (wi, W2 , n, r). The statistics for ILP for length

16-20 are based on 50 sentences. 45

2.5 Table showing the number of examples where MOSES-nogc fails to give a

translation, and the number/percentage of search errors for cases where it

does give a translation. 46

2.6 Table showing statistics for the difference between the translation score

from MOSES, and from the optimal derivation, for those sentences where

a search error is made. For MOSES-gc we include cases where the transla-

tion produced by our system is not reachable by MOSES-gc. The average

score of the optimal derivations is -23.4. 47

2.7 BLEU score comparisons. We consider only those sentences where both

decoders produce a translation. 47

2.8 BLEU score comparisons for translation from Chinese to English. We con-

sider only those sentences where both decoders produce a translation. . . . 47

3.1 Table showing the number of iterations taken for the algorithm to converge

for the method HARD-SUB. We use a limit of 300 iterations and we ensure

that with the new projection, the new set is a proper subset of the set in

the previous iteration. x indicates sentences that fail to converge due to

memory problem. All sentences refer to all sentences with less than 20

w ords. 63

3.2 Table showing the number of times that we expand the number of partitions

that the leaves are assigned to during the tightening method. This is for the

HARD-SUB method. x indicates the sentences that fail to due to memory

problem. All sentences refer to all sentences with less than 20 words. 63

3.3 The average time (in seconds) for decoding with the HARD-SUB method.

All sentences refer to all sentences with less than 20 words. 64

3.4 Table showing the number of iterations taken for the algorithm to converge

for the method HARD-NON. x indicates sentences that fail to converge due

to memory problem. All sentences refer to all sentences with less than 20

words........ 64

3.5 Table showing the number of times that we expand the number of partitions

that the leaves are assigned to during the tightening method. This is for the

HARD-NON method. x indicates the sentences that fail to due to memory

problem. All sentences refer to all sentences with less than 20 words. . . . 65

3.6 The average time (in seconds) for decoding with the HARD-NON method.

All sentences refer to all sentences with less than 20 words. 65

3.7 Table showing the number of iterations taken for the algorithm to converge

for the method LOOSE-SUB. x indicates sentences that fail to converge

due to memory problem. All sentences refer to all sentences with less than

20 w ords. 65

3.8 Table showing the number of times that we expand the number of partitions

that the leaves are assigned to during the tightening method. This is for the

LOOSE-SUB method. x indicates the sentences that fail to due to memory

problem. All sentences refer to all sentences with less than 20 words 65

3.9 The average time (in seconds) for decoding with the LOOSE-SUB method.

All sentences refer to all sentences with less than 20 words. 66

3.10 Table showing the number of iterations taken for the algorithm to converge

for the method LOOSE-NON. x indicates sentences that fail to converge

due to memory problem. All sentences refer to all sentences with less than

20 w ords. 66

3.11 Table showing the number of times that we expand the number of partitions

that the leaves are assigned to during the tightening method. This is for the

LOOSE-NON method. x indicates the sentences that fail to due to memory

problem. All sentences refer to all sentences with less than 20 words. 66

3.12 The average time (in seconds) for decoding with the LOOSE-NON method.

All sentences refer to all sentences with less than 20 words. 66

14

Chapter 1

Introduction

Phrase-based models [15, 7, 6] are a widely-used approach for statistical machine transla-

tion. The decoding problem for phrase-based models is NP-hard'; because of this, previous

work has generally focused on approximate search methods, for example variants of beam

search, for decoding.

This thesis describes two algorithm for exact decoding of phrase-based models, based

on Lagrangian relaxation [12]. The core of the first algorithm is a dynamic program for

phrase-based translation which is efficient, but which allows some ill-formed translations.

More specifically, the dynamic program searches over the space of translations where ex-

actly N words are translated (N is the number of words in the source-language sentence),

but where some source-language words may be translated zero times, or some source-

language words may be translated more than once. Lagrangian relaxation is used to en-

force the constraint that each source-language word should be translated exactly once. A

subgradient algorithm is used to optimize the dual problem arising from the relaxation.

The first technical contribution of this thesis is the basic Lagrangian relaxation algo-

rithm. By the usual guarantees for Lagrangian relaxation, if this algorithm converges to

a solution where all constraints are satisfied (i.e., where each word is translated exactly

once), then the solution is guaranteed to be optimal. For some source-language sentences

however, the underlying relaxation is loose, and the algorithm will not converge. The sec-

'We refer here to the phrase-based models of [7, 6], considered in this thesis. Other variants of phrase-
based models, which allow polynomial time decoding, have been proposed, see the related work section.

ond technical contribution of this thesis is a method that incrementally adds constraints to

the underlying dynamic program, thereby tightening the relaxation until an exact solution

is recovered.

We describe experiments on translation from German to English, using phrase-based

models trained by MOSES [6]. The method recovers exact solutions, with certificates of

optimality, on over 99% of test examples. On over 78% of examples, the method converges

with zero added constraints (i.e., using the basic algorithm); 99.67% of all examples con-

verge with 9 or fewer constraints. We compare to a linear programming (LP)/integer linear

programming (ILP) based decoder. Our method is much more efficient: LP or ILP decoding

is not feasible for anything other than short sentences, 2 whereas the average decoding time

for our method (for sentences of length 1-50 words) is 121 seconds per sentence. We also

compare our method to MOSES, and give precise estimates of the number and magnitude

of search errors that MOSES makes. Even with large beam sizes, MOSES makes a signif-

icant number of search errors. As far as we are aware, previous work has not successfully

recovered exact solutions for the type of phrase-based models used in MOSES.

The second decoding algorithm, also based on Lagrangian relaxation, presents an al-

ternative way to decompose the problem. In this algorithm, we make the dynamic pro-

gramming more efficient by avoiding keeping track of the language model score. Then, we

incorporate the language model score by using Lagrange multipliers to achieve agreement

between the results of two subproblems. The two subproblems are a Lagrangian relaxation

algorithm very similar to our first method, and a method to find the highest scoring trigram

for each word assuming that the word is at the ending position.

The reminder of the thesis is structured as follows. In Section 1.1, we discuss related

work. Chapter 2 will introduce the phrase-based translation models and describe a La-

grangian relaxation algorithm for decoding the phrase-based translation models exactly.

Chapter 3 presents an alternative Lagrangian relaxation algorithm that exploits a dynamic

program that is more efficient. Chapter 4 gives the discussion and conclusion.

2For example ILP decoding for sentences of lengths 11-15 words takes on average 2707.8 seconds.

1.1 Related Work

Lagrangian relaxation is a classical technique for solving combinatorial optimization prob-

lems [10, 12]. Dual decomposition, a special case of Lagrangian relaxation, has been

applied to inference problems in NLP [9, 21], and also to Markov random fields [27, 8, 23].

Earlier work on belief propagation [22] is closely related to dual decomposition. Recently,

[20] describe a Lagrangian relaxation algorithm for decoding for syntactic translation; the

algorithmic construction described in the first algorithm of the current thesis is, however,

very different in nature to this work.

Beam search stack decoders [7] are the most commonly used decoding algorithm for

phrase-based models. Dynamic-programming-based beam search algorithms are discussed

for both word-based and phrase-based models by [25] and [24]. Greedy decoding [4] is

an alternative approximate search method, which is again efficient, but has no guarantee of

returning optimal translations.

Several works attempt exact decoding, but efficiency remains an issue. Exact decoding

via integer linear programming (ILP) for IBM model 4 [2] has been studied by [4], with

experiments using a bigram language model for sentences up to eight words in length. [19]

have improved the efficiency of this work by using a cutting-plane algorithm, and exper-

imented with sentence lengths up to 30 words (again with a bigram LM). [28] formulate

phrase-based decoding problem as a traveling salesman problem (TSP), and take advantage

of existing exact and approximate approaches designed for TSP. Their translation experi-

ment uses a bigram language model and applies an approximate algorithm for TSP. [16]

propose an A* search algorithm for IBM model 4, and test on sentence lengths up to 14

words. Other work [11, 1] has considered variants of phrase-based models with restrictions

on reordering that allow exact, polynomial time decoding, using finite-state transducers.

The idea of incrementally adding constraints to tighten a relaxation until it is exact is

a core idea in combinatorial optimization. Previous work on this topic in NLP or machine

learning includes work on inference in Markov random fields [23]; work that encodes con-

straints using finite-state machines [26]; and work on non-projective dependency parsing

[18].

18

Chapter 2

A Decoding Algorithm based on

Lagrangian Relaxation

In this chapter, we will describe the phrase-based translation models and the decoding prob-

lem. Then we will introduce a decoding algorithm based on Lagrangian relaxation. The

core of the algorithm is a dynamic program, which is efficient, but which allows ill-formed

derivations. The constraints specifying a valid derivation will be introduced by Lagrangian

relaxation method. Formal properties of the algorithm and the relationship to linear pro-

gramming relaxations are included. We also introduce a method to incrementally tighten

the relaxation until convergence. Experiments on translations from German to English have

shown that the method is efficient in practice. The major part of this chapter was originally

published as [3].

2.1 The Phrase-based Translation Model

This section establishes notation for phrase-based translation models, and gives a definition

of the decoding problem. The phrase-based model we use is the same as that described by

[7], as implemented in MOSES [6].

The input to a phrase-based translation system is a source-language sentence with N

words, XiX2 ... XN. A phrase table is used to define the set of possible phrases for the sen-

tence: each phrase is a tuple p = (s, t, e), where (s, t) are indices representing a contiguous

span in the source-language sentence (we have s < t), and e is a target-language string con-

sisting of a sequence of target-language words. For example, the phrase p = (2, 5, the dog)

would specify that wordsX2 ... X5 have a translation in the phrase table as "the dog". Each

phrase p has a score g(p) = g (s, t, e): this score will typically be calculated as a log-linear

combination of features (e.g., see [7]).

We use s(p), t(p) and e(p) to refer to the three components (s, t, e) of a phrase p.

The output from a phrase-based model is a sequence of phrases y = (PP2 ... PL). We

will often refer to an output y as a derivation. The derivation y defines a target-language

translation e(y), which is formed by concatenating the strings e(pi), e(p2), -. . , e(pL). For

two consecutive phrases pk = (s, t, e) and Pk+1 = (s', t', e'), the distortion distance is

defined as 6(t, s') = It + 1 - s'|. The score for a translation is then defined as

L L-1

f (y) = h (e (y)) + Y, g(Pk) + 1: x X J(t(pN), S(Pk+1)) (2-1)
k=1 k=1

where 77 E R is often referred to as the distortion penalty, and typically takes a negative

value. The function h(e(y)) is the score of the string e(y) under a language model.'

The decoding problem is to find

arg max f (y)
yY

where Y is the set of valid derivations. The set Y can be defined as follows. First, for

any derivation y = (pp2... PL), define y(i) to be the number of times that the source-

language word xi has been translated in y: that is, y(i) = Z _1[[s(Pk) i t(pk)]],

where [[7r]] = 1 if 7r is true, and 0 otherwise. Then Y is defined as the set of finite length

sequences (PiP2 ... PL) such that:

1. Each word in the input is translated exactly once: that is, y(i) = 1 for i = 1 ... N.

2. For each pair of consecutive phrases Pi, Pk+1 for k = 1 ... L-1, we have 6 (t(pk), s(pk+1))

d, where d is the distortion limit.

'The language model score usually includes a word insertion score that controls the length of translations.
The relative weights of the g(p) and h(e(y)) terms, and the value for r/, are typically chosen using MERT
training [14].

X 1 X 2 X3 X4 X5

Pi P2 P3 P4

* phrase p = (s, t, e)

(1, 2, this must), (5, 5, also), (6, 6, be), (3, 4, our concern)

* derivation

Y = P1,P2, ... -,PL

Figure 2-1: An example illustrating the notion of phrases and derivations used in this thesis.

An exact dynamic programming algorithm for this problem uses states (w1i, w2, b, r),

where (w1, w2) is a target-language bigram that the partial translation ended with, b is a bit-

string denoting which source-language words have been translated, and r is the end position

of the previous phrase (e.g., see [7]). The bigram (wi, w2) is needed for calculation of

trigram language model scores; r is needed to enforce the distortion limit, and to calculate

distortion costs. The bit-string b is needed to ensure that each word is translated exactly

once. Since the number of possible bit-strings is exponential in the length of sentence,

exhaustive dynamic programming is in general intractable. Instead, people commonly use

heuristic search methods such as beam search for decoding. However, these methods have

no guarantee of returning the highest scoring translation.

2.2 A Decoding Algorithm based on Lagrangian Relax-

ation

We now describe a decoding algorithm for phrase-based translation, based on Lagrangian

relaxation. We first describe a dynamic program for decoding which is efficient, but which

relaxes the y(i) = 1 constraints described in the previous section. We then describe the

Lagrangian relaxation algorithm, which introduces Lagrange multipliers for each constraint

of the form y(i) = 1, and uses a subgradient algorithm to minimize the dual arising from

the relaxation. We conclude with theorems describing formal properties of the algorithm,

and with an example run of the algorithm.

2.2.1 An Efficient Dynamic Program

As described in the previous section, our goal is to find the optimal translation y* =

arg maxYGy f (y). We will approach this problem by defining a set Y' such that Y c Y',

and such that

arg max f (y)
yY'

can be found efficiently using dynamic programming. The set Y' omits some constraints-

specifically, the constraints that each source-language word is translated once, i.e., that

y(i) = 1 for i = 1... N-that are enforced for members of Y. In the next section we

describe how to re-introduce these constraints using Lagrangian relaxation. The set Y'

does, however, include a looser constraint, namely that Ei= y(i) = N, which requires

that exactly N words are translated.

We now give the dynamic program that defines Y'. The main idea will be to replace

bit-strings (as described in the previous section) by a much smaller number of dynamic

programming states. Specifically, the states of the new dynamic program will be tuples

(wi, w2 , n, 1, m, r). The pair (wi, w2) is again a target-language bigram corresponding to

the last two words in the partial translation, and the integer r is again the end position of

the previous phrase. The integer n is the number of words that have been translated thus far

in the dynamic programming algorithm. The integers I and m specify a contiguous span

X1 ... Xm in the source-language sentence; this span is the last contiguous span of words

that have been translated thus far.

The dynamic program can be viewed as a shortest-path problem in a directed graph,

with nodes in the graph corresponding to states (w1, w2 , n, 1, m, r). The transitions in the

graph are defined as follows. For each state (wi, w2 , n, 1, m, r), we consider any phrase

p = (s, t, e) with e = (eo ... eMleM) such that: 1) 6(r, s) < d; and 2) t < l or s > m.

The former condition states that the phrase should satisfy the distortion limit. The latter

condition requires that there is no overlap of the new phrase's span (s, t) with the span

(1, m). For any such phrase, we create a transition

(wi, w2,n,l, m, r) -= (w1 2 ,mr)

where

* (w',w'2) { (eM-1, eM) ifM>2

(w2, 1) if M=1
" n' =n+t-s+1

(1, t) ifs=m+1
I (l',m')= (s,m) if t = i - 1

(s, t) otherwise

Sr' = t

The new target-language bigram (w', w') is the last two words of the partial translation

after including phrase p. It comes from either the last two words of e, or, if e consists of

a single word, the last word of the previous bigram, w2, and the first and only word, ei, in

e. (', m') is expanded from (1, m) if the spans (1, m) and (s, t) are adjacent. Otherwise,

(l', im') will be the same as (s, t).

The score of the transition is given by a sum of the phrase translation score g(p), the

language model score, and the distortion cost r/ x 6(r, s). The trigram language model score

is h(e 1 |wi,w2) + h(e 2|w2, e1) + Z_ 2 h(ei+2|ei,ei+1), where h(w3 |wi,w2) is atrigram

score (typically a log probability plus a word insertion score).

We also include start and end states in the directed graph. The start state is (<s>, <s>, 0, , 0, 0)

where <s> is the start symbol in the language model. For each state (wi, W2 , n, 1, m, r),

such that n = N, we create a transition to the end state. This transition takes the form

(N,N±1, </s>)
(w, w 2 , , l,m, r) (END

For this transition, we define the score as score = h(</s>Jw1, w2); thus this transition

incorporates the end symbol </s> in the language model.

The states and transitions we have described form a directed graph, where each path

from the start state to the end state corresponds to a sequence of phrases PiP2 . .. PL. We

X1 X2 X3 X4 X5 X6

das mussljunsere sorge gleichermaBen sein

our concern must bej our concern

y = (3, 4, our concern), (2, 2, must), (6, 6, be), (3, 4, our concern)

Figure 2-2: An example of an ill-formed derivation in the set Y'. Here we have y(1) =
y(5) = 0, y(2) = y(6) = 1, and y(3) = y(4) = 2. Some words are translated more
than once and some words are not translated at all. However, the sum of the number of
source-language words translated is equal to 6, which is the length (N) of the sentence.

define Y' to be the full set of such sequences. We can use the Viterbi algorithm to solve

arg maxYGy' f(y) by simply searching for the highest scoring path from the start state to

the end state.

The set Y' clearly includes derivations that are ill-formed, in that they may include

words that have been translated 0 times, or more than 1 time. The first line of Figure 2-4

shows one such derivation (corresponding to the translation the quality and also the and the

quality and also .). For each phrase we show the English string (e.g., the quality) together

with the span of the phrase (e.g., 3, 6). The values for y(i) are also shown. It can be verified

that this derivation is a valid member of Y'. However, y(i) $ 1 for several values of i: for

example, words 1 and 2 are translated 0 times, while word 3 is translated twice.

Other dynamic programs, and definitions of Y', are possible: for example an alterna-

tive would be to use a dynamic program with states (wI, w2 , n, r). However, including the

previous contiguous span (1, m) makes the set Y' a closer approximation to Y. In experi-

ments we have found that including the previous span (1, m) in the dynamic program leads

to faster convergence of the subgradient algorithm described in the next section, and in

general to more stable results. This is in spite of the dynamic program being larger; it is no

doubt due to Y' being a better approximation of Y.

Initialization: u0 (i) <- 0 for i = 1 ... N

fort = 1 ... T

y = arg maxysy, L(ut-1, y)
ify'(i)=1 for i=1 ... N

return yt

else
for i =1... N

Ut~i = ut- 1(i) - at (yt (i) -1

Figure 2-3: The decoding algorithm. at > 0 is the step size at the t'th iteration.

2.2.2 The Lagrangian Relaxation Algorithm

We now describe the Lagrangian relaxation decoding algorithm for the phrase-based model.

Recall that in the previous section, we defined a set Y' that allowed efficient dynamic pro-

gramming, and such that Y C Y'. It is easy to see that Y {y : y C Y', and Vi, y(i) =

1}. The original decoding problem can therefore be stated as:

arg max f (y) such that Vi, y(i) 1 (2.2)
yY'

We use Lagrangian relaxation [10] to deal with the y(i) = 1 constraints. We introduce

Lagrange multipliers u(i) for each such constraint. The Lagrange multipliers u(i) can take

any positive or negative value. The Lagrangian is

L(u, y) f (y) + u(i)(y(i) - 1)

The dual objective is then

L(u) = max L(u, y). (2.3)
yCY'

and the dual problem is to solve

min L(u).
U

The next section gives a number of formal results describing how solving the dual problem

will be useful in solving the original optimization problem.

We now describe an algorithm that solves the dual problem. By standard results for

Lagrangian relaxation [10], L(u) is a convex function; it can be minimized by a subgradient

method. If we define

yu arg max L(u, y)

and -y(i) = yu(i) - 1 for i = 1... N, then -7, is a subgradient of L(u) at u. A subgradient

method is an iterative method for minimizing L(u), which perfoms updates u' <- ut-1 _

at 'Ybt-1 where at > 0 is the step size for the t'th subgradient step. In our experiments,

the step size decreases each time the dual value increases from one iteration to the next.

Similar to [9], we set the step size at the t'th iteration to be at = 1/(1 + At), where At is

the number of times that L(u(t')) > L(u(t'-1)) for all t' < t.

Figure 2-3 depicts the resulting algorithm. At each iteration, we solve

argmax f(y) + u(i)(y(i) - 1)

= argmax f(y) + U(i)Y(i)

by the dynamic program described in the previous section. Incorporating the EZ u(i)y(i)

terms in the dynamic program is straightforward: we simply redefine the phrase scores as

t

g'(s, t, e) = g(s, t, e) + Y u(i)

Intuitively, each Lagrange multiplier u(i) penalizes or rewards phrases that translate

word i; the algorithm attempts to adjust the Lagrange multipliers in such a way that each

word is translated exactly once. The updates ut(i) = ut-(i) - at (yt(i) - 1) will decrease

the value for u(i) if yt(i) > 1, increase the value for u(i) if yt(i) = 0, and leave u(i)

unchanged if yt(i) = 1.

2.2.3 Properties

We now give some theorems stating formal properties of the Lagrangian relaxation algo-

rithm. The proofs are simple, and are well known results for Lagrangian relaxation-for

Input German: dadurch k6nnen die qualitit und die regelmdBige postzustellung auch weiterhin sichergestelit werden

t L(ut- 1) yt (i) derivation yt
-10098 022 30 20 01 3,6 9,9 16, 6 5, 5 3, 3 , 4,6 191,9 13,131

1 -10.0988 00223 3002000 the quality and also the and the quality and also

2 -11.1597 07,7 12,12 10, 10 12, 12 10 10 12, 12 0 010, 10 12,12 10 12I 19 0100 0 the regular W I continue to Ibe lcontinue to Ibe cntinue to Ibe lcontinueto be guaranteed.

-1.72 3 1 2 0 1 0 1 1,2 15,5 12,2 1,1s 4,4 12 1 3,5 19, 9 13,13l
3 -12.3742 3 3 1 2can thu quality in that way, thequality and also

,-11.8623 06,7 8,8 9,9 11,11 8,8 98,8 39,9 11,11 13,13
4 1.63 01001 33001 can teregula distribution should Ialso Iensure distribution shouldI also Iensurelh a lId11911'1 distribution should jalso lensure

-13991 00 132 000 01 3,3 l7,7 15, 5 7, 7 5,5 7,7 l6, 6 4,4 1 5,7 11, 11 13, 13l
5 -13.9916 00 11 3 2400 0 1 the regular and regular and regular the quality andthe regular ensured

6 -15.6558 111202011111 6,6 4,4 6,6 8,8 1,13in that way, the quali the quality of the distribution should continue to 3be uaranteed
1, 2 3,4 , 4 8,89,1 1 1, 13

7 -16.1022 11 11 11 11 11 1 11 1, 2 3, 4 5,7 8, 8 9,10 11, 13
in that way, the quality and the regular distribution should continue to be guaranteed .

Figure 2-4: An example run of the algorithm in Figure 2-3. For each value of t we show
the dual value L(utl-), the derivation y', and the number of times each word is translated,
yt(i) for i = 1 ... N. For each phrase in a derivation we show the English string e, together
with the span (s, t): for example, the first phrase in the first derivation has English string
the quality and, and span (3, 6). At iteration 7 we have y'(i) = 1 for i = 1... N, and the
translation is returned, with a guarantee that it is optimal.

completeness, we state them here. First, define y* to be the optimal solution for our original

problem:

Definition 1. y* = arg maxYGY f (y)

Our first theorem states that the dual function provides an upper bound on the score for

the optimal translation, f (y*):

Theorem 1. For any value of u E R N, L(u) f (y*).

Proof

L(u) = max f (y) + u(i)(y(i) - 1)

> max f (y) + u(i)(y(i) - 1)

= max f (y)
yY

The first inequality follows because Y C Y'. The final equality is true since any y E Y has

y(i) = 1 for all i, implying that Ej u(i) (y(i) - 1) = 0. l

The second theorem states that under an appropriate choice of the step sizes at, the

method converges to the minimum of L(u). Hence we will successfully find the tightest

possible upper bound defined by the dual L(u).

Theorem 2. For any sequence al, a2 ,... If 1) limt-+ at - 0; 2) _ at = oc, then

limts L(ut) = minu L(u)

Proof See [10]. El

Our final theorem states that if at any iteration the algorithm finds a solution yt such

that yt(i) = 1 for i = 1... N, then this is guaranteed to be the optimal solution to our

original problem. First, define

Definition 2. y, = arg maxYEY/ L(u, y)

We then have the theorem

Theorem 3. If 3 u, s.t. yu(i) = for i = 1 ... N, then f (yu) = f (y*), i.e. yu is optimal.

Proof We have

L(u) = max f (y) + Zu(i)(y(i) - 1)
yeY'

= f (y) + U (i) - 1)

=f(yU)

The second equality is true because of the definition of yu. The third equality follows

because by assumption yu(i) = 1 for i = 1... N. Because L(u) = f(yu) and L(u) >

f(y*) for all u, we have f (y,) > f(y*). But y* = arg maxyEy f (y), and yu E Y, hence we

must also have f (yu) < f(y*) hence f (yu) = f (y*). D

In some cases, however, the algorithm in Figure 2-3 may not return a solution y' such

that yt(i) = 1 for all i. There could be two reasons for this. In the first case, we may

not have run the algorithm for enough iterations T to see convergence. In the second case,

the underlying relaxation may not be tight, in that there may not be any settings a for the

Lagrange multipliers such that yu(i) = 1 for all i.

Section 2.4 describes a method for tightening the underlying relaxation by introducing

hard constraints (of the form y(i) = 1 for selected values of i). We will see that this method

is highly effective in tightening the relaxation until the algorithm converges to an optimal

solution.

2.2.4 An Example Run of the Algorithm

Figure 2-4 shows an example of how the algorithm works when translating a German sen-

tence into an English sentence. After the first iteration, there are words that have been

translated two or three times, and words that have not been translated. At each iteration,

the Lagrange multipliers are updated to encourage each word to be translated once. On this

example, the algorithm converges to a solution where all words are translated exactly once,

and the solution is guaranteed to be optimal.

2.3 Relationship to Linear Programming Relaxations

This section explains the relationship between Lagrangian relaxation and linear program-

ming relaxations. The algorithm we described is minimizing the dual of a particular lin-

ear programming relaxation problem given by the set Y' and the constraints that y(i) =

1 for all i. The algorithm converges if the solution to the relaxed problem is integral.

2.3.1 The Linear Programming Relaxation

We first describe the optimization over a simplex. We define Ay, to be the simplex over

elements in Y':

Ay/ ={ : a E RIY'I , %= 1, O < ay < 1 Vy}

Each a E Ay, is a distribution over Y', and the simplex corresponds to the set of all

distributions over elements in Y'. Each dimension of a represents a derivation in the set

Y'. Suppose that a binary vector a has 1 for only one dimension, and 0 for all other

dimensions, every such a specifies a derivation. Also notice that those a's that represent

derivations in Y' are the vertices of the set Ay,.

We define a new optimization program over the simplex Ay,:

arg max ay, f(y) (2.4)

s.t. ayy(i) = 1 for i = 1. .n.n

The constraint states that, in expectation, the number of times that word i is translated

should be exactly one. The highest scoring distribution no longer specifies a single deriva-

tion. Instead, it can be the combination of several derivations.

This problem is a linear program, since both the objective and the constraints are linear

with respect to the a variables.

This optimization problem is very similar to our original problem described in equation

(2.2). To illustrate the connection, we define A' , as follows:

AY a : a C R'l, Zay = 1, ay E {0, 1} Vy}
Y

Y, is a subset of Ay,, where the constraints 0 < ay < 1 have been replaced by ay E

{0, 1}.

Each element in the set A', corresponds to a derivation in the set Y'. More formally, let

S: Y' -+ RIY'I denote the function that maps a derivation to a vector in a lY'| dimensional

space. Then A', = { 6 (y) : y c Y'}.

Consider the following optimization problem, where we replace Ay, in equation (2.4)

by A':

arg max ayf (y) (2.5)

s.t. ayy(i) = 1 for i = 1 ... n

This optimization problem is an integer linear program, since both the objective and the

constraints are linear with respect to a, and a are constrained to be either 0 or 1. Also, Ay,

is the convex hull of the set A',. The elements in A' , form the vertices of the polytope

Ay,. Thus, the optimization problem in equation (2.4) is a relaxation of this problem. The

relaxed problem replace the constraints ay c {0, 1} by the constraints 0 < ay < 1.

Since a vector a E A', represents a derivation in the set Y', this new problem (2.5) is

equivalent to our original problem in equation (2.2). Thus, we can view the optimization in

equation (2.4) as a relaxation of our original problem.

The following theorem states that optimizing over a discrete set Y' can be replaced by

optimizing over the simplex Ay,. This theorem will be useful later on.

Theorem 4. For any finite set Y', and any function f: Y' -+ R

max f(y) = max Z ayf (y)
yY' oczAyf

This is true since the optimal value of linear program is always at the vertices of the

polytope, and points in Y' correspond to vertices of the simplex A'. More specifically, The

maximum of linear program over a polytope Ay, can always be achieved at a vertex of the

polytope:

max Zay f (y) = max ay f (y),

Since a derivation in Y' corresponds to a vector in A',, we have

max f (y) = max Zayf (y).

[10] provides a full proof.

2.3.2 The Dual of the New Optimization Problem

We now describe the dual problem of the optimization problem in equation (2.4). This will

be a function M(u) of dual variables u = {u(i) : i E {1 ... n}}. We will show that the

dual problem M(u) is identical to L(u) in equation (2.3), the dual problem of the original

problem.

The Lagrangian of the problem in equation (2.4) is

M(u, a) = ayy(i) - 1)Eay f(y)
'Y

The Lagrangian dual is

M(u) = max M(u, a)
oaEAYI

and the dual problem is to solve

min M(u)
U

In the following, we will describe two theorems regarding the dual problem. We first

define a* to be the optimal solution for the linear program.

Definition 3.

a = arg max ay f(y)

s.t. ayy(i) = 1 for i = 1 ... n
Y

By strong duality, we have the following theorem, stating that the solution of the dual

problem is the maximum of the primal problem.

Theorem 5.

min M(u)= a*f (y)

Note that in our previous result (Theorem 1), the dual solution only gives an upper

bound on the primal solution:

min L(u) > f (y*)
U

Now we have equality in the above theorem, which means that the dual solution will be

equal to the primal solution.

The second theorem states that solving the original Lagrangian dual also solves the dual

of the linear program.

+ u(i) E
i \ v

Theorem 6. For any value of u,

M(u) = L(u).

Proof This theorem follows from Theorem 4, since M(u, a) = EZ aL(u, y):

M(u, a) = ESf (y)+ u(i) (Zayy(i) -

cYyU(i)Y(i) - 5u(i)

y)± +Eay UWiY(i) - E ay u(i)

f (y) + E UWiY(i) - :Ui)

5~ay (f(y)±

1:cyL(uy)
Y

U ((Wi

I

- 1))

(2.6)

(2.7)

The last term of equation (2.6) follows by the fact that E Y = 1.

Then,

L(u) = max L(u, y)
yGy'

= max Iay L(u, a) = max M(u, o) = M(u)
aEsYY assY,

The second equality follows by Theorem 4, E

This theorem says that the two dual functions are identical. Thus, the algorithm de-

scribed in Figure 2-3, which minimizes L(u), also minimizes M(u).

2.3.3 The Relationship between the Two Primal Problems

To explain the relationship between the original primal problem and the primal problem

of the linear program, we introduce the following notations. Let Q c Ay, be the set

corresponding to the feasible solutions of the original problem (2.2), which are also the

E S~f (Y) +S>ZY
y i y

E aYf(
y

E cZY

valid derivations.

Q = {O(y) :y E Y}

Note that Y = y : y E Y', y(i) = 1 Vi = 1. .. N}

Let Q' C Ay, be the set of feasible solutions to the linear program.

Q'={a : a c Ay, ayy(i) 1Vi = 1 ... N}
y

Note that the set Q is a subset of the set Q' since Q contains only vertices that represent

valid derivations, while Q' allows fractional solution that is a combination of more than one

derivation. This happens since the "exactly once" constraints are enforced in expectation.

Also, the convex hull of Q conv(Q) is a subset of the set Q'. This is because conv(Q) con-

tains only combinations of valid derivations, while Q allowed combinations of ill-formed

derivations.

Q Q'

* conv(Q) C Q'

By the definition of the set Q, each element of Q corresponds to a valid derivation, and,

therefore, is a vector of only integral values. Thus,

max f (y) = max ayf (y).

Since Q C Q', we have

max ayf (y) < maxY ayf (y)
qCEQ geQ'

y y

Combining the above results, we have

max f (y) = max Z ay f(y) < max ayf (y)
yEy aGQ qgQ'

y y

If the linear programming relaxation is tight, the equality in the above equation will

hold, which implies that the solution is integral. In this case, solving the linear program-

ming relaxation equals to solving the original problem. However, in the case that the re-

laxation is not tight, the optimal solution to the linear program (2.4) will be a fractional

solution which has a higher score than the original primal optimal solution. This also

means that there is a gap between the dual solution and the primal solution for the original

problem. Thus, the algorithm in Figure 2-3 will not converge. Instead, it will alternate

between two or more derivations. These derivations are those that could form the optimal

solution for the linear program by the distribuion specified by the fractional solution. In

the next section, we give an example to illustrate this case. In Section 2.4, we describe a

tightening technique that tightens the relaxation by incrementally adding more constraints

to further restrict the set.

2.3.4 An Example

In this section, we give an example to illustrate the relationship between the Lagrangian

relaxation and the linear programming relaxation. The example also illustrates the case

when the algorithm alternates between two derivations and cannot converge to a single valid

derivation. The two derivations correspond to a fractional solution of the corresponding

linear programming relaxation. We draw the example from the full example in Figure 2-6.

In this example, we assume there are three possible derivations within the set Y'. Sup-

pose that Y' = {yi, Y2, Y3}, and the derivations are described as follows:

1,5 6,6 8,9 6,6 7,7 11,12 16,16 13, 15 17,17
Y1 =

nonetheless , that a country that colombia , which must be closely monitored

1,5 7,7 10,10 8, 8 9,12 16,16 13, 15 17,17
Y2= nonetheless , colombia is a country that must be closely monitored

1,5 7,7 6,6 8,12 16,16 13, 15 17,17
Y3 =

nonetheless , colombia that a country that must be closely monitored

The scores of the derivations, together with the number of times each word has been

translated in the derivations, are as follows:

f (y1) = - 18.3299

f (Y2) = - 16.0169

f (ys) = - 17.2290

yI(i) = 11111211101111111

y2 (i) = 11111011121111111

y3 (i) = 11111111111111111

The derivations can be represented as vectors in the set Ay/:

6 (yi) =(1, 0, 0)

6 (y2) =(0, 1, 0)

6(Y3) =(0, 0, 1)

We first consider the primal problem of the original problem (2.2). In this example,

there is only one valid derivation: y3. Thus, the set of feasible solutions of the original

problem is Y {y3}. The highest scoring derivation is therefore y3 and the highest score

is f (y3). This will be the primal solution to our original problem.

Y3 = arg max f (y)
YEY

and,

max f(y) = f (y3) = -17.2290
yY

Next, we will look at the optimization over the simplex (2.4). We consider two vectors

al = [0, 0, 1], and a 2 = [0.5, 0.5, 0], which represent two distributions over the set Y'.

The first vector a' = [0, 0, 1] corresponds to the highest scoring derivation. It satisfies

the constraints that EY ayy(i) = 1 for all i = 1... N, since EY ayy(i) = y3(i) = 1 for all

i. Thus, we have a' C Q. This is an integral solution to the linear program (2.4), which

gives score:

ayf(y) = Xy, X f (y3) = -17.2290
y

Then we consider the second vector a 2 = [0.5, 0.5, 0], which represents a combination

of two derivations. We can see that

ayy(i) = 0.5 x y1(i) + 0.5 x y2(i) = 1
y

for all i = 1. .. N. Thus, a2 E Q'. Then we consider the score of Zy a f(y):

a f (y) =0.5 x f (yi) + 0.5 X f (Y2) + 0 x f (y3)
y

=0.5 x -18.3299 + 0.5 x -16.0169

= - 17.1734

Thus, a 2 can achieve a higher score than a'.

When we consider optimizing over the simplex Ayi.

a* = arg max a f (y)

We will have a 2 as the optimal solution to the linear program. Thus, combining derivations

yi and Y2 will give a higher score than the valid derivation y3 alone, when we are optimizing

over the simplex.

max E ayf(y)
y

> max ay f(y) = max f(y).
aEQ yEY

y

This is the case when solving the linear programming relaxation does not equal to

solving the original problem. The primal solution of the linear programming is larger than

the primal solution of the original problem.

According to Theorem 5, for the linear program, the solution of the dual problem is

the maximum of the primal problem. Thus, minu M(u) = -17.1734. Then we have

minu L(u) = -17.1734 by Theorem 6.

On the other hand, the solution to the primal problem of the original problem is y* = y3.

We have

min L(u) = -17.1734 > f (y*) -17.2290.
U

Thus, there is a gap between the dual optimal solution and the primal optimal solution for

the original problem.

2.4 Tightening the Relaxation

In some cases the algorithm in Figure 2-3 will not converge to y(i) = 1 for i = 1 ... N

because the underlying relaxation is not tight. We now describe a method that incrementally

tightens the Lagrangian relaxation algorithm until it provides an exact answer. In cases

that do not converge, we introduce hard constraints to force certain words to be translated

exactly once in the dynamic programming solver. In experiments we show that typically

only a few constraints are necessary.

Given a setC C {1, 2, . .. , N}, we define

YC = {y : y E Y', and V i C C, y(i) = 1}

Thus Y/ is a subset of Y', formed by adding hard constraints of the form y(i) = 1 to

Y'. Note that %6 remains as a superset of Y, which enforces y(i) = 1 for all i. Finding

arg maxgy f (y) can again be achieved using dynamic programming, with the number of

dynamic programming states increased by a factor of 21c: dynamic programming states of

the form (wi, w2 , n, 1, m, r) are replaced by states (wi, w2 , n, 1, m, r, bc) where bc is a bit-

string of length |Cl, which records which words in the set C have or haven't been translated

in a hypothesis (partial derivation). Note that if C = {1 ... N}, we have %6 = Y, and the

dynamic program will correspond to exhaustive dynamic programming.

We can again run a Lagrangian relaxation algorithm, using the set %6 in place of Y'. We

will use Lagrange multipliers u(i) to enforce the constraints y(i) = 1 for i (C. Our goal

will be to find a small set of constraints C, such that Lagrangian relaxation will successfully

recover an optimal solution. We will do this by incrementally adding elements to C; that is,

by incrementally adding constraints that tighten the relaxation.

The intuition behind our approach is as follows. Say we run the original algorithm,

with the set Y', for several iterations, so that L(u) is close to convergence (i.e., L(u) is

close to its minimal value). However, assume that we have not yet generated a solution yt

such that yt(i) = 1 for all i. In this case we have some evidence that the relaxation may

not be tight, and that we need to add some constraints. The question is, which constraints

to add? To answer this question, we run the subgradient algorithm for K more iterations

(e.g., K = 10), and at each iteration track which constraints of the form y(i) = 1 are

violated. We then choose C to be the G constraints (e.g., G = 3) that are violated most

often during the K additional iterations, and are not adjacent to each other. We recursively

call the algorithm, replacing Y' by Ye; the recursive call may then return an exact solution,

or alternatively again add more constraints and make a recursive call.2

Figure 2-5 depicts the resulting algorithm. We initially make a call to the algorithm

Optimize(C, u) with C equal to the empty set (i.e., no hard constraints), and with u(i) = 0

for all i. In an initial phase the algorithm runs subgradient steps, while the dual is still

improving. In a second step, if a solution has not been found, the algorithm runs for K

more iterations, thereby choosing G additional constraints, then recursing.

If at any stage the algorithm finds a solution y* such that y* (i) = 1 for all i, then this

is the solution to our original problem, arg maxgy f(y). This follows because for any

C C {1 ... N} we have Y C ys; hence the theorems in section 2.2.3 go through for YC

in place of Y', with trivial modifications. Note also that the algorithm is guaranteed to

eventually find the optimal solution, because eventually C = (1 ... N}, and Y = YT.

The remaining question concerns the "dual still improving" condition; i.e., how to de-

termine that the first phase of the algorithm should terminate. We do this by recording the

2Formal justification for the method comes from the relationship between Lagrangian relaxation and linear
programming relaxations. In cases where the relaxation is not tight, the subgradient method will essentially
move between solutions whose convex combination form a fractional solution to an underlying LP relaxation
[13]. Our method eliminates the fractional solution through the introduction of hard constraints.

Optimize(C, u)
while (dual value still improving)

y* = arg maxyEYC L(u, y)

ify*(i) =I fori= 1...N returny*
else for i 1 ... N

u(i) = u(i) - a (y*(i) - 1)

count(i) = 0 for i = 1... N

for k = 1... K

y* = arg maxyEyg L(u, y)

ify*(i) = 1 fori= 1...N returny*
else for i = 1 .. .N

u(i) = u(i) - a (y*(i) - 1)

count(i) = count(i) + [[y*(i) # 1]]

Let C' = set of G i's that have the largest value for count(i), that are not in C, and that are not
adjacent to each other
return Optimize(C U C', u)

Figure 2-5: A decoding algorithm with incremental addition of constraints. The function
Optimize(C, u) is a recursive function, which takes as input a set of constraints C, and a
vector of Lagrange multipliers, u. The initial call to the algorithm is with C = 0, and u = 0.
a > 0 is the step size. In our experiments, the step size decreases each time the dual value
increases from one iteration to the next.

first and second best dual values L(u') and L(u") in the sequence of Lagrange multipliers

uI, U2 , generated by the algorithm. Suppose that L(u") first occurs at iteration t". If

-(u) < E, we say that the dual value does not decrease enough. The value for C is a

parameter of the approach: in experiments we used E = 0.002.

2.4.1 An Example Run of the Algorithm with Tightening Method

Figure 2-6 gives an example run of the algorithm. After 31 iterations the algorithm detects

that the dual is no longer decreasing rapidly enough, and runs for K = 10 additional

iterations, tracking which constraints are violated. Constraints y(6) = 1 and y(10) = 1

are each violated 10 times, while other constraints are not violated. A recursive call to the

algorithm is made with C = {6, 10}, and the algorithm converges in a single iteration, to a

solution that is guaranteed to be optimal.

Input German: es bleibt jedoch dabei , dass kolumbien ein land ist , das aufmerksam beobachtet werden muss.

derivation vt

1 -11.8658 0 0 0 0 153 0 3 3 4 1 10000 1 5,6 10, 10 8, 9 6,6 10,10 8,9 6, 6 10, 10 8, 8 9, 12 17,17
that is a country that is a country that is a country that

2 -5.46647 2240 2 0 1000 10 1 1 1 1 1 3,3 1,1 2,3 5,5 3,3 1,1 2,3 5,5 7,7 11, 11 16, 16 13, 15 17,17
however, it ishowever , however, ihowehowever , colombia , must be closely monitored

-17.0203

-17.1727

-17.0203

-17.1631

-17.0408

-17.1727

-17.0408

-17.1658

-17.056

-17.1732

11111011121111111

11111211101111111

11111011121111111

11111011121111111

11111211101111111

11111011121111111

11111211101111111

11 111 1 11 111111

11111211101111111

00000.00000000000

42 -17.229 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1,5 7,7 10, 10 8, 8 9, 12 16,16 13,15 17, 17
nonetheless , colombia is a country that must be closely monitored

1,5 6,6 8,9 6,6 7,7 11, 12 16, 16 13,15 17,17
nonetheless , that a country that colombia , which must be closely monitored .

1,5 7, 7 10, 10 8, 8 9, 12 16,16 13,15 17, 17
nonetheless, colombia is a country that must be closely monitored

1,5 7, 7 10, 10 8, 8 9, 12 16,16 13,15 17, 17
nonetheless, colombia is a country that must be closely monitored

1,5 6,6 8,9 6,6 7,7 11, 12 16, 16 13, 15 17, 17
nonetheless, that a country that colombia , which must be closely monitored

1,5 7, 7 10, 10 8,8 9,12 16, 16 13,15 17, 17
nonetheless, colombia is a country that must be closely monitored

1,5 6,6 8,9 6,6 7,7 11, 12 16,16 13,15 17, 17
nonetheless, that a country that colombia , which must be closely monitored

1,5 6, 6 8,9 6,6 7,7 11, 12 16, 16 13,15 17, 17
nonetheless , that a country that colombia , which must be closely monitored

1, 5 7, 7 10, 10 8, 8 9,12 16,16 13,15 17, 17
nonetheless, colombia is a country that must be closely monitored .

1,5 6,6 8,9 6,6 7,7 11, 12 16, 16 13,15 17, 17
nonetheless, that a country that colombia , which must be closely monitored

count(6) = 10; count(10) = 10; count(i) = 0 for all other i
adding constraints: 6 10

1,5 7, 7 6,6 8,12 16, 16 13,15 17,17
nonetheless, colombia that a country that must be closely monitored

Figure 2-6: An example run of the algorithm in Figure 2-5. At iteration 32, we start the
K = 10 iterations to count which constraints are violated most often. After K iterations,
the count for 6 and 10 is 10, and all other constraints have not been violated during the K
iterations. Thus, hard constraints for word 6 and 10 are added. After adding the constraints,
we have yt(i) = 1 for i = 1... N, and the translation is returned, with a guarantee that it
is optimal.

2.5 Speeding up the DP: A* Search

In the algorithm depicted in Figure 2-5, each time we call Optimize(C U C', u), we expand

the number of states in the dynamic program by adding hard constraints. On the graph

level, adding hard constraints can be viewed as expanding an original state in Y' to 2|c1

states in YC3, since now we keep a bit-string bc of length |CI in the states to record which

words in C have or haven't been translated. We now show how this observation leads to an

A* algorithm that can significantly improve efficiency when decoding with C -# 0.

For any state s = (wi, W2 , n, 1, m, r, bc) and Lagrange multiplier values u C RN, de-

fine 0c (s, u) to be the maximum score for any path from the state s to the end state, un-

der Lagrange multipliers u, in the graph created using constraint set C. Define wr(s) =

(wi, W2 , n, 1, m, r), that is, the corresponding state in the graph with no constraints (C = 0).

t LMat-1) W, (i)

iter. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-7 166 (89.7%) 219 (39.2%) 34 (6.0%) 2 (0.6%) 0 (0.0%) 421 (23.1 %) 23.1 %
8-15 17 (9.2 %) 187 (33.5 %) 161 (28.4%) 30 (8.6 %) 3 (1.8 %) 398 (21.8 %) 44.9 %
16-30 1 (0.5%) 93 (16.7%) 208 (36.7%) 112 (32.3%) 22 (13.1 %) 436 (23.9%) 68.8%
31-60 1 (0.5 %) 52 (9.3 %) 105 (18.6%) 99 (28.5 %) 62 (36.9 %) 319 (17.5 %) 86.3 %
61-120 0 (0.0%) 7 (1.3%) 54 (9.5%) 89 (25.6%) 45 (26.8%) 195 (10.7%) 97.0%
121-250 0 (0.0%) 0 (0.0%) 4 (0.7%) 14 (4.0%) 31 (18.5%) 49 (2.7%) 99.7%
x 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.3%) 5 (3.0%) 6 (0.3%) 100.0%

Table 2.1: Table showing the number of iterations taken for the algorithm to converge. x
indicates sentences that fail to converge after 250 iterations. 97% of the examples converge
within 120 iterations.

cons. 1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences
0-0 183 (98.9%) 511 (91.6%) 438 (77.4%) 222 (64.0%) 82 (48.8%) 1,436 (78.7 %) 78.7%
1-3 2 (1.1 %) 45 (8.1 %) 94 (16.6%) 87 (25.1 %) 50 (29.8 %) 278 (15.2 %) 94.0%
4-6 0 (0.0%) 2 (0.4%) 27 (4.8%) 24 (6.9%) 19 (11.3%) 72 (3.9%) 97.9%
7-9 0 (0.0%) 0 (0.0%) 7 (1.2%) 13 (3.7%) 12 (7.1%) 32 (1.8%) 99.7%
x 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.3%) 5 (3.0%) 6 (0.3%) 100.0%

Table 2.2: Table showing the number of constraints added before convergence of the algo-
rithm in Figure 2-5, broken down by sentence length. Note that a maximum of 3 constraints
are added at each recursive call, but that fewer than 3 constraints are added in cases where
fewer than 3 constraints have count(i) > 0. x indicates the sentences that fail to converge
after 250 iterations. 78.7% of the examples converge without adding any constraints.

Then for any values of s and u, we have

3c (s, u) < 0 (-r(s), u)

That is, the maximum score for any path to the end state in the graph with no constraints,

forms an upper bound on the value for #c (s, u).

This observation leads directly to an A* algorithm, which is exact in finding the opti-

mum solution, since we can use #0 (7r (s), u) as the admissible estimates for the score from

state s to the goal (the end state). The #0 (s', u) values for all s' can be calculated by running

the Viterbi algorithm using a backwards path. With only 1/2|cI states, calculating 0 (s', u)

is much cheaper than calculating #C(s, u) directly. Guided by #e (s', u), #c(s, u) can be

calculated efficiently by using A* search.

Using the A* algorithm leads to significant improvements in efficiency when con-

straints are added. Section 2.6 presents comparison of the running time with and without

A* algorithm.

A* w/o A* w/o A* w/o A* w/o A* w/o A* w/o
cons.

0-0 0.8 0.8 9.7 10.7 47.0 53.7 153.6 178.6 402.6 492.4 64.6 76.1
1-3 2.4 2.9 23.2 28.0 80.9 102.3 277.4 360.8 686.0 877.7 241.3 309.7
4-6 0.0 0.0 28.2 38.8 111.7 163.7 309.5 575.2 1,552.8 1,709.2 555.6 699.5
7-9 0.0 0.0 0.0 0.0 166.1 500.4 361.0 1,467.6 1,167.2 3,222.4 620.7 1,914.1
mean 0.8 0.9 10.9 12.3 57.2 72.6 203.4 299.2 679.9 953.4 120.9 168.9
median 0.7 0.7 8.9 9.9 48.3 54.6 169.7 202.6 484.0 606.5 35.2 40.0

Table 2.3: The average time (in seconds) for decoding using the algorithm in Figure 2-
5, with and without A* algorithm, broken down by sentence length and the number of
constraints that are added. A* indicates speeding up using A* search; w/o denotes without
using A*.

2.6 Experiments

In this section, we present experimental results to demonstrate the efficiency of the decod-

ing algorithm. We compare to MOSES [6], a phrase-based decoder using beam search, and

to a general purpose integer linear programming (ILP) solver, which solves the problem

exactly.

The experiments focus on translation from German to English, using the Europarl data

[5]. We tested on 1,824 sentences of length at most 50 words. The experiments use the

algorithm shown in Figure 2-5. We limit the algorithm to a maximum of 250 iterations and

a maximum of 9 hard constraints. The distortion limit d is set to be four, and we prune the

phrase translation table to have 10 English phrases per German phrase.

Our method finds exact solutions on 1,818 out of 1,824 sentences (99.67%). (6 ex-

amples do not converge within 250 iterations.) Table 2.1 shows the number of iterations

required for convergence, and Table 2.2 shows the number of constraints required for con-

vergence, broken down by sentence length. Figure 2-7(a) shows the percentage of sen-

tences that converged before certain number of iterations, while Figure 2-7(b) shows the

percentage of sentences that converged with less than certain number of constraints. In

1,436/1,818 (78.7%) sentences, the method converges without adding hard constraints to

tighten the relaxation. For sentences with 1-10 words, the vast majority (183 out of 185

examples) converge with 0 constraints added. As sentences get longer, more constraints

are often required. However most examples converge with 9 or fewer constraints.

Table 2.3 shows the average times for decoding, broken down by sentence length, and

by the number of constraints that are added. As expected, decoding times increase as the

1-10 words 11-20 words 21-30 words 31-40 words 41-50 words All sentences

100 .-.- - ... --

60
40 -

0

40 / 1-10 words---
11-20 words - - - -
21-30 words .--.
31-40 words
41-50 words

all -0f
0 50 100 150 200 250

Maximum Number of Lagrangian Relexation iterations

(a) Number of iterations

100 - - - 100

70
0) -1 ~' 60 /..

, 70I:0
1-10 words - - - 40 1-10 words - - -

60 11-20 words - - - - /.- -11-20 words - - - -
21-30 words -.-...- 21-30 words .

50 31-40 words 20 31-40 words
41-50 words - -- 41-50 words

40 ' ' ' ' ' ' 'all - Oall--400
0 1 2 3 4 5 6 7 8 9 0 200 400 600 800 1000

Number of Hard Constraints Added Time

(b) Number of constraints (c) Time required

Figure 2-7: Percentage of sentences that converged with less than certain number of itera-
tions/constraints.

length of sentences, and the number of constraints required, increase. The average run time

across all sentences is 120.9 seconds. Table 2.3 also shows the run time of the method

without the A* algorithm for decoding. The A* algorithm gives significant reductions in

runtime.

2.6.1 Comparison to an LP/ILP solver

To compare to a linear programming (LP) or integer linear programming (ILP) solver, we

can implement the dynamic program (search over the set Y) through linear constraints,

with a linear objective. The y(i) = 1 constraints are also linear. Hence we can encode

our relaxation within an LP or ILP. Having done this, we tested the resulting LP or ILP

using Gurobi, a high-performance commercial grade solver. We also compare to an LP or

ILP where the dynamic program makes use of states (wi, w2 , n, r)-i.e., the span (1, m) is

dropped, making the dynamic program smaller. Table 2.4 shows the average time taken by

the LP/ILP solver. Both the LP and the ILP require very long running times on these shorter

44

set length mean median mean median % frac.
1-10 275.2 132.9 10.9 4.4 12.4 %
11-15 2,707.8 1,138.5 177.4 66.1 40.8%
16-20 20,583.1 3,692.6 1,374.6 637.0 59.7 %

y' 1-10 257.2 157.7 18.4 8.9 1.1 %
11-15 3607.3 1838.7 476.8 161.1 3.0%

Table 2.4: Average and median time of the LP/ILP solver (in seconds). % frac. indi-
cates how often the LP gives a fractional answer. Y' indicates the dynamic program using
set Y' as defined in Section 2.2.1, and Y" indicates the dynamic program using states

(wi, w2 , n, r). The statistics for ILP for length 16-20 are based on 50 sentences.

sentences, and running times on longer sentences are prohibitive. Our algorithm is more

efficient because it leverages the structure of the problem, by directly using a combinatorial

algorithm (dynamic programming).

2.6.2 Comparison to MOSES

We now describe comparisons to the phrase-based decoder implemented in MOSES. MOSES

uses beam search to find approximate solutions.

The distortion limit described in Section 2.1 is the same as that in [7], and is the same

as that described in the user manual for MOSES [6]. However, a complicating factor for

our comparisons is that MOSES uses an additional distortion constraint, not documented

in the manual, which we describe here. 3 We call this constraint the gap constraint. We will

show in experiments that without the gap constraint, MOSES fails to produce translations

on many examples. In our experiments we will compare to MOSES both with and without

the gap constraint (in the latter case, we discard examples where MOSES fails).

We now describe the gap constraint. For a sequence of phrases pi, . . . , Pk define 6(PI ... Pk)

to be the index of the left-most source-language word not translated in this sequence.

For example, if the bit-string for Pi ... Pk is 111001101000, then 0(P1 ... Pk) = 4. A

sequence of phrases P1 ... PL satisfies the gap constraint if and only if for k = 2... L,

|t(pk) + 1 - O(Pi ... Pk)| < d. where d is the distortion limit. We will call MOSES without

this restriction MOSES-nogc, and MOSES with this restriction MOSES-gc.

3 Personal communication from Philipp Koehn; see also the software for MOSES.

method ILP LP

Beam size Fails # search errors percentage
100 650/1,818 214/1,168 18.32%
200 531/1,818 207/1,287 16.08 %

1000 342/1,818 115/1,476 7.79%
10000 169/1,818 68/1,649 4.12%

Table 2.5: Table showing the number of examples where MOSES-nogc fails to give a trans-
lation, and the number/percentage of search errors for cases where it does give a translation.

Results for MOSES-nogc Table 2.5 shows the number of examples where MOSES-nogc

fails to give a translation, and the number of search errors for those cases where it does

give a translation, for a range of beam sizes. A search error is defined as a case where our

algorithm produces an exact solution that has higher score than the output from MOSES-

nogc. The number of search errors is significant, even for large beam sizes.

Results for MOSES-gc MOSES-gc uses the gap constraint, and thus in some cases our

decoder will produce derivations which MOSES-gc cannot reach. Among the 1,818 sen-

tences where we produce a solution, there are 270 such derivations. For the remaining

1,548 sentences, MOSES-gc makes search errors on 2 sentences (0.13%) when the beam

size is 100, and no search errors when the beam size is 200, 1,000, or 10,000.

Table 2.6 shows statistics for the magnitude of the search errors that MOSES-ge and

MOSES-nogc make.

BLEU Scores Finally, table 2.7 gives BLEU scores [17] for decoding using MOSES and

our method. The BLEU scores under the two decoders are almost identical; hence while

MOSES makes a significant proportion of search errors, these search errors appear to be

benign in terms of their impact on BLEU scores, at least for this particular translation

model. Future work should investigate why this is the case, and whether this applies to

other models and language pairs.

In table 2.8, we also measure the BLEU scores for Chinese to English translations.

We tested on sentences with length 1-30 words. Same as the results for German-English

translations, the BLEU scores are similar under the two decoders.

MOSES-gc
s =100
(24.26%)
(21.69%)
(23.90%)
(18.01%)
(11.40%)
(0.74%)
(0.00%)

MOSES-gc
s =200
(24.07%)
(21.48%)
(24.07%)
(18.15%)
(11.48%)
(0.74%)
(0.00%)

MOSES-nogc
s=1000

27.83%)
21.74%)
21.74%)
20.00%)

4.35%)
2.61%)
1.74%)

Table 2.6: Table showing statistics for the difference between the translation score from
MOSES, and from the optimal derivation, for those sentences where a search error is made.
For MOSES-gc we include cases where the translation produced by our system is not reach-
able by MOSES-gc. The average score of the optimal derivations is -23.4.

type of Moses beam size # sents Moses our method
100 1,818 24.4773 24.5395
200 1,818 24.4765 24.5395

MOSES-gc 1,000 1,818 24.4765 24.5395
10,000 1,818 24.4765 24.5395

MOSES-nogc

100
200

1,000
10,000

1,168
1,287
1,476
1,649

27.3546
27.0591
26.5734
25.6531

27.3249
26.9907
26.6128
25.6620

Table 2.7: BLEU score comparisons. We consider only those sentences where both de-
coders produce a translation.

type of Moses beam size # sents Moses our method
100 1,135 25.56 25.66

MOSES-gc 200 1,135 25.67 25.66
1,000 1,135 25.68 25.66

MOSES-nogc

100
200

1,000

937
1,008
1,105

24.97
24.81
25.13

25.77
25.61
25.60

Table 2.8: BLEU score comparisons for translation from Chinese to English. We consider
only those sentences where both decoders produce a translation.

Diff.

0.000
0.125
0.250
0.500
1.000
2.000
4.000

- 0.125
- 0.250

- 0.500

- 1.000
- 2.000

- 4.000

-13.000

48

Chapter 3

An Alternative Decoding Algorithm

based on Lagrangian Relaxation

In the approach described in Chapter 2, the dynamic program states are tuples (wi, w2 , n, 1, m, r).

The number of states is large: in particular, the number of bigrams (w1 , W2) is multiplied by

the number of settings for (n, 1, m, r). In this chapter, we describe an alternative Lagrangian

relaxation method that is inspired by the method proposed by [20], which intersects a hy-

pergraph and a language model.

3.1 An Alternative Decoding Algorithm based on Lagrangian

Relaxation

We now describe an alternative decoding algorithm based on Lagrangian relaxation. The

algorithm decomposes the problem in a different way than the one described in Section

2.2. In this algorithm, we use Lagrangian relaxation to decompose the problem into two

subproblems such that each subproblem can be solved efficiently. This closely follows the

algorithm proposed by Rush and Collins in [20]. The two subproblems are:

1. Dynamic programming that decodes the phrase-based translation models without

considering the language model score. This reduces the number of states of the dy-

namic program tremendously and therefore decoding this problem is more efficient

£1 X2 X3 X4 X5

V1 V 2 V 3 V4 V5 V6

q1 q2

* leaves: v 1, v2 , ... , v 6

* trigrampath: (vi,qi,v2 ,q2 , v 3)

q= NULL

q2 = (2, 5)

Figure 3-1: An example illustrating the notion of leaves and trigram paths used in this
thesis. The path qi is NULL since vi and v2 are in the same phrase (1, 2, this must). The
path q2 specifies a transition (2, 5) since vi is the ending word of phrase (1, 2, this must),
which ends at position 2, and v2 is the starting word of the phrase (5, 5, also), which starts
at position 5. This is the same derivation as in Figure 2-1.

than the dynamic program described in 2.2.1.

2. Calculating the highest scoring incoming trigram path for each leaf. This part is used

to incorporate language model scores into the model.

Lagrange multipliers are used to encourage the agreement between the decoding result

and the best incoming trigram path for each leaf.

We begin by some definitions. In addition to the notations we introduced in Section 2.1,

we will introduce the ideas of leaves and trigram paths.

A leaf is an index of a particular target-language word in a particular phrase. Each

phrase (s, t, e) implies M leaves, where M is the number of words in the target-language

string e. VL = {1, 2, . VL|} is the set of all leaves. We use P to denote the set of all

phrases.

Now, we define trigram path, which will be useful in incorporating the language model

score. A trigram path q is a tuple (vi, qi, v 2, q2 , v3) where

1. v1 , v 2,v 3 E VL

2. qi is the path between leaves vi and v2.

3. q2 is the path between leaves v2 and v3 -

4. Each path can take the value NULL, or can specify a transition (j, k). NU LL is used

if the two words being linked are in the same phrase. (j, k) is used if the first leaf

is at the end of a phrase ending in j, and the second leaf is at the start of a phrase

starting at position k. Note that the value for qi is a deterministic function of (vi, v2),

and the value for q2 is a deterministic function of (v2 , v3).

We use vl(q), q1(q), v2(q), q2(q), and v3(q) to refer to the components (vi, qI, v2, q2, v3)

of a trigram path q. Figure 3-1 illustrates the idea of leaves, trigram paths, and paths

between leaves.

We introduce the following variables:

" yv for all leaves v E VL. yv 1 if and only if the leaf v is used in the derivation,

y, = 0 otherwise.

* y, for all phrases p C P. y =1 if and only if the phrase p is used in the derivation,

y, = 0 otherwise.

* Yj,k for all 1 < j < k < N. Yj,k = 1 if and only if there is a transition from j to

k: that is, a phrase ending at word j in the source-language sentence is immediately

followed by a phrase starting at word k.

* Yq for each possible trigram path. Yq = 1 if and only if the trigram path q is used to

score the derivation.

Now the scoring function of a derivation (2.1) can be rewritten as

f (y) = 0 - y S 0 vYv + 5 0pYp + 5 0j,kYj,k + 5 0 qYq
v p j,k q

The weight 0O is set to 0; the weight 0, specifies the phrase translation score g(p); the

weight 0 jk specifies the distortion cost r x 6(j, k); the weight Oq is the language model

score h(v 3(q)Iv 1 (q)v2 (q)).

The decoding problem is to find the highest scoring derivation within the set of valid

derivations Y:

arg max f (y)
YEY

The set Y will be defined later.

The constraints we would like to have are:

" CO: The yv and y, variables form a derivation that satisfies the distortion limit for all

pairs of consecutive phrases.

" Cl: for all i =1 ... N, y(i) = 1

" C2: for all v E VL, yv = p:v p p

* C3: for all v C VL, YV = Zq:V3 (q)=v Yq

* C4: for all v E VL, YV = q:V2(q)-v Yq

" C5: for all v C VL, YV = Zq:v(q)=v Yq

" C6: for all (j, k), Y(j,k) -- q:qj(q)=(jk) Yq

" C7: for all (j, k), Y(j,k) = Eq:q2(q)=(j,k) Yq

C1 says that each word should be translated exactly once. CO and C1 together require

that yv and yp variables specify a valid derivation as defined in Section 2.1. C2 states

that the yv and y, variables are consistent. The number of times that a leaf is used is

equal to the number of times that the phrase it belongs to is used. C3-C5 indicates the

consistency between the leaf and the trigram path. C3 states that each leaf has exactly one

incoming trigram path. C4 states that each leaf is the middle of exactly one trigram path.

C5 states that each leaf is the beginning of exactly one trigram path. C6 and C7 enforce

the consistency between the transition and the trigram path.

Define Y to be the set of all valid derivations, i.e., valid settings for the yv, y, and yj,k

variables. For a derivation to be valid, the yv and yp variables must be consistent; and the

Yj,k variables have to specify a valid ordering of the phrases such that y, = 1.

Y = {y : y satisfies constraints CO - C7}

We define a new set:

Y = {y : y satisfies constraints CO - C3}

In this set, we have omitted constraints C4-C7. These constraints will be introduced again

using Lagrange multipliers. The problem of finding the highest scoring derivation within

the set S) can be solved efficiently by a decoding algorithm based on Lagrangian relaxation

and dynamic programming, similar to the one described in Chapter 2.2.

The problem can be rewritten as:

arg max
yE6

such that

f (y)

constraints C4-C7 are satisfied

We introduce Lagrange multipliers A, -Yv, U(jk), V(jk) for the constraints.

The Lagrangian is

L(y, A, y, u, v) = 0 -V

"+Z v A v (Yv q:v1(q)=v Yq

q:v2(q,=v Yq

+ Z(jk) U (j,k) (Y(j~k) - Z q:qj(q)=(j,k) Yq)

+ (j)V (j,k) (Yj~k) - S q:q2(q)=(j,k) Yq)

V(j, k), ut - y, - Eq:q1(q=(jk) Y

V(j, k), v() at y) - Eq:q2(q)=(j,k) Y

Figure 3-2: The decoding algorithm. at > 0 is the step size at the t'th iteration.

It can be rewritten as

L(y, A, y, u, v) =3 -y

+ (Ovk +Av) -v) yv

+ zp OPYP

+ Z(j, k) (Ooj,k) + U(j,k) + V(j,k)) Y(j,k)

+ q (Oq - Avi(q) - 'Yv 2 (q) - Uq 1 (q) - Vq 2 (q)) Yq

v= Ov + Av + rnv

OP = OP

/(j,k) = O(j,k) + U(j,k) + V(j,k)

q - Av1(q) - Tv2(q) - Uq1 (q) - Vq 2 (q)

Here we use #v, #p, #(j,k), and #q to denote the weights that incorporate the Lagrange

multipliers.

Initialization: set A0 = 0, yo = 0, u0 = 0, v0 = 0.

Algorithm: For t = 1 ... T:

y t = arg max,,_ L (y, At- 1,yt 71, ut- 1, ot- 1)

If yt satisfies constraints C4-C7, return yt

Else

Vv E VL, A=A - at (- Zq:vl(q)=v Y)

Vv E VL, 7 7 - at (Yt

where

Eq:v2(q)-o Yq

1. For each v C VL, find p* = arg maxq:v3(q)v 0q, and * =f#4

2. Find yv, and Y(j,k) that forms a valid derivation, and that maximize

f'(Y) = Ev (v + 6*) Yv + Ep pyp + E(j,k) /(j,k)Y(j,k),

which can be done using an algorithm very similar to the decoding algorithm de-
scribed in Figure 2-3, based on a slightly different dynamic program.

3. Set yq = 1 if and only if YV3 (q) = 1 and q = p*

Figure 3-3: The procedure used to compute arg maxyj, L(y, A, y, u, v) = arg maxygg 3 y
in the algorithm in Figure 3-2.

The dual objective is

L(A, -y, u, v) = max L(y, A y,u, v)
ycY

and the dual problem is to solve

min L(Ay,u,v).

Figure 3-2 shows a subgradient algorithm that solves the dual problem. At each iteration,

we need to compute arg maxyj, L(y, A, Iy, u, v) = arg maxyS # - y. This can be done

efficiently by the steps described in Figure 3-3.

The first step is to find the highest scoring incoming trigram path for each leaf v. The

score consists of the language model score and the Lagrangian multipliers associated with

each leaf and path of the trigram path. The second step can be viewed as to compute the

highest scoring derivation within the set -2 without considering the language model score.

We will describe the method in detail in Section 3.1.1. We will use "inner subgradient" to

refer the method. The third step is to set yq = 1 for those best incoming trigram paths for

the leaves v used in the derivation y'.

Thus, in the algorithm, the second step will return a derivation y', which gives us the

value of the variables yv and Y(j,k). Then we will set Yq to be 1 if Yv3 (q) = 1 and q = p*.

Note that the language model score is calculated according to Yq. Also notice that, for each

leaf v in the derivaiton, the previous word given by the derivation y' does not necessarily

match the previous leaf given by the best incoming trigram path o*.
The language model score is incorporated into the second steps through o6*. It is calcu-

lated according to the best incoming trigram path for each leaf. The Lagrange multipliers

A, -y, u and v are used to encourage the agreement between the two steps. Thus, in the

algorithm in Figure 3-2, they are updated to encourage agreement. If the incoming trigram

path for each leaf v agrees with the what precedes each leaf v in the derivations found in

the second step, the language model score carried from the first step is exactly the language

model score of the derivation. Thus, we have found a derivation that maximizes # y:

arg maxysj # - y.

3.1.1 The Inner Subgradient Algorithm for arg maxycs f'(y)

We use a subgradient algorithm that is very close to the decoding algorithm in Figure 2-3.

In the step computing y' = arg maxyy,/ L(utl-, y), we replace Y' by Y defined in this

section. It becomes:

y = arg max L(ut-, y)
ye'

Then a slightly different dynamic program is used to find the derivation within the set 3.

We replace the original dynamic program states (w1 , w2, n, 1, m, r) by (n, 1, m, r). The

bigram (wi, w2) is omitted since we do not need to keep track of the trigram language

model score in the dynamic program. Instead, for each edge between two nodes, we pick

the highest scoring phrase for that edge at the beginning of the algorithm. Let P(s,t) be the

set of all phrases that start at s and end at t. The phrase P we pick will be

P=argmax g(p)+Z(#v+6*).
PCP(s,t) vCp

The number of states becomes much less and the dynamic programming can be performed

more efficiently. We use the Lagrangian relaxation to encourage a valid derivation, where

each word is translated exactly once. We will call this step the inner subgradient method.

Similar to the dynamic program described in Section 2.2.1, the dynamic program can

be viewed as a shortest-path problem in a directed graph, with nodes in the graph corre-

sponding to states (n, 1, m, r). For each state, we consider phrases that satisfy the distortion

limit and do not overlap with the span (1, m). For any such phrase, we create transition of

the form

(n, 1, M ,Ir) ' st,e)) (n', 1l', m',I r')

where

1. n'= n+ t- s+ 1

(1, t) ifs=m+1
2. (l', M')= (s,m) if t = I - 1

(s, t) otherwise

3. r' = t

The score of the transition is given by a sum of a updated translation score and the distortion

cost r x o(r, s).

y)+r/x 6(r, s)

The updated translation score y(f) includes the translation score g(p), and the language

model score and the language multiplier weights, both carried over by (#3 + 6*) for each

leaf v c p, and the Lagrange multipliers u(i) associated with the phrase y(p).

t

WQ) = gW~) + E(V+ J* Z~)

3.1.2 A Different View

In addition to the algorithm in Figure 3-2, we present a slightly different algorithm in

Figure 3-4. First, we introduce a new constraint:

* C1(a): for all 2 y(i) = N.

Then, we define another set

Y = {y : y satisfies constraints CO, C2, C3 and C1(a)}

Compared to the set Y, the set Y dropped constraint C1, which requires that each word

to be translated exactly once. Instead, it enforces a constraint C1(a) that only requires

the sum of the total number of words translated to be N, the sentence length. Note that

Y c Y c Y. Also, note that the constraint Cl(a) is enforced by the dynamic program

described in Section 3.1.1

In the algorithm depicted in Figure 3-4, we would like to find a derivation within the

set 32 that maximizes the Lagrangian L(y, A, -y, u, v). This step can be done using the

dynamic programming method directly, without using the inner subgradient method. The

dynamic program is exactly the same as the one described above. The other difference in

this algorithm is that we use Lagrangian multipliers, (i for each word i, which are used to

encourage all words to be translated exactly once.

The algorithm in Figure 3-2 can be viewed as a variant of the algorithm in Figure 3-

4. In Figure 3-4, we updated all Lagrangian multipliers at once, while in Figure 3-2, we

updated two sets of Lagrange multipliers alternatively. The two sets are {A, -y, u, v} and

{(i : i = .. . N}. The Lagrange multipliers (i have the same function as the Lagrange

multipliers u(i) in Figure 2-3. The Lagrangian

N

L(y, At-', 7-1,I ut-1,I v-1,I (t-1) = -y + (y

In Section 3.3, we will present results on a method that is very similar to the one in

Figure 3-2, but we set a hard limit on the number of iterations for the inner subgradient

method computing arg max.g # -y. This method can be viewed as a variant of Figure 3-4.

3.2 Tightening the Relaxation

Sometimes the underlying relaxation is not tight enough and the algorithm will not con-

verge to an integral solution of the LP relaxation defined by the set Y. In this section, we

will describe a method that incrementally adds hard constraints to the set Y to tighten the

relaxation, until the algorithm converges and returns the optimal solution. The algorithm is

very similar to the one described in [20].

Figure 3-4: The decoding algorithm. at > 0 is the step size at the t'th iteration.

Note that in the Lagrangian relaxation method described in the previous section, we

would like to enforce constraints C4-C5, which requires that each leaf is the beginning of

exactly one trigram path. At each iteration, given a leaf, we are encouraging the agreement

of first and second leaf of the best incoming trigram path, and the second previous and first

previous leaves given by the derivation output by the dynamic programming algorithm.

To state formally, let v 1 (v, y) be the leaf preceding v in the trigram path q with Y, = 1

and v3 (q) = v, and v- 2 (v, y) be the leaf preceding v_1 (v, y), which is the beginning of

the trigram path q that ends in v. Then define v'_1 and o' 2 to be the previous two leaves

preceding v given by the derivation y output by the dynamic programming algorithm. A

consistent solution will have

" v_ 1(v,y) = v'_1(v, y)

* v- 2(v,y) = v'2(V, y)

for all leaves v in the translation y, with yv = 1. Enforcing all these constraints will result

in the dynamic programming algorithm described in Section 2.2.1.

Here we enforce a weaker set of constraints. We assign each leaf to a partition and

require that v_ 1(v, y) and v'_1(v, y) should be in the same partition, and so are v- 2 (v, y)

and v'2(v, y). Let 7r be a function that partitions all the leaves into r partitions. 7r : VL -+

Initialization: set A = 0, y0 = 0, u0 = 0, vo = 0.

Algorithm: For t = 1 . .. T:

yt = arg max y , " t1,o-,0

If yt satisfies constraints C1 and C4-C7, return yt

Else

Vv E VL, At = A - a t - Zq:vl(q)=v Y

Vv E VL, - =.yl - qt (y~t - q:v2(q)=v Y

V(,) at , - q:q(q)=(jk) (i)

VVj k))~k - at (j ,k) - Zq:q2(q)=(j,k) 14)

{ 1, 2, .. . , r}. Then we will enforce the constraints that

7 2r(v-1 (v, y)) - (r(v'_1 (v, y))

S7r(v- 2 (v, y)) =r(v'_2(v, y))

for all leaves v with yv = 1. Let 32' be the new set with these constraints added. Now we

would like to find

arg max# -y.
yes'

We need to modify the steps described in Section 3.1.

1. For each v E VL, find p*g = arg maxgg(~v gq)sv1 q), #3 , and =

2. Use the dynamic program with states (7ri, r2 , n, 1, m, r) to find the highest scoring

derivation that satisfies the hard constraints.

The procedure used to decide a partition 7r has two steps. First, when we observe that

the dual value L is not decreasing fast enough, we will run for 15 more iterations and

add hard constraints between pairs of leaves that are violating the consistency constraints

above. They are pairs a = v_ 1(v, y)/b = V1 (v, y) or a= v- 2 (v,y)/b = V- 2 (v, y) such

that a # b. The hard constraints require that a and b are not in the same partition. That is,

7r(a) # ir(b). Thus, in the next iteration, they will not be selected as the previous word and

the second leaf on the best incoming trigram path for a certain word at the same time. The

second part is a graph coloring algorithm to find a partition in which a and b are in different

partitions. In the graph, each node represents a leaf, and an edge is created between node a

and b for all pairs of leaves a and b that violates the constraints. A graph coloring algorithm

ensures that adjacent nodes will not have the same color, which makes sure that a and b will

be in different partitions. With the new projection function, we continue the Lagrangian

relaxation algorithm with the new constraints added.

3.3 Experiments

We report experimental results for the Lagrangian relaxation method described in this chap-

ter. The same as the experiments in Section 2.6, we test on translations from German to

English in the Europarl dataset. We will focus on the comparison between the two La-

grangian relaxation method described in this chapter and Chapter 2.2.

3.3.1 Complexity of the Dynamic Program

The motivation of this method is that the dynamic program would be much more efficient

without keeping track of the language model score. In this section, we report the complex-

ity of the new dynamic program (DP) compared with the dynamic program described in

Section 2.2.1 (DPLM).

The run time of DP is in average 3% of the run time of DPLM. As for the number

of states, on average, the number of states of DP is 2.5% of that of DPLM. We can see

that the English bigram adds a lot of complexity to the dynamic program. The dynamic

programming method becomes much more efficient when removing the English bigram

from the state.

3.3.2 Time and Number of Iterations

In this section, we present four different sets of results on the algorithm in Figure 3-2.

There are two features that we would like to vary.

First is the limit of the number of iterations of the inner subgradient method. We will

use HARD to refer to a limit of 300 iterations, which is considered to solve the inner sub-

gradient till convergence in most cases. Then we use LOOSE to refer to a limit of 25

iterations, which is usually less than the number of iterations required to achieve conver-

gence. The idea is based on the observation that the inner subgradient often takes a huge

amount of iterations, which prolong the run time. For the LOOSE case, we carry over the

Language multipliers (, for i = 1... N from iteration to iteration, while for the HARD

case, the Language multipliers will be reinitialized.

The second feature is regarding how to design the projection function ir that maps leaves

to partitions when tightening the relaxation. One idea, which we will use SUB to refer to,

is that each time the projection should make sure that the new set 32' is a proper subset of

the previous set. On the other hand, NON, will be used to refer to a method that the new

set is not necessary a proper subset of the previous set. The idea is that if the tightening

shrinks the set of derivation each time, the dual objective will be ensured to decrease after

the tightening. However, the first projection function, which is obtained by a graph coloring

algorithm, might add constraints on pairs of leaves that we do not require a constraint. A

subsequent graph coloring procedure will only make sure that those pairs that we require

constraints to be in different partitions. Requiring a proper subset will therefore adding

constraints between the pairs that are in different partitions from the previous projections

to make sure that they are still in different partitions by the following projection functions.

This will explode the number of partitions we need to enforce all the hard constraints,

which might cause a memory problem when we store the best incoming trigram path for

the possible bigram combinations.

In summary, we have the following

" HARD: a limit of 300 iterations

" LOOSE: a limit of 25 iterations

* SUB: proper subset when tightening

" NON: not requiring a proper subset

The first set of experiments are HARD and SUB. The results will be presented in Ta-

ble 3.1, Table 3.2, and Table 3.3.

The second set of experiments are HARD and NON. The results will be presented in

Table 3.4, Table 3.5, and Table 3.6.

The third set of experiments are LOOSE and SUB. The results will be presented in

Table 3.7, Table 3.8, and Table 3.9.

The fourth set of experiments are LOOSE and NON. The results will be presented in

Table 3.10, Table 3.11, and Table 3.12.

0-30 44 (23.8%) 9 (1.6%) 53 (7.1 %) 7.1%
31-60 101 (54.6 %) 155 (27.8 %) 256 (34.5 %) 41.6 %
61-120 40 (21.6%) 367 (65.8%) 407 (54.8%) 96.4%
121-250 0 (0.0%) 26 (4.7 %) 26 (3.5 %) 99.9 %
x 0 (0.0%) 1 (0.2%) 1 (0.1%) 100.0%

Table 3.1: Table showing the number of iterations taken for the algorithm to converge for
the method HARD-SUB. We use a limit of 300 iterations and we ensure that with the new
projection, the new set is a proper subset of the set in the previous iteration. x indicates
sentences that fail to converge due to memory problem. All sentences refer to all sentences
with less than 20 words.

expansions 1-10 words 11-20 words All sentences
0 95 (51.4%) 99 (17.7%) 194 (26.1 %) 26.1 %
1 85 (45.9%) 368 (65.9 %) 453 (61.0 %) 87.1 %
2 5 (2.7 %) 85 (15.2 %) 90 (12.1 %) 99.2 %
3 0 (0.0%) 4 (0.7%) 4 (0.5%) 99.7%
4 0 (0.0%) 1 (0.2%) 1 (0.1%) 99.9%
x 0 (0.0%) 1 (0.2%) 1 (0.1%) 100.0%

Table 3.2: Table showing the number of times that we expand the number of partitions
that the leaves are assigned to during the tightening method. This is for the HARD-SUB
method. x indicates the sentences that fail to due to memory problem. All sentences refer
to all sentences with less than 20 words.

The LOOSE-SUB setting has the best performance among the above four settings of

experiments. The average time for decoding sentences with 1 to 20 words is 41 seconds.

However, it is less stable and less efficient on average compared with the method in Chap-

ter 2. Using the HARD setting, the inner subgradient method might take many iterations,

which increase the time required at each iteration. The LOOSE setting, although not solv-

ing the inner problem to convergence, does not affect the total number of iterations to

convergence much, while saves time at each iteration. The SUB setting requires much less

iterations than the NON setting, but encounters the memory problem that we described.

3.4 Conclusion

We consider this alternative Lagrangian method for decoding phrase-based translation mod-

els due to the observation that the dynamic programming algorithm would be much more

efficient without considering the language model. However, in our experiments, we find

that the major bottle neck is the large number of iterations of the inner subgradient method.

iter. 1-10 words 11-20 words All sentences

0 0.7 (95) 13.6 (99) 7.3 (194)
1 2.7 (85) 87.4 (368) 71.5 (453)
2 25.9 (5) 901.7 (85) 853.0 (90)
3 0.0 (0) 358.6 (4) 358.6 (4)
4 0.0 (0) 624.1 (1) 624.1 (1)
mean 2.3 (185) 201.5 (557) 151.8 (742)
medianj 0.9 32.6

Table 3.3: The average time (in seconds) for decoding
sentences refer to all sentences with less than 20 words.

iter. 1-10 words 11-20 words

16.5

with the HARD-SUB method. All

All sentences
0-30 44 (23.8%) 9 (1.6%) 53 (7.1 %) 7.1%
31-60 100 (54.1 %) 152 (27.2 %) 252 (33.9 %) 41.0 %
61-120 39 (21.1 %) 332 (59.5 %) 371 (49.9 %) 91.0 %
121-250 2 (1.1 %) 59 (10.6%) 61 (8.2 %) 99.2 %
251-999 0 (0.0%) 6 (1.1 %) 6 (0.8%) 100.0%
x 0 (0.0%) 0 (0.0%) 0 (0.0%) 100.0%

Table 3.4: Table showing the number of iterations taken for the algorithm to converge
for the method HARD-NON. x indicates sentences that fail to converge due to memory
problem. All sentences refer to all sentences with less than 20 words.

Without the language model, the number of iteration required to converge to a valid deriva-

tion increases a lot. The reason might be that the bigram used to calculate the trigram

language model in Section 2.2.1 might help to eliminate some ill-formed derivation. Look-

ing at the derivation at each iteration more closely, we find many sentences repeat several

phrases. For example, at one iteration, the derivation is

(11, 11, task), (13, 13, .), (11, 11, task) , (13, 13, .), (11, 11, task) ,

and at the next iteration, it becomes

(4, 4, that), (7, 7, presidency), (4, 4, that), (7, 7, presidency), (4, 4, that)

This is less likely to happen if we are looking at the trigram language model score at the

same time, since the English sentence "task. task. task" would likely to receive a lower

language model score than a sentence that take different part from the source language

sentence.

cons. 1-10 words 11-20 words All sentences

0 95 (51.4%) 99 (17.7%) 194 (26.1%) 26.1%
1 85 (45.9 %) 368 (65.9 %) 453 (61.0 %) 87.1 %
2 3 (1.6%) 26 (4.7%) 29 (3.9%) 91.0%
3 1 (0.5%) 22 (3.9%) 23 (3.1 %) 94.1%
4 1 (0.5%) 15 (2.7%) 16 (2.2%) 96.2%
> 5 0 (0.0%) 28 (5.0%) 28 (3.8%) 100.0%

0 (0.0%) 0 (0.0%) 0 (0.0 %) 100.1 %

Table 3.5: Table showing the number of times that we expand the number of partitions
that the leaves are assigned to during the tightening method. This is for the HARD-NON
method. x indicates the sentences that fail to due to memory problem. All sentences refer
to all sentences with less than 20 words.

cons. 1-10 words 11-20 words All sentences
0 0.7 (95) 13.5 (99) 7.2 (194)
1 2.6 (85) 86.1 (368) 70.5 (453)
2 15.5 (3) 594.0 (26) 534.1 (29)
3 18.6 (1) 1,994.0 (22) 1,908.2 (23)
4 131.0 (1) 903.6 (15) 855.3 (16)
> 5 0.0 (0) 4,919.2 (28) 4,919.2 (28)
mean 2.6 (185) 436.6 (558) 328.6 (743)
median 32.2 16.6

Table 3.6: The average time (in seconds) for decoding with the HARD-NON
sentences refer to all sentences with less than 20 words.

iter. 1-10 words 11-20 words

method. All

All sentences
0-30 43 (23.2%) 6 (1.1 %) 49 (6.6%) 6.6%
31-60 104 (56.2%) 117 (21.0%) 221 (29.7%) 36.3%
61-120 38 (20.5%) 343 (61.5%) 381 (51.3%) 87.6%
121-250 0 (0.0 %) 80 (14.3 %) 80 (10.8 %) 98.4 %

0 (0.0%) 12 (2.2%) 12 (1.6%) 100.0%

Table 3.7: Table showing the number of iterations taken for the algorithm to converge
for the method LOOSE-SUB. x indicates sentences that fail to converge due to memory
problem. All sentences refer to all sentences with less than 20 words.

expansions 1-10 words 11-20 words All sentences
0 96 (51.9%) 93 (16.7 %) 189 (25.4%) 25.4%
1 83 (44.9 %) 325 (58.2 %) 408 (54.9 %) 80.3 %
2 6 (3.2%) 112 (20.1 %) 118 (15.9%) 96.2%
3 0 (0.0%) 14 (2.5%) 14 (1.9%) 98.1%
4 0 (0.0%) 2 (0.4%) 2 (0.3%) 98.4%
> 5 0 (0.0%) 0 (0.0%) 0 (0.0%) 98.4%

0 (0.0%) 12 (2.2%) 12 (1.6%) 100.0%

Table 3.8: Table showing the number of times that we expand the number of partitions
that the leaves are assigned to during the tightening method. This is for the LOOSE-SUB
method. x indicates the sentences that fail to due to memory problem. All sentences refer
to all sentences with less than 20 words.

expansions 1-10 words 11-20 words All sentences

0 0.6 (96) 6.8 (93) 3.6 (189)
1 1.9 (83) 23.6 (325) 19.2 (408)
2 11.4 (6) 145.5 (112) 138.7 (118)
3 0.0 (0) 326.6 (14) 326.6 (14)
4 0.0 (0) 198.1 (2) 198.1 (2)
mean 1.5 (185) 54.1 (546) 40.8 (731)
median 17.7 9.7

Table 3.9: The average time (in seconds) for decoding with the LOOSE-SUB method. All
sentences refer to all sentences with less than 20 words.

iter. 1-10 words 11-20 words All sentences
0-30 43 (23.2%) 6 (1.1 %) 49 (6.6%) 6.6%
31-60 103 (55.7 %) 116 (20.8 %) 219 (29.5 %) 36.1 %
61-120 38 (20.5 %) 304 (54.6 %) 342 (46.1 %) 82.2 %
121-250 1 (0.5 %) 108 (19.4 %) 109 (14.7 %) 96.9 %
251-999 0 (0.0%) 23 (4.1 %) 23 (3.1 %) 100.0%

0 (0.0 %) 0 (0.0%) 0 (0.0 %) 100.0%

Table 3.10: Table showing the number of iterations taken for the algorithm to converge
for the method LOOSE-NON. x indicates sentences that fail to converge due to memory
problem. All sentences refer to all sentences with less than 20 words.

expansions 1-10 words 11-20 words All sentences
0-0 96 (51.9 %) 93 (16.7 %) 189 (25.5 %) 25.5 %
1 83 (44.9 %) 325 (58.3 %) 408 (55.0 %) 80.5 %
2 3 (1.6%) 39 (7.0%) 42 (5.7%) 86.1 %
3 1 (0.5%) 24 (4.3%) 25 (3.4%) 89.5%
4 1 (0.5%) 19 (3.4%) 20 (2.7%) 92.2%
> 5 1 (0.5%) 58 (10.4%) 59 (8.0%) 100.1%

0 (0.0%) 0 (0.0%) 0 (0.0 %) 100.1 %

Table 3.11: Table showing the number of times that we expand the number of partitions
that the leaves are assigned to during the tightening method. This is for the LOOSE-NON
method. x indicates the sentences that fail to due to memory problem. All sentences refer
to all sentences with less than 20 words.

cons. 1-10 words 11-20 words All sentences
0 0.5 (96) 6.7 (93) 3.5 (189)
1 1.8 (83) 23.4 (325) 19.0 (408)
2 4.4 (3) 136.1 (39) 126.7 (42)
3 11.0 (1) 201.7 (24) 194.0 (25)
4 32.0 (1) 352.7 (19) 336.6 (20)
> 5 76.8 (1) 1,183.9 (58) 1,165.1 (59)
mean 1.8 (185) 168.0 (558) 126.6 (743)
median 18.1 9.8

Table 3.12: The average time (in seconds) for decoding with the LOOSE-NON method.
All sentences refer to all sentences with less than 20 words.

1-10 words# cons. 11-20 words All sentences

Chapter 4

Conclusion

In this thesis, we present two Lagrangian relaxation algorithms for exact decoding of

phrase-based models. The first algorithm uses the idea that when relaxing the "exactly-

once" constraints, the problem can be solved efficiently by dynamic programming. Then

the constraints are introduced by Lagrangian relaxation. This method is efficient in re-

covering exact solutions under the phrase-based translation model. The second algorithm

is based on the observation that the language model adds a lot of complexity to the dy-

namic program. We borrowed the idea in [20] to factor out the language model and use

Lagrangian relaxation to encourage agreement between the subproblem that includes the

language model and the subproblem that focuses on using dynamic programming to find

the best derivation. Although the resulting dynamic program is much more efficient, the

second method does not outperform the first method due to a larger number of iterations.

68

Bibliography

[1] Graeme Blackwood, Adria de Gispert, Jamie Brunning, and William Byrne. Large-

scale statistical machine translation with weighted finite state transducers. In Pro-

ceeding of the 2009 conference on Finite-State Methods and Natural Language Pro-

cessing: Post-proceedings of the 7th International Workshop FSMNLP 2008, pages

39-49, 2009.

[2] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer.

The mathematics of statistical machine translation: Parameter estimation. Computa-

tional Linguistics, 19:263-311, June 1993.

[3] Yin-Wen Chang and Michael Collins. Exact decoding of phrase-baed translation mod-

els through Lagrangian relaxation. In Proceedings of EMNLP, 2011.

[4] Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. Fast

decoding and optimal decoding for machine translation. In Proceedings of the 39th

Annual Meeting on Association for Computational Linguistics, ACL '01, pages 228-

235, 2001.

[5] Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In

Proceedings of the MT Summit, 2005.

[6] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-

erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens,

Chris Dyer, Ondfrej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open

source toolkit for statistical machine translation. In Proceedings of the 45th Annual

Meeting of the ACL on Interactive Poster and Demonstration Sessions, ACL '07,

pages 177-180, 2007.

[7] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based transla-

tion. In Proceedings of the 2003 Conference of the North American Chapter of the

Associationfor Computational Linguistics on Human Language Technology, NAACL

'03, pages 48-54, 2003.

[8] Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. MRF optimization via dual

decomposition: Message-passing revisited. In Proceedings of the 11th International

Conference on Computer Vision, 2007.

[9] Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag.

Dual decomposition for parsing with non-projective head automata. In Proceedings of

the 2010 Conference on Empirical Methods in Natural Language Processing, pages

1288-1298, October 2010.

[10] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Applica-

tion. Springer Verlag, 2008.

[11] Shankar Kumar and William Byrne. Local phrase reordering models for statistical

machine translation. In Proceedings of the conference on Human Language Technol-

ogy and Empirical Methods in Natural Language Processing, HLT '05, pages 161-

168, 2005.

[12] Claude Lemarechal. Lagrangian Relaxation. In Computational Combinatorial Opti-

mization, Optimal or Provably Near-Optimal Solutions [based on a Spring School],

pages 112-156, 2001.

[13] Angelia Nedid and Asuman Ozdaglar. Approximate primal solutions and rate analy-

sis for dual subgradient methods. SIAM Journal on Optimization, 19(4):1757-1780,

2009.

[14] Franz Josef Och. Minimum error rate training in statistical machine translation. In

Proceedings of the 41st Annual Meeting on Association for Computational Linguis-

tics, ACL '03, pages 160-167, 2003.

[15] Franz Josef Och, Christoph Tillmann, Hermann Ney, and Lehrstuhl Fiir Informatik.

Improved alignment models for statistical machine translation. In Proceedings of the

Joint SIGDAT Conference on Empirical Methods in Natural Language Processing

and Very Large Corpora, pages 20-28, 1999.

[16] Franz Josef Och, Nicola Ueffing, and Hermann Ney. An efficient A* search algorithm

for statistical machine translation. In Proceedings of the workshop on Data-driven

methods in machine translation - Volume 14, DMMT '01, pages 1-8, 2001.

[17] Kishore Papineni, Salim Roukos, Todd Ward, and Wei Jing Zhu. BLEU: a method

for automatic evaluation of machine translation. In Proceedings of ACL 2002, 2002.

[18] Sebastian Riedel and James Clarke. Incremental integer linear programming for non-

projective dependency parsing. In Proceedings of the 2006 Conference on Empirical

Methods in Natural Language Processing, EMNLP '06, pages 129-137, 2006.

[19] Sebastian Riedel and James Clarke. Revisiting optimal decoding for machine trans-

lation IBM model 4. In Proceedings of Human Language Technologies: The 2009

Annual Conference of the North American Chapter of the Association for Computa-

tional Linguistics, Companion Volume: Short Papers, NAACL-Short '09, pages 5-8,

2009.

[20] Alexander M. Rush and Michael Collins. Exact decoding of syntactic translation

models through Lagrangian relaxation. In Proceedings of ACL, 2011.

[21] Alexander M Rush, David Sontag, Michael Collins, and Tommi Jaakkola. On dual

decomposition and linear programming relaxations for natural language processing.

In Proceedings of the 2010 Conference on Empirical Methods in Natural Language

Processing, pages 1-11, October 2010.

[22] David A. Smith and Jason Eisner. Dependency parsing by belief propagation. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing,

EMNLP '08, pages 145-156, 2008.

[23] David Sontag, Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss.

Tightening LP relaxations for MAP using message passing. In Proceedings of the

24th Conference on Uncertainty in Artificial Intelligence, pages 503-510, 2008.

[24] Christoph Tillmann. Efficient dynamic programming search algorithms for phrase-

based SMT. In Proceedings of the Workshop on Computationally Hard Problems and

Joint Inference in Speech and Language Processing, CHSLP '06, pages 9-16, 2006.

[25] Christoph Tillmann and Hermann Ney. Word reordering and a dynamic programming

beam search algorithm for statistical machine translation. Computational Linguistics,

29:97-133, March 2003.

[26] Roy W. Tromble and Jason Eisner. A fast finite-state relaxation method for enforcing

global constraints on sequence decoding. In Proceedings of the main conference

on Human Language Technology Conference of the North American Chapter of the

Association of Computational Linguistics, HLT-NAACL '06, pages 423-430, 2006.

[27] Martin Wainwright, Tommi Jaakkola, and Alan Willsky. MAP estimation via agree-

ment on trees: Message-passing and linear programming. In IEEE Transactions on

Information Theory, volume 51, pages 3697-3717, 2005.

[28] Mikhail Zaslavskiy, Marc Dymetman, and Nicola Cancedda. Phrase-based statistical

machine translation as a traveling salesman problem. In Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the AFNLP: Volume 1 - Volume 1,

ACL '09, pages 333-341, 2009.

