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ABSTRACT

The aim of this research is to understand how emerging rotorcraft companies in various

countries accomplished technological learning over the last sixty years. Owing to its unique products

and growing market demand, rotorcraft industry is one of the most globalized and dynamic sectors

of the aerospace industry. Understanding technological learning in the rotorcraft industry is

important to industrial policy makers and corporate managers who are seeking more clarity in the

relationship between rotorcraft companies and the global social-political environment. Although

there has already been extensive research on technological learning in various industries, evidence of

technological learning in the rotorcraft industry has been lacking. This research aims to fill this gap in

the field of technological learning by unveiling the learning dynamic and technological evolution of

emerging rotorcraft companies. This thesis will analyze these developments by research on emerging

rotorcraft companies' National Innovation Systems (NIS) and their different modes of cooperation

with foreign companies. The analysis on the companies' NIS is an important element of the research

framework as it defines the national innovation environment for the industry. NIS represents the

unique system of institutional, private and foreign stakeholders and their interaction in the country.

The analysis on the different modes of cooperation with foreign companies is the second key

element of the research framework as mode of cooperation is an important technological indicator

for emerging rotorcraft companies. To substantiate the findings of technological learning in the

rotorcraft industry, three case studies of emerging rotorcraft companies - Agusta (Italy), Avicopter

(China) and Kawasaki Heavy Industries Aerospace (Japan) were made. Each case provides both

holistic and detailed view of the unique technological learning system of the company by analyzing

both national-level and company-level factors. This thesis synthesizes and compares the three

companies' technological learning systems and draws conclusion in relationship to their respective

NIS. This thesis has identified that concurrent internal learning, a history of cooperation, favorable

national learning environment and production scale are essential for emerging rotorcraft companies

to succeed. Moreover, it has also found that denial of technology access only slows down but does

not prevent technological learning completely. This thesis will not only provide industrial policy

makers and corporate managers with greater insight into the technological learning systems of

emerging rotorcraft companies, but also a different perspective regarding technological transfer and

cooperation. Finally, this thesis contributes to the research on technological learning through its

original case studies from the rotorcraft industry.

Thesis Supervisor: George L. Roth, PhD.
Title: Principal Research Associate
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CHAPTER 1: INTRODUCTION

1.1 Research Motivation

The aerospace industry is a highly visible and politically charged industry. Its use as a political

and economical tool for promoting national pride and global technological leadership is indisputable.

However, the global aerospace industry has become an overly complex social-technological system

that is affected by a glowing market failure - the increasing need for costly transfer of technology and

uneconomical global production work redistribution (either through cooperation and offset) among

nations in the global market. This market failure is also exacerbated by market-distorting

governmental subsidies and wrongly priced market outputs. My interest and concern in the

ramifications of this market failure on sustainability and competitive issues have spurred me into

taking a deeper look into this development.

I have chosen the rotorcraft sector of the aerospace industry due to a number of reasons.

First, I have been working in the rotorcraft industry as an engineer and strategist. This research will

provide me with greater understanding of the rotorcraft industry. Conversely, my working experience

in rotorcraft industry has equipped me with necessary knowledge foundation to conduct independent

research in this field. Second, the rotorcraft industry is often regarded as the less glamorous and

visible sector of the aerospace industry. Past aerospace industrial research literatures have focused

mainly on the more prestigious fixed-wing commercial companies such as Airbus and Boeing.

However, the growing global misfortunes of the borderless natural disasters and human conflicts

have led to the more visible social-political benefits derived from the rotorcraft industry. Hence, the

dynamic and globalized rotorcraft industry deserves a closer look. Furthermore, while the large fixed-

wing commercial aircraft industry has consolidated into the quasi-duopoly market, the market failure

induced global environment has been rapidly incubating new rotorcraft companies. The following

news headlines exemplify this recent trend. All these factors have collectively made new research on

the rotorcraft industry timely and imperative.

Kawasaki decides on domestic solution to meet Japanese army requirement

Indistry sonYes say Kaivasaki Heavy Indlistries (KH I) has decided to offir an in digenouts solution for Japan 'S U H-X

program rather /han propose license-pvding a IT'estern-developed he/icopter. The cvmpany) has already held ialks

writh Wlestern manufacturers interested in helping it develop a n//lity helicop/er based on the 0- 1.

- Flight International Magazine 2005



Hindustan Aeronautics to go it alone on [Indian Army] observation helicopter

India's/ Hinddstan Aeronautics decided against seekn iii intel(ao/til partner /or i/s hght obseratlion helicopter

prognwv, and ill undertake /1e development by i/se/f.' '"\e have gained a lo of experience and leaned a lo over the

yean:- mianufactmin4g the heetah (nid Chetak /ieicopten/, aid then deieloping the D)n7 [(dvanced #zht he//cop/er

said a senior officialfirom; the s/ate-ownedfirmw. - Flight International Magazine 2010

As the study of aerospace market failure is a very broad topic and in order to frame it into

the scope of my masters' level thesis, I have selected the technological learning of rotorcraft

companies to gain greater understanding of the interaction between the rotorcraft industry and the

global environment. Technological learning in emerging rotorcraft companies is selected over other

research areas as I believe it addresses the one of root causes (i.e. access to foreign technologies) of

the market failure in the aerospace industry. This thesis does not attempt to explain the entire

aerospace market failure, but only to highlight a relatively narrow aspect of the aerospace industry

and perhaps provide impetus for future research.

1.2 Structure of the thesis

The first part (Chapter Two and Three) of this thesis provides the reader with a good

overview of the rotorcraft industry, technologies and the technical challenges. This overview is

essential for reader in understanding the case findings and analysis, which are presented in Chapters

Six and Seven. Moreover, the taxonomy of the three different generations of rotorcraft companies

will be shown. This generational classification of rotorcraft companies is important to highlight the

different maturities of these companies in order to understand how technologies were transferred.

The major market players in these three generations will be introduced. Next, the specific

characteristics of the rotorcraft industry such as the dominant business model, the need and catalyst

of cooperation will be discussed.

The second part (Chapters Four and Five) of this thesis presents the literature review of

existing theories and frameworks that are relevant for this research. In this part, the review of the

literatures on cooperation, organizational learning, technological learning and the concept of

National Innovation System (NIS) will be discussed. The findings from this literature review were

used for constructing the theoretical technological learning framework that will be used to explain

technological learning of rotorcraft companies.



The third part (Chapters Six to Eight) of the thesis presents the case studies of three different

rotorcraft companies. In each case study, the brief introduction of the company, its technological

learning environment (represented by its National Innovation System) and its technological learning

process will be presented and analyzed. The technological learning systems of the three cases will be

compared to derive any implications and lesson learned for the industry. Finally, the potential future

work and extension of this research will be discussed in the conclusion.

1.3 Research Questions

In this thesis, I will investigate the technological learning process of emerging rotorcraft

companies, their technological learning environments and their relationships by answering the

following four research questions:

1) How did emerging rotorcraft companies acquire their technologies?

2) What are the factors that influence the technological learning of emerging rotorcraft

companies?

3) What are the outcomes of emerging companies' technological learning?

4) What are the implications of technological learning on key stakeholders in the rotorcraft

industry?

By answering these questions, we will be able to understand the causes, mechanism and

effects of technological learning in the rotorcraft industry.

1.4 Research Approach

In order to answer the aforementioned research questions, the research approach is tailored

to provide the reader with sufficient technological background knowledge early in the thesis in order

for him or her to understand the case studies and the analysis. The detailed steps of the research

approach are listed as follows:

1) Review the industrial landscape of the rotorcraft industry

2) Identify and classify the major rotorcraft companies in the industry

3) Using theories and frameworks from existing literatures, construct a framework for decoding

the technological learning process of rotorcraft companies.

4) Select three suitable emerging rotorcraft companies for case studies



5) Create the technological knowledge evolutionary map for each company using data from the

case studies.

6) Compare and analyze the three technological knowledge evolutionary maps of the three

companies in the case studies.

7) Draw lessons from the comparative analysis to derive implication of technological learning in

the rotorcraft industry and other industries.

1.5 Definition of Key Terms

1.5.1 Original Equipment Manufacturer (OEM)

There is a wide range of definitions concerning Original Equipment Manufacturer (OEM).

Moreover, the OEM term is used differently in different industries. For instance, OEMs in the

electronic industry usually mean the main suppliers to brand manufacturers such as Motorola and

Nokia. In the automotive industry, the term OEM is used for brand manufacturers themselves such

as Toyota or GM. In the aerospace industry, OEMs are often referred as Prime Contractors or

Systems Integrators, which are positioned at the highest level in the supply chain hierarchy.

However, for simplicity and to be in line to the common understanding of OEM, this thesis will use

OEM for all rotorcraft companies that carry their own brands (e.g. Bell, Boeing, Agusta, Avicopter,

Kawasaki and Eurocopter).

1.5.2 Cooperation

Industrial cooperation has become a widespread practice in all kind of industries due to its

advantages such as financing, risk pooling, economies-of-scale, politics and access to technologies.

There are numerous interpretations of the term cooperation in the industry. This variation of the

interpretation is caused mainly by differences in the context and content of the cooperation programs,

but not in the intent. In simplest definition, cooperation used in this thesis has the same meaning of

the word as defined in Merriam-Webster dictionary (cooperation is defined as action of cooperating,

common effort or association of different person for common benefit). Furthermore, there is also

the commonly used and similar term collaboration. In this thesis, collaboration refers to the more

participative form of cooperation and hence, is a type of cooperation. However, these two terms will

be used interchangeably without any difference in definition.



In the rotorcraft industry, cooperation between companies involves technological exchange

and it can be classified in the following four main modes: licensed production, design- adaptation,

co-production and co-development.

Licensed production refers to the production of an OEM product by another manufacturer

under license agreement without any changes in production process and product design. Licensed

production is usually a duplication of the production at the OEM and is usually carried out in parallel

to the main production at the OEM. It is considered the simplest form of cooperation that has low

level of cooperation complexity and interaction.

Design-Adaptation may be a cooperative or non-competitive in nature. Design adaptation

involves the adaptation of the OEM's product design to new local requirement. This type of

cooperation is usually carried out by the emerging company and has to be fully supervised and

certified by the OEM, which holds the airworthiness certification of the products. The level of

cooperation between the partners in terms of scope and complexity is generally low.

Co-production refers to joint production between partners. In comparison to licensed

production, co-production is not a duplicated or a parallel production for the OEM. The partner

companies usually are the sole suppliers of their production work share and are usually responsible

for the both the design and operation of the production of their work share. Co-production requires

considerably higher level of cooperation scope and complexity than licensed production and design-

adaptation.

Co-de'elopment is the most comprehensive type of cooperation that involves joint design and

development work between partners. It is the most complex form of cooperation due to the high

level of interaction among partners. Usually, all partners shoulder the full cost and responsibilities of

design and development of their work share, meaning the significant common interest in the success

of the cooperation. This type of cooperation is usually formed by partnering companies that have

complementary or comparable level of design and development competency. Co-development is the

most complex and comprehensive mode of cooperation among all four modes of cooperation.

The definitions of these four modes of cooperation will be used throughout this thesis.

Furthermore, these modes of cooperation are in line with the terms commonly used in the aerospace

and defense community and literatures. As a reference, co-production and co-development are used



by the International Armament Cooperation Handbook from the U.S. Undersecretary of Defense

International and Commercial Programs. Licensed production and design-adaptation are terms

commonly used in technological learning in various industries (Cynh, 2002; King & Nowack, 2003a).



CHAPTER 2: THE ROTORCRAFT INDUSTRY

This chapter provides an overview of the industrial context used in this thesis. This chapter is

important for reader to understand the challenges and intricacies of designing rotorcrafts and the

structural complexity of rotorcraft industry. First, this chapter provides a concise technical overview

of the rotorcraft system and the evolution of rotorcraft technologies to highlight the technological

barriers of developing rotorcrafts. In addition, it highlights the uniqueness of rotorcraft technologies

both in design and application. Second, this chapter introduces the major OEMs in the rotorcraft

industry and defines the three different generations of rotorcraft OEMs. These generations are

defined according to the technological maturity of rotorcraft OEMs.

2.1 Rotorcraft System

What is a Rotorcraft?

Rotorcraft is a family of heavier-than-air aircrafts that use rotating wings, which are

technically known as rotor blades, to generate vertical and horizontal thrusts to fly. The most

dominant forms of rotorcraft are known as Helicopter. Autogyro, Compound and Tilt-Rotor aircrafts

constitute the remaining major members of the rotorcraft family. The family tree of rotorcrafts is

shown below.

Rotorcraft

Helicopter Autogyro Compound Tilt-Rotor

Source: Eurocopter Source: Autogyro GmbH Source: Aviastar Source. Boeing

Figure 1: Classification of Dominant Rotorcraft Designs



The most common helicopter design has a single main rotor and a smaller counter-yaw tail

rotor. There are also derivatives of helicopter design such as the tandem rotor (e.g. Boeing CH-47

Chinook), intermeshing rotor (e.g. Kaman K-Max) and coaxial rotor helicopters (e.g. Kamov Ka-32).

An emerging form of rotorcrafts found today in the market is tilt-rotor aircrafts such as the Bell-

Boeing V-22 Osprey and Bell-Agusta BA609 that are equipped with transverse rotors. These

transverse rotors can be tilted forward that transforms the rotorcrafts from helicopter mode to

conventional fixed winged aircraft mode. This unique system provides the aircraft with both vertical

take-off/landing and high speed capabilities.

Autogyro is a type of rotorcraft that does not have powered main rotor. It makes use of

forward motion, which is usually propelled by another push propeller, to generate flow of air

through its free-wheeling main rotor to create vertical lift. This method of generating vertical lift is

also known as autorotation. Autogyro has not seen comparable market success similar to helicopters.

Autogyros are commonly used for recreational and police surveillance purposes. Compound

aircraft is a class of hybrid type of rotorcrafts that has technical features of helicopter and fixed-wing

aircraft. In contrast to tilt-rotor rotorcraft, compound aircraft does not have a tilt-rotor system. Many

compound aircraft have wings and push propellers designed for horizontal flight. So far, compound

aircrafts have not seen any major market success since its conception in the early 1950s. However,

the need for faster rotorcrafts has recently ignited new wave of development of compound aircrafts

(e.g. Sikorsky X-2) and their derivatives in the industry (Figure 2).

Figure 2: Rotor Systems - Tilt /Coaxial /Tandem (Military Today/Flight Global/Airliners)

Product Architecture of Rotorcraft System

One of the most generic ways to represent a rotorcraft system is using an Object-Process

Diagram (OPD). The OPD diagram below shows the main processes, subsystems and elements

(system architecture terminology) that are essential in the operation of a rotorcraft system (Figure 3

and 4). The main subsystems of a rotorcraft are as follows:



" Airframe

o Structure (composite, metallic, mixed)

o Undercarriage (wheels or skids)

e Dynamic system

o Main rotor (e.g. Single, Tandem, Coaxial, Intermeshing, Tilt)

o Tail rotor (opened, shrouded, ducted)

o Drive train

o Control system (hydraulic, electric or optical)

" Avionics system

o Data system (flight and non-flight)

o Power system (primary and auxiliary)

o Mission system (inboard and outboard)

" Engine (gas turbine/turboshaft or piston engine)

o Fuel system

Simplified View of the Rotorcraft Architecture

Operands Value Related Internal Value-Related Supporting Supporting
Processes of Objects Processes Objects

Flying

Figure 3: Object Process Diagram (OPD) of Rotorcraft Architecture



Dynamic System

Engines

Airframe

Avionics
Rotorcraft Main Subsystems
Aiframe -Structure, undercarriage
Dynamic - Main rotor, tail rotor, drive train, control
Avionics -Data, power, mission systems
Engines -Turboshaft or piston engine, fuel system

Figure 4: Simplified Representation of Rotorcraft Subsystems (Source: Flight International)

2.2 Rotorcraft Development

2.2.1 The Initial Challenges of Rotorcraft Development

The rotorcraft technology that we know today is a result of centuries of aviation creativities

and engineering endeavors. Rotorcraft technology is based on the principle of rotating screw to

generate aerodynamic lift. This principle has a very long history and its origin can be traced back to

the Chinese toymakers (400 B.C.), Archimedes (287-212 B.C.) and Leonardo da Vinci (1452-1519

A.D.) (Polte, 2008). Nevertheless, similar to the development of fixed-wing aircrafts, the

development of this principle into a practical technology was a very long and arduous endeavor. The

first practical rotorcraft (Fw-61) was designed by the German aviation pioneer, Prof. Henrich Focke,

and made its maiden flight in 1936. Three years later, the Russian-born American Igor Sikorsky flew

the world's second practical helicopter, the VS-300. The main technical problems that delayed the

development of rotorcrafts were the lack ofpower density andf/ight control



Figure 5: A Rotating Screw by Leonardo da Vinci n 1483 (US Centennial of Flight Commission)

Early rotorcraft designers had experimented with various kinds of imaginable power sources

available at those times. Power is required for driving the rotors that in turn generate aerodynamic

lift. Early rotorcraft technology pioneers experimented with steam engine, winded spring, gun

powder and electric motor. These sources of power proved to be unsuitable for sustained flight of

more than a few seconds. Furthermore, all of these power sources did not have the required power

density (power-to-weight ratio) to generate sufficient lift for the rotorcrafts. However, this changed

with the advent of piston engines, which were first invented by a German engineer, Nikolaus August

Otto, in 1876. Higher power-to-weight ratio piston engines were later developed and solved the

power density problem since the early 1900s. Lighter and more powerful gas turbine engines

eventually emerged as an even better source of power for rotorcrafts, however, only in a later half of

the 2 0 th century (Figure 6). In spite of the successful development of suitable power sources, flight

control of rotorcraft remained a major technical hurdle until 1939.

Figure 6: Steam, Piston engine, Gas Turbine (US Centennial of Flight Commission, Turbomeca)



Rotorcrafts designed before 1936 suffered fromflight instability and lack offlight control. This is

due to the lack of an effective rotor head technology, which actuates the rotor head tilt-direction

(cyclic control - direction of rotorcraft horizontal motion) and pitch of the rotor blades (collective

control - speed of rotorcraft vertical motion). The technology to actuate these two parts of the rotor

system was not available until the early 1920s, when the Spanish aviation pioneers, Marquis Pablo

Pateras Pescara and Juan de la Cierva, first demonstrated the effectiveness and practicality of this

technology. Rotor head system still remains a key rotorcraft flight control technology up to today

(Figure 7).

Figure 7: Picture of a Fully Articulated Rotor H-ead (Source: T-Pub)

With the ground-breaking high density power and flight control technologies, further

development of rotorcraft technology in the post-i1939 period focused on increasing the rotorcraft

performance envelope such as range, speed and payload capacity. Nevertheless, the complexity of the

two key rotorcraft technologies and the integration of rotorcraft system remain igh technological

barriers to any new market players in the rotorcraft industry. The evolution of the key rotorcraft

technologies before 1939 is shown in the Table 1 below.



Evolution of Rotorcraft Technologies

Pioneers Nationality Year Technology used Technical Innovation Result

Challenge

J.P. Paucton French 1768 Muscle Control Concept

Sir George Cayley English 1796 Muscle Power Concept

Jacob Degen Swiss 1817 Spring Power Flight

Vittorio Sarti Italian 1828 Pneumatic Power Concept

W.H. Philips English 1842 Pneumatic Power Concept

Robert W. Taylor American 1819 Collective Control Concept

Cossus French 1845 Tilt-rotor Control Concept

Luther C. Crowell American 1862 Tilt-rotor Control Patent

Henry Bright English 1859 Coaxial Control Patent

Vicomte Ponton French 1861 Coaxial/Steam Power Flight

d'Amecourt

Alphonse Penaud French 1870 Coaxial/Rubber-band Power Flight

Pomes et de la French 1871 Gunpowder Power Concept

Pauze

Enrico Forlanini Italian 1878 Coaxial/Steam Power Flight

Fritz and Wilhelm German 1874 Steam Control Concept

Achenbach

Julius Griese German 1879 Steam Control Patent

Thomas Edison American 1879 Electric Power Concept

Wilhelm Kress Austrian N.A. Electric Power Concept

Nikolaus A. Otto German 1876 Piston Power Otto gas engine

Gottlieb Daimler
Enabling power
source



Maurice Leger Monaco 1905 Coaxial/Electric Power Flight

Louis & Jacques French 1907 Quad-coaxial/Piston Control 1st manned Flight

Bregeut

F. Sternemann German 1909 Coaxial/Piston Control Flight

Igor Sikorsky Russian 1909 Coaxial/Piston Control Failed

Jacob C. Dane 1911 Coaxial/Piston/ Control 1st use of full-rotor

Ellehammer Collective/Cyclic blade control

Marquis P. P. Spanish 1922 Coaxial/Piston/Collective Control Flight (autorotation/

Pescara
/Cyclic tiltable rotorhead)

Juan de la Cierva Spanish 1923 Autogyro / Piston Control Flight / discoveries -
autorotation/

asymmetrical lift

distribution

Edouard Perrin French N.A. Tandem rotor / Piston Control N.A.

Nicolas Florine Belgian 1927 Tandem rotor / Piston Control 1st Flight with

tandem rotor

Raoul Hafner Austrian 1930 Swash plate rotorhead / Control Failed but laid

Bruno Nagler Piston foundation for further

development

Louis Breguet French 1931 Coaxial/Piston Control Flight (controllable

Rene Dorand and sustained)

Henrich Focke German 1936 Transverse rotors/Piston Control Flight (fully

controllable and

sustained)

Igor Sikorsky Russian- 1939 Conventional main plus Control Flight (fully

American tail rotor layout/Piston controllable and

sustained)

Table 1: Evolution of Rotorcraft Technologies before 1939 (various sources)

Table 1 summarizes the long and arduous aviation journey to create the world's first fully

controllable rotorcraft that was capable of sustained flight. This table shows incremental

advancement of modern rotorcraft technologies that began about 160 years ago. It shows the



integration of the enabling rotorcraft technologies, such as piston engine, collective-cyclic control

and swash plate rotor head, which can still be found in modern rotorcrafts today. The major events

that marked the vital step towards the realization of vertical flight are also shown in the table

(highlighted rows). Nevertheless, these enabling technologies are just the explicit or visible aspects of

technological evolution. The invisible aspect of rotorcraft technologies is the tacit knowledge of

integrating these different technologies into a system that fulfill its design requirement - controllable

and sustained flight. Tacit knowledge of system integration is found in the system interfaces such as

cyclic-collective control model, optimum rotor speed, vibration damping, rotor blade elasticity,

transmission ratio between engine and rotor, etc. While many of these mechanical systems can be

acquired through reverse-engineering (another word of learning through disintegration, analysis and

replication), however, many of these systems are getting more tacit as rotorcrafts become more

wired-up. For instance, mechanical control system is now increasing replaced by fly-by-wire control

systems, which are also lighter and easier to maintain (using digital diagnostic system to identify

source of technical failure). The previously explicit characteristics of rotorcrafts are increasing

embedded into complex black-box systems (avionic and autopilot) that are furthered encrypted in

complex software codes. This recent development in turn increases the technological barrier of

emerging rotorcraft companies in acquiring rotorcraft technologies.

2.2.2 Unbreakable Technological Barrier for Emerging Rotorcraft Companies

Due to the technological complexity and immense cost to design and develop modem

rotorcrafts, it is interesting to note that no emerging rotorcraft companies from the newly

industrialized and developing nations have succeeded in developing rotorcrafts without cooperation

with incumbent OEMs from the leading nations with rotorcraft technologies. Furthermore, key

rotorcraft technologies such as helicopter flight control system and rotor system are unique

technologies that cannot be found in or derived from other industries. In comparison, airframe

technologies such as metal sheeting forming and composite material manufacturing can be derived

from the fixed-wing aircraft and automotive industry. Data gathered from the industry indicates that

none of the emerged and emerging players have single-handedly developed their products without

going through the rite-of-passage of cooperation with the incumbent players. Table 2 shows all the

major emerged and emerging players and their respective cooperation partners.



Emierging Players Country Cooperation Partners
(since 1950s)

Eurocopter France & Bell/Sikorsky
Germany

Agusta Italy Boeing (MD) / Bell / Sikorsky

Westland (merged with Agusta in 2001) UK Boeing (MD) / Bell / Sikorsky

Kawasaki Heavy
Iusri Aerace (Japan Boeing (MD) / Bell / SikorskyIndustries Aerospace (KHI)

Korean Aerospace South Korea Bell / Boeing (MD) / Eurocopter
Industries (KAI)
Hindustan Aeronautics India Eurocopter (formerly MBB)
Limited (HAL)

Denel Aerospace South Africa Eurocopter (formerly Aerospatiale)

Avicopter China Eurocopter / Mil

PZL Swidnik Poland Oboronprom

Table 2: Cooperation Partners of Emerged/Emerging Rotorcraft Companies (various sources)

2.2.3 Modem Challenges of Rotorcraft Development

Besides understanding the complex system architecture of rotorcrafts, it is important to

understand the complexity of design and development of rotorcrafts to appreciate the effort required

to acquire and learn the art of rotorcraft design and manufacturing. The development of new

rotorcrafts, especially military rotorcrafts, is a long and risky undertaking that often takes in excess of

a decade. Rotorcrafts are becoming more complex mainly due to the increasing mission requirement

and the associated mission system integration complexity, which requires significant design

refmement iteration and validation time. As such, developing a new rotorcraft to fly control/ably is

often as difficult as designing it to fufill its designed mission requirement, such as the ability to integrate

and employ non-flight relevant mission equipment.

The business of designing and developing rotorcrafts is not always a guaranteed success.

Recent examples of rotorcraft programs such as the U.S. Army Bell-designed Armed Reconnaissance

Helicopter (ARH) and the Australian Navy Kaman-designed SH-2 Sea Sprite have experienced

immense cost overrun and development delay, which eventually led to the termination of both

programs (DefenseIndustryDaily, 2008a; US Army News, 2008). In both programs, the helicopters

26



were already flying but were severely delayed by mission integration failure. In the case of the Bell

ARH, Bell was unable to integrate the mission sensor package with the helicopter within the

contractual timeframe and budget (GlobalSecurity, 2008a). Before the termination of the ARH

program, the program budget overrun was estimated to be more 100% and delayed by four years. In

the case of Australian Navy Kaman SH-2, Kaman, an American OEM, was unable to integrate its

night-vision devices into the helicopter, rendering it incapable to fly at night or in low-visibility

condition. The program was delayed by six years and overshot its budget by 50%. Furthermore, the

development of rotorcraft flight control system is also a major challenge in rotorcraft program

involving new generation rotor system. For instance, the development of the Boeing-Bell V-22

Osprey tilt-rotor rotorcraft has been delayed due to difficulty in achieving flight stability such as

during the transition between hovering to forward flight mode and during high-speed descent

maneuver. During the development of the V-22 rotorcraft, the difficulty in the development the

flight control system resulted in three fatal and a non-fatal crashes before it achieved the technology

maturity level that could be certified as airworthy for use by the U.S. military forces (GlobalSecurity,

2008b).

The following graph shows the long duration of development of major rotorcrafts and

immense cost of development since 1980s. In additional to the long development time, development

of new rotorcrafts requires immense financial resources. Development costs of rotorcrafts range

from several tens of millions US dollars for light civilian rotorcrafts to several billion US dollars for

military rotorcrafts. For example, the Kawasaki OH-1 helicopter cost US$ 1.1 billion to develop

while the Bell-Boeing V-22 cost US$ 4.3 billion. Figure 8 shows the increasing trend of the rotorcraft

actual development durations over the last four decades. This trend is an indicator of increasing

complexity and challenges in the development of rotorcrafts in spite of increasing experience and

advancement in technology and design processes.



Actual Development Duration of Rotorcrafts

Sikorsky S-70 1970 - 1978
Boeing AH764A 1 70 - 1984

Kawasaki OH-i 1992 - 2002

Ag. West. AW101 1984-20 0

Sikorsky S-92 1992 - 2002

Mi[Ansat 1993 - 2003

EC/Ag. West. NH9O 1987 - 2007

Bell-BoeIng V22 1981- 008

0 5 10 15 20 25 30
i Years

Figure 8: Actual development time of different rotorcrafts (Source: Jane's Defence)

In conclusion, the design and development of rotorcrafts is a highly risky undertaking in term

of cost and time even for industrialized nations with significant aerospace capability. Failures of

rotorcrafts programs are certainly not restricted to US companies. Other leading aerospace nations

such as those in Europe have also experienced their share of program delay and cost overrun. Major

European rotorcraft programs such as the NH-90 multi-role transport helicopter and TIGER attack

helicopter programs are similar examples that have faced these common challenges.

2.3 The Market Players (OEM)

The Rotorcraft Market Overview

The rotorcraft industry has always been an important pillar of the aerospace and defense

industry since 1950s. The first mass produced and operational rotorcrafts were developed during the

Second World War for reconnaissance and transportation. After the Second World War, the use of

rotorcrafts was proliferated by the US for medical evacuation, troop transportation and aerial fire

support during the following two wars in Asia (Korea and Vietnam). Several thousand rotorcrafts, of

which the majority was the venerable Bell UH-1s, were produced and put into service during these

few decades. During the same period, the Russian manufacturers such as Kamov and Mil mass-

produced great number of military rotorcrafts during the Cold War period. During the cold war era,

in addition to the two superpowers, the other nations that were capable of designing and producing

rotorcrafts in any substantial volume were the UK (Westland, Bristol, Fairy, Saunder Roe), Italy

(Agusta), France (Sud Est Aviation/Aerospatiale) and Germany (Messerschmitt B51kow Blohm,



Dornier) (Polte, 2008). The use of rotorcrafts in Europe was also dominated by the militaries. Today,

rotorcrafts are indispensible assets in any modem military forces. Their applications have also

increased tremendously, especially in transport, precision strike, battlefield management and combat

search & rescue (CSAR) operations.

The first commercial use of rotorcrafts dated back in the early 1950s. The use of rotorcraft

commercially was limited due to their relatively high operating costs and limited use. Few private

companies could afford the high acquisition costs of rotorcrafts. Furthermore, the limited range and

lower comfort level restricted rotorcrafts' widespread commercial use other than in niche areas with

special accessibility requirement, such as in the remote regions and energy exploration industries.

Today, the use of rotorcrafts commercially has become widespread especially in VIP transport,

medical evacuation, in tourism and homeland defense. Rotorcrafts are also indispensible

transportation system for news agencies and home security agencies around the world. As a

reference, the distribution of the world's fleet of helicopters is shown below in Figure 9.

Worldwide Helicopter Fleet Distribution
33598 aircraft

CIS 20006%

GOC250 1%
South Africa 577 2%

Others 3469 10%

Maxico 343 1%

Figure 9: Estimated Worldwide Rotorcraft Fleet Distribution (Source: IHST, 2009)

The present rotorcraft market is an oligopoly that is dominated by six global OEMs

(AgustaWestland, Bell, Boeing, Eurocopter, Oboronprom, and Sikorsky). These major OEMs

possess more than 90% of the sales volume in the commercial and military markets (Figure 10).

These six OEMs focus mainly on medium to high end turbine-powered products. On the lower end

of the market, there are about 10 smaller OEMs (ND helicopter, Kawasaki Aerospace, Avicopter,



Robinson, Enstrom, Denel Aerospace, Hindustan Aeronautics, etc.) that focus either on smaller, low

cost piston-engine rotorcrafts or on the manufacture of licensed products from the six major OEMs.

Commercial Helicopter Market: Top 6 Military and Commercial Helicopter Market: Market Forecasts (World),
Commercial Helicopter OEMs (World), 2009 2009-2015

Sikorsky 40,000 - Fleet --- Growth
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Boeing 25,000
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AgustaWestland 5,000 - ... 1

0 0
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Note: All figures are rounded; the base year Is 2009. Note: All figures am rounded; the base year is 2009.

Source: Frost & Sullivan Source: Frost & Sullivan

Figure 10: Market Share and Growth Forecast 2009 (Frost & Sullivan, 2010)

The way all OEMs are categorized in this thesis is based on their technological capability and

entry dates into the industry. First generation OEMs are the pioneering rotorcraft companies that

were founded before 1945. These OEMs are from the US and Russia. The second generation OEM's

are reconsolidated companies formed mainly from the remnants of the Second World War in

Europe. After the war, a number of prominent rotorcraft manufacturers such as Focke-Wulf and

Flettner discontinued operation due to the demilitarization of Germany. Second generation OEMs

are located in Germany, France and the UK. Lastly, the remaining OEMs belong to the third

generation OEMs such as Agusta, Avicopter and KH1. Third generation OEMs are characterized by

the lack of indigenous rotorcraft technologies and were created from ground-up principally through

cooperation with earlier generations of OEMs. Figure 11 shows the evolution of the three

generations of OEM over the last century.



Start of Rotorcraft Activities of Major OEMs
1920 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Sikorsky (1923) ---------------------------------------------------------------------------

Bell (1935) -----------------------------------------------------------------------------

Piasecki (1940) -------- o- Boeing Vertol (1960) ----------------------- Boeing (1997)

0 Hughes(1947) --------------------------- + MD (1984) -----
Mil (1930) --------------------------------------------------------------- Oboronprom

2Kamov (1929) - (2006)

Sud Aviation Aerospatiale _ Eurocopter
(1957) (1970) (1992)

B6lkow (1948) -- --- - MBB (1968) -----------------
----------------------------------------__AgustaWestland

Fairy (1947) - '---- - Westland (1961) -- 2------------------------- A

Saunder Roe (1948)-

Bristol (1944) ---------------

Agusta (1952) ---------------------------------------

HAIG (1958) ---------------------------------------- Avicopter

CHAIG/CHRDI (1969) ---------------------- (2008)

KHI (1953) -----------------------------------------------------

Notes:
1) The year in bracket indicates the commencement of OEM's rotorcraft activities or of its founding, whichever is known.
2) HAIG, CHAIG and CHRDI have been managed by China's aerospace industrial agency that was created in 1951.

Figure 11: Generational Types of Major Rotorcraft OEMs (various sources)

2.3.1 The Pioneering Players (First Generation)

The founding or first generation of the rotorcraft OEMs was dominated by the market

players in the US, the UK and the then Soviet Union. During the decade after the Second World

War, the destruction of industries in Continental Europe resulted in the outflow of rotorcraft

technologies to these nations. The precise amount of rotorcraft technologies transfer to these nations

remains unclear. However, the emigration and employment of many prominent rotorcraft engineers

(Focke, Flettner, Hafner, Stephan, Doblhoff, Sikorsky, etc.) from Europe and Russia provided clear

evidence of this trend. This post-war development invariably gave the US, the UK and Soviet Union

a head start in the further development of rotorcrafts. Furthermore, post-war restriction that forbade

Germany in developing its domestic aerospace industry until 1955 further exacerbated the loss of

rotorcraft technologies as German engineers flocked to overseas OEMs to continue their

development work. The major first generation OEMs (in terms of sales revenue) that still exist today

is listed as follow:

* Bell (USA)

* Boeing (merged with Vertol, McDonnell Douglas & Hughes) (USA)



" Sikorsky (USA)

e MD Helicopter (USA)

* Oboronprom (including Mil, Kamov, Kazan, Ude-Ulan) (Russia)

The first generation rotorcraft companies are pioneering OEMs that developed their first

products independently without cooperation with other OEMs. The brief introduction of some of

the first generation OEMs that were analyzed in this thesis are shown in the following section.

Bell Helicopter (USA)

The company was founded by Larry Bell in 1935 as Bell Aircraft Corporation, which was the

first OEM to obtain certification for a commercial helicopter. Today, it is a division of Textron

Group. It is headquartered in Fort Worth, Texas and has plants in Amarillo, Texas and Mirabel,

Canada. Bell started its aerospace business by designing and building fixed-wing fighter aircrafts.

Later, Bell went into the rotorcraft business after it employed prominent American aviation pioneer,

Arthur M. Young, who led Bell into the development of its first rotorcraft product - the Model 30.

Figure 12: Model 30 and U-1 Huey (Source: Aviastar)

Today, Bell is a global company that has delivered more than 35,000 aircrafts around the

world. It is also the company that designed and manufactured one of the most familiar helicopters of

all time - UH-1 Huey, which were the primary helicopters used by the U.S. military forces during the

Vietnam War. Many of Bell products such as the B47, Bell 212, and Bell 412 have been licensed to

many emerging OEMs such as Kawasaki Aerospace, Westland and Agusta for local production.

Furthermore, Bell Helicopter invented tilt rotor aircraft (BA609) in cooperation with the Italian

rotorcraft maker, Agusta. It also cooperates with Boeing in the design and production of V-22

Osprey tilt rotor aircrafts since mid-1980s.



Boeing Rotorcraft System (USA)

Boeing Rotorcraft Systems is a division of the Boeing Defense, Space and Security division

and is based in Ridley Park, Pennsylvania. Boeing did not have its organic rotorcraft division until its

acquisition of Vertol Aircraft Corporation in 1960 and later McDonnell Douglas Helicopter in 1997.

Vertol Aircraft Corporation was formerly known as Piasecki Helicopter, which was founded by

Frank Piasecki. Vertol is the second American rotorcraft company to successfully have flown a

rotorcraft (PV-2, in 1943) after Sikorsky. Vertol is known for its tandem-rotor helicopters such as the

CH-46 Sea Knight and CH-47 Chinook, which have been serving the U.S. military forces since the

1960s. Vertol was acquired by Boeing in 1960.

Figure 13: CH-47 Chinook and CH-46 Sea Knight (Source: Aviastar)

McDonnell Douglas Helicopters (MD Helicopters) was founded in 1947 as a division of the

McDonnell Douglas Aircraft Corporation. MD Helicopters acquired Hughes Helicopters in 1984.

MD Helicopters and Hughes Helicopters were both pioneering OEMs in the rotorcraft industry.

MD flew its first rotorcraft, the XHJD-1 "Whirlaway" in 1946 while Hughes Helicopters flew its first

rotorcraft, the Hughes Model 269, in 1956. Hughes Helicopters designed the famed AH-64 Apache

attack helicopters, which were instrumental in defeat of Iraqi Army during the first Iraq War in 1991.

Figure 14: XHJD-1 "Whirlaway" and AH-64 Apache (Source: Aviastar)



Boeing Rotorcraft Systems only designed and manufactured military rotorcrafts and has a

worldwide presence through the sales and licensed production of CH-47 and AH-64 by emerging

OEMs such as Kawasaki Aerospace, Korea Aerospace Industries and AgustaWestland.

Sikorsky (USA)

Sikorsky Aircraft Corporation was founded in 1923 by the Russian-born American, Igor

Sikorsky. Sikorsky is based in Stratford, Connecticut and is a division of the United Technologies

Corporation today. Sikorsky flew the US first operational helicopter, the VS-300, in 1939. It has

been a major OEM for modern military and commercial helicopters such as the S-76, UH-60

Blackhawk and CH-53 Super Stallion, which are used by countries worldwide. Sikorsky also owns

Schweizer Aircraft that was acquired in 2004. Schweizer Aircraft is a small OEM that manufactures

light piston-engine helicopters such as the S300 and sailplanes. Since its founding, Sikorsky has been

a leader in the design and development rotorcrafts. Sikorsky is the earliest US rotorcraft OEM to

export rotorcrafts and to cooperate with emerging OEMs. It has licensed the S-51, S-55, S-58 and S-

61 to newly emerging OEMs such as Westland, Agusta, MBB and Kawasaki Heavy Industries.

Figure 15: S-51, S-55, S-58 and S-61 (Source: Westland)

MIL (Russia)

Mil Helicopters was founded in 1947 by Mikhail Leontyevich Mil, a Russian aviation pioneer

who started designing and building gyroplanes and helicopters in 1929. Mil flew its first product, the

Mi-i, in 1948. Mil Helicopters is based in Moscow and has since become a major OEM in term of

the number of rotorcraft built and the innovative rotorcraft technologies. Mil's wide range of

products include the world's most proliferated helicopters, the Mi-8 "Hip", which are used by about

fifty countries. In addition, Mil is also known for designing the world's largest operational helicopter,

the Mi-26 "Halo". Mil has designed about 15 different types of rotorcrafts, which account for about

a quarter of today's rotorcraft fleet in the world. Mil is also one of the earliest rotorcraft OEM to

cooperate with emerging OEM. Counted as some of Mil's major foreign cooperation partners are

Avicopter (China) and PZL Swidnik (Poland).



Figure 16: Mi-8 and Mi-26 (Source: Aviastar)

2.3.2 The Emerged Market Players (Second Generation)

The second generation rotorcraft companies are European OEMs that have been developing

rotorcrafts after World War II using indigenous rotorcrat technologies that survived the war and through

cooperation with American OEMs. As stated earlier in this chapter, much of the rotorcraft technologies

were originated from Europe and Russia. These OEMs are a mix of private and state-owned

companies, which were financially supported by their nations through the receipt of offset work

packages such as licensed local production of military rotorcrafts or direct R&D funding for the

development of indigenous rotorcraft products. These second generation OEMs also acquired

rotorcraft technologies through cooperation with first generation OEMs such as Bell (e.g. Bell-

Agusta AB139 and BA609). The major OEMs from the second generation are listed as follow:

" AgustaWestland (founded in 2001 by the merger of Agusta (Italy) and Westland (UK))

e Eurocopter (founded in 1992 by the merger of Aerospatiale (France) and MBB (Germany))

2.3.3 The Emerging Market Players (Third Generation)

The third generation rotorcrafts OEMs are rotorcraft companies that emerged after 1970.

These OEMs have two things in common. They all lacked indigenous rotorcraft technologies initially

and relied on cooperation with earlier generations of OEMs to acquire rotorcraft technologies. All

these OEM underwent the common initial phase of incremental learning via numerous cooperation

programs to acquire rotorcraft design and production capabilities from the first and second

generation OEMs.

Furthermore, similar to the second generation OEMs, third generation OEMs are a mix of

private and state-owned companies, which are indirectly and directly financially supported by their

nations through the receipt of offset work packages such as licensed local production of purchased



military rotorcrafts or direct investment funding for the development of indigenous rotorcraft

products. The major third generation OEMs are listed as follows:

e Avicopter (China)

e Denel Aerospace (South Africa)

e Hindustan Aeronautics Limited (India)

* Kawasaki Heavy Industries (KHI) Aerospace (Japan)

e Korean Aerospace Industries (South Korea)



CHAPTER 3: COOPERATION IN THE ROTORCRAFT INDUSTRY

3.1 Architecture of the Rotorcraft Industry
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Figure 17: Stakeholder Value Flow Map of Rotorcraft Industry

In order to understand the motivations for cooperation among rotorcraft companies, it is

important to understand the architecture of the rotorcraft industry. The rotorcraft industry is a part

of the greater aerospace and defense industry, which has a complex stakeholder structure. The dual-

use (commercial and military) nature of rotorcrafts makes them susceptible to pressure from both

commercial market forces and national interests. Hence, rotorcraft industry is an ever-changing

system of interacting interests and values. Competitive bidding of international contract is often

more dependent on the political factors than product price and performance. Recent cases like the

Indian Army Light Observation Helicopter program (Flight Global, 2010a) and the US Air Force

KC-X tanker program clearly illustrated how market forces in the aerospace industries can be skewed

by national and global political agendas (Flight Global, 2010b). Furthermore, many rotorcraft OEMs'

dependence and obligation to their national governments make themselves extremely difficult to

manage according to commercial business practices. On one hand, these OEMs are dependent on

their sponsoring national governments for funding, investment and supportive regulative policies.

On the other hand, these OEMs are also obliged to a great extent to support their national interests



such as creation of domestic jobs, exports and national security. Often, commercial losses were

offset by shady financial support and subsidies from governmental institutions (NYTimes, 2010).

The overall industrial landscape of the rotorcraft industry is represented in a stakeholder value flow

map shown in Figure 17.
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Figure 18: The Needs and Catalysts of Cooperation

A characteristic of the rotorcraft industry is the growing trend for more cooperation. The

architecture of rotorcraft industry lays down the fundamental conditions for cooperation. In other

words, cooperation is a result of this type of industrial architecture. Increasing cooperation among

companies is not a unique to rotorcraft industry. Many other industries such as automotive, airline

and computer industries are increasing engaged in more intense cooperation. Cooperation between

companies can bring greater values to the industries. Contemporary researches on the cooperation

between companies have justifies the value of cooperation. However, the need and catalyst of

cooperation across the industries may be different. This section explains the needs and catalysts of

cooperation in the rotorcraft industry. The overview of the needs and catalysts are shown in Figure

18.

3.2 The Need for Global Cooperation

3.2.1 Market

Most major rotorcraft companies rely heavily on commercial exports. The two leading

European manufacturers, AgustaWestland and Eurocopter, have more than 500o of their sales from

overseas (Frost & Sullivan, 2010). However, the demand in the European market is insufficient to

sustain the survival of two large rotorcraft manufacturers. The sales of rotorcrafts overseas require



globalization of most business operations such as design, marketing, production, MRO (maintenance

repair and overhaul), customer service and support.

Market entry and penetration into the overseas markets in any countries, however, cannot be

achieved without a holistic strategy. This strategy has to address political, protectionism regulation,

industrial and security aspects of the market. In the US market, for instance, foreign defense and

aerospace companies face immense competition and governmental regulations (e.g. Federal

Acquisition Regulation) when bidding and supplying to the US government. US domestic players

have significant political and operational advantages, such as having established acquisition processes

and supply chain network. Furthermore, foreign players that want to be qualified as a US defense

contractor have to go through a complex certification process that can be prohibitively uneconomical

and operationally challenging. However, some companies, such as BAE Systems, has even come to

the extent of creating independent business division in the US under a Special Security Agreement

(SSA) to focus solely in the US market and be managed as a local US company (SIPRI, 2009). This

can reduce business operational complexity of having to fulfill both US and UK regulations. An

alternative bypass solution to the high market entry barrier is the acquisition of existing US

companies by foreign players, which also has to satisfy the conditions of the SSA. The acquisition of

DRA International by Italian defense giant company Finmeccanica is a good example of such market

entry strategy. However, SSA is by itself a lower market entry barrier as it covers only selected

NATO (North Atlantic Treaty Organization) and allied nations. Such security and protectionism

barriers exist in other nations as well.

Cooperation with local industrial players is an alternative way to overcome these types of

market and national protectionism obstacles. For instance, AgustaWestland has cooperated with

Lockheed Martin and Boeing to supply the VH-71 presidential rotorcrafts. By working with two

major local players, AgustaWestland has gained strong local partners (Airforce Technology, 2009),

who understand the market and the political landscape in the US. As major contractors to the US

government, Lockheed Martin and Boeing have extensive experience and competences working with

the US military and acquisition agency. Often, the work share in the cooperation agreement is often

divided into the militarized portion, such as mission systems, for the local players and non-militarized

portion, such as airframe, for the foreign players. In this case, the foreign players may avoid or

minimize the complex certification and the required enterprise transformational effort required by



the US government by remaining as Commercial-Off-The-Shelf (COTS) subcontractors to their US

cooperation partners.

3.2.2 Access to Technology

The rationalization of the rotorcraft industry in the last few decades has led to the

polarization of competences among the industrial players. To list a few examples, Boeing is the only

player that is still producing rotorcrafts with tandem rotor system, Kamov and Sikorsky with co-axial

rotor system and Bell with its tilt-rotor system. Hence, it is common for players to cooperate in order

to gain access to technologies that are only available through cooperation. For instance, the

AgustaWesdand collaborated with Bell, which possesses the unique tilt-rotor technology, to develop

the BA609 tilt-rotor aircraft for the commercial market.

3.2.3 Cost and Risk Sharing

The technological complexity of modern rotorcrafts increases with increasing product

requirement, especially due to more demanding and complex military and regulatory requirements.

For instance, modern military rotorcrafts not only have to perform its basic missions such as

transportation, attack and reconnaissance, but also have to survive in the hostile combat and harsh

operational environment. The combination of these requirements generates immense amount of

complexities such as configuration management, system design and development for the

manufacturers. The cost of developing such multi-mission airborne systems is making independent

venture a highly risky undertaking for a single company. Cooperation is a way to share cost and risk

for the cooperating rotorcraft manufacturers (Darnis, et al., 2007). Nevertheless, the caveat of

cooperation is the additional management complexity and risk to the rotorcraft program. If

cooperation is not managed effectively and efficiently, the added complexity and risk may fully

negate the advantages of cooperation.

3.3 The Catalyst of Global Cooperation

3.3.1 Global Defense Policies

The increasing pressure to get the most "bang for buck" out of the often tight national

defense budgets has driven many countries into alternative solution. One of the most common

solutions is through cooperation in defense equipment acquisition. Cooperation in the design and

production of major defense equipment is very well established especially in countries with



established security pact such NATO and European Defense Cooperation. The NATO agreement

between the US and Europe constitutes an important enabling security framework that contributes

to the transfer to rotorcraft technologies to the second generation rotorcraft companies in Europe

and continuation of cross-Atlantic sharing of technologies. Furthermore, cooperation may increase

redundancy and robustness of the defense supply chain to reduce the vulnerability of single sourcing

in times of critical political or military events. Cooperation in defense aerospace systems acquisition

programs also increases understanding and working experience among allied and friendly nations by

setting up common industrial and cooperation standard. A common practice in the European

defense industry is the setting up of institutionalized program management organizations such as the

NAHEMA (NATO Helicopter Management Agency) and OCCAR (Organization for Joint

Armament Cooperation) for the management of multi-national programs.

Cooperation in defense aerospace systems also enhances interoperability among allied and

friendly nations. Interoperability among individual allied nations can be increased by using same

equipment or same system interfaces. Interoperability not only improves command, control and

communication of allied forces during operations, but also ensures commonality in spares and

logistical aspect of operations (the use of NATO standard equipment and fuel type). However,

cooperation may also lead to an unexpected negativity. Through transfer of technology in

cooperation, partnering nations may acquire new capabilities from more developed partners and

pursue nationally developed systems individually at a later stage (Moore, Lorell, & Lowell, 2002).

Recent defense cooperation programs such as the F-35 JSF (oint Strike Fighter) and MEAD

exemplify this cooperative trend.

3.3.2 Offset Regulation

Most countries have national offset (compensation) regulation when making military or

aerospace purchases from overseas companies. Offset regulation usually specify a certain percentage

of the acquisition contract value that needs to be compensated, where 100% or more is common.

Offset usually involves local production, local components sourcing or co-development of the

purchased products. Furthermore, some countries allow the fulfillment of their offset regulations

indirectly through barter trade, transfer of technologies, services, political favors or other unrelated

economical activities, which can offset the outflow of national currency. Nevertheless, the most

common form of offset is local production and co-development, which require close cooperation



between the manufacturers and local industrial players of these countries. Currently, there is an

increasing trend offset requirement that will accelerate pace of cooperation (Defense News, 2010).

3.3.3 Economics

As competition in the rotorcraft industry intensifies, the need to reduce operational cost

drives manufacturers to source and produce in low cost countries. This leads to the globalization of

their supply chain network by sourcing or producing in lower cost countries. Furthermore, the use of

US dollar as the currency of transaction in the aerospace industry drives European manufacturers,

which use Euro, to relocate their operation to countries located in the US dollar zone. The caveat of

such change to the supply chain is the management and negativities of globalized supply chain such

as lower product quality, decay of competences and creation of future competitors. The Sikorsky S-

76 and S-92 programs exemplify this global trend in the rotorcraft industry.

3.4 The Implications of Global Cooperation

Since global cooperation among aerospace and defense companies is an unavoidable

industrial requirement, rotorcraft OEMs should capitalize on their experience in global cooperation

to negate the additional cost of cooperation. According to Nobel Prize laureate Douglass North

(North, 2004) and a McKinsey & Company study, transaction costs, which include search,

coordination and monitoring costs (Dyer, 2000b), account to more than 30 o of all economics

activities in the US. Cooperation projects, which usually have more complex cross-boundary and

inter-company coordination and management costs, may incur even higher transaction costs. In

other words, the drive for global cooperation is not without its costs, aerospace and defense

companies have to account for the cost of cooperation into its business cost structure in order to

ensure the economical and political viability of global cooperation. Hence, cooperation competence,

the ability to effectively and efficiently cooperate, has to be considered as a critical core competence

in this industry, which deserves the similar management attention like other core competences such

as technologies and marketing.

Core competences are business activities, which differentiate the enterprise from its

competitors (Porter, 1996). In contrast, Prahalad and Hamel (1990) suggest that core competence is

the company's collective knowledge about how to coordinate diverse production skills and

technologies. This definition is not restricted to a single technology or skill and is defined in the

context of a company. The definition of core competence from Prahalad and Hamel (1990) also
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implies that the focus lies on the process, which is a form of codified knowledge, within the

company to orchestrate the different resources required for accomplishing certain tasks that

constitute core competencies. Hence, core competences can be classified by the type of business

activities (e.g. design, production, retails) and the depth of business activities coordination (e.g.

degree of outsourcing, control of supply chain, control of the retail network, etc.). However, core

competences are, however, by no mean permanent state of enterprise. These core competences

evolve according to the business cycle and to the enterprise's evolution in the value chain. For

instance, the proliferation of simple aerospace composite manufacturing technologies to lower cost

regions of the world makes 100% in-house manufacturing of simple composite components by the

major airframe manufacturer such as Boeing and Airbus cost ineffective. In fact, major airframe

sections of the Boeing 787 Dreamliner are manufactured by the Italian Alenia Aeronautica and the

Japanese Mitsubishi Heavy Industries (Stern Magazin, 2007)

Similar to other core competences within the enterprise, enterprise's cooperation competence

ensures aerospace and defense companies' competitiveness. Since the core competences are allocated

a major portion of the enterprise operating budget, the lesser the cost of cooperation, the higher is

the profit margin. Besides the cost competitiveness, the intangible but very important aspect in the

aerospace and defense industry is reputation (Stuart & Robinson, 2006) and trust (Gulati R. , 1995).

Potential partners (both state-owned and private) conduct due-diligence study before closing a

cooperation contract with foreign companies. Companies that have more previous success in

cooperation programs may have better chance of clinching aerospace and defense contracts, ce/ens

pa/hus. As rotorcraft OEMs transform themselves from vertically integrated manufacturers into

horizontally integrated system integrators, cooperative competence will take the center stage in their

competence portfolio.
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CHAPTER 4: LITERATURE REVIEW

This thesis analyzes how emerging rotorcraft companies use cooperation to conduct

technological learning and how their technological learning process were affected by their national

learning environments. Hence, this review focuses on existing literatures about cooperation,

organizational learning, transfer of technology and the national learning environment.

The literature review indicates that there has been extensive research on cooperation

(Axelrod, 1997; Dyer, 2000; Faulkner, 1995; Gulati, 1995, Gulati et al., 2009; Hamel & Doz, 1998)

and organizational learning (Adler, 1991; Argyris & Schon, 1996; Roth, 2008; Schein, 1996; Senge,

1990). Transfer of technology, in the thesis context, is considered as an abstraction of cooperation

and organizational learning. Organizational learning provides an insight into the mechanism of

learning within the technology transfer process. Moreover, for technology transfer to occur it has to

be carried out under certain cooperation framework, which includes certain learning mechanism

between the knowledge transferor and receiver. The review also indicates the extensive literatures on

transfer of technology (Chinworth, 1992; Cyhn, 2002; Dixon, 2000; Enos, 1991; Fransman, 1984;

Gao, 2004; Johnson & Hall, 1968; King & Nowack, 2003; Lall, 1996; Lee et al., 1988; Lee, 2003; Luo,

2006) that cover wide range of industries such as aerospace, automotive, defense and electronic

industries. The review on the national learning environment has revealed a number of frameworks

such as the National Innovation System (Nelson et Al., 1993) and the Systems of Innovation

(Freeman, 1988). The application of National Innovation Systems in decoding the development of

industrial sectors and national technological capabilities was also found in several literatures (Cheung,

2009; Odagiri & Goto, 1993, 1996; Malerba, 1992, 1993; OECD, 2008). In summary, existing

collection of literatures provides a good theoretical and data foundation for this thesis. Nevertheless,

no specific research on cooperation and the transfer of technology in the rotorcraft industry has

been found in this review. The following three sections of this chapter elaborate on these three

literature review focal points.

4.1 Literature on Cooperation

The field of cooperation is a very broad research area that covers a wide range of academic

disciplines. This is not surprising given the complexity and multi-disciplinary nature of cooperation,

which no single academic discipline can adequately address. A review of the existing literature

indicated that the field of cooperation has been researched in academic disciplines such as sociology



(Axelrod, 1984), evolutionary sciences (Dawkins, 1976; Axelrod & Hamilton, 1981; Piepenbrock,

2009), economics (Levine & Pesendorfer, 2005), political science (Axelrod & Bennett, 1997),

business management (Doz & Hamel, 1998; Dyer, 2000; Ghoshal & Bartlett, 2002; Gulati et al.,

2009; Robinson & Stuart, 2006) and systems engineering (Piepenbrock, 2009). The multi-disciplinary

nature of the research on cooperation is represented in the Figure 19, which shows the three

dimensions of cooperation research - the relevant academic disciplines, the different aspects of

cooperation and the types of research methodology commonly used.
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Figure 19: The Multi-dimensional Perspectives of Research in Cooperation

This figure is by no mean a complete representation of the field of research on cooperation.

However, the most important elements of cooperation that are relevant or periphery to this thesis

are shown in this figure. For example, cooperation can be researched at organizational levels such as

inter-personal, inter-company, inter-network of companies and international. The book, Common

Knowledge, by Dixon (2000) provides a good framework in which cooperation can take place at

individual and group level under different knowledge transfer conditions. Hamel & Doz (1998)

provide the different value-based motivations of cooperation at enterprise level. Dyer's research on

US and Japanese automotive companies in the 1990s (Dyer, 2000) offers deep insight into the

advantage of cooperation at extended enterprise level (adoption of the Japanese Keiretsu concept)

using empirical analysis and in-depth investigation in the automotive industry. Furthermore, the work

by Ghoshal & Bartlett (2002) in management of global corporations addresses the impact of

globalization on the evolution of enterprise model from local to borderless transnational enterprise



and the importance of effective cooperation and coordination between headquarter and overseas

subsidiaries. Moreover, some research in cooperation focuses on the behavioral aspect of

cooperation such as maximization of benefits from cooperation. Such research often involves the

application of decision science and game theories (work based on the original works of Tucker, von

Neumann, Morgenstern), which are often supported by empirical and mathematical analyses. These

types of cooperation research focus primarily on the creation of behavioral models that can

reproduce and predict cooperative behavior (such as Trust between cooperating members) of

cooperating organizations or individuals (Axelrod, 1997; Gulati et al., 2009; Robinson & Stuart,

2006). In addition, there are also studies that investigate the optimal architectural design and

management of cooperation (Hamel & Doz, 1998; Dyer, 2000).

Among the reviewed literatures on cooperation, the value-based cooperation framework by

Hamel & Doz (1998) was found to be very useful to the thesis mainly due to the generic and simple

taxonomy of cooperation used. For instance, the three types of market players (leader, follower and

latecomer) and three types of cooperation motivation (co-option, co-specialization and learning &

internalization) provide a simple but yet strong framework for the generational classification of the

rotorcraft companies and their motivation to cooperate.

4.2 Literature on Organizational Learning & Technology Transfer

As mentioned earlier in this chapter, transfer of technology can be considered as an

abstraction of cooperation and organizational learning. In order for technology transfer to occur,

there must be some form of cooperation framework for transmission of knowledge and some form

of knowledge transfer mechanism. In this section, the existing literature of the knowledge transfer

mechanism will be discussed.

Knowledge transfer mechanism is a generic term that is part of a broader field known as

organizational learning. Learning can take place at individual level and at organizational level

(Shrivastava, 1983). In fact, individual learning and organizational learning come hand in hand.

Without the capacity for individual learning, organizational learning can never occur. Shrivastava

(1983) defines that organizational learning entails conversion of individual knowledge and insights

into a systematic organizational knowledge base which informs decision-making. This may seem

obvious however, the role and positioning of individual learning in the field of organizational

learning is still an ongoing debate among scholars of organizational learning (Roth, 2008).



Furthermore, the range of literature on organizational learning is vast and diverse. Roth (2008) points

out that current literature of organizational learning has not yet converged into a consistent and

universally accepted set of theories. Nevertheless, among all the diverse perspectives on

organizational learning, the works of Shirvastava (1983) and Roth (2008) offer a good and concise

overview of the some broad perspectives of organizational learning. Roth (2008) expanded

Shrivastava's four perspectives of organizational learning with the addition of the key enablers and

barriers to learning (Table 3), which are useful in the diagnostic and application of learning system in

an organization.

Organizational Core Ideas Enablers of Learning Barriers to Learning
Learning Perspective

As accumulated Learning curve extended to Time and experience, better Linkage between measurement
experience management, decisions, efficiency, measurement and analysis, learning and behavior, limitations in applying

and productivity improvement. in socio-technical systems physical world insights to social science

As adaptation to Organizations adapt to changes in Analysis of environment, planning, Inappropriate understanding of
environmental changes the environment by readjusttng goals, engaging more of the organization in environment, social and

attention rules, and search algorithms. planning, more and better experiments satisficing behaviors.

As assumption sharing Theories in use that result from shared Reflection and tools or techniques that People's defensive routines,
assumptions, changing these assumptions make individual and collective thinking needs to unlearn worldviews,
and learning about learning. explicit. enactment.

As developing Knowledge about action-outcome More and better experiments, acquiring Incomplete learning cycles,
knowledge base relationships is developed and used and processing information and superstition, not unlearning,

in various settings. knowledge holding onto past success.

Table 3: Perspectives on Organization Learning (Roth, 2008)

Nevertheless, the focus of this thesis is on a relatively narrow area of organizational learning,

which is learning through cooperation. Learning through cooperation is a cross-boundary form of

organizational learning, which focuses on the transfer of technology between companies. Cyhn

(2002) coined the term technological learning, which is an essentially a more specific form of

organizational learning that involves the transfer of technological knowledge (both explicit and tacit)

from a transferor to a receiver. Table 4 illustrates the different types of technological learning defined

by Cyhn (2002). Similar to organizational learning, literatures that are related to technology learning is

vast and diverse. As this thesis takes an enterprise-level approach in the analysis of transfer of

rotorcraft technologies between companies, the different phases of technological learning, which are

more visible and measurable, are more useful. The review also indicates that existing literature offers

many perspectives of the technological learning process, which describes how latecomer companies

acquire technologies to compete with the incumbent companies. The overview of these various work



is shown in Table 5. Essentially, most of these frameworks of technological transfer are variations of

the common framework of adoption, adaptation and generation of technologies (Lee et. al., 1988).

However, there is another dimension of technological learning that should be considered - evolution

of technologies. The book Mastering the Dynamics of Innovation by Jim Utterback (1994) reviews that

technologies go through the fluid (emerging) to transitional (consolidation) and to specific (maturing)

phase over their lifecycle. This implies that different phase in which the technological learning takes

place could have different learning dynamic as well (Kim, 1998). This is particularly important as the

follower (second generation) and latecomer (third generation) rotorcraft companies will face different

technological learning challenges as the maturity of rotorcraft technology differs at the companies'

point of market entry. Furthermore, the level of technological capability of the receiver company's

national industry also needs to be considered (Hobdays, 1995).



Table 2.2: Different Categories of Technological Learning:

Major Category

INTERNAL
Production

Reverse
Engineering

Investments on
Technology

Human Capital

EXTERNAL
Market
Mediated

Non-Market
Mediated

INTERACTIVE
Inter-Firm
Linkages

N.I.S.-Related
Linkages

Learning Types

Learning by
Doing

Learning by
Assembling and
Adopting

Learning by
R&D

Learning by
Designing

Learning by
Recruiting and
Training

Learning by
Purchasing
Technologies

Learning from
Science and
Knowledge

Learning from
MNEs

Learning from
Suppliers/Buyers

Learning from
GRIs and
Universities

Main Learning Area

Productivity change as the main
indicator

Learners become familiar with
the 'know-how' aspects of
technology and production

Formalised activity, related to
learning by searching

Modifications in products'
appearance and function

Capabilities are enhanced at both
individual- and firm-levels

Strategic relationships with the
suppliers and buyers are
important, and lead to spillovers

Related to academic
advancements, information from
industry sources, among others

Foreign MNEs can offer
technologies to LDCs

This is analysed closely by this
study

Non-commercial relationships
can also lead to many technology
sharing opportunities

Table 4: Different Categories of Learning (Cyhn, 2002)

In addition to the literature on technological learning, which is more focused on the phases

of learning, Dixon (2000) offers another perspective of knowledge transfer based on the type of

circumstance in which knowledge transfer occurs. Her work emphasizes the differentiation between

explicit and tacit knowledge. In additional to literatures about technological learning, there are also



works from Hamel & Doz (1998) and Dyer (2000) on the importance of learning in cooperation,

which takes a broader view of organizational than technological learning. Hamel & Doz (1998)

suggest that learning and internalization is one of the three main reasons of cooperation between

companies by using examples like Toyota-GM automotive cooperation NUMMI and Philips-

Siemens semiconductor cooperation. These examples of inter-company cooperation illustrate how

learning and internalization can create value for cooperating companies. Using the case of Chrysler

in the 1990s, Dyer (2000) shows that internal learning mechanism between OEM and suppliers and

between suppliers themselves generated significant value to members of the cooperation network.

Table 2. 1: Incremental Stages of Technology Development
Authors Major Stages and Categories

J. Schumpeter Invention Innovation Diffusion

Enos(1962) Acquiring Adapting
Technology Technology

Stewart (1979) Capacity Minor New
Building Adaptations Technology

Teitel (1981) Adaptation Gradual Technical
Improvement Change

Dahlman Production Project Capital Goods R&D
(1993) Engineering Execution Manufacturing

Katz(1984) Product Process Production R&D
Engineering Engineering Engineering

Fransman Search and Adaptation, Development R&D
(1985) Adoption Improvement

Pavitt (1985) Using Capital Reverse R&D Basic
Goods Engineering Research

Westphal, et Using Capital Adaptations Production Technical
al. (1985) Goods Upgrade Linkages

LalI (1987) Pre- Project Technological Innovation
Investment Execution Improvement

Enos (1991) Technology Absorption Adaptation Diffusion
Transfer

Amsden Foreign Intermarginal Design Diffusion
(1989) Technology Changes Capability

Hobday (1995) Assembly Engineering Imitative Innovation
Process Learning Capability

Table 5: Different technological learning frameworks of latecomer companies (Cyhn, 2002)

Learning and technology transfer mechanism may vary across regions and countries. There is

extensive collection of literatures that focus on country specific learning and technology transfer



(Figure 6). In line with the scope of this thesis, the review focuses primarily on China, Italy, Japan

and a number of other emerging nations for reference. For China, Gao (2004), Luo (2006), Lee

(2003), Cao (2004, 2009) and Cheung (2009) offer general insight into technology transfer and

technological learning in the Chinese industries. Among them, Gao (2004) believes that the

indigenous technological development (reinventing the technology) as one of the key

competitiveness advantages of leading market players in the Chinese electronics industry. Cheung

(2009) also supports this notion that successful technological learning has to be supported by

indigenous research and development effort in additional to absorption of foreign technologies. As a

reference for China's technological learning, a review has been done on other emerging countries in

Asia. Cyhn (2002) focuses on the South Korean electronics industry. Hobday (1995) and Nelson &

Kim (2000) highlight the dominant technological learning mechanisms in the industries of the four

major Asian newly industrialized economies (South Korea, Taiwan, Hong Kong and Singapore).

For Italy, Malerba (1993) provide a detailed perspective of the Italy's national innovation

system and its industrial development during the postwar years. He highlighted the existence of two

distinct innovation sub-systems within Italy's national innovation system and their relative strengths

and weaknesses. Modena (2001) and Belussi (2001) complement Malerba's earlier research by

providing an updated view of Malerba's view in the early 2000s. For instance, they attribute the weak

endogenous generation of technologies to the weak interaction between public R&D institutions and

industries. On technological learning process in Italy, Malerba (1993) believes that most Italian firms

learn by absorbing, adapting, improving and tailoring. He also claims that in the large Italian firms

from 1950 to 1970 favored licensing of foreign technologies instead of indigenous R&D. Pittigho

and his colleagues (2009) complement Malerba's notion by stating that in order for Italian firms to

innovate, internal R&D should be supported by international engagement, networking and the use of

external knowledge.



Generic Technological Learning Steps
From National Innovation System Perspective

Nations Research Domain

China Duplicative Design Creative Technological Research on Chinese
Imitation Copying Adaptation Leapfrogging industry

Japan Knowledge Assimilation Improvement Research on Japanese
Acquisition industry

Italy Absorbing Adapting Improving Tailoring Research on Italian
industry

Table 6: Learning variation across nations (complied & adapted by the author)

For Japan, the review indicates that technological learning in the Japanese aircraft industry

has a long history even before the Second World War. However, Odagiri and Goto (1993) point out

that most of Japanese aircraft industries were destroyed during the Second World War and Japanese

aircraft manufacturers had to rebuild its aircraft industry from the beginning. Technological learning

of aircraft technologies after the war was predominantly through licensed assembly and co-

production of US products (Hall and Johnson, 1968). Odagiri and Goto (1993) believe that Japan's

strong industrial capabilities from other industries such as ship building accelerated the learning

speed of the aircraft industry. Hall and Johnson (1968) point out that Japanese aircraft industry was

not only able to absorb significant aircraft technologies from US companies but also apply them

successfully to develop indigenous aircrafts. King and Nowack (2003) analyze the technological

evolution of Japanese aircraft industry's capability by mapping out the transition across different

mode of cooperation between US and Japanese aircraft companies (Table 7).

Table 1
Growth in Japanese aircraft industry technological capability

Aircraft model F-86F F-104J F-4EJ F-1 F-15J F-2
Years produced 1956-1961 1961-1965 1971-1981 1977-1987 1981-1996 1998-??

Subsystem
Airframe License License License Domestic License Domestic and

license
Engine Foreign License License License License License
Radar N/A Foreign License License License Domestic
Armament Foreign and Foreign and License Domestic License Domestic

domestic domestic

Multiple sources.

Table 7: The Evolution of Japanese Industry (King and Nowack, 2003)

Nelson & Kim
(2000)

Kim (1997)

Malerba
(1993)



4.3 Literature on National and Aerospace Innovation Systems

Firms are part of a greater system (e.g. national and global system) and they do not generally

innovate in isolation (Edquist, 1997). As such, rotorcraft companies' technological learning processes

are influenced by other actors and factors in the entire system. Hence, a framework to map this

system is important to differentiate and compare the learning environments in which each rotorcraft

company operates. In the literature review, I have found that the concepts of the National

Innovation System (Nelson, 1993) and Systems of Innovation (Freeman, 1987; Edquist, 1997)

especially relevant and useful for the mapping of the national learning environment of rotorcraft

companies. The concept of NIS has gained importance over mainstream macro-economic theories,

which have failed to deliver an understanding and control of the factors behind international

competitiveness (e.g. technological knowledge) and economical development (OECD, 1997). NIS

rectifies these shortcomings of existing macro-economic theories by offering a qualitative framework

to map and analyze the interactions among the actors and factors in the system in addition to

classical economical indicators (e.g. R&D investment and number of patents). The NIS concept has

been adopted by the Organization for Economic Cooperation and Development (OECD) for

analyzing nations' development of their industries and technological capabilities. While there is no

single definition of the NIS, most of them converge in terms of underlying meaning and scope.

Some of the definitions of the National Innovation Systems (NIS) are as follows:

the network of institutions in the public and private sectors whose activities and interactions

initiate, import, modify and diffuse new technologies." (Freeman, 1987)

a set of institutions whose interactions determine the innovative performance ... of national

firms." (Nelson, 1993)

the national institutions, their incentive structures and their competencies, that determine the rate

and direction of technological learning (or the volume and composition of change generating

activities) in a country." (Patel and Pavitt, 1994)

".. I define a system of innovation as "all important economic, social, political, organizational, and
other factors that influence the development, diffusion, and use of innovations." (Edquist, 1997)



Figure 20: The Generic National Innovation System Map (OECD, 1999)

In essence, all these definitions are simply representations and interpretations of the complex

national technological environment from different perspectives. All these definitions converge by

suggesting that there is a national system that consists of a complex network of public and private

stakeholders (Figure 20). The behaviour of this system is influenced by national policies and key

multi-disciplinary factors affecting national technological development such as learning, adsorption

and innovation. In the context of this thesis, all these definitions of the NIS are considered as equally

valid and generic for all industries. The NIS is a very useful framework that explains the generic

technological learning environment for rotorcraft companies.

Nevertheless, the generic definition of the NIS may not necessarily address all technological

learning developments in the rotorcraft industry. Due to differences in product, market and

regulation, every industry is somewhat unique. The rotorcraft industry is a very distinct industry, just

like most high-technology industries. Many NIS actors and policies in that are unique to the

rotorcraft industry may not be obvious or universal at NIS level. Hence, I will introduce a more

specific view of the NIS termed as the Aerospace Innovation System (AIS) to complement the NIS.



The AIS can be considered as an abstracted view of the NIS that shows more specific influences of

the NIS on the aerospace industry and vice versa. The AIS will provide a less-cluttered view than the

NIS for analyzing the rotorcraft industry. In this thesis, both NIS and AIS will be presented in all the

three case studies to provide high-level and industry-specific views of the national technological

learning environment.



CHAPTER 5: RESEARCH METHODOLOGY AND FRAMEWORK

5.1 Scope of Research

This aim of this thesis is to confirm the importance of cooperation for market latecomers to

acquire technologies from the market leaders and followers in order to move up the market hierarchy

and value chain in the rotorcraft industry. Hence, the scope of the research work will be focused in

the following dimensions. First the research will be confined to the rotorcraft industry, while drawing

available theories and frameworks from other industries, especially those in the same countries.

Second, the research will confine itself to the time frame from 1945 onwards (the advent of the

rotorcraft industry). Third, the research will use multiple-case method to derive the technological

learning framework for rotorcraft companies. The selected cases are Agusta (Italy), Avicopter (China)

and Kawasaki Heavy Industries Aerospace Oapan), which will be used for in-depth analysis based on

the evolution of their technological competencies over the last sixty years.

5.2 Research Methodology

Research in aerospace and defense-related industries is always difficult due to national

security and protection of sensitive industrial trade secrets. A research that covers three different

rotorcraft companies in three different non-English speaking countries based on primary sources

such as interviews and direct access to companies' internal data will require significant resources and

time that could be overwhelming. Hence, this thesis aims to capitalize on existing secondary sources

to provide a third person's perspective of the rotorcraft industry and the technological learning

process. The research employs a qualitative analysis for breadth and depth, based on data from a

comprehensive range of current and historical literatures. The first part of this research will involve

collection, comparison and analysis of technological performance indicators such as the speed of

transition between phases of technological maturity (years), product development duration (years),

production volume, innovations of the companies. The second part of this research will involve the

analysis of the National and Aerospace Innovation System, in which the selected companies operate.

This National and Aerospace Innovation System will include the respective national innovation and

industrial policies, the likely technological learning processes, incentives for cooperation and other

macro-economical factors that influenced the technological development of the rotorcraft

companies.



5.3 Selection of Cases

The thesis will use multiple-case study method for the research. There are a total of six

possible companies, which are Agusta, Avicopter, Denel Aerospace, Hindustan Aeronautics Limited

(HAL), Kawasaki Heavy Industries (KHI) Aerospace, Korean Aerospace Industries (KAI). Agusta,

Kawasaki Heavy Industries Aerospace (KHIl) and Avicopter are selected as case studies due the

following reasons (as summarized in Table 8):

1) They were not market pioneers (e.g. Sikorsky) at the advent of the rotorcraft industry.

2) They have undergone the complete technological learning cycle.

3) They developed under a single National Innovation System over a substantial evolutionary period.

4) They have potential to complete globally or have already become a global player.

Emerging Players Country Cooperation Partners Completed entire Non-Pioneering Potential to be Suitable
(since 1950s) learning cycle Players Global Player Case

Agusta Italy Boeing (MD) / Bell / Sikorsky Yes No Achieved

Avicopter China Eurocopter / Mil Yes Yes Yes

Denel Aerospace South Africa Eurocopter (formerly Acrospatiale) No Yes No

Hin ustan Acronautics India Eurocopter (formerly MBB) Yes Yes Yes

ndustre e ospace (KH) Japan Boeing (M D) /Bell / Sikorsky Yes Yes Yes
Koure Aerospace K I
Korean Aer s ace South Korea Bell /Boeing (MD) / Eurocopter No Yes No

Table 8: Selection Criteria for Case Studies

These selection criteria are important to ensure that the companies have already developed

themselves through ground-up and have sufficient meaningful data for analysis. Agusta, Avicopter

and KH1I were selected as a result of these criteria. It is important to note that even though Agusta

merged with Westland relatively recently in 2001, it remains a suitable research case as the merger

occurred after Agusta was already a leading OEM. Furthermore, the potential of these three

companies to become global players allows for future validation and review of research findings.

Even though India's Hindustan Aeronautics Limited (HAL) has been identified as a suitable case

study, it was not selected due to lack of data.



5.4 Research Framework

The multi-disciplinary nature of the technological learning of the rotorcraft companies makes

it challenging to formulate a framework that can cover all aspects of the research scope. It is

important that the framework captures and shows all important factors that could affect

technological learning process in emerging rotorcraft companies. One way is to use or adapt relevant

frameworks that have been identified in the literature review and earlier chapters for analyzing the

technological learning system of emerging rotorcraft companies. Fortunately, this method turns out

to be practicable. In this thesis, the existing frameworks of the National Innovations System, mode

of cooperation and technological learning were selected and integrated into my thesis. framework.

The thesis framework is represented by the Technological Learning System (TLS) casual-loop

diagram (Figure 21). The reasons of using these frameworks and how they are interconnected to

form the TLS will be explained in this chapter.

Influence

Mode of
Cooperation

FigrTee Technolo gical Technological
innovation Process Knowledge

System

Company boundary

Foreign
Rotorcraft

Companies

Figure 21: The Technological Learning System (Gan and Roth)

First, the NIS framework is used as one of the main elements in the TLS as it provides a

broad but detailed insight of the national innovation and technological learning environments of the

emerging rotorcraft companies. These environments define the constraints for technological learning

process. Examples of these constraints are social-political, economical, cultural and historical aspects

of the technological learning environment. Often, the most dominant factors within the NIS that

affect the technological learning process are governmental policies, the dynamic of private companies



and the level of collaboration between universities and industries. In this thesis, the NIS will be

analyzed at national and industrial levels.

Second, cooperation and technological learning frameworks are used to explain how

emerging rotorcraft companies obtain access to rotorcraft technologies. The cooperation framework

is defined by the different modes of cooperation, which indicates the level of interaction and the

technological learning opportunity between cooperating companies. My research has identified four

main modes of cooperation that are commonly used in the rotorcraft industry - licensedproduction,

design adaptation, co-production and co-development. I use these four modes of cooperation to define the

level of interaction between the emerging rotorcraft companies and the foreign companies. Here, the

link between the mode of cooperation and technological learning is established. Figure 22 shows the

relationship between mode of cooperation and the type of technological learning (cooperative and

non-cooperative). Furthermore, it is important to note that I do not distinguish between the three

types (internal, external and interactive) of technological learning as defined by Cyhn (2002) in the

literature review (Chapter Four). This is due to the fact that even the simplest mode of cooperation

(i.e. licensed production) involves complex social-technical interaction between cooperating

companies. In this regard, it will be reasonable to assume that all three types of technological learning

take place in all four modes of cooperation. Since the underlying motivation of cooperation by

emerging companies is to acquire technologies, regardless whether one-way or two-way flow

technology between cooperating companies, it is reasonable to assume that technological learning

takes place in all modes of cooperation. Figure 22 also shows the relative complexity of cooperation

and the expected sequence of cooperation of rotorcraft companies over time.

Non-competitive learning activity like reverse-engineering is also shown as it usually takes i

parallel to other technological learning activities within the cooperation. Reverse-engineering is an

important technological learning activity for emerging rotorcraft companies. Cyhn (2002) defines

reverse-engineermg as internal type of technological learning. In most cases, selective reverse-

engineering of components is secretly conducted by the emerging companies in the shadow of

cooperation. However, in this thesis I define reverse-engineering as a major event that involves

imitative production of the entire product of foreign companies.



Cooperation Activities of Emerging Rotorcraft Companies

Level of Cooperation
Complexity Co-development -.

* - Co-production 4 Cooperative

Design Adaptation Learning

Licensed Production --

Non-Cooperative
Reverse-Engineering - Learning

Typical Sequence of Cooperation Activities of Emerging Aircraft Companies

Figure 22: The Four Modes of Cooperation and Reverse Engineering

The TLS shows the conceptual relationship between the four main elements (NIS, mode of

cooperation, technological knowledge) and the technological learning process. The company

boundary shown in the TLS diagram demarcates where learning takes place. Here, the elements

outside the company boundary are viewed as influences to the learning environment within the

company. Furthermore, the TLS is a closed-loop system with an exogenous element (foreign

rotorcraft companies). The flow of the influences between the system elements is shown by the

arrows. The feedbacks (curve arrows) from the accumulated technological knowledge to the three

system elements - NIS, mode of cooperation and technological learning process close up the

influence-loop within the TLS. The technological knowledge in the TLS is considered as a "stock" of

accumulated knowledge as defined in the organizational learning framework by Roth (2008). It is

important to note that technological knowledge can either increase or decrease. For instance,

technological knowledge can increase due to knowledge learned through cooperation with a more

technologically advanced partner company. On the other hand, technological knowledge can

decrease when competences are lost, for example, through outsourcing or loss of employees.

Technological knowledge can influence these three TLS elements in the following ways.

First, the level technological knowledge in the emerging rotorcraft companies affects the

mode of cooperation that the companies can be involved. As an example, advanced technological

knowledge allows company to cooperate in more complex co-development program (share

knowledge with partner) whereas low technological knowledge will certain restrict company to less

complex licensed production program (obtain knowledge from partner).



Second, increase in technological knowledge can directly influence the technological learning

process or indirectly influence through changes in the mode of cooperation. Within the technological

learning process, continuous adjustment between internal, external and interactive types of

technological learning will occur due to changes in technological knowledge. Through hard to

quantify and however small it may be, technological knowledge spill-over from rotorcraft companies

to the other industries in the NIS takes place.

Third, in the TLS the foreign companies are considered as an exogenous element in the

system as it is usually independent of the rest of the elements and process of the system. Since

cooperation dynamic such as the selection of cooperation partner and the definition of cooperation

framework (i.e. mode of cooperation and work share) is complex and highly unpredictable, it will be

reasonable to assume that foreign companies as an exogenous element that can influence the mode

of cooperation with the emerging companies.

The variables in this TLS are the NIS, the technological learning process and the level of the

technological knowledge. In this thesis, the variation of the first two variables NIS and technological

learning process will be accomplished by the use of case studies of three emerging rotorcraft

companies to investigate how these variables affect the TLS outcome, which is measured by the level

of technological knowledge. The case studies consist of Aicopter (Ghina), Kawasaki Heavy Industiies

Aeropace Japan) and Agusta (Italy), which are selected based on criterion shown in the previous

section.

It is important to highlight the fact that there is an indirectly coupled relationship between

the NIS and mode of cooperation. The NIS and the mode of cooperation are both influenced by the

country's access to foreign technologies. The accessibility to foreign technologies shapes the NIS and

determines the permissible mode of cooperation with foreign companies. Hence, there is no way to

fully vary both variables independently. Fortunately, this coupling of the variables does not affect the

objective of this thesis. This is because when comparing between emerging companies with different

NIS, the coupled relationship between the NIS and mode of cooperation becomes less important

than the relationship between the different the NIS or the mode of cooperation and the resulting

technological knowledge change.

The third variable is technological knowledge in the rotorcraft companies. Technological

knowledge is broken down to product subsystems level - airframe, dynamic system, avionic system



and engine. The measurement of technological knowledge is through observation of the change in

product subsystem technologies that occur after every cooperation program. In this thesis, I define

program as an independent event that develops and produces a rotorcraft product independently or

cooperatively by the OEM. The level of technological knowledge is measured by the mode of

cooperative or non-cooperative activities involved in the development and production of the

companies' programs. The non-cooperative activities include all activities that lead to the access of

the subsystem technologies via reverse-engineering or in-house development and production.

Depending on the OEM's learning objective, activities such as design-adaptation and procuring

subsystems off-the-shelf can be either cooperative or non-cooperative in nature. The relative level of

technological knowledge required for these cooperative and non-cooperative activities is indicated in

Figure 23. The changes of the technological knowledge using technological level at subsystem level

will be shown by plotting the evolution map shown in Figure 24 as an example.
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Figure 23: Technological Knowledge Level and Cooperative/Non-Cooperative Activities
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Figure 24: Technological Knowledge Evolution Map (Example of Agusta)

Finally, in order to compare the three cases, the Technological Knowledge Evolution Maps

for the three case studies will be plotted. This allows comparative analysis of the speed of

technological learning in the course of these companies' development with respect to the type of NIS

and mode of cooperation involved. The speed of technological learning has many implications for

the TLS. For instance, at national level, the speed of technological learning could be due to the

national policies within the NIS or the mode of cooperation accessible to the rotorcraft companies.

Moreover, at company level, one can also draw conclusion on the way individual rotorcraft

companies learn from analyzing the evolutionary pattern of cooperation mode and speed of change

across different cooperation modes. These are just some examples of the important implications that

will help policy makers from governmental organizations and private companies in the formulation

of effective industrial and corporate policies for cooperation. More insight into the technological

learning process of rotorcraft companies will be discussed in each case study (Chapter Six) and in the

comparative analysis (Chapter Seven).



CHAPTER 6: CASE STUDIES

6.1 Case Study 1 - Avicopter

6.1.1 Company Introduction

Avicopter is a Chinese rotorcraft manufacturer and a division of the China's state-owned

aerospace and defense conglomerate - Aviation Industry Corporation of China (AVIC). The

company's main product portfolio includes small, medium and heavy weight helicopters. It also has

business units that are involved in the design and manufacturing of wind-turbines and space systems.

Avicopter was recently formed in 2008 after the consolidation of several state-owned rotorcraft

companies - Harbin Aircraft Industries Group (HAIG), Changhe Aircraft Industries Group

(CHAIG), Baoding Huiyang Aviation Propeller Manufacturing Factory (BPF) and the Chinese

Helicopter R&D Institute (CHRDI). Even after Avicopter's headquarter was set up in Tianjin, a city

situated 120 km southeast of Beijing, it still maintains the original sites of its consolidated

subsidiaries. However, general administration, customer services, certain production and design

activities of these subsidiaries were relocated to Tianjin in 2008. The key facts about the company

structure and subsidiaries are shown below in Figure 25.

Harbin Aircraft
Industries Group (Hafei)
Employment: 1758 technical staffs
Site Competences:
R&D / Production
Products: Z-9, HC-120, Z-15

AVICOPTER Headquarter
Site Competences:
General Administration, Design,
Production, Customer Services

Products:
AC301/310/313, Heavy Transport
H li t (TCith obk ). I

Changhe Aircraft industries
Group (CHAIG)
Employment: 4300 (total)
Site Competence: R&D / Production
Products: Z-8, Z-10 (AC313), Z-11,

592,576, S300, CA109

Chinese Helicopter R&D
Institute (CHRDI)
Employment: 2000 technical staffs
Site Competence: R&D
Products: helicopters, space systems

Figure 25: Avicopter Company Structure in 2009 (Sources: HAIG,

Baoding Hulyang Aviation
Propeller Manufacturing Factory
Employment: 2200 (669 technical staffs)
Site Competence: R&D / Production
Products: aerospace rotors, wind turbines

CHAIG, CHRDI, Baoding)



The first subsidiary, HAIG, is based in Harbin, a city situated in the northeastern part of

China. It was founded in 1952 to manufacture large military aircrafts and helicopters. In line with the

Chinese defense industrial strategy before the recent Avicopter's consolidation, HAIG was

responsible for the production of aircrafts that were designed by dedicated design organizations such

as the CHRDI and the 6 0 2nd research institute. Before becoming part of Avicopter, HAIG had

cooperated with the Russian helicopter OEM Mil in the licensed production of Mi-4 (locally known

as Z-5). With the Franco-German OEM Eurocopter, HAIG cooperated in the licensed production

of AS365 (Z-9) and currently co-produces EC120 (HC-120) and EC175 (Z-15) helicopters.

Furthermore, HAIG is involved in an existing cooperation with the Brazilian fixed-wing aircraft

OEM Embraer in the co-production of ERJ-145 commercial regional jets.

Figure 26: Cooperation with Eurocopter Z-9, HC-120, Z-15 (Sino-Defence)

The second subsidiary, CHAIG, the largest subsidiary of Avicopter in terms of the number

of employees, is located in Jingdezhen city of Jiangxi province. Besides HAIG, it was the only other

rotorcraft manufacturing company in China until early 2000s, when China allowed foreign OEMs to

enter the market by forming joint ventures with local companies. CHAIG was founded in 1969 by

the Chinese state to manufacture helicopters for the Chinese People's Liberation Army (PLA).

Unlike HAIG, CHAIG is solely dedicated to the manufacture of helicopters. Before its consolidation

with Avicopter, CHAIG had established cooperation with Sikorsky (helicopter co-production for S-

300, S-76 and S-92) and AgustaWestland (assembly of CA109 helicopter). It has also managed to

reverse-engineer Eurocopter's legacy AS350 Ecureuil (locally named Z-1 1) and SA321 Super Frelon

(locally named Z-8) helicopters. Currently, it is developing China's first indigenous dedicated attack

helicopter, WZ-10, with technical assistance from anonymous foreign OEMs.



Figure 27: CHAIG products: Z-8, Z- 11, WZ-10 (Sino-Defence)

The third subsidiary is the Chinese Helicopter Research and Development Institute

(CHRDI), China's only dedicated research and development organization for helicopter technologies

before the creation of Avicopter. It was founded in 1969 in the city of Jingdezhen, Jiangxi Province,

and has been officially named as the "cradle" of Chinese rotorcraft technologies in China. CHRDI

has always been an integral part of all international cooperation programs between Chinese rotorcraft

companies (HAIG and CHAIG) and foreign rotorcraft OEMs. Having the necessary R&D facilities

(Figure 28), CHRDI played a key role by supporting HAIG and CHAIG in the design and

development of rotorcraft components and systems.

Figure 28: CHRDI R&D facilities - dynamic test bench and flight simulator (CHRDI)

Baoding Huiyang Aviation Propeller Factory (BPF) is the fourth subsidiary of Avicopter and

was founded in 1960. Based in Baoding, Hebei Province, BPF is China's premier manufacturer of

propellers and rotor systems that are used on fixed-wing aircrafts and helicopters. In addition, it has

two joint ventures that design and manufacture commercial wind turbines. Unlike CHAIG and

HAIG, BPF has both R&D and manufacturing capabilities.

Avicopter became the leading rotorcraft company in China in 2008. The consolidation of the

four subsidiaries is clearly a move to bring their resources and technological knowledge that was

learned from various cooperation projects with foreign OEMs closer together. It is important to note

that CHAIG and HAIG do not have overlapping relationship with the foreign rotorcraft OEMs.



CHAIG has no cooperation with Eurocopter and Mil. HAIG has never cooperated with

AgustaWestland and Sikorsky. This exclusive cooperation relationship network is likely a result of

China's centrally-planned industrial policy. However, the consolidation in 2008 dissolved these

exclusive cooperation networks. The way how Avicopter will handle this new combined cooperation

network with competing foreign rotorcraft OEMs in the future remains unclear.

6.1.2 The Need for a Domestic Rotorcraft Industry

My research has identified both pull and push factors, which resulted from the unique

economical, political and technological constraints in three distinct industrial periods of China -pre-

Deng era (before 1978), Deng era (from 1978 to 1997) and post-Deng era (beyond 1997). Deng Xiaoping was

the Chinese president who reformed China's economy and reopened it to foreign trade in 1982.

During the pre-Deng period, there were two needs to create a rotorcraft industry after the

founding of the People's Republic of China (PRC) in 1949 from a pragmatic standpoint. First, there

was an urgent need to create a fleet of rotorcrafts for national and civil defense. As discussed in

Chapter Two, rotorcraft's unique vertical take-off and landing capabilities are critical to conduct

diverse military and humanitarian operations by the Chinese People's Liberation Army (PLA).

Second, Cheung (2009) found that aerospace technologies were identified by the Chinese

government as key technologies that were needed and developed during the pre-Deng era. China's

acquisition of a licensed production agreement of the Mil Mi-4 helicopters from the Soviet Union in

1958 confirmed this finding. However, the deterioration of relationship between China and the

Soviet Union after 1960 disrupted China's access to Russian rotorcraft technologies. This event

created a clear impetus for China to develop its own domestic rotorcraft industrial capability and to

seek alternative foreign sources of technologies.

During the Deng period, unlike other commercial industries, market demand was not a

rationale for China to create a domestic rotorcraft industry. Since the PLA is the controller of the

Chinese airspace and the main user of rotorcrafts, the demand from a civil rotorcraft market is

limited (with only a few exceptions such as governmental search and rescue and offshore energy

exploration). Furthermore, before the economical reform in 1982, China was not yet a global

exporter. There was no urgency of creating a domestic rotorcraft industry for export. Nevertheless,

other economical rationales such as employment in the defense industry should not be overlooked.

HAIG, CHAIG, CHRDI and BFP have a combined employment of 15,000 today. It is also



reasonable to believe that the development of a rotorcraft industry has certainly provided economical

relief for the regions where these companies are located.

However, the expansion of China's economy through foreign trade during the post-Deng

period provided a new rationale for advancing the development of China's rotorcraft industry. Since

2008, the Chinese rotorcraft industry has already started implementing its strategy towards global

export through the formation of Avicopter.

6.1.3 National Innovation System

The Chinese National Innovation System

China is currently still a developing nation that lags behind major developed nations in most

technological fields (OECD, 2008). Several political events such as China's closed door policy and

domestic political instability during Mao-era from 1949 to 1976 had negative impact on its

economical development. The international arms embargo against China after 1989 further

exacerbated the situation. China's development was slow in comparison to other Asian Newly

Industrialized Nations (NIE) such as Taiwan, Singapore and South Korea. In fact, China is the last

major East Asian nation to catch up with the industrialized western nations, the NIEs and Japan.

Research on the Chinese National Innovation System (NIS) indicates that China's

technological learning process is generally similar to the developing Asian NIEs. Similar to the NIEs,

China's technological learning process relies on the absorption of imported western technologies,

incremental improvement and innovation through indigenous R&D. Figure 29 shows the main

actors and factors that shape the Chinese NIS. These actors are private sector, public sector, market

and foreign companies. The Chinese political regime and centrally-planned economy have been the

strongest influences to China's NIS. However, Chinese private companies have recently started to

play a greater role in technological innovation (OECD, 2008a). Some researchers argue that Chinese

private companies are more interested in quick and short-term return and not interested in investing

in long-term and costly R&D (Cao, Simon, & Suttmeier, 2009). This could result in the reliance on

foreign technologies and lead to viscous cycle of lagging behind foreign companies. Nevertheless,

there have been exceptions to this argument.

Gao (2004) found that the Chinese electronics industry is particularly innovative and

competitive as it follows an alternative approach in technological learning. He believes that Chinese

electronics companies are successful because they learn by "reinventing the wheel" instead of only



adapting foreign technologies. However, other industries in China still compete in cost and not in

innovation. From foreign investors' perspective, low-cost advantage is also one of the main

motivations of continued foreign investment and foreign technology flow into China. Furthermore,

it is reasonable to believe that no foreign companies will be willing to transfer technologies to China

without tangible benefits. Long period of political isolation and foreign companies' reluctance to

transfer the advanced technologies to China, partly also due to its poor intellectual property

protection, hampered China's technological learning process. Moreover, Cao, Simon & Suttmeier

(2009) believe that China's NIS is affected by a weak research culture in the Chinese universities and

industries. They believe that this could be attributed to the effect of ideological suppression on the

China's innovation culture. In addition, poor administration of national R&D policies and funding

further exacerbated this situation. Another feature of China's NIS is the weak interaction between

China's universities and industries.

Interest in Low Cost Long Period of
Advantages Foreign Political Isolation

Companies

Focus on
Short-Term Payoff

Private
Sector

Low R&D Investment

Poor Administration of
National R&D Policies

Public
Sector

Weak Universities &
Research Insititution

Poor IP Protection

Weak Interaction between
Universities & Industries

Figure 29: The Chinese NIS (adapted from various sources)

The Chinese Aerospace Innovation System

According to Cheung (2009), China's aerospace and defense industry is divided into two

sectors - strategic systems and conventional systems. China's strategic systems industry designs and



manufactures systems of strategic importance to the China's overall defense framework. For

example, space vehicles, intercontinental ballistic missiles and nuclear weapons are part of the

strategic systems industry. Conventional systems industry designs and manufactures all other systems

that do not fall under the strategic systems category. Rotorcrafts and other aircraft systems are

considered as conventional systems.

Cheung believes that the innovation systems in the strategic and conventional systems

industries were not only different, but also received different level of resources and attention from

the Chinese government. According to Cheung, strategic systems programs have always received

higher level of political patronage and resources. This is a key reason why China's strategic systems

industry have delivered continuous success and achieved technological capabilities that are

comparable with those of the western nations. Examples of China's remarkable technological

advancements are found in the missile, nuclear and space programs. Even though unspecified

amount of the strategic systems technologies were obtained through informal means (Cheung,

2009b) (e.g. espionage and secret technical advisors), the ability of China's strategic systems industry

in absorbing and industrializing these advanced technologies within such short period of time

indicates its remarkable technological absorption capability in the strategic systems industry.

In contrast, the innovation system in the conventional systems industry had a very different

development. The conventional systems industry was plagued by overly bureaucratic and complex

management structure, low funding, ineffective knowledge diffusion process and lack of access to

foreign information. Unlike China's strategic systems industry, conventional systems industry did not

have the same level of political patronage, which could have been the critical factor for ironing out

these problems it faced. In addition, China adopted the Soviet-style aerospace industrial model of

separating R&D and production organizations. This industrial model was conceptualized primarily

due to the need to have multiple production sites, especially in the remote regions, to enhance

defense strategic depth and arms production redundancy in the event of war. However, this

industrial model had a major flaw that greatly weakened knowledge diffusion between R&D and

production organizations. Not only were the R&D and production carried out in different

organizations, they were done in sequential mode, which greatly slowed down systems development.

For instance, the design and development of rotorcraft systems was done by CHRDI, while CRAIG

and HAIG were only responsible for the production. This inefficient industrial architecture of the

Chinese aerospace industry certainly slowed down the technological learning process. For example,



the lack of ownership of design documents by the design engineers after the transfer of documents

from the design institutes to the production organizations effectively eliminates the accountability of

the design engineers in the manufacturability of the rotorcrafts - absolute contrary to western

modern systems engineering fundamental.

Cheung has also highlighted structural problems in the aerospace industry that hindered

technological learning (Cheung, 2009b). First, there was little incentive in the aerospace industry to

codify R&D knowledge. This made it very hard to maintain knowledge within the organizations and

in the industry. Without codified knowledge, the dissemination of knowledge was difficult. Second,

Chinese industrial standards and norms, which are important elements of codifying R&D knowledge,

were underdeveloped. Third, the lack of intellectual property protection in China further weakens the

creation of a favorable innovation environment and prevents the development of innovation culture.

Third, there was little spillover of technologies from the commercial industries and universities to the

aerospace industry. The Chinese commercial industries and universities were lagging behind the

aerospace industries until recently. All these factors constituted major obstacles to the learning

capability of Chinese rotorcraft companies.

As a result of these obstacles in the aerospace innovation system, the aerospace industry has

experienced slow and difficult times during the pre-Deng and Deng period. However, the post-Deng

era after mid-1990s was characterized by more aligned and effective innovation system that has

already shown significantly improvement in products and technologies (Cheung, 2009a).
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Figure 30: The Chinese Aerospace Innovation System (various sources)

6.1.4 Technological Learning Process

The previous sections of this chapter have shown that China's NIS poses a difficult

technological learning environment for Avicopter. Despite this difficult environment, Avicopter has

successfully adapted and worked within the constraints of China's NIS to learn and acquire rotorcraft

technologies. Avicopter's technological learning effort is by no mean a pure governmental effort.

Based on open sources from publications and documentaries in both Chinese and English languages,

I have found out that a mixture of both private entrepreneurship and governmental support has

made Avicopter technological learning process possible. Avicopter has a unique five-phase

technological learning process, which is characterized by the zigzagging path it took between licensed

production, design adaptation and reverse-engineering. Today, Avicopter is already capable of co-

developing and co-producing rotorcrafts and their components with leading foreign OEMs (Figure

31). However, as a late-comer among the emerging rotorcraft companies, Avicopter has yet to

develop its first indigenous product. The evolution of the mode of cooperation and the technological

learning process (indicated by the subsystem capabilities) over the history of Avicopter are shown in

Figure 32. The detailed technological learning process of Avicopter is discussed in detailed in the

following sections.
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Figure 31: Cooperation Network between Avicopter and Foreign OEMs (various sources)
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Licensed Production and Design Adaptation Phase i (1958 - 1980)

In 1958, Avicopter obtained a license from the Russian rotorcraft OEM Mto to locally

produce the Mi-4 helicopters. The Mi-4 pocally lown as Z5) was China's first locally produced



helicopter, of which a total of 545 were manufactured by 1980 (Helis, 2010). This large production

volume provided Avicopter with considerable learning opportunity. Without much delay, Avicopter

started to adapt the design of the Mi-4. The result was the Z-6, basically a modified version of the Z-

5 with a redesigned airframe and a new turbo-shaft engine (Figure 33). The Z-6 marked the first case

of design adaptation by Avicopter. The first Z-6 prototype was built in 1967. However, only 15 Z-6s

were ever built as the Z-6 failed to survive through its prototyping phase due to severe product

reliability issues (Helis, 2010). After that event, China's endeavor to adapt the design of foreign

products did not resume until much later in the 1990s.

Figure 33: HAIG Z-5 and Z-6 (Flelis/SinoDefence)

Reverse-Engineering Phase I (CHAIG) (1976 - present)

After acquiring a number of Aerospatiale (now Eurocopter) SA321 Super Frelon helicopters

from France in the 1970s, China rekindled its technological learning effort in 1976 to reverse-

engineer these French helicopters. This reverse-engineered product is locally known as the Z-8 that

looks exteriorly like the SA321 (Figure 34) and the entire work was done at CHAIG. Even though

Avicopter did not have access to the design and manufacturing data of SA321s from Aerospatiale as

these helicopters were acquired from direct sales, Avicopter managed to recreate the components

and assemble them into complete aircrafts through reverse-engineering. However, this learning phase

took Avicopter about nine years before it achieved the first flight of the first Z-8 prototype.

According to testimonies of lead engineers from Avicopter, the major issue that caused the long

reverse-engineering duration was the lack of precision machineries to manufacture close-tolerance

components (CCTV Z-9 Development History, 2009). For instance, water tightness issues and rotor

head manufacturing problems were reported due to the lack of precision machineries. Much of the

reverse-engineering work was done painstakingly using manual process. Z-8 has been developed into

at least four different versions (Z-8A, Z-8F, Z-8J and Z-8K). The later versions of the Z-8 are

powered by Pratt & Whitney PT6A-67B turboshaft engines instead of the older licensed-produced



Turbomeca WZ-6 engines Jane's Defence, 2010). Other new design features include a new third

generation rotor head system, bigger rear ramp, a new radome with radar, modified landing gears, a

new glass-cockpit and electrical system. All these design modifications indicated the transition from

reverse-engineering to design adaptation by creatively adapting foreign design to meet Chinese

specific design requirement.

Figure 34: Aerospatiale SA321 and CHAIG Z-8 (SinoDefence)

Licensed Production and Design Adaptation Phase 11 (1978 - present)

After imitating rotorcrafts that were designed in the 1950s for 20 years, Avicopter's

management realized that Avicopter was not able to close the thirty years of rotorcraft technological

gap by merely learning through reverse-engineering. Hence, as part of its strategy to shorten the

learning time needed to develop new generation of rotorcrafts, Avicopter acquired a license in 1980

from the French company Aerospatiale (now Eurocopter) to locally assemble 50 AS365 Dauphin

helicopter (Figure 35). This was Avicopter's strategy to cooperate with Aerospatiale in order to

absorb more advanced foreign rotorcraft technologies such as composite materials. From

technological learning standpoint, Dauphin was an excellent candidate as it was one of the most

advanced helicopters in the market in 1980 (CCTV Z-9 Development History, 2009). However, the

learning curve was steep and difficult for Avicopter, which faced a number of major learning

obstacles. First, Avicopter had an outdated and inefficient Soviet-era design and production system,

whereas Aerospatiale was a western OEM with modern western design and production system. The

transition from the Soviet system of design and producing rotorcraft to the French system was a

major hurdle. The defining aspects of design and production system include knowledge such as

engineering standards, quality assurance, manufacturing and supply chain processes. Moreover,

process cultural difference between the two systems was significant.

Second, after the completion of assembling of 50 AS365s with technical assistance from

Aerospatiale, Avicopter began to localize the design and manufacture of AS365 without further

technical assistance (and without additional license approval) from Aerospatiale (CCTV Z-9



Development History, 2009). The assembly of aircraft kits delivered by Aerospatiale was relatively

simple in comparison to Avicopter's subsequent localization effort, which included new and more

complex aspects of aircraft development such as fabrication of components, system integration and

testing. These aspects of localizing Aerospatiale AS365 into Avicopter Z-9 were not part of the

cooperation arrangement with Aerospatiale. The manufacture of Z-9 composite and metallic

components was one of the greatest obstacles for Avicopter as it did not have the advanced

manufacturing technologies and equipment needed to make the component to the right tolerances.

Avicopter mitigated these challenges through the import of US-made production equipment.

However, it solved Avicopter's equipment gap but not its entire knowledge gap. This was partly due

to the reluctance of US equipment manufacturers to provide complete technical assistance to

Avicopter (CCTV Z-8 Development History, 2009). These events eventually forced Avicopter to

find solutions through internal research and development efforts.

The Z-9 program is perhaps the most significant event in the Avicopter's technological

learning process to become a full-fledged OEM. This program reduced the technological gap of 20

years mainly due to the absorption of advanced material manufacturing technologies and modern

western production system (e.g. engineering standard, quality assurance, production and supply chain

processes). The current CEO of AVIC, the holding company of Avicopter, labeled the Z-9 program

as Avicopter's first program that has successfully gone through the complete learning cycle of

"import, digest, absorb and reinvent".

Figure 35: Aerospatiale AS365 and Avicopter Z-9 (SinoDefence)

Reverse-Engineering Phase 11 (1989 - present)

The valuable learning experience gathered by Avicopter from reverse-engineering of the Z-8

laid down the necessary foundation for a subsequent reverse-engineering program. The Z-1 1

program was started in 1989 to reverse-engineer Aerospatiale AS350 light-weight helicopter (Figure

36). Unlike the Z8, the Z-1 1 reverse-engineering work was done on a resale AS350 that was acquired



from a US-based company instead from the Aerospatiale directly. According to Avicopter, the

AS350 was chosen among all other products in the market due to its technical simplicity (CCTV Z-

11 Development History, 2009). The reverse-engineering effort went smoothly without major

technical problem. Within a reverse-engineering duration of only seven years, Avicopter was able to

achieve the first flight of Z-11 in 1996. All major rotorcraft systems such rotor system, avionic and

airframe were locally copied and manufactured. However, Avicopter still had to depend on the

French engine supplier Turbomeca for the locally manufactured engines. The Z-11 helicopter was

continuously developed into various versions for military and civilian purposes. There was no major

obstacle reported during the reverse-engineering.

Figure 36: Avicopter Z-11 and Aerospatiale AS350 (SinoDefense/Eurocopter)

The Co-development and Co-Production Phase (1992 - present)

In 1992, Avicopter's growing technological capability clinched the cooperation arrangement

with the Franco-German OEM Eurocopter in the co-development and co-production of a new

generation of light-weight helicopter EC120. This program marked China's first international

cooperation with a leading OEM as a full-fledged partner. The EC120 achieved its first flight in

1995, just three years after the commencement of the cooperation program. Previously, Avicopter

had only cooperated as a licensed manufacturer, which did not have any design responsibility. It is

important to note that Avicopter was given only the work of designing and producing the airframe in

this cooperation. The key subsystems like the dynamic system, avionics and engines are being

supplied by Eurocopter and its European suppliers. Despite this minor cooperation work-share, this

program was a major milestone for Avicopter as it was recognized for the first time by a major

foreign OEM as a worthy co-development and co-production partner.

In 2005, the existing cooperation between Avicopter and Eurocopter was further expanded

to co-development and co-production of a new generation medium-weight helicopter, the EC175/Z-

15 (Figure 37). This is an equal partnership program with equal design and production work-share.

Unlike the previous EC120 cooperation, Avicopter has greatly increased its responsibilities for the



design and production of EC175 subsystems that include airframe, main rotor, tail transmission,

flight controls and fuel system (Aviation International News, 2010). A remarkable aspect of this

program was the speed in which Avicopter was able to design and develop its work share. Avicopter

was able to complete its design work share within a very short time frame of four years. This

confirms significant progress in the technological learning process of Avicopter.

Figure 37: The first EC175/Z-15 airframe delivered by Avicopter (Flight Global)

In addition, Avicopter has been involved since early 2000s in several smaller cooperation

programs with other major OEMs like Sikorsky and AgustaWesdand as sub-contractors (Figure 38).

For instance, Avicopter manufactures and supplies composite airframe components to Sikorsky S-76

and S-92 helicopter final assembly lines that are located in the US. Since 2005, AgustaWesdand

cooperates with Avicopter in the component manufacturing and assembly of AgustaWesdand

CA109 helicopters in China (Ainonline, 2010). In addition, Avicopter was involved since 1991 in a

secretive cooperation program with a number of western OEMs to develop its first dedicated attack

helicopter (WZ-10), which first flew in 2003. The dynamic and avionics systems were reported to

have been co-developed with anonymous western OEMs Oane's Defence, 2010). These cooperation

programs have provided Avicopter additional technological learning opportunities for advanced

manufacturing technologies.

Figure 38: Sikorsky S-76, S-92 and AgustaWestland CA109 (Airliners.net)

Avicopter technological learning process continues with newer programs in the pipeline. In

2009, Avicopter announced its cooperation with the Russian Mil in the co-development of new



heavy-lift Mi-46 helicopter (Flight Global, 2009). The Mi-46 helicopter (Figure 39) will be the largest

helicopter in the world and is designed to lift a payload of more than 20 tons. This will be a

significant test of Avicopter technological capability as it has never built and designed helicopter of

this weight category. Avicopter's heaviest rotorcraft (Z-8) has only a weight of 13 ton. It is likely that

substantial amount of technologies will be transferred from the Mil to Avicopter in this cooperation

as Mil has already extensive experience in the design and production of heavy-lift helicopters.

Figure 39: Mi-46 Concept Drawing (Russian Helicopters)

6.1.5 Technological Knowledge Learned

Avicopter has undergone through an adapted version of China's dominant technological

learning process of absorption, adaptation and reinventing of foreign technologies. Instead of going

through the normal sequential and progressive technological learning phases, Avicopter has learned

by alternating (zigzagging) between cooperative (licensed production) and non-cooperative (design-

adaptation and reverse-engineering) rotorcraft programs. This adapted learning process has enabled

Avicopter to continuously learn and apply its technological knowledge. Perhaps even more

importantly, this learning process exposed Avicopter to different western OEMs' technologies and

processes.

The cooperation programs not only served as an avenue for Avicopter to absorb foreign

technologies, but also as test-beds for the verification of its technological knowledge. For instance,

technical problems caused by Avicopter's technological knowledge gap were likely to be rectified by

its cooperation partners in order to avoid schedule delay and additional cost for the entire

cooperation program. This often resulted in unavoidable transfer of knowledge, which was beyond

the original cooperation scope. Furthermore, cooperation program always requires certain level of

alignment of development (e.g. requirements management) and production processes (e.g. quality

and material resource management) between cooperating companies. It is reasonable to believe that



Avicopter has benefited immensely directly and indirectly through these interactions with its

cooperation partners.

The lack of access to technologies has led to intense reverse-engineering and internal R&D

effort at Avicopter. Reverse-engineering is part of "reinventing the wheel" process, which was

carried out in the Avicopter's Z-8 and Z-1 1 programs. Since Avicopter did not have any access to the

propriety technical data from the OEMS to build these products, tedious and painstaking efforts to

recreate these products were carried out (CCTV Z-8 Development History, 2009). Internal R&D

played a strong part in the development of Avicopter's technological capability, which conforms to

the results from Gao (2004) research findings on the use of "reinventing the wheel" in more

successful Chinese electronic product companies. Furthermore, the lack of fundamental technologies

and knowhow such as manufacturing equipment, industrial standards, production processes hindered

the technological progress of Avicopter.

In line with Cheung's research, my findings in this case have indicated that the Chinese

government did not always support Avicopter. The Z-8 program has shown that the financial and

technical supports for the program for several years rested solely on Avicopter (CCTV Z-8

Development History, 2009). A period of financial difficulty in the Z-8 program from late 1970s to

early 1980s resulted in the loss of skilled labor and suppliers, which invariably led to knowledge decay

(CCTV-4). The total consequence of this incident remains unknown.

Avicopter has learned a broad range of rotorcraft technologies over the last several decades.

It has gained experience in the design-adaptation and production of light-weight, medium-weight and

heavy-weight rotorcrafts. It has shown significant advancement in development of indigenous

airframe and avionic subsystems. However, the precise level of technological knowledge about

Avicopter's design and production capabilities of dynamic system remains unknown. Avicopter does

not possess any in-house capability in engine design and production. To conclude, all these evidences

suggest that Avicopter certainly still has technological knowledge gap to fill before it could match

other global OEMs.

6.1.6 Conclusion

Avicopter has grown from a licensed manufacturer to a domestic OEM with broad range of

design-adaptation and production experience. It has accumulated technological capabilities in all

weight segments of rotorcrafts (light, medium and heavy) through selective cooperative and non-
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cooperative efforts. However, Avicopter has not yet achieved the level of technological capability of

leading rotorcraft OEMs. Its technological learning process can be considered as an impeded but

continuous success. I believe the main constraining factors of Avicopter's market and technological

position is China's limited access to foreign technologies and ineffective NIS.

China's political isolation (Soviet-Sino tension, UN arms embargo after 1989) for several

decades has severely limited Avicopter's access to foreign design and manufacturing technologies.

On the other hand, findings have indicated that this actually motivated Avicopter to conduct more

internal R&D and "reinventing the wheel" efforts, which strengthened its technological knowledge.

The technological learning result of Avicopter is quite remarkable given the limited access of foreign

technologies. More importantly, Avicopter was facing an ineffective innovation system in its

aerospace sector of its industry. The lack of spillover from the commercial industries and ineffective

management also severely hampered the technological learning process in Avicopter.

Nevertheless, there are signs of improvement within China's NIS that could accelerate

Avicopter technological advancement. The Chinese government has identified the need for

restructuring of its aerospace industry. The consolidation of HAIG, CHAIG, CHRDI and BDP in

2008 under the Avicopter exemplifies this point. Even though these companies have been centrally

managed by the AVIC conglomerate and closely linked through their R&D dependency on the

CHRDI since their founding, there is a need for reorganization to enhance operational leanness and

efficiency. In my opinion, this consolidation will have more impact on Avicopter's organizational

efficiency than its existing technological capability. This consolidation will certainly alter the way

Avicopter's technological learning process in the future. In addition, China also sees the need for

greater synergy between the aerospace and commercial industries (Cheung, 2009). Potential

technological spill-over areas from the commercial industries are avionics and composite materials,

where these commercial industries have shown remarkable technological advancement. However,

dynamic systems and engines will still remain the Achilles' heel of Avicopter at least for this decade.

Today, Avicopter is the leading rotorcraft company in China. Its current products may still

lack international quality and safety standard, but China's turbocharged domestic market potential,

which will create immense opportunity to learn and verify new technologies and processes, will

certainly support the continued technological learning process of Avicopter.



6.2 Case Study 2 - Kawasaki Heavy Industries Aerospace

6.2.1 Company Introduction

Kawasaki Heavy Industries Aerospace (KHI Aerospace), the aerospace division of publicly-

owned Kawasaki conglomerate, is headquartered in Gifu Prefecture and has two smaller other plants

in Nagoya prefecture (Figure 40). KCHI Aerospace is known as one of the three Japanese first-tier

aerospace companies, which also include Mitsubishi Heavy Industries (MHI) and Fuji Heavy

Industries (FHI). KHI Aerospace was founded in 1922 and started designing and manufacturing of

military fixed-winged aircrafts until the end of World War II. After the war, Japan's aircraft industry

was completely destroyed and it was barred under the post-war sanction from designing and

producing aircrafts until 9 th April 1952 (Hall & Johnson, 1968a). KHI Aerospace resumed its

aerospace activities immediately after the lifting of the sanction through licensed production of

predominantly US fixed-winged military aircrafts and rotorcrafts.

Figure 40: Gifu headquarters and Nagoya sites (Source: KHI)

The main site of KHI aerospace in Gifu has a comprehensive R&D and manufacturing

facilities for both fixed-winged and rotorcrafts. All rotorcraft activities are located in Gifu. KHI

Aerospace has been producing rotorcrafts under license since 1953. These include Bell B47G,

Boeing V-107, CH-47J, Hughes OH-6 and most recently AgustaWestland MCH-101. KHI co-

developed and co-produced the BK117/EC145 with Eurocopter and indigenously developed the

OH-1 light observation helicopter (Figure 41).

Figure 41: Examples of Rotorcraft Products - BK1 17, CH-47J and OH-1 (Source: KHI)

Gifu is also the production site for a wide range of Japanese indigenous fixed-winged aircraft

programs such as the F-2 fighter jet, C-1 transport aircraft and T-4 training jet (Figure 42). The two
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smaller sites in Nagoya prefecture are involved only in co-development and co-production projects

with Boeing for commercial aircrafts such as the Boeing 767, 777 and 787. For instance, KHI

Aerospace is responsible for the forward fuselage, main landing gear and main wing fixed and trailing

edge for the Boeing 787 program.

Figure 42: KIl Aerospace Fixed-Winged Programs - T-4, C-1 and F-2 (Source: KHI)

In additional to rotorcrafts and fixed-winged aircrafts, KHI Aerospace is a systems supplier

for space and aircraft programs. KHI Aerospace designs and manufactures fairing for space vehicle

and deliveries complete reusable space systems to the Japan Aerospace Exploration Agency (AXA).

For the aircraft systems programs, KiHI manufactures under license critical rotorcraft systems such

as turbo-shaft jet engines for leading engine OEMs such as Honeywell (US), Rolls-Royce (UK) and

Turbomeca (France).

KHI Aerospace has come a long way after the lifting of the sanction that forbade the

recreation of the Japanese aircraft industry in 1952. Today, KHI Aerospace is a competent aerospace

company with the necessary technologies to become a mid-size aircraft OEM like Embraer or

Bombardier. The speed of KHI technological learning since 1952 can be attributed to the generous

access to US advanced aircraft technologies (King & Nowark, 2003b). At the same time, KHI's

effective technological learning capability is the other enabling factor that has helped KHI Aerospace

to regain its lost aerospace capability after the end of World War II.

6.2.2 The Need for a Domestic Rotorcraft Industry

There are two main factors that motivated Japanese government to recreate its rotorcraft

industry. The first reason was national defense and security. After the Second World War, the threat

of further international conflict did not subside. The rapid expansion of communism from the Soviet

Union to Asia and the Cold War between the western nations and the Soviet Union generated

significant security risk to the Asia-Pacific region. There was a need to create a credible self-defense

force for Japan immediately after the war. Hence, the modernization of Japanese defense systems

was a top priority for the post-war Japanese government (Pelvin, 2000). Rotorcraft has been a vital



asset to military forces since the Korean War. Judging from the enormously large fleet of several

hundred rotorcrafts in Japan's Self-Defense Forces today, the role of rotorcrafts in Japan's defense

structure cannot be overstated. In fact, Japan has the largest rotorcraft fleet in the Asia-Pacific

region, more than any other European nations (ane's Defence, 2010). A domestic rotorcraft industry

to support its domestic demand for rotorcraft was a vital strategic need.

The second reason for Japan to create a domestic rotorcraft industry was for economical

benefits, as backed by many Japan industrial scholars. The Japanese government has been using

defense spending to improve its national economy. In fact, economic factors are fundamental

considerations of Japanese defense acquisition policies (Chinworth, 1992b). Defense systems such as

rotorcrafts are very costly and create significant impact on Japan's balance to trade if sourced directly

from foreign OEMs. The difficult post-war recovery period in Japan justified the use of local

industries and resources in the acquisition of defense systems. For instance, local industries could

produce defense equipment instead from buying off-the-shelf from overseas. Furthermore, the

Japanese government saw the great spillover effect of aerospace technologies on other industries and

identified aerospace technology as "key technology" (Alexander, 1993).

These two factors constituted rationales for the creation of a domestic rotorcraft industry.

Due to the Japanese governmental policies (such as limiting ownership of capital assets by foreign

companies in Japan), licensing of technologies to Japanese companies such as KHI Aerospace is the

only avenue for foreign OEM to conduct defense business in Japan (Odagiri & Goto, 1993a, 1996a).

In addition, it is important to note that KHI Aerospace is part of K-HI conglomerate's diversified

industries. Despite the fact that the manufacturing of aerospace products has not always yielded high

financial returns (Odagiri & Goto, 1996b), prestige and potential technological spillover effect to

other products (especially advanced materials) within the company should not be excluded as

another possible motivation for KHI Aerospace's and other Japanese OEMs' diversification into the

rotorcraft business.

6.2.3 National Innovation System

The Japanese National Innovation System

Despite the fact that Japan is a late-comer in the global economy in comparison to the

western developed nations, it started acquiring western technologies as early as the Tokugawa era

(1603-1868). Based on the detailed research conducted by Odagiri and Goto (1993, 1996), Japan had
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started importing technologies from the Netherlands, Germany, the US and the UK even before the

Second War World. These technologies ranged from automotive, aerospace, metal processing to

electrical devices. However, Japan lagged behind the western developed nations in technology until

the later part of the 20 th century. The catching up of Japan with the developed nations occurred only

after the Second World War. So, how did Japan manage to learn and catch up with its rivals over the

last fifty years? Odagiri and Goto offer a concise representation of the Japanese National Innovation

System (NIS) during the post war era (Figure 43).
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Figure 43: The Japanese National Innovation System (Adapted from Odagiri & Goto, 1996)

In Figure 43, Odagiri and Goto show the different factors that have influenced innovation

(represented by technological capabilities) in Japan. The three main stakeholders in Japanese NIS are

the Japanese private sector, the Japanese public sector (i.e. the Japanese government) and overseas

stakeholders such as foreign companies and governments. These three stakeholders provide the

innovation system essentials and catalysts such as access to foreign technologies, education, financial

incentives, pro-domestic trade policies, firms' strong learning culture and indigenous R&D that

facilitate innovation. Furthermore, the interaction between market demand, entrepreneurship and

technological capabilities also determines the dynamic and outcome of the Japanese innovation

system.



Odagiria and Goto also suggest that Japan has always pursued technological learning using a

dual approach involving technology importation and domestic R&D (Odagiri & Goto, 1993a). This

seems to converge with the dominant technological learning process for most late-comer developing

nations such as China and South Korea, which conduct further improvement and adaptation after

the absorption of technologies. Domestic R&D is also essential to enable firms to evaluate, adapt

and improve imported technology (Odagiri & Goto, 1993a). In addition, their research findings

indicate that this technological learning process is valid for all major Japanese industries like iron and

steel, automotive and electronic (Odagiri & Goto, 1993b). However, Japanese government policies,

owing to the modest level of incentives, were less effective than the private sector's own effort in

driving innovation (Odagiri & Goto, 1993a).

Another important finding from their research shows the extensive use of technology

licensing, cooperation, reverse-engineering and use of foreign advisors in technological learning

(Odagiri & Goto, 1993b). Nevertheless, the most interesting reason of Japan's success in

technological learning and catching up with the western nations is the innovation system within the

private enterprises. More precisely, Odagiri and Goto believe that the most important reason of

Japan's post-war industrial success is the human aspect of the innovation system. First, they attribute

these aspects to the relatively high proportion of engineering and scientific trained managers in the

Japanese company management echelon. Second, the long-term employment in Japanese working

culture creates long term and close relationship between managers and workers. Such relationship is

crucial for long term and sustainable management practices. Third, Japanese firms practise strong

interfacing between R&D and production (Sakakibara & Westney, 1985), in contrast to the Chinese

and Russian segregated innovation systems (i.e. deliberated geographical and organizational

separation of production and design). High level of cooperation between OEM and their suppliers

encourages innovation and cross-enterprise learning (Dyer, 2000). Finally, the generally long-term

view taken by Japanese firms enables the periodical rotation of Japanese workers to acquire system-

view of the company and greater job flexibility (Odagiri & Goto, 1993c).

The Japanese Aerospace Innovation System

The Japanese aircraft industry is highly-controlled industrial sector in Japan. Powerful

stakeholders of the Japanese government and industry collectively shape the aircraft industrial

innovation system. Figure 44 shows the innovation system of the Japanese aircraft industrial industry.



Defense policies such as arms export ban (including military aircrafts) and Kokusanka (self-reliance of

arms production policy) have profound impact on the innovation system.
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Figure 44: The Japanese Aerospace Innovation System (adapted from Chinworth, 1992)

Next, the industry influences the innovation systems through their accumulated aerospace

technologies since their establishment and their current R&D activities. Chinworth (1992) points out

that residual aircraft knowhow were used in the development of postwar fixed-winged aircrafts. For

instance, some leading Japanese engineers involved in postwar aircraft programs had previously

worked for pre-war aircrafts (Odagiri & Goto, 1993d). Nevertheless, even though aeronautical

technologies have advanced, the fundamental principles of flight remain unchanged. Not having to

relearn the basic aeronautical technologies has certainly helped to shorten the learning curve.

Japanese government's policy of "no winner takes all" redistributes aerospace work contract by

assigning the winning company as system integrator and losing companies as suppliers (Chinworth,

1992a). This ensures the survival of all major aerospace companies and hence protecting their

technologies. Unlike the common aerospace industrial practices in the US, Japan's "no winner takes

all" policy may be a solution for ensuring technologies and jobs sustainment, but it is also an

expensive solution. As a consequence, Chinworth believes that Japanese indigenous aerospace

products are not as cost-competitive as western products (Chinworth, 1992a).



Furthermore, the private sector consisting of business associations and commercial

technological firms are important stakeholders in the Japanese aerospace innovation system. Business

associations and interlocking companies' stakeholder relationship (Keirelsu) promote cooperation

among aerospace firms and suppliers. This cooperation includes sharing of knowledge in both

technologies as well as processes (Chinworth, 1992b). Additionally, private sector provides the

supply of dual-use technologies to the aerospace industry. Dual-use technologies such as

manufacturing technologies, material technologies and electronics can be applied in both commercial

and aerospace products.

Finally, the last element of the Japanese aerospace innovation system is the access to foreign

technologies. The rapid modernization of the Japanese aerospace industry can be attributed solely to

the almost unimpeded access to US technologies. This access to US aerospace technologies

continued unimpeded until the late 1970s when the US started to worry about the "boomerang

effect" of creating a world class competitor that will ultimately compete with US players (Odagiri &

Goto, 1996b). After the 1970s, the US implemented stricter control of technologies to Japan and

ensured the flow back of technologies resulting from cooperation between the two countries.

Similarly, the postwar technological learning in Japanese aerospace industry was possible through the

extensive licensed production of US aerospace products. However, I believe that key elements of

Japan's national innovation system such as the human and management aspects of enabling

innovation and technological learning contributed significantly to the development of aerospace

industry.

On the other hand, Japanese aerospace industry is heavily dependent on military contracts

from the government as there is limited domestic demand due to geographical constraints and its

restriction on export hinders the greater rate of advancement in its aerospace technologies and

productivity (Odagiri & Goto, 1996b).

6.2.4 Technological Learning Process

Japan's relatively easy access to the US aerospace technologies after 1952 generated a unique

technological learning dynamic for Japanese rotorcraft companies. Besides KHI Aerospace, Fuji

Heavy Industries (FHI) and Mitsubishi Heavy Industries (MHI) are also involved in rotorcraft

cooperation with foreign OEMs. These foreign OEMs are mostly from the US. KHI is unique

among the three Japanese companies due to the fact that it is the only one that has cooperated with



European OEMs. This includes the co-development and co-production of the BK-117 helicopter

with Eurocopter since 1977 and the licensed production of AgustaWestland MCH-101 helicopter

since 2006. FHI and MHI have only been involved in licensed production with US OEMs Sikorsky

and Boeing. Most importantly, KHI Aerospace has demonstrated its superior technological capability

over MHI and FHI due to the fact that it is the only one that has successfully led the development

and production of an entirely new rotorcraft as system integrator. In comparison, FHI and MHI

have only been licensed production contractors and systems suppliers to KHI up to now. MHI has

once tried to introduce its own independently designed helicopter MH2000, which failed due to a

crash and the lack of market interest. Figure 45 shows the cooperation network and the products

involved between KHI and the foreign OEMs.

t eo McDonnell Douglas
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Figure 45: Cooperation network between KHe and Foreign OEMs (various sources)

The technological learning process of KHI can be divided into four phases. First, bHI

carried out licensed production of US products from 1950 to 2009. This involved the manufacture of

236 units of Bell B47G helicopter since 1953 to the 1960s (SJAC, 2009). This was then followed by

the licensed production of 106 units of Boeing V-107 helicopters, 387 units of McDonnell Douglas

OH-6 helicopters, 82 units of Boeing CH-47J/JA and 12 units of AgustaWestland MCH-101. The

second phase involved the design adaptation of Bell B47G into KH-4 helicopter, which was basically

a heavily modified clone of the Bell B47G. The third phase involved the co-development and co-

production of the BK-1 17 helicopter with Eurocopter from 1977 onwards. The fourth phase is the

indigenous development of the OH-1 helicopters with MHI and FHI as systems suppliers. As of

today, KHI is developing a transport derivative of the OH-1 observation helicopter, the UH-X. The

evolution of the mode of cooperation and the technological learning (indicated by the subsystem

capabilities) over the history of KHI are shown in Figure 46. These two figures collectively provide



the unique "DNA" of the technological learning process of KHI. The following sections of this

chapter provide detailed description of the four technological learning stages of KHI.
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Figure 46: Technological Knowledge Evolution Map of 1QJ11 (various sources)

Licensed Production Phase (1953 -present)

The first phase of technological learning was a significant learning opportunity for il

solely from the production volume standpoint. These licensed production programs of B47G, OH6,

1KV-I 07 and CH-47J (Figure 47) amounted to about 800 units of helicopters in total. Such a large

production volume allowed KillHI to refine production processes and improve its technological

learning curve. For the case of licensed manufacturing of Boeing il 47J, Kh learned the art of

building CHJ-47j from Boeing using a three-phase process (Flight International, 1986). This three-

phase process (Figure 48) clearly showed the characteristic of "learning by doing" introduced by

Malerba (Malerba, 1992). In the first phase, Kil carried out the installation the interior equipment

such as trims and avionics into two flyable "green aircrafts" delivered by Boeing. Installation of



interior equipment is considered as low-complexity work that can be readily learned and applied.

Often, installation work consists of straightforward and simple screwing and bonding of equipment

in the aircraft that do not require complex tools or machines.

In the second phase, KHI assembled four CH-47 complete knocked-down kits, which

consisted of subassemblies and systems delivered from Boeing. Assembly of subassemblies and

systems will usually require special rigs and tools and special technical knowhow to ensure correct

alignment of these aircraft subsystems. This kind of work is more complex than installation work. In

the third phase, KHI was responsible for the manufacture of the semi-finished mechanical dynamic

components, part of the airframe fuselage, cockpit, wiring system and integration of Boeing-supplied

systems.

Figure 47: KV-107, OH-6 and B47G (Kil & Aviastar)

The third phase is the most complex among the three phases and it takes the longest time to

master as manufacturing demands more tacit knowledge and processes than assembly. Even though

few details concerning the exact localization level of these licensed produced rotorcrafts are known,

the localization level for all these licensed products can be assumed to be similar to those of fixed-

winged aircrafts licensed produced in the same period. As a reference, the localization rate of fixed-

winged aircrafts such as F-104J Star Fighter jet licensed produced by KHI reached around 45% of

the aircraft value, where the rest were procured from lower tier suppliers (Hall & Johnson, 1968b).

This localization level was comparable to the average value for US OEMs during the same period

(1960s). There were no reasons why KHI did not pursue this high localization level as it was also

involved in the parallel licensed production of other fixed winged aircrafts from the US OEM

Lockheed.

The research by Hall and Johnson on KHI - Lockheed cooperation in the licensed

production of fixed-winged aircrafts such as the T-33A, P2V-7 and F-104J indicates similar

systematic and comprehensive transfer of technologies within these licensed production cooperation.

This transfer included the co-location of Lockheed technical assistance teams at KHI, the training of

KHI staffs in the US and the provision of all tooling and design documentations. Furthermore, the



production plan was targeted at achieving rapid localization of the US products with high Japanese

local content. On the other hand, KH1 demonstrated immediate learning capability by adapting and

finding innovative technical solutions, which were better than the original US solutions, to its

localized products (Hall & Johnson, 1968c). This exemplifies the technological learning through

learning by improving in Japanese companies.
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Figure 48: The 3-phase Tech. Transfer Process of Boeing CH-47J (Gan/Flight International)

The Design Adaptation Phase (1953 - 1972)

The development of KH-4 helicopter (Figure 49) marked the beginning of KHI's second

phase of technological learning. I believe that the unimpeded transfer of US aerospace technologies

to KHI and its meticulous technological learning system explains why KHI Aerospace was able to

deliver the KH-4 only seven years after it delivered its first licensed produced Bell B47G helicopter

(SJAC, 2009). KH-4 is basically a heavily modified version of the Bell B47G. KH-4 had a modified

cabin, cockpit, three-blade rigid rotor head (KHR-1 prototype), new engine and fuel system. Here

again, the huge production volume of 236 units of Bell B47G provided ample opportunity for

component level reverse-engineering and design adaptation for KHI. Furthermore, the fact that a

further 203 units of KH-4 helicopters were produced by KHI indicates that the KH-4 was a

successful design-adaptation program.



Figure 49: B47G and BK-117 (K11)

The Co-development and Co-Production Phase (1977 - present)

The third phase of the K(-HI technological learning process was the co-development and co-

production of BK-117 (Figure 49) with Eurocopter (previously named MBB before its merger with

Aerospatiale) since 1977. The first flight of BK-117 took place in 1979. In this cooperation, KHI was

given a large part of the work share that included airframe, main gear box, mechanical control

system, fuel system and cockpit (Polte, 2008). This was a significant increase of technological

capability for 1H-Il. Furthermore, the partnership was a huge testament of KHI's technological

capability by Eurocopter, a leading rotorcraft OEM today. The cooperation was a success without

parallel in Eurocopter and KHI (Eurocopter, 2009). The following quotes from an exclusive

interview of program manager of KHI testify the extraordinary long and successful cooperation with

a foreign OEM it had carried out so far.

Masahiko Yokota (KHI - Program Manager BK-117): 'I have a great deal of respect for the German and

Japanese employees who have contributed to this (BK- 117) program. Our 30-year-long histoy is proof that our decision

to cooperate with Eurocopter (MBB at that time) for the manufacture of civil helicopters was the right choice. KHI is

v'ery proud and pleased that together with Eurocopter we have been developing the BK-117 product family for 30

years....... The co-development project has gone smoothly as a result of our common motivation." (Eurocopter, 2009)

Figure 50: Signing of BK- 117 Cooperation Contract in 1977 (Source: EADS)



Indigenous Development (1992 to present)

The fourth phase of KHI technological learning was marked by the OH-1 helicopter

program, which was brought to life in 1992. KHI was designated the prime contractor (60% work

share) of this program with MHI and FHI as system suppliers each having 200%0 of the work share.

The first flight of the OH-1 took place in 1996. The OH-1 is in many ways a helicopter that is far

more advanced than KHI's previous products like BK-117 and KH-4. The OH-1 possesses state-of-

the-art rotorcraft innovations such as shrouded Fenestron tail rotor, elastonomer rotor head, 400%0

composite airframe (Flight International, 1996). OH-1's asymmetrically spaced eight-bladed

shrouded "Fenestron" tail rotor was not only an innovation for KHI but also an innovation for the

world's rotorcraft industry. The asymmetrical spacing of the eight tail rotor blades reduces the OH-

1's noise level, which is an advantage for military rotorcraft. Furthermore, the major systems such as

engines (MHI/KHI), engine control (KHI) and avionics (Fujitsu, Yokogawa Electric, NEC, and

Shimadzu) are entirely supplied by Japanese suppliers or produced in-house (Flight International,

1996). This high level of localization and the use of advanced rotorcraft technologies in the OH-1

indicate significant increase in technological capability of KHI, especially as a system integrator. KHI

has delivered a total of twenty-seven OH-1 of the 200 ordered to the Japanese Self-Defense Forces

by 2008 (SJAC, 2009). Not only has KHI succeeded in the development of its first product, it also

succeeded in serialization of its production as measured by the constant production flow rate of

about three aircraft per year between 2000 and 2008. Constant production rate is an important

indication of manufacturing and process capabilities of a rotorcraft OEM. Report of usual material

and system integration problems that typically affect all OEMs was not known.

In 2005, KIHI announced the development of a transport derivative of the OH-1 to bid for

Japan's new helicopter requirement (UH-X) to replace its aging fleet of Bell UH-1 helicopters. KHI's

UH-X concept was to use existing technologies derived from OH-1. This marked KHI's ambition to

further its status as Japan's leading rotorcraft OEM. The development status of the UH-X transport

helicopter is unknown up to now. However, reports have indicated some technical issues that might

force KIHI into another co-development and co-production program (Flight Global, 2005).

6.2.5 Technological Knowledge Learned

KHI has learned through sequential cycle of licensed production, design adaptation, co-

development of older generation of helicopters (B47G, OH-6 and V-107). KHI's technological



learning process conforms to the technological learning process in Japanese NIS and aerospace

innovation system. From the case of CH-47J licensed productions, it was found that the learning

process in licensed production program was progressive and effective. However, it is interesting to

note that there was a return to licensed production of more advanced and complex new generation

of heavy-weight helicopters (CH-47/MCH-101). This step backwards to license production of

heavy-weight products is likely to be due to KHI's inability to adsorb technological knowledge to

develop this category of products (heavy-weight). Nevertheless, KiHI has made more rapid advances

in airframe and dynamic system than the other subsystems like avionic system and engines from 1953

to 1977.

In 1992, KHI has proven that it has succeeded in leading the design and production the

entire helicopter system (OH-1) independently as a system integrator. The OH-i's 100% localization

level (airframe, engine, avionic and dynamic system) has not only demonstrated the full-spectrum

technological knowledge of the Japanese aerospace industry in the design and production of

rotorcraft subsystems, but also proven the advanced system integration capability of KHIL.

Nevertheless, KHI has so far only demonstrated this technological capability in light-weight

helicopters (KI-H-4, BK-1 17 and OH-1) and the majority of the KHI programs (five out of nine) are

licensed production. Most of the cooperation involved all subsystems except engine, which became

an item of cooperation programs only very recently (MCH-101 with AgustaWestland) and

indigenous programs (OH-1 and UH-X). Also, KHI did not carry out complete reverse-engineering

of foreign products.

KHI has gained rotorcraft technologies through cooperation with foreign OEMs. KHI has

also demonstrated its ability to adapt and apply learned technologies to indigenous products like the

KH-4 and OH-1. More importantly, KHI has mastered the complete set of technological knowledge

needed to development and produce light-weight helicopter after 40 years of technological learning.

However, evidences from recent programs such as the failed medium-weight UH-X and return to

licensed produced of heavy-weight product (MCH-101) suggest that KHI still have some distance to

go before becoming a full-pledge OEM in the rotorcraft industry.

6.2.6 Conclusion

KiHI has grown from a licensed manufacturer to a domestic OEM with comprehensive

rotorcraft technologies, which are confined to the lightweight product segment. Nevertheless, KHI



has not achieved the technological capabilities that could match those of leading global OEMs such

as Eurocopter or Bell. I believe that the main contributing and constraining factors of KiHI's market

and technological position from the NIS analysis are the easy access to foreign technologies and

Japan's self-imposed policy of arms export ban. Easy access to foreign technologies (especially US)

could have caused Japanese government's unwillingness to fund the more indigenous R & D in

rotorcraft product systems level. Having the technological knowledge but without the funding to

apply this technological knowledge could explain the current KHI's domestic OEM position.

Furthermore, Japan's small domestic market and lack of access to the global market offer little

economical reason for KHI to pursue privately funded product development.

The analysis of KHI's technological learning process has unraveled interesting insight into

how KHI acquired its technologies over its history. KHI's technological learning process can be

considered as unimpeded but surprising slow after the completion of KH-4. KHI acquired rotorcraft

technologies through a number of different modes of cooperation programs with foreign OEMs.

The dominant mode of cooperation of KHI is licensed production. Even though KHI had access to

foreign technologies through cooperation, it has not made significant progress in the indigenous

design and development of newer rotorcraft products. Its technological learning process was found

to be successful as there was no indication of technological absorption issues with KHI based on the

normal production and delivery schedules of its programs. In addition, increasing localization of

subsystems has indicated successful technological learning within KHI and further supports this

conclusion.

Interestingly, similar trend has been found in the Japanese fixed-winged sector. KHI and the

other major Japanese aerospace OEMs have been supplying major airframe structures to Boeing and

Airbus. However, these Japanese OEMs are just systems suppliers and not OEMs (systems

integrator). MHI and KHI have designed and produced military fixed-winged aircrafts but they are

not for export. In the commercial sector, MHI and FHI are developing small-size fixed winged

aircrafts. It is probable that Japanese OEMs are not ready for large commercial passenger jets mainly

due to the lack of technological capability (especially systems integration) and the high financial risks.

The current incumbent market players like Boeing and Airbus are alleged to be heavily subsidized by

their respective governments (LA Times, 2010). This unfair market practices pose significant

obstacles for Japan's entry into this high risk market. Here again, Japanese governmental policies

within the NIS determine the level of support for global aerospace industry in the global market.



Hence, I conclude that the technological evolution of KHI was strongly due to economical

and political constraints in the NIS, which favors licensed production over indigenous R&D of

rotorcrafts. This situation affected KHI technological learning process by limiting KHI's chance to

carry out more in-house R & D of rotorcraft technologies and practice system integration. K-HI's

position in the global rotorcraft industry as a subsystem supplier and domestic OEM will certainly

remain unchanged if the Japan's current national policies continue.



6.3 Case Study 3 - Agusta

6.3.1 Company Introduction

Founded in 1923, Agusta (full name - Construzioni Aeronautiche Giovanni Agusta SpA) is an

Italian company based in Cascina Costa, Italy. Agusta started its business in manufacturing of fixed-

wing aircrafts. In 1952, Agusta entered the rotorcraft business through licensed production

agreement with the American rotorcraft OEM Bell. This agreement was possible after the Allied

Forces lifted the Second World War sanction that banned aircraft production in Italy in 1950. Bell,

the maker of the successful B47 helicopter, was looking for a company that could produce the same

helicopter for the European market. The cooperation agreement between Agusta and Bell included

both production and marketing of the B47G (Museo Agusta). In the 1969, Agusta expanded its

fixed-winged aircraft business through the acquisition of an Italian fixed-winged OEM SIAI-

Marchetti.

Figure 51: Main Sites - Cascina Costa, Vergiate & Anagni (Source: AgustaWestland)

Agusta is located in six geographically dispersed locations in Italy. These locations include

Cascina Costa (headquarter, R&D and transmission), Vergiate (finally assembly), Sesto Calende

(training), Anagni & Frosinone (rotor head and composite component), Benevento (metallic casting)

and Brindisi (airframe). Since 1952, Agusta has evolved rapidly through a long period of licensed

production, design-adaptation, co-design and co-production to become a global OEM. Its notable

products include the A109, the world's first second generation helicopter, the A129, Europe's first

tandem-seat dedicated attack helicopter and the BA609, the world's first commercial tilt-rotor aircraft

(Figure 52). In 2001, Agusta merged with the British rotorcraft OEM GKN-Wesdand to form

AgustaWestland, which also became a subsidiary of the Italian defense conglomerate Finmeccanica.



Figure 52: Agusta Products - A109, A129 and BA609 (Source: AgustaWestland)

6.3.2 The Need for a Domestic Rotorcraft Industry

After the Second World War, Italy needed a domestic rotorcraft industry due to the growing

market demand for air transportation and defense (Chiesa, 1982). It is important to note that Italy

did not have rotorcraft technologies until Agusta created its rotorcraft division. However, Italy had a

fixed-winged aircraft industry that was founded in 1907. By the end of Second World War, the Italian

aircraft industry had a peak workforce of 150,000 workers and manufactured a total of 11,500 fixed-

winged aircrafts during the four-year war. Hence, the design and manufacturing of fixed-winged

aircrafts was a major industry in Italy until the end of Second World War. In 1978, the Italian

government's Interdepartmental Committee for the Industrial Policy (CIPI - Comitato

Interministeriale per la Politica Industriale) supported the development of Italian rotorcraft industry

by designating aerospace industry as a priority industry (Chiesa, 1982). Moreover, private

entrepreneurship was the other driving factor for the creation of Italian rotorcraft industry. Before

1973, Agusta was a private industrial company, which also designed and manufactured commercial

products such as the famous MV Agusta motorcycles and fixed-winged aircrafts. Agusta's most

significant progress in rotorcraft technologies occurred before 1971, the year Agusta introduced its

first globally competitive product, the A109 helicopter. Hence, a combination of both national and

entrepreneur needs have contributed to the creation of the Italian rotorcraft industry.

6.3.3 National Innovation System

The Italian National Innovation System

Italy is considered a late industrial latecomer among industrialized nations (Malerba, 1993;

Belussi, 2001). Compared to the more industrialized western-European nations, Italy had a relatively

weak history of innovation until the latter half of the 2 0 ,h century. Its national innovation system is

considered dualistic in nature due to the co-existence of two distinct types of innovation systems.

The first type of innovation system is known as the Small Firm Network, which is formed by small
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and medium sized firms (SME). Firms are classified as SME if they have between 10 and 249

employees (Lindner, 2003). In the Italian manufacturing industry, small and medium firms constitute

more than 900 of all firms (Coletti, 2007). The second type of innovation system is known as the

Core R&D system, which is formed by large firms and public research institutions such as

universities and research centers. The key actors in Italy's NIS are the public sector, private sector,

foreign firms and the market (Figure 53).

The Small Firm Network is viewed as the more dynamic and innovative part of Italy's NIS

due to its highly dynamic "atomistic learning activities" found in the network (Malerba, 1993).

Malerba believes that the Small Firm Network uses informal learning instead of formal R&D to

innovate. This informal learning is carried out by doing, using and interacting with the customers and

other firms. It is important to note that individual firm does not innovate alone but rather in

collaboration with other firms in the network (Belussi, 2001). The firms that operate in this type of

innovation system are usually from the traditional industries (e.g. textiles and leather products) and

equipment manufacturing industries (e.g. machine tools and robotics).

In comparison, the Core R&D system is viewed as the weaker part of Italy's NIS. The

effectiveness of the Core R&D system has been hampered largely by poor formulation and

implementation of national R&D policies, cultural and structural issues (Belussi, 2001; Malerba, Italy,

1993; Modena, Gottini, Balconi, & Vita-Finzi, 2001). In the private sector, large firms favored import

of foreign off-the-shelf technologies through licensed production instead of creating their internal

technological capabilities. Moreover, large firms were contented with the strategy of being

technological followers instead of technological leaders (Coletti, 2007; Malerba, 1993). This trend in

Italy's NIS could have severely stifled internal innovation capability in these large firms. In the public

sector, fragmented public R&D activities, the lack of coordinated R&D collaboration among sectors,

the lack of adequate national R&D funding and infrastructure have collectively weakened Italy's

global standing in innovation of advanced technologies (Chiesa, 1982; Malerba, Italy, 1993). In

addition, Italy's weak national education system has failed to produce the skilled labors that are

needed in the increasingly knowledge-based economy.

Italy's reentry into the world economy after the Second World War resumed its access to

foreign investment and technologies. From 1950s to 1970s, a large part of the technological changes

in Italian firms were obtained through licenses from foreign companies (Malerba, 1993). The influx
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of foreign technologies was due to foreign companies' interest in using Italy as a market entry point

for the greater European market due to Italy's relatively low cost and geographical advantages.

On the whole, Italy's NIS has been considered a failure by many research scholars. Italy's

Small Firm Network has been considered as more successful than the Core R&D system. Since 2005,

the Italian government has started to implement new measures such as the National Reform

Program (NRP) to rectify Italy's competitive lag behind other industrialized nations. However, the

success of such additional national program, as opposed to a more regional or local program, is still

under continuous debate.

Interest in Lower Cost
Advantages

Strong Small Firms
Network

Lack of National
R&D Infrastructure

Foreign
Companies

Access to
Foreign Technologies

Poor Implementation of
National R&D Policies

Large Firms'
Preference for Off-The-

Shelf Foreign
Technologies

Fragmented Core R&D
Activities across

Public and Private
Research lnsititutions

Large Firms'
Technological

Follower Strategy

Figure 53: View of the Italian National Innovation System (various sources)

The Italian Aerospace Innovation System

The Italian Aerospace industry has been a state-owned industry since 1973. The Italian

aerospace industry's direct employment has grown from about 5,000 workers in 1950 to about

50,000 today (Chiesa, 1982; BMI, 2010). The Italian aerospace industry is currently monopolized by

the aerospace and defense conglomerate Finmeccinica Group, which owns several major global
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aerospace players such as Agusta-Westland, Alenia Aeronautica and Alenia Aermacchi. Since early

1980s, the Italian aerospace industry has been singled out as a prioritized industry and supported by

government funding such as the Technological Innovation Fund for Aeronautics (Malerba, 1993;

Chiesa, 1982). Moreover, bureaucracy that used to hinder inter-firm R&D cooperation was reduced

by the introduction of the Law 240, which led to vertical and horizontal cooperative arrangement

among aerospace firms, other firms and research institutions during the 1980s (Malerba, 1993). As a

result of these governmental measures, the Italian aerospace industry could have experienced a

different innovation environment that created a flourishing innovation oasis within Italy's weak Core

R&D system.

Italy's membership in the NATO (North Atlantic Treaty Organization) security pact was a

key factor to gain access to American aerospace technologies. For instance, all major American

rotorcraft OEMS such as Bell, Sikorsky and Boeing have transferred licenses to Agusta since the

1950s to manufacture helicopters locally (AgustaWestland). Similarly, American fixed-winged OEM

Lockheed provided the Italian industrial giant Fiat Group with licenses to manufacture 199 F-104

Star Fighters in Italy (Stoelinga, 2005). More importantly, the access to foreign technologies was not

only tied to the Italian governmental defense procurement contracts, which were often considered as

indirect financial supports to the Italian aerospace industry. Many production licenses obtained by

Agusta were also meant for export to foreign customers (Flight International, 1971).

Italian aerospace industry is an exceptional sector within the Italian NIS on how government

policies could mitigate the aforementioned shortcomings in the Italian NIS. In comparison, the

Italian government policies have been considered as unsuccessful in the development of other high

technological products (Coletti, 2007). The Italian aerospace industry is not immune to the same

macro-economical issues like the shortage of skilled technical workforce and the lack of coordinated

technological effort among the key actors in the NIS. However, Italian globally competitive and

innovative aerospace products such as the Aermacchi fixed-winged jets and Agusta rotorcrafts have

proven otherwise. A detailed study of Agusta in the next few sections might reveal some insight on

these aspects of the Aerospace Innovation System (Figure 54).
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Figure 54: Innovation System in the Italian Aerospace Industry (various sources)

6.3.4 Technological Learning Process

Agusta's technological learning process began with its first cooperation with Bell in the

licensed production of Bell 47G helicopters. Agusta's technological learning process consists of

licensed production, design-adaptation, internal R&D and co-development/production of rotorcrafts

with leading OEMs. Agusta's rapid technological growth can be attributed mainly to the

technological learning from the licensed production of foreign OEMs' products (Figure 55) and its

concurrent in-house R&D effort. Furthermore, Agusta's learning success has certainly benefited

from Italy's innovative and competitive machines and tooling industries, which provide Agusta with

precision manufacturing technologies for producing its rotorcraft subsystems such as gear airframe

and dynamic systems. In addition, it is reasonable to believe that Agusta's pre-war fixed-winged

airframe industry and association with its parent aerospace and defense company Finmeccinica

Group have also accelerated the leaming curve in rotorcraft airframe design and production.
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Figure 55: Cooperation network between Agusta and Foreign OEMs (various sources)

Licensed
Production

-E 2

Design
o Adaptation

0 1
C 0

adu
0

L-Co-Dev./-Prod.

In-House
0 DevIProd.

Year of First Flight
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

SH-3D CH-47 HH-3F
Sikorsky Boeing Sikorsky

B47G B204 B205 B206 B212 B412 L L L P
Bell Bell Bell Bell Bell Bell

A
E*A00 ABI02
A L P P 8

A103 (T) AB204+ AB212+ AB412+
A A P I A104 (T)

NAO 0 0 f A105 (T) A O
A A P c A106 (T) A L AlP P

NA 00 A15 (T)
A A P P

*A* 0 EH101 NH90 A O9@
C C Clp p Westland Eurocopter C C CVP P

BA609E A 00
Bell C C P P

A101 (T) A109 A129 A119 A139

I A lP P

Legend

Airframe Dynamic Avionics Engine

A 0 0

L - Licensed Production
A - Design Adaptation
C - Co-development/-Production
I - In-house*
P - Procured*
U - Unknown

Notes:

I* - In-house means that Agusta has the capability to do In-house design and production.
It does not reflect any outsourcing activities.

P* - Procured means that Agusta has the capability to define the requirement to the suppliers.

T - Only prototypes were built and eventually cancelled

Figure 56: Technological Knowledge Evolution Map of Agusta (various sources)
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The technological learning process of Agusta is shown in Figure 56. This figure shows the

different phases of technological learning, which consists of the four different cooperative and non-

cooperative learning phases shown on the vertical axis. The horizontal axis shows the time

dimension of Agusta's technological evolution. The year of first flight was chosen as the rotorcraft

programs' reference point as it is always considered a major development milestone in the aerospace

industry. Most importantly, all Agusta's rotorcraft programs are shown with their respective

cooperation OEMs and the level of Agusta's technological knowledge of the four main subsystems

in the figure. The detailed technological learning phases of Agusta, with reference to Figure 56, will

be discussed in detail in the following sections.

Licensed Production Phase (1952 - est. 2000)

Licensed production has been the core business activity of Agusta for almost 50 years. In

fact, without any prior rotorcraft technologies before 1952, Agusta was only able to jump-start its

rotorcraft business through the licensed production of American OEMs' products. Licensed

production has been the key source of technologies for Agusta's technological evolution. Agusta has

manufactured not only products from all major American OEMs (Bell, Boeing and Sikorsky), but

also all weight categories of rotorcrafts in high production volume (e.g. light-weight Bell B47G,

medium-weight Sikorsky SH-3D and heavy-weight Boeing CH-47). In essence, licensed production

has provided Agusta with immense qualitative (design) and quantitative (process) opportunities for

technological learning.

Design learning opportunities could have come from the diverse product designs and

production processes that Agusta adopted from cooperating OEMs. Some of the technological

learning activities that might have occurred in Agusta was comparing and benchmarking of best

technical and process designs. For example, benchmarking of component materials (composite

versus metallic airframes), dynamic system concept (tandem versus conventional rotor systems) and

scale of component (tooling for assembly and machining) could have provided valuable technological

learning points for Agusta.

Process learning opportunities could have come from the high production volume. Agusta

has manufactured not only for the Italian domestic market but also for the export markets. These

export agreements with American OEMs have increased Agusta licensed production volume

significantly (Flight International, 1974). The following table (Table 7) shows the estimated
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production volume of Agusta's licensed products. From 1952 to late 1990s, Agusta manufactured

through licenses more than 2121 rotorcrafts, which are considered as enormous in the low-volume

rotorcraft industry. High production volume

opportunity for Agusta as process learning usually

would provide immeasurable process

increases with routine.

Total >2121

Table 7: Licensed Production Volume of Main Products (various sources)

Figure 57: Bell B47G, B204 and B412 (Agusta / Vector Site)

Agusta began its long series of licensed production with the Bell B47G light-weight utility

helicopter in 1952 (Figure 57). More than 1000 units of Bell B47G were manufactured by Agusta.

Eight years later, Agusta acquired new licenses to produce the more advanced Bell B204 light-weight

utility helicopters, of which more than 237 units were manufactured by Agusta. Similarly, further

cooperation with Bell in licensed production was extended for the B205, B206, B212 and B412

helicopters. In these licensed production cooperation, due to Agusta's large production volume,

significant transfer of technology from Bell to Agusta for component manufacturing and final

aircraft assembly was likely to have taken place. Hence, this broad and deep Agusta-Bell cooperation

arrangement undeniably made Bell the most important contributor to Agusta's technological

evolution.

In addition, Agusta obtained licenses from Sikorsky and Boeing to locally manufacture 94

units of SH-3D (from 1967) helicopters and more than 190 units of CH-47 (from 1972) helicopters
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Licensor License Production
Model OEM Start Cooperation Type Volume

of Agusta

B47G Bell 1952 Licensed Production >1000
B204 Bell 1960 Licensed Production 237

SH-3D Sikorsky 1967 Licensed Production 94
B206 Bell 1968 Licensed Production >100
B212 Bell 1971 Licensed Production 240

CH-47 Boeing 1972 Licensed Production >190
B412 Bell 1981 Licensed Production 260



respectively. Both helicopters were also exported to foreign markets. A follow-up license for a few

dozens of HH-3F naval helicopters was obtained from Sikorsky in 1976. These medium and heavy-

weight helicopters represented significant leap in technology as compared to Bell products. The

licensed production of the SH-3D, HH-3F and CH-47 (Figure 58) greatly expanded Agusta

technological learning scope by introducing newer technologies such as complex rotor heads (three-

and five-blades), heavier dynamic systems (10-23 ton class) and production challenges (multi-product

complexity).

Figure 58: Sikorsky SH-3D, Sikorsky HH-3F and Boeing CH-47 (Agusta)

The Design Adaptation Phase (1953 - late 1990s)

In the shadow of licensed production of foreign products, Agusta started its design and

development activities in the rmid-1950s. Agusta adapted the designs of Bell products to create its

own range design-adapted products such as the A102, A103, A104, A105, A106 and Al15.

The A102 (Figure 59) was first flown in 1959 and it was based on the B47G. The piston-

engine powered A102 was equipped with a larger airframe to accommodate up to eight instead of

two passengers (Flight International, 1962). Moreover, it was the most commercially successful

design-adapted product among the earliest Agusta products in the 1960s. Two A102s were sold to a

commercial customer in Italy. However, the advent of gas-turbine powered helicopters in the mid

1960s eventually disrupted the further market success of the AB102 (Marchetti, 1984; Aviastar).

Figure 59 A102, A103 and A104 (Agusta)

The A103 and A104 (Figure 60) were single-seat and twin-seat versions of the same type of

piston-engmie powered light-weight experimental helicopters that were first flown in 1960 (Flight

International, 1962). Based on the same dynamic system used in the Bell B47G, these helicopters
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were retrofitted with Agusta-designed piston engines (MV A70 and A140V) and turboshaft engine

(TAA-230). However, both products were eventually cancelled. Nevertheless, these experimental

products highlighted Agusta's internal effort to internalize engine integration technologies by

adapting its existing in-house engine technologies from its fixed-winged and motorcycle divisions

onto its design-adapted rotorcrafts.

Figure 60: A105, A106 and Al 15 (Agusta)

The A105 and A106 (Figure 60) were double-seat and single-seat versions of the next series

of design-adapted rotorcraft products that first flew in the mid 1960s. The innovations in the A105

were the use of Agusta in-house designed TAA-230 turboshaft engine (cooperation with Turbomeca)

and transmission gear box (Aviastar). In addition, both versions had modified airframes. The A105

had a passenger cabin that could accommodate up to two crews. The A106 was a dedicated naval

helicopter that had only a single crew cabin and was equipped with an anti-submarine warfare

system. However, both designs did not achieve any commercial success and were cancelled by early

1970s (Flight International, 1971). In 1971, Agusta completed its design-adaptation phase with the

Al 15, which the final B47G-clone built by Agusta primarily to test turboshaft engine (Turbomeca

Astazou II) (Flight International, 1962).

At the same time, design customizations were also carried out directly on licensed-produced

Bell B204, B212 and B412 helicopters. Agusta enhanced the Bell basic models with highly tailored

systems for the customers (Flight International, 1974). These design modifications were done mainly

on structural and avionic interfaces for installing additional customized equipment for the customers

from the Italian and foreign navies. No major design changes were made on the basic aircraft

designs. Interestingly, Agusta-made Bell products were considered by many customers as more

competitive than Bell-made products because Agusta was more meticulous in tailoring its products

to customers' requirements at competitive prices (Flight International, 1974). This was a positive

indicator of Agusta's progress in its technological learning process. In this technological learning

phase, these design-adaptation programs have provided Agusta with valuable learning opportunities
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for integration of subsystems (airframe, dynamic system and engines) and design tailoring

(integration of equipment).

The Co-development and Co-Production Phase (1977 - present)

Agusta embarked on its first co-development and co-production program in 1977 with the

British rotorcraft OEM Westland to develop the EH101 Merlin naval helicopter (Figure 61). The

EH101 was conceived as a replacement for the aging Sikorsky Sea King series of naval helicopters,

which were used by the British and Italian navies. In this cooperation program, Agusta and Westland

divided the subsystems (airframe, dynamic system and avionics) for co-development and co-

production. Agusta was responsible for main gear box, rotor head, rotor head control, tail rotor hub,

tail rotor control, drive shaft, coupling, hydraulics, cabin (660%), rear fuselage, tail, electrical wiring

(50%) and avionics (50%). Westland was responsible the main blades, cabin (340%), forward fuselage,

automatic flight control system, undercarriage, fuel system, electrical wiring (500%o), avionics (50%)

and floatation (Barker, 1998). The EH101's triple turbo-shaft engines were supplied by General

Electric and Rolls Royce-Turbomeca.

The EH101 helicopter program was a particularly challenging one with very steep learning

curve for Agusta. On the technical side, Agusta was faced with immense technical problems that led

to the crashes of three pre-production prototypes. On the management side, Agusta was initially

overwhelmed by complex international development and production organization (Flight

International, 1999). The initial lack of a single program management organization between Agusta

and Westland greatly hampered the system integration work between the helicopter and the complex

mission systems (especially the anti-submarine/surface ship warfare system). This was later rectified

by the creation of a single prime contractor management organization (EH Industries), which

oversaw Agusta, Westland and other systems suppliers as sub-contractors. On the other hand,

Agusta was able to capitalize on its past experience from its first in-house developed A 101 helicopter

in shortening the duration of EH101 systems development. In spite of this, the EH101 program was

delayed by six years. Another core technological knowledge that Agusta learned was about the design

and production of airframe using advanced light-weight aluminium lithium alloy, a material that is

10o lighter and 600 0 more fatigue resistance than conventional aerospace aluminium alloys (Barker,

1998).
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Figure 61: EH101 and NH90 (AgustaWestland)

The next co-development and co-production program was the NH90 (Figure 61) multi-role

medium-weight military helicopter. This program was formed in 1992 as a consortium (NH

Industries) consisting of Agusta (32% stake), Eurocopter (63% stake) and Fokker (5% stake). In this

program, Agusta was responsible for part of the airframe (rear fuselage), dynamic system (main gear

box, automatic flight control and hydraulics) and avionics (anti-submarine/surface warfare (ASW)

systems integration). It is interesting to note that Agusta's work share in the NH90 program is very

similar to that of the EH101 program. Moreover, Agusta had previous experience in integrating

ASW systems in Bell helicopters. The development of the NH90 started as early as mid 1980s and

the first flight took place in 1995. The NH90, the world first serial rotorcraft that has a full-

composite airframe and fly-by-wire system, is in many aspects a technologically advanced helicopter.

As a key stakeholder in this cooperation program, Agusta had the opportunities to learn about the

technical (e.g. advanced composite material) and process (international program management)

aspects of cooperation with Eurocopter and Fokker.

In 1998, Agusta deepened its already strong relation with Bell by creating the joint venture

Bell Agusta Aerospace Corporation (BAAC). In this joint venture, Agusta co-developed and co-

produced the BA609 tilt-rotor aircraft, which successfully made its first flight in 2003. Agusta has a

minority stake of 25% in the BA609 program and is responsible for the design of gear boxes, wiring,

tail and ailerons (Flight International, 1998). Furthermore, Agusta will also assemble BA609 in its

main final assembly plant in Italy, in additional to the Bell's plant in Texas. Technological learning

opportunity for Agusta in this program was relatively small, since Agusta's work share included only

matured technologies. The design and manufacture of key tilt-rotor technology (i.e. dynamic system)

remained solely with Bell. Nonetheless, Agusta could have benefited from its 50% work share in

BA609 flight test program (Flight International, 2000).
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In-House Development (1960s - present)

Agusta began its in-house development activities early in its technological learning process.

Its first flyable product was the A101 triple-engine heavy-lift helicopter. The first flight took place in

1964 and a total of three prototypes were ever built before it was cancelled in 1971. One reason of

developing the A101 was reported to be Agusta's competitive strategy against Sikorsky's bid for the

Italian Navy helicopter contract in the mid 1960s. Using this strategy, Agusta managed to gain

cooperation agreement with Sikorsky in the licensed production of Sikorsky SH-3 Sea King

helicopters. The A101 was withdrawn as a result and it never reached serial design maturity.

Nevertheless, the A101 was a remarkable achievement by Agusta, which took only twelve years after

its market entry to develop a flying prototype of this scale (11-ton weight). The A101 had a number

of notable design features such as triple-engine power pack, a rear ramp and a five-blade rotor head.

The A101 five-blade rotor head was especially remarkable as all previous Agusta's products,

including licensed products from Bell, had the technologically simpler double-blade rotor heads. The

details about the development of this innovative rotor head were unknown.

In 1971, Agusta took the incumbent market leaders by surprise with the first flight of the

A109 light-weight helicopter (Figure 62). The development of the A109 began in 1967 and serial

production began in 1976 (Aviastar). The A109 was the world's first second-generation helicopter,

which had innovative features such as retractable landing gears, a four-bladed rotor head and an

aerodynamic partial composite airframe (Chiesa, 1982; Flight International, 1973). It was designed

for multi-purpose operations such as transport, rescue and military missions.

After the success with the A109, Agusta continued to design a new generation combat

helicopter, the A129 (Figure 62), to satisfy the requirement of the Italian Army. The A129 was

derived from the A109 and the first dedicated combat helicopter that was completely designed in

Europe. This innovative twin-engine, tandem-seat helicopter made its first flight in 1983. Other

innovations such as advanced nose-mounted day/night sensors, damage tolerant rotor blades and

crash-survivable airframe set Agusta further apart from the other leading OEMs. The introduction of

the innovative A109 and the A129 established Agusta's position as one of the leading rotorcraft

companies in the world. Further development of the successful A109 continues with newer

derivatives such as the A119 (first flight in 1994, lighter single-engine version) and the A139 (first

flight in 2001, higher seating capacity and payload) helicopters.
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Figure 62: A109, A119, A129 and A139 (AgustaWestland)

6.3.5 Technological Knowledge Learned

The case findings have shown that Agusta has successfully acquired the necessary rotorcraft

technological knowledge to design and produce its own products after roughly 30 years of licensed

production, design-adaptation, co-development/-production and in-house development. Case

findings have revealed that licensed production played the most important role in jump-starting

Agusta's technological learning process. The mass-production of American OEMs' products (Bell,

Boeing and Sikorsky) has provided Agusta with invaluable qualitative and quantitative learning

opportunities. The qualitative learning opportunities were derived from the diverse licensed

products, which allowed benchmarking of best designs and innovation. The quantitative learning

opportunities were derived from the high volume of licensed products, which allowed routine

learning and internalization of tacit knowledge.

The second technological learning phase was design-adaptation. Here, technological

knowledge from licensed production of Bell products was capitalized. For example, Agusta

progressively adapted Bell products into a number of different prototypes (from A102 to A115) to

test different technologies such as engines, airframe, dynamic system and systems integration. This

effort allowed Agusta to "learn by adapting and tailoring". One of the lessons learned was the

discontinuation of in-house development of Agusta engines in order focus on the other three main

subsystems. This was in line with most other leading OEMs, which regarded engine not as a core

technology. Furthermore, Agusta's tenacity in tailoring its licensed products (B204+, B212+ and

B412+) to customers' requirement was found, highlighting Agusta's improving and differentiating

design capabilities.

The third technological learning phase was co-design and co-production with foreign OEMs.

As with the case of design-adaptation, knowledge gained from previous learning phases was

capitalized. For instance, early experience (dynamic system - five-blade rotor head and heavy

transmission system) gained from Agusta's prototype A101 was used in the co-development of
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EH101. Based on the design and production work shares in the EH101 and NH90 programs, it was

evident that technological knowledge gained from the EH101 and Bell program (ASW system

integration) was also transferred to the co-development and co-production of the NH90.

In the final phase of Agusta's technological learning process, case findings have revealed

Agusta's technological progress by the technological innovations introduced by the in-house

developed products (A109, A129, A119 and A139) since the 1970s. After only about 30 years, Agusta

has successfully transited from technological learning phase into technological innovation phase. Its

cooperation since the late 1990s in radically new rotorcraft products such as tilt-rotor aircraft further

exemplifies this transition.

In conclusion, this case has shown that Agusta successfully learned through different modes

of cooperation with foreign OEMs. There are indicators that confirm the transfer of technological

knowledge between programs. Most importantly, the case leads to the conclusion that Agusta's

technological learning has not been only one-sided. Its technological learning has made use of

cooperation with foreign OEMs and concurrent in-house development.

6.3.6 Conclusion

This case has shown that Agusta's technological learning process was shaped by the

constraints in Italy's NIS. Even though the Core R&D system of the Italy's NIS generally did not

provide a favorable environment for innovation and technological learning in large firms, the case

findings have shown that Agusta was an exceptional case among Italian large firms, which were

typically technological followers. Agusta's technological advancement and innovations showed that

there are ways to mitigate the effect of the ineffective Core R&D within Italy's NIS. On the other

hand, the technological learning success of Agusta could also be attributed partially to the positive

aspects of the Italy's NIS.

First, Italy's NIS provides unrestricted access to American rotorcraft technologies through

Italy's membership in the NATO. From market standpoint, Italy's defense and low-cost advantages

could have led to Bell's strategic move to use Italy-based Agusta as a low-cost production base for

export to Europe and other regions of the world. Second, there were strong machineries and tooling

industries in Italy's successful and innovative Small Firm Network. These industries were important

to the production of Agusta's products dynamic and airframe components. Third, the prioritized

financial and political supports from the Italian governmental program have contributed to Agusta's
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technological learning activities such as costly prototyping and testing activities. Fourth, the

technological spillover from the engine and fixed-winged divisions within the Agusta Group and

sister defense companies within the Finmeccinica Group should not be overlooked, especially after

the enactment of the Law 240, which encouraged cooperation among Italian firms in R&D.

The initial technological learning phases (licensed production and design-adaptation) of

Agusta have also confirmed the general preference of Italian large firms for importing foreign

licensed technologies instead of in-house R&D. However, Agusta eventually transited from a

licensed manufacturer to an innovator. Furthermore, case findings have also confirmed the more

vertically-integrated production structure of Italian large firm (Barker, 1998). In fact, more than 60%

of Agusta's work share in the EH101 program was manufactured in-house. In comparison, Westland

only manufactured the rotor blades in-house while out-sourcing the rest of its work share.

Agusta is the only major western rotorcraft company that was created from ground-up after

the Second World War. In spite of the weaknesses in Italy's National Innovation System and the lack

of rotorcraft technologies, Agusta has successfully acquired the technologies to become a world class

rotorcraft OEM. From this perspective, Agusta's technological learning success can be considered as

truly exceptional.
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CHAPTER 7: COMPARATIVE ANALYSIS & FRAMEWORK REVISIT

7.1 Comparative Analysis

The three cases have shown the different ways emerging rotorcraft companies evolved

technologically at systems and subsystems level. In this chapter, I will draw key lessons by comparing

the technological learning processes of the three companies. Figure 63 provides an abstracted view of

their technological learning processes for comparative analysis. This comparison has revealed a

number of important lessons that can change the way we view the rotorcraft business model today.

The quintessential lessons are as follows: concurrent internal learning is important for emerging

companies to gain technological knowledge, a history of cooperation with incumbent OEMs are

important for learning, denial of technology transfer to competitors only slows down but do not stop

their technological learning process, the catalytic effect of scale and the importance of favorable

learning environment.

Technological Learning of the Three Companies (1st Flight)
1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Agusta
(1952)

Scale Driven-Learning
> 2000 units produced

Avicopters
(1958)

20 Years of
Technology Isolation

- - - - - - -- - - - - - - - - - - - - - - - - - - - - - - + - 0

- - - -- - - - - - - - - - - - - - - - - - - - -

Intensive Learning by Adapting and Integration

0- -- ---- - -- ------

Non-Cooperative--

Learning Mode

-------------------- 9---------------

KHI 4 & - - - - - - - - - -- - - - - - - - - -
(1953) 

--------
Steep Technological Jump - - -
Non-Scale Driven and
More Tacit Learning
Due to Strong NIS

Licensed Prod.

Design-Adaptation

Co-Dev/Co-Prod.

In-house Dev.

Licensed Prod.

Rev-Eng.

Design-Adaptation

Co-Dev/Co-Prod.

Licensed Prod.

Design-Adaptation

Co-Dev/Co-Prod.

In-house Dev.

Notes:
1) The year in bracket indicates the commencement of OEM's rotorcraft activities or of its founding, whichever is known.

Each dot marks the 151 flight of new product.
2) Agusta merged with Westland in 2001 and was renamed AgustoWestland.
3) Avicopter was created in 2008, its companies (HAIG, CHAIG, CHRDI, BDF) were managed by AVIC since 1958.
4) KHI - Kawasaki Heavy Industries started rotorcraft activities in 1953.

O Incomplete/Cancelled Program Non-Cooperative Program
0 Successful Serial Program

Figure 63: Comparative Diagram between the Cases (Compiled by Author)
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Importance of Concurrent Internal Learning

All three cases have shown that emerging rotorcraft companies, which did not possess any

previous rotorcraft specific technologies, have succeeded in learning rotorcraft technologies from

ground-up. It is important to note that under licensed production agreement, foreign OEMs

(licensor) usually transfer just enough production technologies to enable the licensee companies to

duplicate OEMs' products. In other words, technologies transferred in these licensed production

agreements alone are insufficient for licensee companies to be capable of designing their own

products. Thus, all three cases demonstrated that concurrent internal learning through in-house

R&D (design-adaptation, reverse engineering) was needed in addition to technological knowledge

gained from licensed production. Licensed production cooperation was the starting point for further

technological learning in all three companies.

A History of Cooperation Needed

The common feature of all three companies is that they all began rotorcraft development

through cooperation with foreign first generation OEMs. It is important to note that there were

variations of technological learning process using licensed production with first generation OEMs.

For example, Agusta exploited licensed production strategically to accelerate its technological

learning process. Not only did Agusta manage to license-produce significantly more rotorcrafts than

Avicopter and KHI combined, but it has also learned quickly by tailoring and adapting Bell products

better than Bell itself. In addition, Agusta adapted Bell designed products to build its series of

prototype products (A102 to A 115). These prototypes allowed Agusta to learn by integrating various

in-house developed subsystems such as gas-turbine engines, airframe and equipment. That made

Agusta the earliest among the three companies to learn by systems integration. Another common

feature of the three cases is the successful transition of all three companies to participate in more

complex co-design and co-production cooperation with earlier generations of OEMs, after decades

of licensed production, design-adapting and reverse-engineering.

Denial of Technology Access Does Not Prohibit Learning & Imitation

Avicopter represents a unique case in the analysis. Avicopter's first licensed production was

disrupted due to the Sino-Soviet political split in 1961. However, its technological learning process

did not stop there. It is conceivable that this incident motivated Avicopter to use reverse-engineering
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as an alternative learning mode to licensed production. With no access to rotorcraft technologies

from other OEMS for about 20 years, Avicopter had no technological foundation to start its own

R&D but had to resort to the pain-staking reverse-engineering of foreign products. The contrasting

results of the two different technological learning paths are evident. Avicopter's reverse-engineering

program of the Z-8 (copy of French Aerospatiale SA321 helicopter) took ten years, which is 27 years

after Avicopter started licensed producing its first rotorcraft. In comparison, Agusta only took five

years to develop its first in-house product (A109), about 19 years after Agusta licensed produced its

first rotorcraft (Bell B47G).

The Importance of Favorable Learning Environment

The sequence and duration of the different modes of cooperation in their technological

learning processes were dependent on the NIS and AIS. The interactions among all the four

principle actors (public sector, private sector, foreign companies and market demand) in the NIS and

AIS have generated unique constraints and catalysts for technological learning in these companies.

The weak NIS and AIS of China resulted in the relatively slow technological learning process as

compared to the more effective AIS of Italy and NIS of Japan. The stronger NIS in Japan may have

enabled KHI to learn more tacitly. It succeeded in developing its first in-house OH-1 helicopter even

though it had only completed two programs (KH-4 and BK1 17) previously. Among the three

companies, KHI appears to have experienced the most significant technological leap from licensed

production to in-house development. This leap is evident from KHI's rapid transition between

licensed production, design-adaptation and co-development/production.

The Catalytic Effect of Scale on Learning

Agusta case provides an important lesson, which suggests that high production scale could

compensate the effect of the weak Italian NIS. Agusta's large production scale enabled greater

opportunity for learning. Conversely, the increase of production scale due to export market demand

may also create a positive reinforcing causal-loop effect that can accelerate technological learning,

which in turn result in better products that increase export market demand. Based on Malerba's

(1993) original definition of learning, I call this effect the virtuous cycle of scale-driven technological

learning. This effect is essentially learning curve effect with additional reinforcing effect of export.

Interestingly, similar observation can be made in fixed-winged aircraft sector. For example, the

success of the Brazilian fixed-winged aircraft manufacturer Embraer (world's 3 'd largest fixed wing
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OEM) is attributed to this virtuous cycle of scale-driven technological learning (Hira & Guilherme de

Oliveira, 2007). On the other hand, KHI represents a contra-case. The lack of an export market due

to Japan's self-imposed export ban of military-related products (includes rotorcrafts) may have

prevented KHI from benefiting from the virtuous cycle of scale-driven technological learning.

Agusta case highlights the negative consequence of subcontracting the production of entire

rotorcraft systems to emerging companies for short term advantages such as low cost and market

access.

7.2 Framework Revisit

Figure 64: The Technological Learning System (Gan & Roth)

Revisiting the TLS Framework

Based on the findings and analysis from the three cases, we will now revisit the TLS

framework (Figure 64) and highlight its value to policy makers and corporate managers. In the first

part of this chapter, I will review the main elements of the TLS framework and the interaction

among them using examples from the cases. In the second part of this chapter, the value of the TLS

on globalization and national policies will be discussed.

The TLS is made up of the National and Aerospace Innovation Systems (NIS & AIS), mode

of cooperation, foreign companies, the technological knowledge level and learning process in the

company. The ways these elements are interconnected are discussed in the following sections.
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National and Aerospace Innovation Systems (NIS and AIS)

First, the technological learning process of a company is influenced by the NIS and AIS. The

NIS and AIS define the environment for technological learning in the country. In this environment,

the company is influenced by actors such as other private companies (e.g. suppliers), public

organizations (e.g. government) and individuals (e.g. work force). The NIS is the broad national

environment that affects the technological capability of all industries in the country. The AIS is the

more aerospace industry specific view of the NIS. The influence of the NIS and AIS on the

technological learning process of emerging rotorcraft companies has been shown extensively in the

three cases. The NIS and AIS are able to influence the technological learning process through the

unique constraints (e.g. weak industry-university cooperation) and catalysts (e.g. strong learning

culture) found in these systems.

Foreign Companies and Mode of Cooperation

Second, foreign companies can influence technological learning process directly and

indirectly via the mode of cooperation with emerging companies. Foreign companies can influence

technological learning process indirectly by determining the mode of cooperation with emerging

companies. As already explained in Chapter Five, the mode of cooperation is both a mode of

learning and an indicator of the technological knowledge level of emerging companies. The choice of

the mode of cooperation between the foreign and emerging companies depends on their collective

needs (e.g. co-specialization to reap economies of scale) and constraints (e.g. offset requirement to

gain sales). For example, Bell has cooperated with Agusta using different modes of cooperation at

different stages of their evolutions (from low cost subcontractor to co-specialized partnership).

Foreign companies can also influence the technological learning process directly through

their technology transfer process, not just in the selection of cooperation mode. For instance, the

progressive three-stage technology transfer process between Boeing and KHI in the licensed

production of CH-47J exemplifies how Boeing can influence the technology transfer process for

KHI. Similarly, the level of technological knowledge in the company influences the technological

learning process directly. Higher level of technological knowledge enables learning of more complex

technologies in a more interactive organizational environment (e.g. more complex mode of

cooperation).
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Another important factor affecting the foreign companies' influence on emerging companies

is their national policies on technology export. For example, the ITAR (International Traffic in Arms

Regulations) restricts the export of certain US technologies by US companies and their re-export by

overseas companies. This kind of technology control will certainly influence the way foreign

companies (OEMs) cooperate with emerging companies.

Technological Learning Process and Knowledge Level

The outcome of technological learning process is the level of technological knowledge in the

company. Both technological learning process and technological knowledge are co-located within the

boundary of the company. Knowledge is cumulative in nature and can be gained or lost. Increasing

knowledge can change the learning process. For example, all three companies went from a passive

learning (e.g. duplication) to more participative learning (e.g. design adaptation) during their

evolution. Similarly, technological knowledge influences the mode of cooperation. All three cases

have showed that increased technological knowledge enabled them to participate in more complex

mode of cooperation (e.g. from licensed production to co-development). Moreover, greater

technological knowledge level not only offers emerging companies a wider choice of cooperative

learning mode but also strategic flexibility in the selection of cooperation partner. Lastly,

technological knowledge in these companies can affect their NIS, whether to a small or large degree,

through technological spillage and organizational isomorphism. This technological spillage in the NIS

also accounts for any technological knowledge loss in the company (e.g. outsourcing to local

suppliers and losing the competence over time).

The Value of the TLS Framework on Globalization Policy

From a company standpoint, the TLS provides global industrial policy makers with a

systemic view on how emerging players can learn to become more competitive. This is extremely

useful for the formulation of cooperation, technology transfer and industrial policies in companies

that are constrained by the offset and cooperation requirement in the aerospace market. The TLS

does this by providing a framework that enables paradigm shift in the way potential partnering

companies can be evaluated both in the short-term and long-term. Contemporary due-diligence study

on potential partner company in the industry focuses mainly on financial and technological analysis.

It may work for innovative companies in developed countries, where technological companies

develop themselves through innovation. However, in emerging countries, it is more about learning
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first than innovating. Hence, such due-diligence study offers an incomplete assessment of the

potential partner by missing the learning dimension. In essence, the TLS enhances contemporary

due-diligence study by offering a more complete assessment of emerging partner by unveiling other

major factors like "hidden costs of cooperation" that could severely undermine the viability of

cooperation. With the TLS, potential cooperation companies can be evaluated according to their

competencies and learning environments. In an ideal cooperation, emerging companies should

benefit from the cooperation (e.g. complementary work and financial sharing) but not gain

technologies that will close the gap between them and the incumbent partners.

The Value of the TLS Framework on National Policy

From a national standpoint, the TLS does exactly the opposite by providing national policy

makers the framework to design a favorable learning environment for their national companies that

were selected to gain technologies in order to develop. Government can implement policies

appropriately to maximize technology transfer from foreign companies and encourage internal R&D

within their national companies. It is important to note that the TLS can also help to avoid national

policies that could be excessive and counterproductive. For instance, counterproductive policies are

those that drive product contract cost up (e.g. exorbitant offset requirement - 200% of contract

value!) and learning efficiency down (e.g. importing technologies without the resources and

capabilities to absorb).

In the next chapter, the application of the TLS on the current and future development in the

rotorcraft industry will be discussed. The potential application of the TLS will be illustrated through

the discussion of some new rotorcraft cooperation projects that are on the horizon.
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CHAPTER 8: CONCLUSION AND RECOMMENDATION

The use of Technological Learning System (TLS) to map and decipher technological learning

process of emerging companies has helped me to understand the wider implication of technological

learning on the global rotorcraft industry. The increasing mandatory need for transfer of technology

in international rotorcraft sales transaction has generated enormous market inefficiency and

unnecessary high transaction costs for manufacturers in the market. As these long term economical

costs of technology transfer are difficult to quantify using classical economics theories, the thesis has

managed to correct this shortcoming partly by revealing the implications of technology transfer

between rotorcraft companies. Rotorcraft market competition mechanism that requires deliberate

transfer of technology induces leading rotorcraft companies to win short term sales but to lose their

overall competitiveness in the long run. Leading rotorcraft companies lose their competitiveness in

the following three ways.

First, emerging rotorcraft companies' learning progress is faster than leading companies'

innovation process. The rotorcraft industry is a low clockspeed and low volume industry with

product lifecycle of up to 50 years. Rotorcraft's global annual production volume of several thousand

is miniature as compared to about 60 millions in the automotive industry in 2009 (Frost & Sullivan,

2009). Rotorcraft's long product life cycle allows emerging companies plenty of time to catch up.

Agusta clearly illustrates this point. Second, offsets that provide emerging companies access to

foreign technologies also bring significant cost advantages as these companies do not have to start

from scratch in R&D. Third, technology transfer process in leading companies is very complex and

costly due to the need to reorganize their global supply chain architecture, rebalance internal work

capacity (similar to outsourcing), train foreign companies, account for product quality loss (e.g.

learning curve of foreign companies) and pacify strong trade union, etc. The transaction cost of such

endeavour is further exacerbated by the loss of work force morale and productivity.

In essence, one may clinch an international contract today but lose its competitiveness in the

long run. Referring to one of the principles of war from Sun Tzu, it's analogous to winning a battle

but only to lose a war. This thesis has clearly shown that technology transfer that aids technological

learning can indeed create future competitors. Industrial policy makers and corporate strategists

should carefully consider the implication of technological learning on their organizations. The key
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question is: How could the TLS help companies in their global strategies when compelled to transfer

technologies to emerging companies in the future?

First, the TLS provides industrial policy makers and corporate strategists a systemic

framework on how emerging technology recipient companies could use cooperation (recalling the

four modes of cooperation) to further their long term competitive objectives. By carefully analyzing

the variables in the TLS, incumbent companies can strategically formulate their cooperation policies

and package their sales offset content that offers less critical technologies in the long run. To

illustrate the application of the TLS, I will use the recent case of cooperation arrangement between

Russian Mil and Chinese Avicopter to design and produce the Mil-46 heavy weight helicopter. The

Russian OEM Mil can use the TLS to analyze and design its cooperation scope with Avicopter. The

TLS will lead Mil to analyze the Chinese NIS. Such analysis will reveal that China has recently shifted

its focus from fixed-winged technologies to rotorcraft technologies against the backdrop of rapidly

modernizing commercial industries. Moreover, the TLS will reveal the technological readiness of

Avicopter by uncovering its latest cooperation programs and their respective subsystems capabilities.

Such knowledge will compel Mil from cooperating in dynamic system with Avicopter, which not yet

possesses heavy dynamic system knowledge. Furthermore, Mil should not only avoid co-develop

dynamic system with Avicopter, but also in co-production to minimize technological knowledge

leakage through transfer of manufacturing processes. One way to realize this preventative measure is

to deliver Avicopter the entire dynamic system as a "black box" for integration into the airframe,

which could be manufactured and designed by Avicopter. However, the outcome might be different

if the cooperation partner of Mil was American Sikorsky, which already possesses heavy dynamic

system technologies, or Indian Hindustan Aeronautics Limited, which does not have absorption

capability due to weak Indian AIS. Similarly, vital knowledge from the analysis on the remaining

elements of the TLS market demand and its own capabilities can be done. This example illustrates

the usefulness of the TLS by providing Mil a framework to conduct analysis of potential partner

company systematically and systemically.

To sum up, rotorcraft companies need more than good products to compete in the

competitive global rotorcraft market. The key to success is not only about best product features and

price, but also about the technological package for offset. Companies have to start to understand the

implication of technological learning and incorporate it into their business cases to avoid the mid-

term and long-term repercussions. At the time of completion of this thesis, a number of recent
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market developments in the rotorcraft industry have incited further work on the TLS. Recent

developments in the rotorcraft industry like AgustaWestland (emerged player) licensing its product

(AW101) to Boeing (first generation incumbent player) for the new US-presidential helicopter

program have shown a new trend emerging (Flight Global, 2010c). This particular event represents

the pinnacle of success that any emerging companies could ever achieve. So, where do we go from

here?

This event has shown that the chance that KHl and Avicopter will emerge as serious

competitors to the existing incumbent players should not be underestimated. Recent and likely

changes in the conditions within Chinese and Japanese NIS will accelerate the technological learning

processes in Avicopter and KHIL. For the case of Avicopter, China's rapidly modernizing commercial

industry and national education system, backed by its strong economy, will ensure greater absorption

capability of and technological spillage into Avicopter. For the case of KHI, likely constitutional

change to allow export of defense related products will enable virtual cycle of scale-driven learning

that will increase KHI's technological competitiveness. The quintessential message from these

current and future likely events for incumbent companies is that there is an urgent need for a better

technological transfer policy and an alternative strategy. This alternative strategy will manifest itself

by addressing the key question: Is there any potential for a collective effort among incumbent players

to mitigate the effect of offset in order not to lose their technological edge against the emerging

players? As of now, there is no clear indication of this strategy but I am certain that more can be

done among incumbent players in this area.

The TLS has been developed with a focus on the rotorcraft industry. It is by no mean a

universal framework for all industries. However, I believe that it will be useful to other industries that

use technology transfer as a core element of making sales transaction. I believe that there are some

specific conditions that would make the TLS useful. For example, the TLS is useful in an oligopoly

market condition as the TLS requires a number of unequal market players that are engaged in the

cycle of learning, transferring and innovating. Hence, the TLS will not be applicable in monopoly or

duopoly markets. A laisse Zfaire market that lacks state control (e.g. mandatory offset, restricted

technology diffusion) and has infinite homogenous market players would also render the TLS

useless. For example, the TLS will not be applicable to an open knowledge Cloud computing

industry. The TLS will be more applicable to industries with long product lifecycle (in excess of 10

years) such as those of train, ship and automotive products.
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I hope the TLS framework and the thesis results have provided a new perspective on

technological learning. In view of the rapidly industrializing emerging countries in Asia and the Latin

America, I am certain that more works can be done to expand the validity of the TLS framework.

The use of system dynamic analysis to expand the utility and application of the TLS framework

would be a viable extension of this research. Furthermore, I believe that the research should be

extended to the supplier base as the rotorcraft companies are becoming more dependent on

suppliers. The next decade will be a revolutionary period for the rotorcraft industry with regards to

its market, supply chain and technology. Amongst these changes, technological learning will certainly

remain one of the key enablers of this revolutionary period!

128



Bibliography

Adler, P., & Cole, R. (1993). Designed for Learning: A Tale of Two Auto Plants. Sloan Management

Review , 85-94.

AgustaWestland. (n.d.). Retrieved from www.agustawestland.com

Ainonline. (2010, May). Retrieved from http://www.ainonhne.com/news/single-news-

page/article/ chinese-helo-makers-build-alliances -with-western-oems-24648/

Airforce Technology. (2009). Retrieved 12 2009, from http://www.airforce-

technology.com/projects/us101/

Airliners.net. (2009). Retrieved from www.airliners.net

Alexander, A. J. (1993). Of Tanks and Toyotas: Assessment ofJapan's Defense Industy, N-3542-AF-RAND.
Santa Monica, CA: RAND.

Argyris, C. (1999). On OrganiZational Learning. Blackwell.

Army, U. (2008, 10 17). Retrieved from http://www.army.mil/-news/2008/10/17/13387-armed-

reconnaissance-helicopter-program-halted-need-for-capability-remains/

Aviastar. (n.d.). Retrieved from www.aviastar.org

Aviation International News. (2010). Retrieved from http://www.ainonline.com/ain-and-

ainalerts / aviation-international-news /single-publication-story/browse/ 0 /article/ new-rotorcraft-

13144/?no_cache= 1 &txttnews [story-pointer] =6&txttnews[mode] 1

Aviation Week. (2010). Retrieved from

http://aviationweek.com/aw/generic/story.jsp?id=news/awst/2010/06/14/AW_06_1 4_- 201 Op47

233116.xml&headline=Presidential%2OHelo%20Competition% o20Complicated&channel=defense

Axelrod, R. (1997). The Complexity of Cooperation. Princeton University Press.

Axelrod, R. (1984). The Evolution of Cooperation. Springer Link.

Axelrod, R., & Bennett, D. (1997). A Landscape Theory of Aggregation. British Journal of Political

Science, No. 23.

Axelrod, R., & Hamilton, W. (1981). The Evolution of Cooperation. Science.

Barker, J. (1998). Merlin to 2000. Proceeding Institute of Mechanical Engineers, Vol. 2/2, Part G.

Belussi, F. (2001). The Italian System of Innovation: The Gradual Transition from a Weak "Mission-Oriented"

System to a Regionalised Learning System. Padua, Italy: University of Padua.

129



BMI. (2010). Defence & Security Report: Edition Q3/2010. Business Monitor International.

Cao, C., & Suttmeier, R. (2004). China's Emerging Technological Edge: Assessing the Role of High-End Talent.

Cambridge University Press.

Cao, C., Simon, D. F., & Suttmeier, R. P. (2009). China's Innovation Practice. Innovation: management,

policy & practice (2009) Vol. 11 , pp. 253-259.

CCTV / Z- 11 Development History (2009). [Motion Picture].

CCT 'Z-8 Development History (2009). [Motion Picture].

CCTV 7Z-9 Development History (2009). [Motion Picture].

Cheung, T. M. (2009a). In Fortzfying China (p. 17). Cornell Press.

Cheung, T. M. (2009b). In Fortzjing China (p. 106). Cornell Press.

Chiesa, F. (1982). An Analysis of the Italian Aeronautical Industry. Masters Dissertation . MIT Sloan

School of Management.

Chinworth, M. W. (1 992a). In Inside Japan's Defense: Technology, Economics & Strategy (pp. 57-58).

Brassey's (US) Inc.

Chinworth, M. W. (1 992b). In Inside Japan's Defense: Technology, Economics & Strategy (p. xiii). Brassey's

(US) Inc.

Chinworth, M. W. (1992). Inside Japan's Defense: Technology, Economics & Strategy. Brassey's (US)

Inc.

Coletti, R. (2007). Italy and Innovation: Oiganisational Stmcture and Public Policies. Rome, Italy: Centro

Studidi Politica Internazionale (CeSPI).

Cynh, J. W. (2002). Technology Transfer and International Production: The Development of Electronics Industry in

Korea. Yale University Press.

Darnis, J., Gasparini, G., Grams, C., Keohane, D., Liberti, F., Maulny, J., et al. (2007). Lessons

Learned from European Defence Equipment Programmes. Paris: European Union Institut for

Security Studies.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press.

Defense News. (2010). Retrieved from http://www.defensenews.com/story.php?i=4588118

DefenseIndustryDaily. (2008a, 03). Retrieved from http://www.defenseindustrydaily.com/australia-

to-continue-with-illstarred-sh2g-seasprite-project-03338/

130



DefenselndustryDaily. (2008b). Retrieved from http://www.defenseindustrydaily.com/V-22-
Osprey-The-Multi-Year-Program-04823/#more

Dixon, N. (2000). Common Knowledge. Harvard Business School Press.

Doz, Y., & Hamel, G. (1998). In Alliance Advantage. Harvard Business Press.

Dyer, J. H. (2000b). In Collaborative Advantage (p. 91). Oxford.

Dyer, J. H. (2000). Collaborative Advantage. Oxford.

Edquist, C. (1997). Systems of Innovation: Technologies, Institutions and Organiations. London:

Pinter/Cassell.

Enos, J. L. (1991). The Creation of Technological Capabilities in Developing Countries. International Labour

Office, Pinter.

Faulkner, D. (1995). International Strategic Alliances: Cooperating to Compete. McGraw-Hill.

Fine, C. (1998). Clockspeed. New York: Basic Books.

Flight Global. (2005).

Flight Global. (2009). Retrieved from http://www.flightglobal.com/articles/2009/12/03/335730/mil-

returns-to-mi-26-as-basic-platform-for-heavylift.html

Flight Global. (2010a). Retrieved from

http://www.flightglobal.com/articles/2010/03 /1 8/339527/hindustan-aeronautics-to-go-it-alone-

on-observation.html

Flight Global. (201 Ob). Retrieved from

http://www.flightglobal.com/articles/2009 /09/23/332554/wto-dispute-takes-centre-stage-in-usaf-

tanker-competition.html

Flhght Global. (201 Oc). Retrieved from

http://aviationweek.com/aw/generic/story.jsp?id=news/awst/2010/06/14/AW_06_14_2010_p47

233116.xml&headline=Presidential%2OHelo%20Competition%20Complicated&channel=defense

Flight International. (1962, June 7). pp. 897-898.

Flight International. (1971, August 19). pp. 289-290.

Flight International. (1973, January 25). pp. 125-129.

Flight International. (1974, July 4). pp. 17-18.

Flight International. (1978, December 9). pp. 2115-2117.

131



Flight International. (1986). pp. 11-12.

Flight International. (1996, August 7-13). pp. 43-45.

Flight International. (1998, September 16). p. 12.

Flight International. (1999, January 13). pp. 36-38.

Flight International. (2000, November 28). p. 29.

Fransman, M. (1995). The Japan's Computer and Communication Industiy: The Evolution of Industrial Giants

and Global Competitiveness. Oxford Press.

Freeman, C. (1987). Technology and Economic Performance: Lessonsfrom Japan. London: Pinter.

Frost & Sullivan. (2009). Global Industry Outlook 2009: Impact of Economic Slowdown on the Future of Auto

Sales and Production.

Frost & Sullivan. (2010). Vorld Commercial Helicopter Market.

Gao, X. (2004). Technological Capability Catching Up: Follow the Normal Way or Deviate. PhD.

Thesis, MIT.

Ghoshal, S., & Bartlett, C. A. (2002). Managing Across Boundary. Harvard Business School.

GlobalSecudity. (2008a). Retrieved from http://www.globalsecurity.org/military/systems/aircraft/arh-

70.htm

GlobalSecurity. (2008b). Retrieved from http://www.globalsecurity.org/military/systems/aircraft/v-

22-history.htm

Gulati, R. (1995). Does Familiarity Breed Trust? The Implications of Repeated Ties for Contractual

Choice in Alliances. Academy of AlanagementJournal, V ol. 38, No. 1 , 85-112.

Gulati, R. (1995). DOES FAMILIARITY BREED TRUST? THE IMPLICATIONS OF
REPEATED TIES FOR CONTRACTUAL CHOICE IN ALLIANCES. Academy ofMangement

Journal.

Gulati, R., Lavie, D., & Singh, H. (2009). The Nature of Partnering Experience and the Gains from
Alliances. Strategic Management Journal 30, No. /1 , 1213-1233.

Hall, G. R., & Johnson, R. E. (1 968a). Transfer of United States Aerospace Technology to Japan: P-3875
(P.11). RAND.

Hall, G. R., & Johnson, R. E. (1 968c). Transfer of United States Aerospace Technology to Japan: P-3875
(P. 16). RAND.

132



Hall, G. R., & Johnson, R. E. (1968b). Transfer of United States Aerospace Technology to Japan: P-3875

(P.36-37). RAND.

Hells. (2010). He/is - Helicopter History Site. Retrieved from http://wxvxw.helis.com/timeline/china.php

Hira, A., & Guilherme de Oliveira, L. (2007). Take Off and Crash: Lessons from the Diverging Fates

of the Brazilian and Argentine Aircraft Industries. Competition and CIhange: Vo. 11, No. 4 , 329-347.

Hobsday, M. (1995). East Asian Latecomer Firms: Learning the Technology of Electronics. World
Development, IVol. 23 , 1171-1193.

Integrated Publishing - General Maintenance. (n.d.). Retrieved from

http://www.tpub.com/content/aviationgenmaint/TM-1-1500-204-23-5/css/TM-1-1500-204-23-

5_62.htm

Jane's Defence. (2010).

King, D. R., & Nowack, M. L. (2003a). The Impact of Government Policy on Technology Transfer:

An Aircraft Industry Case Study. Journal of Engineering and Technology Management.

King, D. R., & Nowark, M. L. (2003b). The Impact of Government Policy on Technology Transfer:

An Aircraft Industry Case Study. Journal of Engineering and Technology Management , 304.

Kristensen, H. (2006). Federation of American Scientists. Retrieved from

http://wwwv.fas.org/nuke/guide/china/nuke/index.html

LA Times. (2010, July 07). Retrieved from http://articles.latimes.com/201 0/jul/07/opinion/la-ed-

wto-20100707

Lall, S. (1996). Foreign Direct Investment Policies in the Asian NIEs. In Lall.

Lee, K., & Lim, C. (1988). Technological Regime: Catching-up and Leapfrogging: Findings from the

Korean Industries. Research Polig 30, 459-483.

Lee, M. (2003). Changing Dynamics of Automotive Industry: The Impact of Foreign Investment,
Technology Transfer and WTO Membership. Masters Dissertation. MIT Sloan of Management.

Levine, D. K., & Pesendorfer, W. (2005). The Evolution of Cooperation Through Imitation. Seminar

Paper. UCLA and Princeton University.

Lindner, A. (2003). SME Statistics: Towards More Systematic Statistical Measurement of SME

Behavior. New York: OECD / UN.

Luo, J. (2010). Hierarchy in Industry Architecture. MIT.

Luo, J. (2006). The Impact of Government Policies on Industrial Evolution: The Case of China's

Automotive Industry. Masters Dissertation . MIT Engineering Systems Division.

133



Malerba, F. (1993). Italy. In The National Innovation System. Oxford University Press.

Malerba, F. (1992). Learning by Firms and Incremental Technical Change. The EconomicJournal, V o.

102, 845-859.

Marchetti, C. (1984). Vertical Flight: The Age of Helicopter, Helicopter Development in Europe:

1940 to 1980, Vol. 30-31.

Modena, V., Gottini, P., Balconi, M., & Vita-Finzi, P. (2001). The Italian Innovation System. Pavia, Italy:

University of Pavia.

Moore, R. M., Lorell, M. A., & Lowell, J. (2002). Going global: U.S. government policy and the

defense aerospace industry. RAND.

Museo Agusta. (n.d.). Retrieved from http://www.museoagusta.it/home.html

Nelson, R. (1993). National Innovation System. Oxford.

North, D. (2004). In Institutions, institutional change, and economicperformance (p. 28). Cambridge.

NYTimes. (2010, 03). Retrieved from

http://www.nytimes.com/2009/09/05/business/global/05wto.html

Odagiri, H., & Goto, A. (1996). Building Capability by Learning, Innovation and Public Policy. In

Technology and Industrial Development in Japan. Clarendon Press.

Odagiri, H., & Goto, A. (1996a). Building Capability by Learning, Innovation and Public Policy. In

Technology and Industial Development in Japan (p. 40). Oxford: Clarenden Press.

Odagiri, H., & Goto, A. (1996b). Building Capability by Learning, Innovation and Public Policy. In

Technology and Industrial Development in Japan (pp. 228-230). Oxford: Clarenden Press.

Odagiri, H., & Goto, A. (1993). The Japanese System of Innovation: Past, Present and Future. In

National Innovation System. Oxford.

Odagiri, H., & Goto, A. (1993a). The Japanese System of Innovation: Past, Present and Future. In

National Innovation System (pp. 85-87). Oxford.

Odagiri, H., & Goto, A. (1993b). The Japanese System of Innovation: Past, Present and Future. In

National Innovation Sjystem (pp. 100-10 1). Oxford.

Odagiri, H., & Goto, A. (1993c). The Japanese System of Innovation: Past, Present and Future. In

National Innovation System (p. 109). Oxford.

Odagiri, H., & Goto, A. (1 993d). The Japanese System of Innovation: Past, Present and Future. In

National Innovation Sjystem (p. 225). Oxford.

134



OECD. (1999). Managing National Innovation Systems. OECD.

OECD. (1997). National Innovation Systems. OECD.

OECD. (2008). OECD Reviews of Innovation Po/icy China. OECD.

OECD. (2008a). OECD Reviews of Innovation Policy China. OECD.

Patel, P., & Pavitt, K. (1994). The Nature and Economic Importance ofNational Innovation Systems. Paris:

STI Review, No. 14, OECD.

Pelvin, R. (2000). Japanese Airpower 1919-1945: A Case Study in Military Dysfunction in Military Studies,

I ersion 3.0. Maxwell AFB, AL: Air Command And Staff College.

Piepenbrock. (2009). Towards a theory of the evolution of business ecosystems. MIT.

Pittiglio, R., Sica, E., & Villa, S. (2009). Innovation and Internationalization: The Case of Italy. Journal

of Technology Transfer, 588-602.

Polte, H. J. (2008). In Hubschrauber (pp. 63, 69). Verlag E.S. Mittler & Sohn.

Porter, M. E. (1996). What is Strategy? Harvard Business Review.

Prahalad, C. K., & Hamel, G. (1990). Core Competence of the Corporation. Harvard Business Review.

Rebentisch, E. (1997). The Link between Technology Complexity and Communication Complexity

in International Technology Transfer. Working Paper. MIT Sloan School of Management.

Robinson, D., & Stuart, T. (2006). Network Effects in the Governance of Strategic Alliances. The

Journal of Law, Economics & OrganiZation, 1'23 N1.

Roth, G. (2008). The Order and Chaos of the Learning Organization. In T. Cummings, Handbook of

OrganiZationa/Development. Newbury, CA: Sage.

Sakakibara, K., & Westney, D. E. (1985). Comparative Study of the Training, Careers, and

Organization of Engineers in the Computer Industry in the United States and Japan. Hitotsubashi

Journal of Commence & Management , 1-20.

Senge, P. (1990). The Fifth Discipline: The Art and Practice of Learning Organization. New York:

Doubleday.

Shirvastava, P. (1983). A Typology of Organizational Learning Systems. Journal ofManagement Studies.

SinoDefence. (n.d.). Retrieved from http://-vww.sinodefence.com/airforce/helicopter/z9.asp

SIPRI. (2009). SIPRI Yearbook 2009: Armaments, Disarmament and International Security.

Stockholm International Peace Research Institute.

135



(2009). SJAC. Society of Japanese Aerospace Companies, Aerospace Industry in Japan.

Spreen, W. (2007). Marketing in the International Aerospace Industry. USA: Ashgate Publishing

Limited.

Stern Magazin. (2007, (Issue 43)).

Stoelinga, T. (2005). White Paper: Lockheed F- 104 Star Fighter: An Overview of History, Spec and Technology.

Retrieved from http: / /wwv.xs4all.nl/ -chair/htm/indexhtm.htm

Stuart, T. E., & Robinson, D. T. (2006). Network Effects in the Governance of Strategic Alliance. In

The Journal of Law, Economics, & OrganiZation, V ol. 23, No. 1 (p. 242). Oxford Press.

US Army News. (2008, October 17). Retrieved from http://www.army.mil/-

news/2008/10 /17/1 3387-armed-reconnaissance-helicopter-program-halted-need-for-capability-

remains/

Utterback, J. M. (1994). Mastering the Dynamics ofInnovation. Harvard Business Press.

V17ector Site. (n.d.). Retrieved from http://www.vectorsite.net

136


