A Model-Based Systems Engineering Framework for
Concept Development

by
Brian London

B.S., Electrical and Computer Engineering, Lafayette College, 2002
M.S., Electrical Engineering, Stevens Institute of Technology, 2004

Submitted to the System Design and Management Program in Partial Fulfillment of the
Requirements for the Degree of

S
Master of Science in Engineering and Management ARCHIVE
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
at the

Massachusetts Institute of Technology MAR 08 2012
Crel 2012 .
ehvyary PO |

! LIBRARIES

© 2012 Brian Nathaniel London. All rights reserved !

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part in any medium now
known or hereafter created.

Signature of Author

Brian N. London
System Design and Management Program

//) _ 7). ]anuary 2010
Certified by P
Donna H. Rhodes
Thesis Supervisor
_ Senior Lecturer, Engineerin System Division
VN N\ ﬁ
Accepted by e

- W ” Patrick Hale

Director
System Design and Management Program



Abstract

The development of increasingly complex, innovative systems under greater constraints has been the
trend over the past several decades. In order to be successful, organizations must develop products
that meet customer needs more effectively than the competitors’ alternatives. The development of
these concepts is based on a broad set of stakeholder objectives, from which alternative designs are
developed and compared. When properly performed, this process helps those involved understand the
benefits and drawbacks of each option. This is crucial as firms need to effectively and quickly explore
many concepts, and easily determine those most likely to succeed.

It is generally accepted that a methodical design approach leads to the reduction in design flaws and
cost over a product’s life cycle. Several techniques have been developed to facilitate these efforts.
However, the traditional tools and work products are isolated, and require diligent manual inspection. It
is expected that the effectiveness of the high-level product design and development will improve
dramatically through the adoption of computer based modeling and simulation. This emerging
capability can mitigate the challenges and risks imposed by complex systems by enforcing rigor and
precision.

Model-based systems engineering (MBSE) is a methodology for designing systems using interconnected
computer models. The recent proliferation of MBSE is evidence of its ability to improve the design
fidelity and enhance communication among development teams. Existing descriptions of leveraging
MBSE for deriving requirements and system design are prevalent. However, very few descriptions of
model-based concept development have been presented. This may be due to the lack of MBSE
methodologies for performing concept development. Teams that attempt a model-based approach
without well defined, structured strategy are often unsuccessful. However, when MBSE is combined
with a clear methodology, designs can be more efficiently generated and evaluated.

While it may not be feasible to provide a “standard” methodology for concept development, a

framework is envisioned that incorporates a variety of methods and techniques. This thesis proposes
such a framework and presents an example based on a simulated concept development effort.

Thesis Supervisor: Dr. Donna H. Rhodes, Senior Lecturer, Engineering System Division



Acknowledgments

Itis with utmost sincerity that | extend this thanks to all those who have contributed to my incredible
experience with the SDM program. | would like to thank my thesis advisor, Donna Rhodes, for her
invaluable guidance. Donna’s input and expertise were essential in helping me focus my attention on a
topic that truly interested me, and helping me to find the resources required to complete this thesis. I'd
like to thank Pat Hale, and the rest of my SDM friends. | enjoyed getting to know and learning from each

of you.

My thanks goes out to all those who participated in the interviews. Your insights and experience helped
sculpt and reinforce the theories discussed herein. I'd also like to thank Bog, Nick, and the rest of my

coworkers who constantly challenge me to be a better engineer.

This achievement would not be possible without the inspiration, motivation, and constant support of my
family. Without you, | would not be who 1 am. I’d especially like to thank my wonderful wife, Anne, who
gave me all the love and support needed to accomplish this goal. Thank you for your patience. |

couldn’t have done this without you.



Table of Contents

1N 02 (= ST U OO U PPPP VPP 2
ACKNOWIEAZIMENTS ...ttt ettt st r e s b bbb e bs e as e be b e b e b e be b e saa b e b e e sa e s r s 3
LIST OF FIBUPES 1 vevveeieuesieteaee ettt tea st b st b e bbb d e bbb a e s b e bbb s e b e b b e s e s e b e b e b e b e s e st sh s 6
O 11140 Yo [0 Lo £ )« OO OO U OPPPON 9
11 RESEAICN ODJECTIVES .. ceeiceieiieiert ettt b e e sn e s sanesbne s 13
1.2 Approach and Research OVEIVIEW.........ccooieiiiiiiiciieiee s 13
0 T I 4 V= Lo 00 Y Y (=] 4| KO OO PP OPPRNNY 14

D - T-Yo = 1V 3T [OOSR O PP P PSP TP PP PRIOR 15
2.1 SYSEEMS ENGINEEIING ...eviiiiienieeee ettt s b e s et e ettt e et et bt s 15
2.1.1 Lif@-CYCIE STAZES. . euvieteeeeieeie et rccee ettt st et 16
2.1.2 Systems ENGINEEriNG PrOCESS.......cooiiiiiiiiiie ettt s 18
2.13 Concept DEVEIOPMENT ..ot 21
214 DECISION ANAIYSIS...uveiieirrrerieeeeete ettt s bbb e ar e e b e e s ba e e b b e s e raa e st e r e et 25

2.2 Model-Based Systems ENGINEETING......cccievrerereeiiiiiiiiiiiii ettt 31
221 22T 0 1=1 1 KOOSO 32
2.2.2 o Lo ] PO POU PP PUURN PR 42
2.23 VIEeWS and VIEWPOINTS ...veermeieiieiieniecit ettt sttt b e e 43
224 LANEBUBEES .evveeeeiieieereeieieee e rietn e sttt ee s sae s s sane e s s abe s e e e s aer e s e e e s aesnrrbe e e e s saabeta e e s s e s neee e 44
2.25 =143 Yoo Lo Lo V2O OO OISO UUT PSP 62

2.3 DIODAF ...ttt et e e e ete e et e s e e sreeabe st e ab e st e s bt e s e et e st e et e s A s s e e s e e Rt A b e e ke e e bt e e abe et e e entees 71

3. MBSE Framework for Concept Development ......cccccevciiiiiiiiiiiiieiiiiieecce et 74
31 Problem IdentifiCation .........c.iiieeeeieeerere et s e 78
3.2 Problem DefinitioN.....cecree ettt st s b e b 82



3.21 GlOSSANY CrEALION ...ttt ettt sttt st st ettt b seene et e stssassassaneseesmeeseneane 84
3.2.2 STAKENOIAET ANAIYSIS ...uviieieiiieteece ettt ee vt e et e st e e saeesneenaneesnenesasenneen 85
3.23 Context DefiNItiON ..o e s 89
3.24 USE Case DEVEIOPIMENT .......iviiiieciiciieeiieeeiie et ettt ettt eese s st aeseneeesseeseeeseassesaseesesesnseens 92
3.2.5 Requirements DevelOPMENt..........coiviirierenenine st ettt ee e e sae e e 100
3.2.6 Requirement Prioritization ........c.ccceviiiiiniinierenee ettt et s 104
3.2.7 Verification MethOds ..ottt et sn 106
3.2.8 Requirements and Design REVIEWS..........cccvrreciiriirriieticreereeree et see sttt seesreseeeeaeas 108
3.3 Architecture Definition ........cccovviriiiirrs ettt 108
331 FUNCEIONAIItY ANAIYSIS....eiveiuiitieeceteseecteet et st s ee st et e et eea et eeee e eneeana 111
3.3.2 SErUCTUIAT ANAIYSIS. ..c.ceiieiiriiertentineei e ettt et et e resre e eeseeneeeneereeneeseens 118
3.3.3 Allocation of Behavior t0 StrUCTUIE ..........ccoueuivereiiieninciecciriete ettt 125
334 Constraint and Relationship Definition..........cocovevieiicieniiecc e 126
335 Domain Expert Collaboration............ceiveiiiicieienieisiee ettt s 129
3.4 Generation Of AREINAtIVES........c.ccouioireeeieiecce et b et e s st e ne e et n e ee e 131
35 DECISION ANGIYSIS.....coiviiiiciteetre sttt et ae e e et sbesbbesaesne st e ereesee e sene 137
3.51 Priority ASSESSMENT.....cociiiiririiriieriereeeeet e este e e s eete et e s sbeesassbe et s eeeeneeseneeneensseneens 138
3.5.2 Effectiveness Determination.............cccccvivceriririnsieeseeciseeee et es et 140
3.53 CONECEPE SEIECLION ...ttt ettt a e te et s bt e et s se e nesaeanssensens 141

4, Conclusions and ReCOMMENALIONS .......c..ciierirereniicee et r et s e eees 143
5. FURUIE WOTK ..ottt sttt e et et n e b e ss e s reneene 147
WOTK CIEA ..ottt ettt ettt es s et et et eb e st et e st eneneneene st neeneneensaens 148



List of Figures

Figure 1: Ability to Influence Construction Cost over TIMe ... 10
Figure 2; DOD Project LIfECYCIES . ....cvcviuimiiiiiiiiiiini e 17
Figure 3: NASA Project LIfECyCles.......ccoiiiiinmiiiiiiiine st 18
Figure 4: Waterfall MEthod ... 19
Figure 5: Systems Engineering Vee Model..........covieiiiiinni s 20
Figure 6: General Spiral Development Model ... s 21
Figure 7: HOUSE Of QUANILY ....oveviirieieiiiiiiie it s 28
Figure 8: Sample ULIlity CUIVE.......cciiiiiiiiiiiiii ittt 29
FIgUre 9: SAMPIE DSM ..ottt bbbt e 31
Figure 10: Changing the ParadigM .........cceeiviiirmiinriieiiis et e 33
Figure 11: Interdisciplinary Model Based ENVIFONMENt .....cccooiiiiiiiiniiiiininicciii 40
Figure 12: Example OPM EI@MENTS.....cccoirerireiiiiiiiiciitieet e sttt s 46
Figure 13: Functional Flow Block Diagram EXample .........cceeieimiiniiinnininncesi e 47
Figure 14: EXample Of @n EFFBD ......cciviiiiiiiiiiiiicer ettt b s s 48
Figure 15: Relationship between SysML and UML ... 49
Figure 16: The Four Pillars of SYSIML .......coviiiiiiiiiiiiiiiice et 50
Figure 17: SYSML DIagram TYPES ..ccovereriiiiiiiiec ittt es e e e sttt a st s 50
Figure 18: Example of Use Case DI@Bram ........ccceviviieiininninieinniese ettt sa s 51
Figure 19: Example of an ACtivity DI@gram ........cocuiiiirieiniiieimnineine ettt 52
Figure 20: Example of a Sequence Diagram (Add One with timing) .....ccccoeviniiiiiinniiice 54
Figure 21: Example of State DIggram.....cc..cccvererreriiiiiiiiitiinne ettt 55



Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:

Figure 44:

Example of Block Definition Diagram ..........ccoccveeviiiiiiiiniiiiiecteii et e e 56
Example of INternal BIOCK DIagrami.......coceeceirieeeieeeeeteeciteste et e st e s te s e e sne e seaesasessabsesbsesteenns 57
Example of Requirements in DI@ram .......ccccovueeeneieiiiiiniiiieenieeesieessiesessieeessiiteesssree e sessneeesns 58
Example of Parametric Constructs and Diagram ..........ccoceieeiuiiiniiiniiiinenicceetee et e 59
Example of MOE DefiNITioN.....c..coiiiiiciiiiirrincneseiseisreeseestessenesseessnessareasssnssssesseessseseesssens 60
EXample Of BIOCK PrOPEITIeS ... ..o vviiiiiiiiiiieiri ettt sttt te et s teete s sveesar s ssee s b e easesseesaeas 61
Vitech MBSE Activities Performed at EaCh LAYer......cccciviiriiieiiecee ettt 64
OOSEM MeEthOUOIOEY ...cc.veeeeieeiiiee ettt ettt rte e e et e e et s eesbr e e e sseeesraee s anaeesnaesnsenn 68
Rational Harmony Integrated Systems / Embedded Software Development Process............. 69
Rational Harmony fOr IMBSE .........ccooiiieoiiieis et ete et e ete e et e nae e eatae s beeesaneesaneas 70
DODAF VIBWS ....eeiiieiieetteecee sttt e ee ettt et e s tesessee e s teeessaesasaeesasesasssaesanssesansseessnsessnssasesssesrnsens 72
Concept Development MethodOIOgY ........coecvieeciiireeecie ettt et e ae e et 76
Problem IdentifiCation .......ccocoi ittt e 78
Example of a UAV's Most Important REQUIFEMENTS........ccocvuveiiiieeiiieecree et e ceteeeere e 81
Allocating Requirements 10 MOE .......oooiiiiiiiiceierc ettt e e ete s st saae s e e e 82
Problem Definition...... ..ottt et st e e ae e 83
Stakeholder Need Identification ..........cccooueeeeieeii et 88
Example of Actor DECOMPOSITION ......occiiiiieceee et 89
UAV CONTEXE....oiiiiiiiciienie ettt sttt ettt s e s e s s bae s s s ae e s eatbaesrnneaesnsesnnseanns 91
Additional Interface INformMation ..........coo oo 92
UAV CONOPS.....oteeteeeteeere et s ettt et es st e sh e s be s bt e b e e st et e e abe s bt eae e s st e bt e beenseernesstansaeseensanees 93
Use Case Diagram for UAV OPeratioNns..........ccccciiiiereereirrrrieeeraessseesssesensessssessssessesssssensesasens 95
Example of Scenario for UAV LAUNCK ..........c.oiioiiiiie e 99



Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:

Figure 62:

Capturing Requirements as Use Case Attributes........ccooiiiiniiniinicciniiee 103

Static Requirement Prioritization ... 106
Verification Methods and Test Cases .......cooieeieriiieerie ettt et 107
Architecture Definition ProCeSS......cvciiiiiieiiniiiciiicie ettt e 110
Example of an ACtiVity DIBBIam .......cccoeeoieieereeee et e see e ee e st e e 113
Alternative Methods for Depicting Cyclic ACtIVILIES ......coceriiiiiiieriieeeeee e 115
Example of UAV Sequence DIagram ........cceeeciveeiiecrieneeninrenietessansreeesennsessnseesssnsesssnnseeens 116
Example of @ UAV State DIagram.........cccvviirierinreeieenteneeseesitessteeseeeesteesesesanessaseeseaeeeneees 117
Conceptual UAV DECOMPOSITION.....ccooiiiririieiieeeeniienrt ettt s 121
Example of an Implementation Specific Structural Decomposition..........cccoceeveiirciinieennnne. 122
Example of UAV SUDSYSTEM INTEITACES.......oiveriieiiiieeieete ettt ettt et s e 124
Parametric Diagram Relating Weight to Propulsion POWer ......ccccccccciiiineeinninciinnnniniiieneccns 127
Parametric Mode!l of UAV Coverage ANalySiS........ovuieecerieemiieeneeirc e ecires e ecnnie e 128
Generation of ARREIrNAtIVES .......ooiiiiiie e 132
Controlled CONVEIZENCE .....cooiiiiiiiee ettt ettt srar s s snae s sraseeas 133
Alternative Lift Supplier TEChNIQUES.........ooei et 136
DECISION ANAIYSIS..cciiiiiiiieeeie et ee e re s r e e s 137
Example of Parametric Trade Study Calculation.........cocoeiieiiiieennii e 142



1. Introduction

Since the beginning of civilization, humans have sought to develop new products in order to better
themselves and their communities. As society progressed technically, so did the complexity of the
products created. The current rapid technical expansion and current global competitive environment is
producing more demanding, sophisticated customers in every market. Many companies struggle with
anticipating future customers’ needs. This is partially due to customers not always knowing what they
want. When this uncertainty is coupled with the existing ease of communication, markets change
rapidly. Capabilities initially thought to be frivolous may quickly become essential. Assessing the
customers’ needs to deliver the most valuable options has always been the key to success, but products

now need to get to market faster and more efficiently.

Speed in development is rooted in the ability to adapt to changing requirements and rapidly solve
problems. Building the wrong features is a costly form of waste in engineering development. To
identify the functionality that will maximize value over the product lifetime, a rigorous requirement
capture process is necessary. Some organizations charge ahead without realizing that the original

statement of the problem may not be the best, or even the right one (Karban et al., 2011).

When the needs are identified, organizations sometimes struggle with setting clear objectives and
sharing the project’s intent throughout the organization. Complex system development usually requires
the collaboration of multidisciplinary teams, who must have a common understanding of the design and
customer needs. Each participant must be able to efficiently capture and communicate their needs,

feasibility assessments, and designs to other teams. However, the standard practice is for domain



specialists to operate in functional “chimneys” communicating primarily through requirement
documents and occasional integrated product team meetings. The lack of a closely coordinated design
can lead to integration issues. An extreme example of this is the development of an aircraft component
factory. As the factory completion neared, it was determined that the doors were not large enough to
accommodate the wings it assembled (Wheelwright and Clark, 1992). This gross oversight demonstrates
how crucial it is to understand the impact of design decisions. The relationships between requirements,

elements, and functions must be communicated in order to develop realistic, effective concepts.

The largest degree of freedom and greatest number of possible solutions exist when a problem is first
defined. As design decisions are made, the number of possible solutions diminishes, establishing the
life-cycle costs. Figure 1 shows the relationship between life-cycles costs and the design stages. This
commitment to life-cycle costs and loss of design freedom make the early stages of concept design
among the most important of a program (Wheelwright and Clark, 1992). This emphasizes the necessity
of efficient processes for defining large, complex systems. However, effective, systematic techniques to

develop conceptual systems and operations are not well known (Shadrick et al., 2005).

10



Ability to Construction Cost
100% Influence Costs 3 U S 100%
”
7’

Conceptual Planning y,
and Feasibility Studies z

\ y
Design and 7
Engineering

\ ¥

Procurement and Construction

Construction Cost

/ Startup

Leve! of Influence on Cost

Operation and
Maintenance

0% - 0%

Start Project Time
Figure 1: Ability to Influence Construction Cost over Time (Hendrickson, 1998 )

Effective concept development presents a dilemma. While exploring a large number of options is
difficult, innovation is best achieved by exploring as broad a set of concepts as possible. If concepts are

selected too quickly, a sufficient number of perspectives may not have been considered.

Organizations require methodologies to quickly explore many concepts, and easily determine those
most likely to succeed. A framework is presented in this thesis to increase concept development
effectiveness by employing the most suitable, established concept generation tools and processes. It
provides the structure to converge on a solution that answers the stakeholder needs with a high degree
of confidence by system influences. A standard process is not advocated. Instead, the framework
provides the organizational structure and guidance for a number of processes, regardless of concept
domain. A number of potential processes are suggested, but developers can select their own. This is

crucial as every problem and team is unique and will require different tools and processes.

11



The methodology merges the best practices of system engineering with the use of rigorous modeling
and automation. Models are used to identify the requirements, develop candidate solutions, and assess
the options. They provide a cohesive source for all project information, improving communication and
system understanding. This helps identify errors and poor assumptions earlier in the development

cycle, saving time and money as fewer errors have to be corrected in later stages.

Design is also greatly improved by enforcing consistency between design elements. As an analogy,
consider the state of engineering drawings before the onset of parametric computer-aided design (CAD).
In the past, engineering solutions were documented through hand-written or isolated computer
drawings. A slight change to one schematic could have a cascade throughout multiple others.
Whenever a change was required, each drawing had to be closely reviewed and updated to maintain
consistency. With the advent of parametric CAD, components could be linked to each other, allowing

component changes to cascade through the design, easily identifying any inconsistencies.

The adoption of integrated model-based systems engineering (MBSE) is expected to provide similar
improvements for system concept development. Optimizing speed, cost, and quality requires a

revolutionary change in product development, and this outcome is expected from MBSE (Paredis, 2011).

Early uses of MBSE are showing evidence of reduced development time and lower error rates. This can
be partially attributed to better understanding of the problem. “With a traditional functional
requirements decomposition approach, we estimate that we would have only captured 50% of the
problem understanding. Using operational concepts with use cases and scenarios, we caught more than
90% of the problem understanding the first time through” (Jorgensen, 2011). Hard numbers for the

development time reductions are hard to come by, early survey results indicate that up to 40% fewer

12



requirement defects were found on MBSE programs (Long, 2011). While, most current MBSE
performance data is collected heuristically, quantitative metrics are being collected to provide more

conclusive evidence (Estefan et al., 2011).

1.1 Research Objectives

The primary research objective of this thesis is to investigate and propose a methodology for the
development of system concepts using an MBSE approach, specifically using the SysML language. The
goal is propose generic processes that could apply to different organizations and efforts, but the results
may be biased by the application of this methodology in the selected case studies. The specific

questions that this thesis will seek to answer include:

1. Can MBSE support concept generation, refinement, and evaluation?

2. How can the best practices of systems engineering and concept development be integrated?
3. Does MBSE improve the efficiency and effectiveness of concept development teams?

4. What processes and external tools facilitate or enhance the development process?

5. What views, elements, and constructs are useful to improve communication?

1.2 Approach and Research Overview

The interview method was used to compare the methodology proposed in this thesis against traditional,
non-model-based approaches. Two rounds of one-on-one interviews were conducted. The first
rounded consist of questions to identify the unmet needs, best practices, and hindrances to concept
development. The interviewees were selected based on their availability and experience developing
advanced solutions to extremely challenging problems. While primarily Draper Laboratory systems
engineers were interviewed, their backgrounds represented a range of engineering domains.

13



Data collected from the first set of interviews was compared against the documented systems engineer
best practices. In addition, concept development techniques from engineering, marketing, and other
creative domains were examined. As a result of the literature survey, the MBSE framework for concept
development was developed. It was designed using Sparx System’s Enterprise Architect to produce the
views described in the thesis. Enterprise Architect was selected based on availability, and is not

specifically advocated by MIT.

The second round of interviews began after the initial establishment of the framework. In addition to
experienced systems engineers, widely recognized leaders in the field of MBSE were interviewed. The

focus was on the MBSE methodology, existing systems best practices, and their integration.

During these interviews the framework was reviewed and compared to traditional development
practices. Examples of good and bad execution were shared to obtain a better assessment of the
benefits, with a focus on:

e Visualization and clarity

e Impact on known best practices

¢ Ability to assess design errors or inconsistencies
e Traceability and knowledge capture

e Ease of use and expected learning curve

e Productivity impact

e Ability to support design decisions

1.3 Thesis Contents

Chapter Two summarizes the concept development methods, traditional system engineering practices,
and model-based tools, methodologies, and languages. This chapter provides pertinent background
information to introduce the techniques that are leveraged in this proposed framework. It does not

contain sufficient details to teach them, but sources are cited that can provide additional information.

14



Chapter Three introduces a framework to leverage the advantages of MBSE for concept development.
The chapter introduced the framework that uses commercially available tools and SysML. Examples are
provided to demonstrate the proposed methodology from the requirement definition, system
architecture development, and UAV design selection. The examples are based from 1998 report

describing the use of Unmanned Aerial Vehicles (UAV) for a proposed notional UAV force structure.

The Fourth chapter describes the conclusions of the proposed framework regarding its benefits and
applicability across various programs. These conclusions are based on the feedback from experienced
systems engineers and architects after reviewing the framework and the UAV example application.

Chapter Five concludes with recommendations for future work.

2. Background

2.1 Systems Engineering

Systems engineering is an interdisciplinary field that emerged as an effective way to manage complexity
and change. It focuses on defining customer needs and required functionality early in the development
cycle, and proceeding through design synthesis to system validation while considering the complete
problem (INCOSE). Systems engineering is based on a holistic perspective of problems and design.
Practitioners consider how systems fit into the larger context, how they impact it, and how they are
influenced. Just as importantly, they consider how the interacting system components relate to each

other.

The objective of systems engineering is to ensure that the stakeholder’s needs are satisfied in a cost-

effective, timely manner. These needs are translated into requirements and drive the selection of the
15



best, implementable design from a number of alternatives. In order to accomplish this decision making,

systems engineers use a disciplined approach to collaborate with interdisciplinary teams.

Systems engineering can be traced back to the early 1800’s, but experienced rapid advancement in the
1950’s and 60’s (Oliver et al.). Since then several methodologies and processes emerged to emphasize
and improve complex system optimization and trade-offs. Among these are architecture frameworks,

systems engineering process standards, new tools, modeling standards, and data exchange standards.

A methodology can be defined as a collection of related processes, methods, and tools. Moreover, it
provides the underling rules used in an approach. For example, Harvard Business School uses a case-
based methodology for teaching in lieu of a lecture based one. Frameworks provide the underlying
structure for a methodology. Processes are logical sequences of tasks performed to achieve a particular
objective. A process for building a house could include laying the foundation, erecting the frame, etc. It
defines what is to be done, without specifying how. The specific techniques are defined in methods.
The method could describe the steps for installing a specific type of appliance. Tools are instruments
that can enhance the efficiency of a method when properly used. Most processes and methods use

several tools to simplify or improve their efficiency.

A variety of methodologies, processes, and tools are used by engineers to develop complex systems. A
system is defined by International Council of Systems Engineers (INCOSE) as a combination of interacting
elements organized to achieve one or more stated purposes (SE Handbook Working Group, 2011). It can

also be thought of as a collection of different components exhibiting emergent properties.

2.1.1 Life-Cycle Stages

16



Every system has life cycles stages even if they are not formerly defined. They encompass the
sequential phases of requirements identification, development, production, use, and retirement. One
could argue that even natural systems stem from an identification of requirements as biological

advantages and environmental changes induce the emergence of natural systems.

The United States Department of Defense (DoD) has rigidly defined life-cycle stages to facilitate system
acquisitions, graphically described in Figure 2. This life-cycle model exists to assist in the management
of billions of dollars of system development efforts. In accordance with DoD standards, the
management process is structured into discrete phases separated by major decision points known as

milestones.

e The Materiel Development Decision precedes
entry into any phase of the acquisition

management system
¢ Entrance criteria met before entering phase
» Evolutionary Acquisition or Single Step to
Full Capability
(Program
Initiation) C I0C FOC
Materiel Engineering and Operations &
Solution Manufacturing P"’dl"'db" & pSupp ik
Analysis Development Deployment
. FRP
post {YPost: rieiotae ) Beciion
Pre-Systems Acquisition Systems Acquisition Sustainment

<>= Decislon Point A= Milestone Review "'_.1= Decision Point if PDR Is not conducted before Milestone B
Figure 2: DoD Project Lifecycles (Under Secretary of Defense, 2008)
The materiel solution analysis, which leads to Milestone A, is the initial development phase in the
Defense Acquisition Management System. It contains a robust analysis of alternatives to identify the
potential solutions, assess their benefits and drawbacks, identify key technologies, and examine

operational concepts. This is equivalent to the concept development described in this thesis.

17



The National Aeronautics and Space Administration (NASA) also oversees budgets totaling several billion
dollars and has its own lifecycle model and milestones, known as key decision points. Figure 3 illustrates
the NASA development phases. Projects in the Pre-Phase A stage generate and evaluate a wide range of
ideas and mission alternatives. The purpose of this phase is to determine system feasibility, develop
initial mission concepts, identify the preliminary system requirements, and identify potential technology
needs (Kapurch and et al, 2007). Phase A projects undergo more through feasibility and need
assessments than those in Pre-Phase A. Through the Phase A activities, final mission concepts, system
requirements, and technology development plans are developed. The concept development framework
described herein could be applied to either NASA development stages as the primary differentiator
between the two are the range of alternatives considered or the amount of information available for

each one.

NASA Life-
Cycle Phases

Project Life-
Cycle Phases

Key Decision
Points

KDP A KOP B KDP C KDP D

Figure 3: NASA Project Lifecycles (Kapurch and et al)

2.1.2 Systems Engineering Process

In each life-cycle stage, systems engineering teams follow processes to define complex systems. They
generally begin with the development of requirements and culminate in verification and validation. As
the design of complex system always includes a number of unknown unknowns, failure to use a

disciplined, holistic approach can result in project failure. Several alternative processes exist for

18



organized systems engineering development and management. They describe the engineering process

across a system’s life-cycle. The most common are the Waterfall, Vee, and Spiral models.

2.1.2.1. Waterfall Model

The Waterfall model breaks the development process into a series of sequential phases as Figure 4. As
the name implies, the Waterfall model assumes a one-way cascading progression of tasks from
requirements development to use (shown as maintenance in Figure 4). It assumes each phase is
complete before moving to the next one. For example, it assumes that all requirements are fully

defined before moving on to design.

Implementation |-
y
Verification

T
-

Figure 4: Waterfall Method (Wikipedia, 2011b)

The major shortcoming with the model is that it cannot handle downstream changes or incomplete
stages. The development process is simplified to present an orderly progression of phases, but
problems will always surface downstream, inducing change to the requirements or design. Therefore, it

poorly reflects complex or length projects, and is widely acknowledged as a flawed model.

19



2.1.2.2. Vee Model

The Vee model depicts the system evolution from concept of operations (CONOPS) and user
requirement identification, through detailed design and verification to final system validation. In the
Vee model, time and system maturity proceed from left to right, as shown in Figure 5. The left side of
the Vee model indicates the development activities while the right side depicts the integration and
verification activities. Each level on the horizontal axis is associated indicating the relationship between
a development and verification (or validation at the CONOPS) level. It is not feasible to go backwards in

the model so if any iterations are required, the project stays at the same point on the vertical axis.

Verification

an
. Validation
Project
Definition

Project
Test aqd
Integration

!mplem&ntaﬁbn

A

Time
Figure 5: Systems Engineering Vee Model (Wikipedia, 2011a)

2.1.2.3. Spiral Model

The Spiral model can have the same phases as the Vee model, but explicitly accounts for risk and
reevaluation. Software developers have long understood that most projects are not well suited to a

sequential process and require a nhumber of iterations (Maier, 2009). In the spiral model, shown in

20



Figure 6, the angular sections represent progress, and the radius of the spiral represents maturity.

Developers work through each phase (e.g., requirement development, design, test) in each iteration.

The first cycle is often focused on assessing the aspects of the design with the most risk. This is useful in
situations where requirements cannot be fully defined prior to system design, or if immature technology
is required. The model assumes that missing requirements or technology viability will be revealed after
each spiral iteration. At the completion of the first loop, initial prototypes are used to assess risk
allowing the customer to evaluate the project future with minimal cost investment. If the project

continues, it iterates through each phase again. Each subsequent spiral builds upon the baseline.

Detailed
design

Integration
and test

System-level

design .
2 Time

Release

Planning

Concept
design

Figure 6: General Spiral Development Model (Ulrich and Eppinger, 2004)

2.1.3 Concept Development

Concept development is focused on identifying a design to maximize stakeholder value over the system
lifetime. Effective concept development considers the needs of each stakeholder and develops

requirements that do not overly constrain the design space. Failure to do so can result in systems that
21



do not meet a need or are poorly designed. These efforts thoroughly, yet effectively, explore a wide

range of solutions by identifying options and how they will meet the specified needs.

Concept development is not new. A number of different mechanisms exist today to help engineers
determine the best solutions. A variety of mockups, models, simulations, and prototypes are used to
better understand problems, develop candidate solutions, and validate their decisions. They are
dependent on the type of problem (e.g., latent or explicit need), available resources and information,
and development team experience. Like with the possible solutions, there are benefits and drawbacks

to each tool and method. A subset is discussed herein.

2.1.3.1. Lead User Observation

As the name suggests, this method involves the observation or recording of experts performing specific
tasks. Itis based on the premise that asking them to actually perform tasks generates more valid
knowledge than asking them to simply describe the required steps (Wright & Ayton, 1987). The experts
are asked to “think out loud” while performing an assignment so their thought process is understood.
These experts are often lead users who are unusually accurate, skillful, and reliable in their domain (von
Hippel, 1986). While this technique is often conducted to identify needs, these lead users may also
disclose innovative solutions, developed to address their personal needs. This information can

significantly simplify the alternative generation activities.

2.1.3.2. Knowledge Elicitation

Knowledge elicitation uses interviews to understand the needs and habits of subject matter experts.

The method can be used to identify future concepts by asking experts to generate best-guess estimates

22



based on an anticipated set of new capabilities (Shadrick et al., 2005). A series of direct and indirect
questions are posed to determine how domain-specific tasks are performed in a case dependent
interview technique. Once the information is collected, other subject matter experts are guided through
the thought process to collect other insight and needs. The responses aggregate into a single

representation of need (Shadrick et al., 2005).

Knowledge elicitation can be used to assess how valuable a set attributes are to individuals and groups.
However, it must be used carefully when interviewing lead users in that they may have a different

outlook than the majority of the population (von Hippel, 2005).

2.1.3.3. Technological Forecasting

Technology is often a key driver in the development of any new product or system. The ability to
accurately predict the availability of a given technology will have a critical impact on the success of a
given program, project, or system. Technological forecasting, as the name suggests, is interested in
forecasting the types of technologies that will be available in a future time period, the characteristics of
those technologies, and a realistic estimate of their availability. Technological forecasting considers the
innovations due to scientific and technical advancement and those pulled by environmental factors (i.e.,
social, economic, political) (Shadrick et al., 2005). Alternatively, teams can identify how a desired future

should look, and “backcast” to determine how to get there (Shadrick et al., 2005).

This tool is dangerous as it makes concept development dependent on the invention of new technology
or processes. As the results of invention are unpredictable, this reliance invariably causes delays in the

concept development. When used, a thorough risk mitigation plan is required.

23



2.1.3.4. Brainstorming

Brainstorming is a problem solving method where solutions are spontaneously generated by team or
group members. This method seeks to address specific questions by collecting as many options as
possible. Therefore, the quality of each contribution is not addressed or criticized during the session.
“Bad” or “wild” ideas are welcomed and encouraged as they may promote to better suggestions.
Variations of Brainstorming require members to arrive at the session with a short list of ideas. This can

be useful to help jumpstarts discussions.

2.1.35. TRIZ

TRIZ, an acronym for the method’s Russian name, is a systematic approach for identifying solutions to a
specific problem. It was developed by Genrich Altshuller, who observed patterns of invention. Based on
the theory that most problems reflect a need to overcome contradictions between two elements, TRIZ
provides 40 principles to identify ways to overcome the tension (Altshuller et al., 1998). Examples of
TRIZ principles include “segmentation”, such as creating modular couches, and “preliminary action”,
used to create pre-glued wallpaper. This is an extremely powerful method, and can be combined with

other such as Brainstorming or Synectics, a similar method based on metaphors.

2.1.3.6. Morphological Analysis

Morphological analysis is a solution identification method. It is generally applied to multi-dimensional,
complex problems where quantifiable analyses are not possible or desired. Morphological analysis
identifies possible solutions by creating a matrix. It lists the problem or solution attributes (e.g. are

subsystems, properties, qualities) as row headings and adds the possible alternatives in each row. New

24



combinations and poorly conceived concepts can be discovered using this method by varying the

combinations (Ritchey, 2009).

2.1.4 Decision Analysis

Engineering decisions often require systematic evaluations of multiple options, based on a set of criteria.
Numerous techniques for conducting trade studies are available, and a subset of which are discussed
below. Each one seeks to answer the same basic questions: what are the potential solutions to the

problem, how do they perform, and which is the best one {Borer et al., 2009)?

The objectives or requirements for the selection must be clearly and accurately defined. When possible,
the criteria are prioritized. Not all methods require this step. Care must be taken to properly select the
evaluation criteria weights as they can lead to incorrect ranking. The credible alternatives are then
enumerated. Some techniques eliminate alternatives incapable of meeting the basic needs. This is
useful as the number of alternatives that can be evaluated is constrained by human information
processing abilities. Finally, the remaining alternatives are compared and ranked. The diverse tools and

analysis fidelities are available to meet the specific needs of the development team.

2.1.4.1. Decision Tree

A decision tree graphically illustrates the alternatives and their attributes. These attributes can be
possible consequences, costs, probabilities, or utilities. Decision trees decompose large trade studies
into several smaller trade studies to reduce the total number of required comparison. For example, in

lieu of performing a trade study to select the best meal from a menu, independently compare the

25



different appetizers, main dishes, and drinks. These techniques can be useful to visually assess the

available options.

2.1.4.2. Delphi Method

The Delphi method was originally developed to elicit expert knowledge and develop group consensus,
while avoiding the groupthink bias of interactive groups (Shadrick et al., 2005). In traditional
implementations, group members interact solely with the facilitator, not each other. The facilitator
gathers responses, and provides them to the group anonymously. After reviewing the responses
provided by other members, each participant submits a revised response. The process is repeated as

many times as necessary.

The Delphi method can also be used to assess available options. Individuals are individually presented
with the alternatives and asked to assess them. The facilitator again gathers responses, and provides
them to the group anonymously. Again, the individuals have an opportunity to revive their assessment.

This is an effective technique for identifying stakeholder requirement preferences.

2.1.4.3. Pugh Method or Pugh Decision Matrix

Pugh method is a quantitative tool used to rank and compare options. It uses a simple matrix and pre-
established criteria to compare options. This approach uses subjective opinions to compare alternative
against a baseline, which may be one of the alternatives or the current product or service. The key
attributes are enumerated and used to compare against a baseline. Often, simple scores of worse (-1},

same (0), or better (+1) are used. Alternatively, numerical scales can be used (e.g., 2, 1, 0, -1,-2). The

26



options are rated by multiplying each option by the weight. The relative scores are the used to identify

if an option is better, equivalent, or worse than the baseline.

2.1.4.4. Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a multicriteria, pairwise comparison technique that can combine
qualitative and quantitative factors for ranking and evaluating alternatives (Saaty, 1983). AHP is used
when subjective verbal expressions (e.g., insufficient, undesirable, satisfactory, good, great) are easier to
provide than numerical (i.e., 1 to 10) assessments. Values are then ascribed to the words in order to
develop a score for each of the options. The requirements or measures of effectiveness (MOE) are also
evaluated two at a time (Saaty, 1983). A scale for assigning importance is provided by the method. This
approach allows for delineation of the facts and rationale that go into the subjective assessment of each

of the options (Goldberg et al., 1994).

2.1.4.5. House of Quality / QFD

The House of Quality (HoQ) is a tool used for decision analysis by transforming user needs into design
quality attributes in order to rank alternatives. Through a series of matrices, the HoQ maps originating
requirements to engineering characteristics. Starting with the customer’s most important
requirements, the tool decomposes these attributes into lower level requirements (Hauser and Clausing,

1988).

This format, based on Quality Function Deployment (QFD), is often used to evaluate and qualitatively
rank each design option to enable multi-criteria decision analysis. The HoQ is named after its structure,

shown in Figure 7, which resembles that of a house.

27



Correlations

Engineering
Characteristics

Customer

At iBEae Relationship Scores

Design Options

Target and Marginal
Thresholds

Importance Ratings

Figure 7: House of Quality

The relative importance of these customer attributes is identified to calculate the importance of each

engineering characteristic. The engineering characteristics are the controllable, measurable parameters
that are provide the major design tradeoffs. An assessment is made of how well each alternative meets
the engineering characteristics and is numerically scored. Often an absolute scale is used to identify the

scores. Using these scores and the calculated importance weightings, the alternatives are ranked.

2.1.4.6. Multi-Attribute Utility Analysis

Multi-attribute utility (MAU) is a powerful tool for evaluating alternatives and selecting the “best”
option (Ross, 2003). It uses explicit value functions to perform direct comparison of many diverse
measures. Like HoQ method, MAU provides a numerical score, but some feel it does so more explicitly

(The Research Foundation of SUNY, 2009). The structured approach requires and clearly shows the

28



numerical importance values placed on each parameter, often using 0-1 scale with O representing the
worst preference and 1 the best. While this explicit definition of relative importance is required for
MAU, it can be difficult to obtain as the tool is predominantly used in group decision making situations
where several perspectives must be considered (The Research Foundation of SUNY, 2009). However,
discussing the attributes’ overall importance and the concept’s ability to achieve them with potential

users or customers can be a great learning experience.

The stakeholder value proposition, what they want from the system, can be defined using utility curves.
Utility curves define the function relating the specific desired capabilities or attributes in terms of its
range of values. Often graphs or mathematic functions are used to capture the benefit of an attribute
using a dimensionless plot (Ross and Rhodes, 2009). When concepts are evaluated, the scores of each
alternative can be independently determined using utility curves, such as the one shown in Figure 8, and

combined using the relative importance weights.

Excluded Attribute Values
(furve TBD

7

Excess Attribute Values
(typically assigned Utility = 1)

Utility

Attribute value
Figure 8: Sample Utility Curve (Ross and Rhodes, 2009)

2.1.4.7. Multi-Attribute Tradespace Exploration

29



Multi-attribute tradespace exploration (MATE) is method for fully exploring tradespaces of possible
solutions rather than settling quickly on an optimum. It highlights the important trade-offs possibly
overlooked by traditional methods to help identify compromise solutions that may be a better solution
for the multiple stakeholders. MATE can be used to evaluate sets of design options, not just point
solutions (Ross and Rhodes, 2009). Using this method the feasibility of large numbers of design choices
can be quantitatively assessed early in the concept development process. It is also useful in identifying

the stakeholder preferences.

MATE broadly scopes the mission objectives to avoid excluding creative solutions. It compares the
alternatives based on the key, independent attributes, their lowest acceptable value, and highest
meaningful value. These attributes are refined into utility curves, and aggregated into a single function
for the trade study execution. Using design and constants vectors, the attributes values that cover the
range of realistic possible solutions, and the design vector quantities, respectively, the performance of

each option can be calculated in terms of attributes, costs, and utilities (Ross, 2003).

2.1.4.8. DSM

Unlike the other decision analysis tools, a design structure matrix (DSM) is not traditionally considered a
trade study tool. However, it does assist in the evaluation of complex structures and behaviors. This
matrix assists in the visualization of the relationships and dependencies between elements, interfaces,
and data flows. DSMs can be useful in identifying less complicated physical architectures and sequences
(Ulrich and Eppinger, 2004). One of the best heuristics in architecture is “Keep It Simple Stupid” often

called KISS. KISS can increase system reliability while decreasing lifecycle costs and development time.

30



To adhere to this principle, it is advisable to (1) have clear subsystem partitions, (2) maintain low
external complexity, and (3) minimize interdependencies.

As shown in Figure 9, if DSM were to be used to evaluate a process for example, the tasks would be
placed in a sequential order along the rows and corresponding columns of the matrix. Dependencies

among the tasks are labeled by ones in the matrix, corresponding to the directed arcs in the graph.

_T|A|B|C]D|E|F|G|H|IlJIK|L|M]N|
x|x| x| [x|x

X! (x| [x]|x

XiX|X{X :

X
X X X

Receive specification
generate / select concept
Design beta cartridges
Produce beta cartridges
Develop testing program
Test beta cartridges
Design prod'n cartridge
Design mold

Design assembly tooling
Purchase MFG equipment
Fabricate molds

Debug molds

Certify cartridge

Initial production run

Zlz|r[=|-|"|z|o|m|m[g|o|w|»
x
3
>
>

Figure 9: Sample DSM (Ulrich and Eppinger, 2004)

2.2 Model-Based Systems Engineering

Systems engineering is one of the last engineering domains to embrace model-based development. In
engineering and the sciences, models emphasize certain properties of interest in order to efficiently and

practically communicate or identify results. In this context, models are digital expressions of designs.

Used in the mechanical and electrical domains for decades, model-based engineering is a methodology

in which electronic abstractions are used to develop and capture designs. Computer-aided design (CAD)

31



programs are now standard tools for the creation and manipulation of digital models. By using the tools
and methodologies, increasingly detailed models are created and integrated. The use of electronic

models has been shown to greatly improve development efficiently.

Model-based systems engineering (MBSE) uses a graphical language to generate and record details
pertaining to a system’s requirements, design, analysis, verification, and validation. This is not novel.
Systems engineers have generated design abstractions for years. However, these descriptions were
uncoupled static drawings. When new depictions were created or others modified, the drawings
became out of date. Maintaining these separated system descriptions is an expensive, manual task.
Complex descriptions were difficult to evaluate, as consistency was not enforced. As a result, errors
were not apparent until much later in the development cycle. With advances in technology over the
past decade, computer applications were developed to apply object-oriented software concepts to

systems engineering to support high-level complex systems development.

MBSE implies that the models are composed of an integrated set of representations. All leading MBSE
tools and methodologies assume that the representations of behavior and structure are interconnected
in a central repository. Each descriptive element can be represented in many forms to create a variety
of design and architectural representations. Expanding upon the INCOSE definition, MBSE is a
methodology where models are central to the specification, design, integration, verification, and
validation of systems (Estefan, 2008). The representations of system behavior and structure are

captured along with statements of needs and verification methods.

2.2.1 Benefits

32



MBSE promises to be a more rigorous and effective means of developing complex systems (Tepper,
2010). The methodologies are intended to make the complete systems engineering efforts as efficient
as possible. The value of a model-based engineering emerges from the collection of the all system
information in a central repository. This enables the interconnection of model elements and the ability
to effectively retrieve any desired information. This interconnectivity enables the automatic
propagation of design changes, consistency checking, error identification, which in turn provide the

major primary benefits.

2.2.1.1. Reduction of Costs and Schedule

Substantial efforts and costs are incurred in the development of complex systems. As shown in Figure
10, while most development costs are incurred later in the development efforts, early design decisions
commit the program to these expenses. Therefore the overall system value is determined at the
beginning of a program, and must be considered as part of concept evaluations. Better life-cycle cost
assessments can be determined by understanding the design implications, risks, and dependencies.
MBSE provides the means of obtaining this information to enable stakeholders to make more informed

decisions in as indicated in Figure 10.

33



100%

Management
Leverage

Management
Leverage

Cost
Incurred

Cost
Ihcurred

MBSE

Concept Detai Production Use Concept Detai " Production Use
Development Design Development Design

Figure 10: Changing the Paradigm (Ross and Rhodes, 2009)

Development costs are expected to be substantially reduced through the use of MBSE as they can obtain
a better understanding of the system needs and implications. Programs can proceed more quickly and
efficiently if there is a complete understanding about the way the design elements move together.
Document-based approaches can be time consuming as information is often spread across several
documents. Through its complete description of system behavior and structure, the model becomes an

effective prototype. This can lead to dramatic gains in productivity and product quality.

By more thoroughly defining the stakeholder needs and assessing designs, the risks and uncertainties
can be more accurately captured and reduced. Issues can be discovered early through the enforced
consistency and relationship visibility (Baker et al.). Moreover, the early discovery of errors will reduce

the cost and duration of the expensive integration and test phase.

In some situations, identifying stakeholder needs and priorities is a major challenge. The resulting
ambiguity often delays decision making. MBSE methodologies and tools facilitate the elucidation of
these requirements and priorities. When system requirements are more effectively translated from the

stakeholders needs, the projects are more likely to succeed.
34



Creating models is expensive, but this happens regardless of the MBSE approach. However, with MBSE,
less effort is extorted to maintain dependencies between views, or recreating the same information
(e.g., different diagrams, requirements documents, design documents). As a result, the time spent

identifying, accessing, and performing analyses is reduced.

2.2.1.2. Communication

One of the greatest benefits of MBSE is the improvement in communications among a diverse group of
stakeholders (e.g. customers, users, management, and specialty engineering disciplines). Systems
engineers must be able to easily and clearly communicate the problem, potential solutions, and
rationales. Failure to do so leads to inconsistent system designs and ambiguity. In turn this leads to
design flaws, resulting in urgent corrective actions, delaying schedules, and raising costs. This could

instead result in program cancelations or unsuccessful product launches.

Traditionally, system engineering processes are “document centric”, focusing on the generation of text
requirements, specifications, and descriptions (Cole et al., 2010). However, standalone requirements
documents are known to have gaps, conflicts, and provide an inadequate understanding of the actual
requirements (Oliver et al., 1997). They are isolated from the actual system design and defined with

ambiguous, natural language.

As MBSE tools and languages express each design element using constructs with a single, defined
meaning, they provide an unambiguous and precise description that can be evaluated for consistency,
correctness, and completeness. As the designs can be created from multiple perspectives, engineers
can manage the complexity of each view. Developers can trade off clarity and completeness. Views can

be created to provide a complete description of one aspect of a system design. Alternatively, views can

35



hide some details to clearly present one aspect of a design. Using several complimentary, focused views
to express the system structure, behavior, and interfaces is a much more effective way to communicate

complex systems (Tepper, 2010).

Through the expressiveness and rigor of models, the relationship between the requirements and design
can be more clearly conveyed. This traceability is traditionally performed manually. An emerging
standard is to use requirements management tools (e.g., IBM DOORS) to link requirements to each
other, verification methods, and design. While such tools are helpful, they cannot provide a digital

connection enabling browsing between requirements and design.

Integrated models allow developers and reviewers to navigate through views to assess design impact or
to inspect previous decisions. They mitigate ambiguity and promote consistency across the entire
program and team (Tepper, 2010). Not only can elements be linked from one view to a dependent
element in another, but the model provides traceability to previous decisions, issues, requirements, or
risks. This may involve traversing through different levels of abstraction, several components, or
external sources. Through these connections, the system objectives can be traced to the system

components that implement it.

While the views alone can greatly enhance communication, MBSE tools provide the capability to greatly
improve system understanding. Ideally, all models should be readily understood, without extensive
education or experience. However, stakeholders have different experiences and backgrounds. Not all
of them are interested or able to read modeling languages. Using the views to review the model with

these stakeholders is ineffective and the desired information will not be ascertained. This is troubling

36



because as George Bernard Shaw said, “The single biggest problem in communication is the illusion that

it has taken place.” (Wikiquote, 2011a)

Executing the model can prevent this communication breakdown. The understanding obtained through
the dynamic visualization is one of the key benefits of MBSE. Consider trying to learn about the human
heart. If depictions of the four chambers and flow of blood was presented, a fundamental
comprehension of its architecture could be gained. However, if an animation of the beating and

exchange of blood in slow motion was used, a much deeper understanding would be retained.

2.2.1.3. Knowledge Capture

Complex system development efforts, especially those designed for the military, can exceed ten years.
Over that time the rationale for design decisions are often lost. This is unavoidable when traditional
systems engineering approaches are used. Maintaining isolated documents often results in lost

knowledge leading to effort duplication and increased costs.

MBSE provides and effective means for capturing, assimilating, and retaining design decisions and
details. In an electronic repository, the information is portable, and can be reused if modifications are
required in later lifecycles. The models serve as the project memory, preventing information from being

lost due to staff turnover. Significant time can be spent recreating or discovering lost knowledge.

2.2.1.4. Decision-Making

The primary means of capturing and communication designs is currently through static drawing tools

such as Microsoft PowerPoint and Visio. This is problematic as change is unavoidable in complex system

37



designs. Currently, a careful review of static drawings and documents is required to manually update

each one to capture and analyze design changes. Obviously, this can be a slow, arduous process.

In comparison, changes in MBSE tools are instantly reflected across the entire design. This allows
developers to more efficiently and accurate assess the impact of potential changes and reduces the
document maintenance burden. Increased knowledge, including apparent uncertainties, allows better
decisions. While the sum of information stored in the model may be too much for humans to take into
account at one time, by storing and relating the data across the model, it can be effectively accessed
when needed. This can be useful in design or requirement reviews. Most requirement reviews are
isolated from the information about previous design decisions or future implications. Reviews
leveraging information in the model can facilitate the exposure of this information and improve team

endorsement.

Executable models support improved decision analysis by conducting system design trade-offs based on
a set of requirements. By assessing how well the system design meets them, designers can make better
decisions. Design risks and cost can also be incorporated into the model to enhance the decision-

making process with trade study tools. The repository can provide the basis for the technical decisions,

and the means of recording them.

2.2.1.5. Error Checking and Design Verification

In traditional systems engineering methodologies, the requirements and design validity are reviewed
almost independently. Requirements are inspected individually and through their tractability to other
requirements. Designs are primarily reviewed after reading the requirements. With integrated models,

designs and requirements can be explicitly traced to each other, enabling more complete reviews.

38



As discussed briefly, models can be checked for correctness by engineers and tools. Similar to a
software compiler performing syntax checking, MBSE tools can validate the model consistency and

l"

conformance to standards. Successful model execution indicates the lack of “grammatical” errors.
Moreover, by reviewing the model execution, developers can affirm that the right system is being built
(Baker et al.) . Using this capability, the design completeness and accuracy can be assessed, a
formidable task using traditional techniques. The identification of inconsistencies indicates design flaws.
Regular design inspection allows developers to be more effective and consistent right from the start.

The expense of correcting an error is minor in a program’s earliest stages, but becomes significant in

later stages.

Simulating the model can verify the logical, consistent behavioral flow, interfaces, and triggers. Some
permit system analysis though a discrete event simulator. The integration of performance models aid in

the analysis of alternatives to determine the optimum design within the given constraints.

An emerging capability is the integration of MBSE tools with those used by other engineering domains.
When data is automatically exchanged, programs will experience a significant reduction in errors,
development times, and costs. As shown in Figure 11, an interface tool or translator could be used to
create a cross-discipline model based development approach. This would enhance the entire product
development lifecycle, by enhancing of the benefits of model based engineering. Design parameters
would be exchanged automatically, eliminating simple errors. Trade studies could include more

variables or be more detailed to find better solutions or find the solutions faster.

Tool independent translators can convert systems engineering models into formats required by other

disciplines with minimal customization. Once the interface tool adds the capability to read or write data

39



to a new tool, that data can be exchanged with all other tools. This minimizes the number of

customized interfaces and plug-ins required to achieve a fully integrated development environment.

/'

< A

Software Analysis
Tools . Tools

pec Pt

Simulation ‘ _ Mechanical
Tools Tools

/'

Presentation Electrical
Tooals . Tools
Schedule
& Budget
Tools

Figure 11: Interdisciplinary Model Based Environment

2.2.1.6. Documentation

Documents are expected to remain an essential part of MBSE (Logan and Harvey, 2011). Considered by
many to be a “source of truth”, documents will remain the primary means for most stakeholders to

examine the model’s contents. As it is unlikely that many non-specialist reviewers will be able navigate
systems engineering model, document generation will continue to be important to support information

exchange, reviews, and contractual obligations.

MBSE tools allow for the development of templates that automatically generate formatted documents

from the repository. Using the templates, developers can automatically generate documentation based

40



on the current design status. Unlike the traditional practices where documents generally capture the
design status at the completion of the program, they can now be regularly created with very little effort.
When combined with model reviews, developers can generate complete, up-to-date design descriptions

and requirement documentation to keep the stakeholders informed.

2.2.1.7. Reuse

The reuse of model elements is one of the major advantages of a MBSE methodology. From a single
repository, multiple consistent views can be produced to communicate and analyze designs. Manually
maintaining diagrams and attempting to maintain consistency from uncorrelated elements is error
prone and wastes resources. MBSE allows for the creation of alternative views while reusing common
elements. Moreover, portions of system models can be reused for alterative designs. This supports

trade studies and insures consistency, while providing traceability with minimal additional work.

Reusing of data items allows for the efficient creation and refining of data dictionaries or Interface
Control Documents. As these are refined they can be reused across different programs by creating
element libraries, domain specific constructs, and generic conceptual patterns. This has been shown to

greatly reduce the time needed to develop similar system models and documentation (London, 2011).

Reduced development and maintenance costs can be achieved through the use of consistent design
patterns to capture information and by leveraging multiple levels of abstraction. Consider the benefits
of electric CAD packages. These tools have reusable parts in a local repository, and can organize them in
any (accepted) fashion to design schematics. Some part properties are specified, while others are
customizable. Commercial parts are provided by their vendors to promote reuse and design efficiency.

Perhaps, this will be available for systems engineering models in the future.

41



Some tools allow for elements to be created and analyzed in one graphical language, and to be reused in
another (Wilson, 2011). This powerful capability can be used to reduce the risk of miscommunication by

creating stakeholder specific views in order.

2.2.2 Tools

Generically, tools are things used by people to simplify or make their work more efficient. Tools help
people automate what they already know how to do by hand (Maier, 2009). MBSE tools are developed
to automate portions of a process, but they must be properly utilized. If used incorrectly, MBSE tools
will only exacerbate the situation. An investment in methodology and tool use training is required to

make MBSE adoption effective and can be the most expensive investment (Oliver et al.).

MBSE tools are available across a range of cost and capabilities. Using an interconnected central
repository, most tools provide the capability to manage requirements, develop architectures, insure
traceability, and specify verification methods. However, the features they provide to support these
activities vary. Some MBSE tools can easily support large distributed teams, and others are more suited
for smaller groups. While most tools are integrating technologies for trade studies, others provide
interfaces to external analysis tools. The range of supported processes and methodologies provides

developers with several options for MBSE implementation.

OPCAT, short for Object-Process CASE Tool, is intended to support the OPM MBSE language. Primarily
an architecture development tool, trade study support or model execution is not currently available.
However, the tool automatically generates natural language text from the graphic input and vice versa

(Dori, 2008).

42



Sparx Systems Enterprise Architect is a MBSE tool supporting software, systems and business processes
modeling. Based on an open standard, several third-party extensions provide a wide range of
features to expand the integrated tool capabilities. Almost completely unconstrained, Enterprise

Architect supports any MBSE methodology.

Vitech CORE Spectrum and GENESYS tools integrate multiple languages and representations to improve
communication and analyze designs. While these tools can simulate designs to validate the model using
simulation, they have yet to include features that support integrated trade studies. However, this

feature is expected shortly.

One of the most expensive and powerful options, IBM Rational Rhapsody product suite provides MBSE
support for systems and software engineers. While several modeling languages are supported, the IBM
tools are intended to be used with specific methodologies to leverage the benefits of its integrated

functionality.

The MagicDraw System Engineering solution developed by No Magic, supports the full range MBSE
capabilities through third-party plug-ins. While multiple languages are supported, MagicDraw provides

specific perspectives for modelers based on their role and experience.

2.2.3 Views and Viewpoints

In each MBSE tool, methodologies and frameworks are organized by “views”. Views are diagrams or
descriptions that display a subset of the model in order to convey a specific set of information. To
insure there are no misunderstandings, views should be developed to capture a specific aspect of a

design.

43



As incomplete technical messages focus on one message, they can communicate the point more
effectively (Long, 2011). Often these views are created to meet the needs of a specific stakeholder. An
analogy proposed by Jim Cunningham in a recent discussion was of a model of a house (Cunningham,
2011). Views of the front, back and each floor must be used to convey the architecture. One view is
insufficient. Furthermore, specific views must be used to convey the design to the customer, electrician,
plumber, etc. Each stakeholder has a different perspective and concern, known as a viewpoint. When
developing these views, modelers should consider the recipient of the information. What is their

background and expectations? What information must be communicated?

2.2.4 Languages

The selection of a language is critical to the MBSE effort as complex systems cannot be effectively
modeled using unnecessarily complex or ambiguous languages. Most systems engineers use graphical

representations to communicate, selecting the language based on their education and experience.

There are various modeling languages available to the systems engineers, including: Object Process
Methodology (OPM), the Unified Modeling Language (UML), Enhanced Functional Flow Block Diagrams
(EFFBD), and the Systems Modeling Language (SysML). These modeling languages, like any other
language, are composed of semantics and syntax. Semantics are the meaning behind words and
symbols. Syntax is the rules for representing semantics and their relationships. The language dictates

how elements are created and manipulated within a tool.

MBSE languages must have formal, unambiguous semantics and syntax to eliminate the chance for
miscommunication. The languages should support the full characterization of the static and time-

dependant system characteristics, their hierarchy, and use. Relationships between elements should be

44



explicitly represented to insure traceability. Effective languages should be clear and intuitive, so they

can be quickly taught and easily understood.

2.2.4.1. Object-Process Methodology

Developed by Dr. Dov Dori, OPM is a generic language that integrates system’s structure and behavior in
one view by simultaneously representing structure and behavior using a relatively small alphabet. OPM
is based on three types of entities: objects, processes, and states, with objects and processes being the

higher-level building blocks (Dori, 2002). For OPM, they are defined as:

* Objects are the things that exist or have the potential of existence, physically or conceptually
* Processes transform objects by creating, consuming, or changing their state

e States are the situations that objects can be in

The symbols for objects and processes are depicted as rectangles and ellipses, respectively as shown in
Figure 12. Objects and processes are connected with structural relations (i.e., aggregation,
generalization) and procedural links (i.e., enabling, transformation, and events). Complexity is managed
through three refinement/abstraction mechanisms: (1) Unfolding/ folding, which refines or abstracts the
structural hierarchy of an object (2) In-zooming/ out-zooming, which exposes or hides the inner details
of a object, and (3) state expressing/ suppressing, which exposes or hides an object’s state (Estefan,

2008).

45



Attribute of
form

Figure 12: Example OPM Elements (Dori, 2008)

2.2.4.2. Functional Flow Block Diagrams

Functional flow block diagrams (FFBD) provide a chronological, sequential description of behavior. One
of the oldest systems engineering modeling languages, FFBDs describe an object’s functions in the order
in which they are to be performed. Sequences are described using arrows from predecessors to their
successors. Function completion criterion can be appended to arrows to further specify behavior. As
depicted in Figure 13, FFBDs are represented as rectangles labeled with the function names. Conditional
constructs (i.e., AND, OR) are shown in text contained in small circles. Using these constructs,
concurrent and iterative behaviors can be defined. One of the major drawbacks of FFBDs is the inability

to express any information relating to the triggers or flow of data between functions.

46



1.0 2.0 3.0 4.0
Identify need
2 . Manufacture Operate and
3“"5:32';:"“9 > dee:zg’;;:gm > system L—» maintain | —
requirements (production) system
[y T ; T T
Eosasnessmsnsenn EFeadback =t S
v
4.0 _REfF 4.1 4.2 4.3
Operate and
el ,|Operate system| | Operate system GO, |Operate system| 2
niintih “|  in mode A "l inmode B in mode C
system
NO-GO| T
4.0 l 4.1 14.2 14.3
Transport faulty
Isolate fault to || Removeand | | nitto GO, | Repairfaulty | 22
o il » replace faulty »> : 5
unit” level st maintenance unit
shop
NO-GO

Figure 13: Functional Flow Block Diagram Example (Hale and Quayle, 2009)

2.2.4.3. Enhanced Functional Flow Block Diagrams

Enhanced Functional flow block diagrams (EFFBD) overlay the control structure and sequencing of FFBD,
with the data exchanges, as shown in Figure 14. EFFBDs were one of the first diagrams to represents
functions, control flows, data flows, and their dependencies (Long, 2009). The language provides

constructs that graphically distinguish triggering and non-triggering data inputs.

One of the drawbacks of EFFBDs is the number of elements required to communicate the design.
Edward Tufte, one of the most influential authorities on the visual communication of information,
contends that non-informative and information-obscuring elements reduce the accuracy and clarity of
the information conveyed (Tufte, 2001). The conditional constructs used in FFBDs and EFFBDs may
reduce the clarity of design descriptions. However, these diagrams are thought to be more easily

understood by military trained personal than other modeling languages (Wilson, 2011).
47



Ref —p- Source of — Function —» Sink of — Ref
External Input Decomposed External Output
In Next Figure

External
Qutput

External
Input

Figure 14: Example of an EFFBD (Bock, 2005)

2.2.4.4. Unified Modeling Language

Unified Modeling Language (UML) is a general purpose, graphical modeling language for object-oriented
software engineering. It was developed in 1997 by the Object Management Group (OMG), an open
membership, not-for-profit consortium. Now widely taught and used for software design, UML is a
robust, flexible modeling language. UML defines several semantics for specifying software designs, but it

is not necessarily to use each one.

The language describes the interactions between systems and external objects using use cases. Several
structure diagrams are used to describe the system components, classes, and objects. State charts
describe the conditions that classes assume over time. Activity diagrams describe the system
workflows. Several interaction diagrams, describe the flow of control and data among system
components. Additional information can be found via the UML standard (Object Management Group,

2011b).

2.2.4.5. Systems Modeling Language

Systems Modeling Language (SysML) is a graphical modeling language used to specifying requirements,

structure, behavior, and allocations across a system’s lifecycle. The language enables the design,

48



analysis, and verification of complex systems. It was also developed under the auspices of the OMG in
response to an initiative sponsored by INCOSE. SysML is considered by many to be a young language
although it is based on the established UML, well known requirement constructs, and other standard
systems engineering elements (Cole et al., 2010). SysML reuses and extends many UML diagrams as

shown in the Venn diagram in Figure 15.

P alinic e

UML 2 SysML

SysML'S
extensions to
UML
not required
by SysML - oy UML reused by
"‘-.hh__-___,-"

SysML
(UMLASysML)
Figure 15: Relationship between SysML and UML (Object Management Group, 2011a)
Many envision SysML becoming the standard systems engineering language (Friedenthal, 2009). While
other languages support aspects of MBSE, SysML can be applied to each systems engineering activity.
This is achieved by providing diagrams for modeling system requirements, behavior, structure, and

parametrics. These categories, known as the “four pillars of SysML”, are shown in Figure 16.

49



1. Structure

2. Behavior
int tion S ABS _Actation Sequencs [Saquence o..,...mu
[bdd [ chage] VehicteSinuaure [ABS-fock Defntson Dagram)
/] definition
0 preve o I @ Tractian I mi:Brake
Library oot g Library: £lec
Electonic v o Myl e sl atmn T aTruction [Stats Machins Disgram]
asauotiod Canuolier Ve state sy}
machine
ac"v“w wct PreventLockup [Actvty Disgram| N
o [0 ck] Arei-Loch Cortro lier .
Brteeral Biach D am] - function :]
e 5
]
e1mosi use
tertace
pmais | i
L]
reqlpachage] VehicheSpe cicatorn
(R Dingram-Brabing Reg: ]
Vehiche System | !rmn —
:n‘nfun .
g o) S et = o)
ig="102" Jo="227"
exte* Tha vahicle shall sicp jeat=‘Brakng sbsyswm shal|
rom B0 mph within 150 ft o or aet whes | ockup urder ol
o & chean dry wurdnce®

pewhirg cond Bons”
1|
«demiReds |

3. Requirements

4. Parametrics
Figure 16: The Four Pillars of SysML (Object Management Group, 2011a)

Each graphical view expresses one aspect of the design. By offering a more complete representation of
systems, SysML helps reducing errors and ambiguities during system development processes. When
used properly, the language can greatly improve the value of system model, compared to pure textual

system descriptions. The SysML diagram types are identified in Figure 17 and summarized below.

SysAML Diagram
A
[ S — 1
Behavior : Requirement | Structure
Diagram i Diagram ) Diagram
A
| | | | | |
Activity Sequence State Machine Use Case Block Definition Internal Block Package
Diagram Diagram Diagram Diagram Diagram Diagram
B
I Same as UML 2 I | Parametric I
| Diagram
| Modified from UL 2 |
\ New dagnam tpe |

Figure 17: SysML Diagram Types (Object Management Group, 2011a)

50



One of the most beneficial features of SysML is the variety of constructs it provides to describe behavior.
However, SysML diagrams can also complete describe the system structure, depicting its hierarchy,
interconnection, and properties. The language also provides specific constructs for specifying

requirements and their relationships.

2.2.4.5.1. Use Case Diagrams

The use case diagram, shown in Figure 18, depicts the high-level system functionality in terms of its
usage by external entities known as actors. Actors can represent any external elements, such as other
systems, environmental conditions, or people. Use case diagrams provide basic behavioral descriptions

through the interactions to each actor and must be elaborated via other behavior representations.

uc HSUV_UseCases [Operational Use Cases] /'

HybridSUV
. ~
«extend»
rd
5 e
- Drive_The_Vehi ainclude»™" Accelerate )
A \\ cle
A
. \
Driver S ~ winclude»

e ~ ~ e
B ~
. «include»
b : \
N
\ -
Park .«[nclud.»-)@)

Figure 18: Example of Use Case Diagram (Friedenthal et al., 2009)

51



Use cases are further defined through scenarios, specific paths of execution that list system interaction
with the actors. Scenarios can fully describe the system functionality using a primary and several
secondary scenarios. Secondary scenarios describe alternative paths and error conditions. These
scenarios are sometimes captured using sequence or activity diagrams. Other MBSE tools automatically

generate these diagrams from text based scenarios.

2.2.4.5.2. Activity Diagrams

Activity diagrams, shown in Figure 19, depict the complete flow of system operations. They are one of
the most powerful and comprehensive depictions of behavior. The diagrams describe all of the possible
paths of behavior and the order in which they must precede. Forks and joins, the solid black horizontal
lines, on the activity diagram are used to show concurrent paths. Guard conditions on the control flows
can stipulate alternative paths and when they are to be used. The diagrams also represent the flow of
data (e.g., messages, commands), physical elements (e.g., fluid) or energy (e.g., force) between

activities. These exchanges can be shown using rectangular constructs as shown in Figure 19.

act PreventLockup [Activity Diagram] )

3

DetectLossOf : Modulate
Traction AractionLoss BrakingForce

Figure 19: Example of an Activity Diagram (Friedenthal et al., 2009)

52



The richness of this description also has a drawback. The views can contain too much information and
therefore be hard to read. Care must be taken to clearly convey the intended message, and insure that
the diagram meets the needs of its readers. Several comparisons of EFFBDs and activity diagrams have
been made (Bock, 2005; Herzog, 2005) to identify the most intuitive language, however the results
indicate very different conclusions. Therefore, it appears that reader’s background and education
impact their abilities to efficiently read the different languages. SysML seems to be natural for software
and systems engineers, but may be difficult for those with military or mechanical engineering
backgrounds, who may have a more natural affinity for EFFBDs. It appears that those with software and
systems engineering backgrounds have a tendency to easily comprehend activity diagrams, while those

with military or other domain expertise may prefer EEBDs (Cole, 2010; Long, 2011; Wilson, 2011).

2.2.4.5.3. Sequence Diagrams

Sequence diagrams describe the interaction between system elements and external entities as shown in
Figure 20. They capture individual threads of behavior, timing, and exchange of messages. These
diagrams do not have the capability to characterize control (Karban, 2011), and therefore several
sequence diagram may be required to enhance the a single activity diagram. These messages are
displayed as arrows and can be specified as synchronous or asynchronous, a call or return, and a specific
type. The duration of an action can be important for some behavior flows. Sequence diagrams can

explicitly capture these durations as shown in Figure 20.

53



| sd [Package] System Behav ior [Set UAV]

% :UAV Launcher | -UAV

:Ground Assets
I
I

>

| Settings(Lat/ Long, MET Data, Target Position) :Status
Initialization Message(GPS Keys, Launé:h Pos, Target Pos) :Status

s il

5 seconds}

| {0.5 seconds}
Status()

|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 20: Example of a Sequence Diagram

2.2.454. State Diagrams

State or state machine diagrams are used to group similar behavior, describing a period of time with an
invariant condition. As shown in Figure 21, they depict the trigger initiating the transition from one

state to another, and the actions performed in response to events. State diagrams are frequently used
to show the life cycle of a block (Friedenthal, 2009b). They can be leveraged with other states to act as

“modes”.

54



stm HSUVOperationalStates /

start{in neutral)/start engine shutOff/stop engine

Nominal
states only

accelerate/
when (speed = 0)

—-feleaseBrake/ i

[

Lengageerake/—/

Accelerating/
Crulsing

N

/

Figure 21: Example of State Diagram (Object Management Group, 2010)

Block Definition Diagrams

to each other. These views are primarily used to statically decompose el

requirements, activities, and actors).

55

Block definition diagrams, such as the one shown in Figure 22, are used to describe how elements relate
ements. By breaking systems
down through multiple levels of abstraction, simplified representations can be used to clearly convey
and characterize the elements. While the diagrams generally capture the physical hierarchy and
classifications, they can be used to decompose activities as well. Other common relations such as
associations, generalizations, and multiplicity can be specified in block definition diagrams. The

diagrams can also be used to specify the relationship between blocks and other constructs (e.g.,




bdd [Package] Structure[ Overall Structure ])

<=block>»
Rotor

d1

Vehicle

<<hlock==

Traction
Detector

«<block=>
Anti-Lock
Controlier

<«block»»

Brake
Modulator

<=<block»»

z<hlocke>
Tire

e<block»»
Hub Assy

<=zblock=>»
Sensor

Figure 22: Example of Block Definition Diagram (Friedenthal, 2009b)

Blocks are the primary unit of structure in SysML and can represent hardware, software, people, or any
other element (Object Management Group, 2011a). Other descriptive characteristics can be assigned to
the blocks such interfaces, parts, values, and attributes. Ports and flow ports represent the inputs to
and outputs from blocks. Interfaces are defined using standard ports and flow ports, which specify
required operations or signals, and what can flow in or out of the block respectively. Constraints and

attributes are the block’s properties. They may have default values, or could be selected later in the

design.

2.2.4.5.6.

Internal Block Diagrams

56




Internal block diagrams are used to describe the Blocks’ internal structure in terms of its parts, ports,
and connectors. As shown in Figure 23, they specify how the internal elements and ports are connected
as well as the objects that flow between them. Internal block diagrams generally show a frame
representing the enclosing block and specifying its external interfaces. All internal elements are

instances of block components specified in block definition diagrams.

ibd [Block] [ Connecting Nested Parts with Ports JJ
b1:B1 b2 :B2
. p1:P1 p2:P2
c1:C1 ©2:c2 fes} <]
p1: P1 Y 5
SP1 SP1
SP1

Figure 23: Example of Internal Block Diagram (Friedenthal, 2011)

2.2.4.5.7. Requirements Diagrams

Requirement diagrams are used to graphically depict the hierarchy between requirements and their

relationships to other model elements. Using graphical construct to capture text based requirements,
these diagrams can clearly convey the elements that satisfy, refine, and verify the requirements. They
can also provide a bridge between the traditional requirements management tools and SysML models

(Object Management Group, 2011a).

57



As shown in Figure 24, requirements derivations and rationales can also be expressed. SysML defines
seven constructs to capture the relationships between requirements, such as (e.g., containment, derive)

and other model elements (e.g., satisfy, trace) (2009; Rosenberg and Mancarella, 2010).

req Safety test f
«requiremants
Adbesion utitization
wrequirements id = "S7.4°
ASTM R1337-90 arequirementy wx e
= "A. 24241 Pav on
= A irernents
text = “This lest mathod covers d=5621 Ve::lq:!umdim
the measuremant of peak te;:}:"[hggaﬂhﬁ prpyTy
braking coefficient of paved surface [ ] id = “57 4,
g coe! pa nction coafficient (FFC) of text =" *
surfaces using a standard k- 0 9 when mea. { using
reference tes! e (SRTT) a3 T an Amedcan Sooety for - [,
daescribed in Specification «deriveReqt» | Tasting and Materials . wrequiremients
E 1136 that represents current o, | (ASTM) E1136 standard «derveRegts | |
. N Test and procedure conditions
technology passenger car . test tire, In .
radal tes” Motoa & 13m0, ~iors7as
! text = “{a) IBT: s65 °C (149 “F), 5100
*C (212 °F)
{b) Test surface: PFC of at least 0.9

Figure 24: Example of Requirements in Diagram (Object Management Group, 2010)

2.2.4.5.8. Parametric Diagrams

Parametrics can support trade studies and analysis of non-functional requirements (e.g., cost, weight,
performance, quality, flexibility). Using constructs such as those shown in Figure 25, parametric
diagrams can perform calculations based on the block’s value properties. In addition to trade studies,
they can be used to compute technical performance metrics or other critical budgets based on the

attributes of lower level components.

58



«constraint»
ConstraintBlock1

constrains

{L1} x >y}
nested: ConstraintBlock2

parameters
% Real par Block1 J
y: Real
length: Real 5
- ™ O0——-— =
[ ] x: Real . C1: Constraint1
C1: Constraint1 —_ Q
: o—Q
g y: Real
/

«constraint»
C1: Constraint1

[ ]x:Real
[ Jy: Real

Figure 25: Example of Parametric Constructs and Diagram (Object Management Group, 2010)

Parametric diagrams use constructs that express equations, parameters, and logical relationships to
constrain or calculate block properties. The constraint blocks and constraints are shown in Figure 25
with a constraint instance. The figure also specifies the parameters, x and y, and their value properties,
“real”. A constraint block is a generic definition of a constraint that can be reused to form organized
equation networks. Constraints are equations such as “F=m*a”. In constraint blocks, the equation

variables (e.g., force, mass, acceleration) known as parameters, are not specified as inputs or outputs.

Parameters are specified as variables or products of the equation using constraint properties, the
instances of constraint block. Constraint properties explicitly define the quantifiable characteristic, such
as force or mass. The parameters known as value properties are typically defined with value types such

as units, quantities, or probability distributions (Peak et al., 2007a).

59



Once the input and output parameters of each constraint block are captured, the constraint equations
can be explicitly defined. This is generally achieved using a scripting language providing the
- mathematical basis for execution. While tools can accommodate a number of different scripting

languages, they must be consistent throughout the model.

Parametrics can support trade studies and analysis of non-functional requirements (e.g., cost, weight,
performance, and the “ilities”). This can be performed by specifying the relationship between a
system’s measures of effectiveness (MOEs) and each implementation. By formally specifying the
relationship, robustness analyses can be performed. An example of a parametric diagram specifying
MOEs can be seen in Figure 26. For additional information, refer to (Peak et al., 2007a; Peak et al.,

2007b).

par [block] MeasuresOfEffectiveness [HSUV MOEs])

«moe»
HSUValt1.CostEffectiveness

f
. : xmoe»
( ‘EconomyEquation '3 HSUValt1.FuelEconomy CE:
LI
«objectiveFunction»
«moe» o N
HSUVait1.QuarterMileTime :MyObjectiveFunction
E a: (CE = Sum(Wi*Pi))
:MaxAcceleration
Analysis z: ,I—l ,I—I
5 P, P
] «moex»
HSUValt1.Zero60Time
vC:
. . . amoer
[ ‘CapacityEquation % HSUValt1.CargoCapacity
uc:
. - } «moex»
( :UnitCostEquation @—_ HSUVait1.UnitCost

Figure 26: Example of MOE Definition (Object Management Group, 2010)

60



2.2.4.59. Element Attributes

SysML elements are often defined through the explicit specification of their attributes. These
descriptors provide an effective way of describing system properties and managing critical parameters.
Attributes can capture the operations, values, assumptions, constraints, characteristics, or qualities of
any element. Figure 27 demonstrates the definition of a block using a variety of attributes. Qualities
such as security, response time, or reliability can be associated with these constructs and refined at
lower levels. Most tools enable the direct inheritance of attributes so that they can be identified in
conceptual elements and specified in the implementations. The specification can also be performed

using parametric diagrams.

«block»
{encapsulated}
Block1

constraints

{x>y}

operations

operation1(p1: Type1): Type2

parts
property1: Block2

references
property2: Block3 [0..*] {ordered}
values
property3: Integer = 99 {readOnly}
property4: Real = 10.0

properties
property5: Type1

Figure 27: Example of Block Properties (Object Management Group, 2010)

While almost infinite descriptions can be added to the constructs, it is important to select only the
quality attributes that add value. They should be key and relevant to the application and model. Each
attribute should be clearly named and have a well defined type and value. In addition, it is also

beneficial to add a rationale statement or link to source describing the need for the attribute.

61



2.2.5 Methodology

Formal methodologies insure that consistent approaches are used to meet the expectations of all
stakeholders. They provide structure to standardize the development process and deliverables, and
essential practice for large projects to communicate effectively and efficiently perform design activities
(Oliver et al.). While there are several existing systems engineering and MBSE methodologies, each one
follows similar processes for requirements definition, design, and verification. Each MBSE methodology
starts with the reception of defined customer requirements. Based on these needs, a variety of
processes are used to guide teams from requirement analysis through detailed design, and finally
system verification. A description of the established MBSE methodologies is maintained by OMG and
INCOSE within the MBSE Wiki (Estefan et al., 2011). The leading MBSE methodologies are discussed

herein.

Prior to the establishment of MBSE methodologies, numerous organizations developed systems
engineering process standards to improve requirement development and multi-disciplinary

development efforts. One of the original and most well known processes was MIL-STD-499.

After several decades, a significantly updated version, MIL-STD-449B, was poised to be released.
However, many military standards were canceled in 1994, including MIL-STD-4498B. It should be noted
that the Air Force and other organizations continued to use the unratified MIL-STD-449B. Shortly after
the intended release, the Electronic Industries Alliance (EIA) released a commercial version, which
became American National Standard (ANSI/EIA 632). The standard describes an integrated fundamental

process to guide systems engineering efforts (Estefan, 2008). ANSI/EIA 632 provided many of the

62



guiding principles for the international standard ISO/IEC 15288 and the INCOSE Systems Engineering

Handbook (SE Handbook Working Group, 2011).

Other organizations have developed or formalized their own methodologies or processes. NASA, which
has recognized the value of the formal processes since its inception, has its own standard, NASA NPR
7123.1A (NASA, 2009). NPR 7123.1A describes a required set of internal technical and managerial
processes for performing, supporting, and evaluating systems engineering efforts. In addition, it

specifies the roles, tools, and lifecycle reviews for system development.

Capability Maturity Model Integration for Development (CMMI-DEV) is part of one the largest non-
government design methodologies. It contains a comprehensive, integrated set of best practices and
guidelines that can be applied to any product or service development domain (Product Team CMMI,
2011). CMMI-DEV is divided into five engineering processes, and follows an iterative approach through

development to verification and validation.

The Aerospace System Engineering Process (ASEP) is an example of a corporate systems engineering
methodology. Systems, Inc., Draper Laboratory, and many other large companies have defined internal
methodologies. ASEP is focused on defense systems development (Maier, 2009), starting with an
analysis of the potential system value. ASEP is one of the few methodologies to have disparate steps for
candidate conceptual and implementation solution development. Like the other established systems
engineering methodologies, ASEP does not suggest processes for detailed design and verification.
Instead it focuses on concept development, culminating with a selection and formal architecture or

concept definition.

63



MBSE methodologies, tools, and languages are separate entities that in theory could be combined in any
way. However, the trend at the time of this thesis is towards their customization. The only tool
currently supporting the OPM language is OPCAT. The Rational Harmony methodology is heavily
focused on SysML and has been tailored for IBM Rational Rhapsody software. Vitech MBSE tools, which

historically supported non-SysML languages, are tied to the homegrown STRATA methodology.

2.2.5.1. Vitech STRATA Methodology

STRATA, an abbreviation of strategic layers, is a design methodology based on a layered process of
analysis and design decisions. Initially developed by Jim Long, Marge Dyer, and Mack Alford, this MBSE
approach has been continually updated by Vitech Corporation. The methodology follows the systems
engineering onion model, stepping through the design in increasingly granularity. At every design level,
STRATA seeks to remove ambiguity and make design decisions. Starting at the most general level,
requirements, functional behavior, and architecture are developed, verified, and validated as shown in

Figure 28 (Vitech Corporation, 2011).

Input From
Previous Layer

Functional
Behavior
Analysis

|

Figure 28: Vitech MBSE Activities Performed at Each Layer (Vitech Corporation, 2011)

Architectural Validation &
Synthesis Verification

Requirements
Analysis

Check results

64



The Vitech MBSE methodology is based on the four concurrent activities, labeled as “domains”. The
methodology assumes that the work products are linked and maintained through a model repository.
The requirements domain takes descriptions of the intended system use and purpose in order to create
“child” requirements. The domain culminates in an agreed upon set of acceptance criteria and the

“verification requirements” required to assess them.

The functional behavior analysis identifies the characteristics, object flow, and the stimuli response
behaviors for the system. It is focused on decomposing the problem into solvable pieces, insuring that

the complete logical flow is defined.

The architecture synthesis domain starts by examining the system and the elements that transition the
system boundary. These design activities are strongly influenced by behavior domain models, which
guide the physical partitioning and allocation. At leach layer of development, the partition is assessed

and compared to the products of the other domains.

STRATA uses both graphical and textual language to define the architecture. It stresses a well organized
syntax and semantics to support behavior model execution (Vitech Corporation, 2011). At the
conclusion of this domain, an executable model is created with physical partitions, clearly defined object
flows, and explicit behavioral allocation. The execution ensures that the assumptions, interfaces,

functions, and architectures are convergent, consistent, and complete.

STRATA enforces the system verification and validation throughout the development of the other
domains. The methodology insures that at each level the requirements trace to system components,
and that the layer’s model is consistent with the others. At the conclusion of the verification and

validation, automatically generated documentation is used to communicate the layer’s designs. At the

65



highest level, the domain also insures that the design meets the acceptance criteria based on the

verification requirements.

The methodology assumes it is used in conjunction with a tool automating many functions. By enforcing
reuse and integration, it lets tools to do the “perspiration stuff’ and human brains to do the “inspiration

stuff.” (Vitech Corporation, 2011).

STRATA is based on the fundamental Onion Model principles of completely and consistently addressing
the design activities at each layer. As the development team completes a system design level, they
“peel off a layer of the onion” and develop the design at the next level of decomposition. The
methodology seeks to avoid the cycle of rework and fixing errors by insuring that constraints are
discovered early in design process. Vitech claims it makes the design process “virtually fail safe” (Vitech
Corporation, 2011). To use this approach, it is crucial to discover the constraints early in system design
process. STRATA stipulates that developers should never iterate between more than one layer.

Changes across several layers can significantly impact cost and schedule.

2.2.5.2. INCOSE Object-Oriented Systems Engineering Method

The INCOSE Object-Oriented Systems Engineering Method (OOSEM) is a top-down systems engineering
development approach intended to be applied in conjunction with SysML and tools supporting object-
oriented modeling. While OOSEM is based on the Vee development model, it uses a recursive, spiral-
like approach to design and system decomposition. The methodology was developed in 1998 and
refined under a joint Lockheed Martin Corporation and Systems and Software Consortium endeavor.

OOSEM uses a Use Case and scenario-driven design strategy to support requirements analysis as well as

66



the development, evaluation, and verification of complex systems (Wolfrom, 2011). It advocates

element reuse to accommodate design evolution and requirement modifications.

One of the greatest differentiators of this methodology is the system analysis from the viewpoint of
structure, in lieu of the more common behavior (Ryder, 2006). Advocates of the methodology claim
that structural decomposition, and hence designs based on structure, can be grasped more clearly.
These objects, abstract or specific implementations, are refined by allocating activity and state

descriptions.

As shown in Figure 29, OOSEM is divided into four primary phases. The pink boxes in Figure 29 identify
the major systems engineering activities, while the green boxes indicate common tasks performed
throughout the process. The methodology begins with a stakeholder needs analysis using use cases to
scope and define the problem. Using these use cases, requirements and measures of effectiveness are
then developed. Processes are suggested to insure that requirements are necessary, concise, feasible,
complete, unambiguous, consistent, and verifiable. Through the system requirement development, the

system scenarios, states, and interfaces are defined (Wolfrom, 2011).

67



«Causal Analysis
*Top Level Domain Block Definition Diagram
*Mission Use Case Diagrams

7

+System Context
+System Scenario
«Input/Output Definitions

Define sLogical Hierarchy
Logical sLogical Interconnection
Architecture | <Logical Scenarios

*Allocations to
HW,SW, Data
Architecture

Figure 29: 00SEM Methodology (Wolfrom, 2011)

Once the requirements are documented, the abstract, or logical, structural architecture is developed.
The abstract structural architecture specifies the subsystem interfaces required to realize the scenarios.
To fully define each subsystem, their states and activity flows are specified. Next, each object is traced

to the driving requirement.

In the final phase, specific hardware, software, and data implementations are specified based on the
abstract physical architectures. The particular physical components are linked to the logical one and
further defined though the specification of the critical component properties. As a result of the
subsystem design implementation, requirements are generated and the process is repeated. Alternative
designs are assumed to be developed and evaluated in parallel to the requirement and architecture

analyses. OOSEM assumes the analysis is performed using SysML parametric diagrams and constraints.

2.2.5.3. Rational Harmony for Systems Engineering

68



Rational Harmony for systems engineering is a subset of the overall Rational Harmony development
methodology shown in Figure 30. By looking at the figure, it is apparent that the methodology mirrors
the classical “Vee” lifecycle development model. Rational Harmony for Systems Engineering, hereafter
called simply Harmony, originated at I-Logix, Inc., which became part of IBM through a series of
acquisitions. When used in conjunction with the IBM Rhapsody tool suite, the methodology defines

specifies the specific processes that should be followed. However, Harmony can be applied to any MBSE

effort, and is not Rhapsody specific.

Change Request

N -
Stakeholder é Harmony™ for
Requirements Systems
{ / Engineering System
Validation
Requirements Models, [T T 0] i ki Plan System
System Use Cases Model Analysis Acceptance

Test

[3LH0CEl System Functional
Use Case Model(s) Analysis

{Sub-)System

Architectural Analysis Model(s),
Integration & Test

System Architecture Model [ M LUE LN ~—————

\ Harmony™ for
Embedded RT
Development

System
Architecture =~
Baseline

Procedure
sw

Analysis & Design Integration & Test

Software
Implementation
Model SW Implementation

*+— Model / Requirements Repository

& Unit Test

Figure 30: Rational Harmony Integrated Systems / Embedded Software Development Process (Hoffmann, 2011b)

As the focus here is on concept development, the phases following the system architecture baseline
shown in Figure 30 will be ignored. The key systems engineering objectives in Harmony are to derive

the required system functions, identify the system states, and allocate these behaviors to subsystem

69



structure. The methodology is divided into three high level activities; requirements analysis, functional

analysis, and design synthesis. They are depicted in more detail in Figure 31.

| * Stakeholder Requirements = Change Request
' Stakeholder Requirements \
,. | System Requirements Requireme Ana
| 1 System Use Cases Model = SRS
I g' System Use Cases | — (Dlmm
| -5 M
| ‘@ _!Updated System Requirements 8 onal A Systom-Lovel
8 T Executable Use Case Madel(s) e Case-Based =licp
® “TUse Case Scenarios (Black-Box) =
o i System Operations = | (aseline)
S ! Non-Functional Sy Requir
E — P D
| Updated System Requi ts
£ - P cauremen Architectural Analysis
§- | Architectural Analysis Modei(s) (Trade Study)
4 B oncep
— _!UC Activity Diagram(s) {Black-Box)
i .g ” Architectural Design
<] | UC Activity Diagram(s) (White-Box)
=1 Allocated
| 1 UC Activity Diagram(s) (White-Box) Operatio
” Detailed
i Scenarios (White-Box) Architectural Design
| System Architecture Model (Baseline)
‘ EN Y/
Links providing traceability N=
to original requirements é Logical ICDs

HWI/SW R«
HWISW s Speck
Development

Figure 31: Rational Harmony for MBSE (Hoffmann, 2011b)

The process assumes that model and requirements artifacts are maintained in a central model
repository. Like other leading MBSE methodologies, Harmony considers the model is the primary work
product of the development. All resulting documentation is generated as a means of distributing

information on a segment of the design.

Requirements analysis, the first stage in the methodology, assumes that stakeholder requirements are
provided. As highlighted in Figure 31, the emphasis of this phase is to derive system requirements

based on these stakeholder requirements and other documents. Once the system requirements are

70



identified, each one is allocated to a use case. Several alternative, but detailed processes are defined for

each Harmony stage. They can be selected based on the tool and development team experience.

The focus of the system functional analysis is to define the scenarios that describe each use case.
Alternate processes exist within the Harmony methodologies. One process suggests that use cases be
developed as if they were the sections in the user guide, and that approximately 20 scenarios should be
defined for each one (Hoffmann, 2001). An alternate, more flexible process allows activity, sequence, or
state diagrams to be developed in any order. This “Hoffmannized” process specifies that activity
diagrams must be created first and that sequence diagrams are generated automatically by the tool.
There are more similarities than differences. Each process stresses the definition of ports and data
flows in this phase. Harmony uses states as the means of capturing and coalescing system behavior.

The model is verified through execution based on these states.

The objective of the design synthesis is to select a concept and refine the design. As shown in Figure 31,
the stage starts by developing candidate solutions and performs a trade study to select one of them.
The selected concept is refined by allocating the system and subsystem behaviors to the appropriate
physical models. Like the other MBSE methodologies, Harmony results in a number of deliverables to
other domains. These include several requirement documents, interface control documents, models for

integrated software or firmware development, and test scenarios.

2.3 DODAF

in addition, to the development methodologies, a number of frameworks exist to guide the developing
common architectures representations. One such framework is the United States Department of

Defense Architecture Framework (DODAF). It specifies common presentations of information in order

71



to improve the communication, integration, and evaluation of architectures across organizational and
national boundaries. Currently focused on describing data, DODAF establishes data element definitions,
rules, and relationships for consistent description of systems and architectures (United States
Department of Defense, 2007). As shown in Figure 32, DODAF provides four basic views:

e All view (AV) with two work products

e Operational view (OV) with seven work products

e Systems and services view (SV) with 11 work products

e Technical standards view (TV) with two work products

All-View
\ Describes the Scope and Context (Vocabulary) of the Architecture

Operational
& View
e c?" 2 Identifies What Needs to be
£ 9 Accomplished and Who Does It
Fo F 1
F o &
@“ S &
) & @’b@ @é& &

« Specific System Capabilities

SVStems and Services Required to Satisfy Information

Technical Standards

View Exchanges View
Relates Systems, Services, Prescribes Standards and
and Characteristics to + Technical Standards Criteria Conventions
Operational Needs Governing Interoperable
Implementation/Procurement of
the Selected System Capabilities

Figure 32: DODAF Views (United States Department of Defense, 2007)

Each view has a specific purpose. Given the wide range of possible designs and architectures that can be
developed, DODAF provides 22 possible views communicate the necessary descriptions. However, it is

not necessary to develop each one, as many of these will not provide new information.

72



DODAF seeks to provide an integrated description with unique elements that are consistently used
across all views within the architecture (United States Department of Defense, 2007). One of the ways
to accomplish this goal is to combine DODAF with a MBSE tool and language, such as SysML. DODAF
and SysML are already well aligned, as the language can be used to implement most views. The Object
Management Group, the developers of the UML and SysML modeling languages, are looking to develop
a modeling standard supporting DODAF. The standard, known as UPDM, an acronym for Unified Profile
for DODAF/MODAF, is looking to formally specify this relationship (Okon and Hause, 2009). As indicated
by the name, UPDM would include the UK Ministry of Defence Architecture Framework (MODAF), one

of many similar military architecture frameworks.

When developing documentation for stakeholders who expect DODAF views, it is crucial to discuss the
specific views that are useful. Once these are established, they can be developed using SysML diagrams

using any other the tools and methodologies described in this chapter.

73



3. MBSE Framework for Concept Development

This chapter presents a Model-Based System Engineering (MBSE) Framework for Concept Development.
This framework specifically addresses the needs of the early stage systems engineering projects. While
the established MBSE methodologies provide structured strategies, they start from a defined set of
requirements. However, most concept development efforts do not start with a well-defined set of
statements encompassing the complete set of required functions, interfaces, and performance. These

requirements must be identified as part of the development process.

The framework integrates traditional systems engineering techniques and tools with the MBSE. The
fundamental problem solving activities are followed, but in an integrated electronic environment. It
provides flexible, yet robust methodology to insure that not only the right design is identified, but it
solves the right problem. By leveraging the benefits of MBSE, the dynamic interactions between system
alternatives and users can be understood. This insight provides a more thorough assessment of design
features. Using SysML models, a methodology is described to obtain an understanding of the problem,

identify and develop potential solutions, analyze them, and suggest the best alternative.

The framework integrates existing concept development tools with model-based development methods
to execute projects more effectively. Systems engineers have developed a rich collection of tools, as
described in Chapter 2. The framework allows development teams to select the right tools for their
needs. Consider a carpenter with a large tool collection. While one could use a reciprocating saw to cut
2x4s, the carpenter may prefer to use a circular saw. A methodology should not constrain developers

from using their preferred tools.

74



Alternative processes are presented to accommodate diverse development efforts. While an ideal
process is identified, alternatives can be tailored to meet the specific development team and program
needs. Leveraging MBSE will not automate the concept development process, but it will enable more
efficient analysis and communication. Developers will likely go through the same thought process, but

the consistencies enforced by the processes will help identify errors earlier.

A high level view of the methodology is depicted in Figure 33. It starts by identifying the problem,
which, as discussed in Chapter 2, could result from the reception of customer requirements or an active
needs analysis. Once the problem is identified, it is suggested that the development team fully define
the problem. However, if the problem is similar to previously defined problems, the team may seek to
immediately evaluate the architecture. If the customer or team has a solution in mind, it may be
prudent to start identifying other possible solutions. While the framework allows for any of these
activities after the problem identification, it is best to follow the suggested process. If teams focus too

early on defining the architecture or identifying alternative solutions, their efforts may be wasted.

75



Hequire]'mems
1
Activitylnitial

‘ Concept Selection

Conceptual
Amhi}ecium

| Implement

Legend
. Suggested Start

Iterate

Figure 33: Concept Development Methodology

The problem definition is the most important step in the development process. If this is not done
correctly, the team could develop a system without a market or customer base. All solutions must meet
specific needs at an affordable cost and be available in an acceptable amount of time (Maier, 2009). The
details of each of these criteria must be refined by working with the various stakeholders. By framing
and decomposing the problem into its expected functionality and performance attributes, a set of

requirements can be developed to guide the design process.

Creating system architectures involves the development of system concepts, specifying what they are
and what they do. Architecture is not only about the system structure. The focus should actually be on
the system functionality required to meet the stakeholder needs. Leveraging MBSE tools, executable
behavior models are made to insure design consistency and accuracy. Alternative flows of behavior can
be captured to support concept evaluation. Conceptual structures are created to implement the system
at different levels of abstraction before defining specific ways to implement them. The allocation of

behavior to structure is concept dependant and performed only after possible solutions are identified.

76



This development activity should be supported by domain experts, in order to determine the best,

feasible solutions.

The identification of possible solutions is often performed in parallel to the system architecture
definition. Developers and customer do not always know what they want until they consider what is
feasible. Many tools and techniques have been developed to improve the effectiveness of this process,
and this framework employs these methods. It does not seek to import the results into SysML models
until the solution space is sufficiently focused. Using various tools, the full list of alternatives and results
of each activity can be connected via hyperlinks. This facilitates the retention of information and the

capture of design rationale.

Once the solution space is sufficiently focused and the alternative concepts sufficiently defined, trade
studies can be conducted to select the best alternative, based on the measures of effectiveness. The
selected concept must be assessed to be feasible and able to satisfy the high-level requirements. This
evaluation is conducted at the system level, based on contributions from all necessary domain experts.

if a feasible solution is not found among the alternatives, the team must cycle back to an earlier step.

Iterations are often conducted prior to the final trade study. New information is discovered about the
problem and alternative solutions are discovered as the team converges to a final design. No matter
how much is known about a given problem, there are always unique aspects to new solutions that must
be discovered. There are too many possible feedback loops to show in the example depicted in Figure
33. Teams will iterate through each step of the framework as designs are refined. Often new
technologies are introduced in complex system development without understanding their actual

performance and design impact. Designs that will not meet the stakeholder needs may then be

77



selected. Asthe process is highly iterative, no criteria for moving to the next step are defined, but it is

advised to spend as much time as possible on the problem definition activities.

3.1 Problem Identification

The first activity in this framework is to correctly identify the problem to provide the foundation for all
design activities. Systems are developed in response to specific stakeholder needs and goals. Once a
need is identified, the proposed system capabilities and performance must be specified, as expressed in
Figure 34. These requirements serve to focus the development effort and facilitate discussion between
the stakeholders and design team. Care must be taken to capture the problem in a solution neutral

manner to avoid introducing artificial limitations.

Start

Most Important Requirements |

- Capabilities of Interest
- Measures Of Effectiveness

Define Problem

Figure 34: Problem Identification

There are several ways in which a problem can be identified. As with other MBSE methodologies, the
problem definition can be performed by receiving a requirement document. If this is the case, the

requirements can be imported to an electronic repository and analyzed. The team uses this material to

78



easily identify the criteria necessary to properly scope the problem. Whenever adding a requirement or
any other element to the model, a short text description should be included so future reviewers can

understand its purpose. Hyperlinks can also be added to external sources for additional information.

It is important to question the provided requirements. They may not have correctly identified the
problem. One of the best examples of poorly specified requirements involves the F-16 fighter (Maier,
2009). The “Father of the F-16”, Harry Hillaker, questioned the original requirement of a high
supersonic capability, which would necessitate difficult and expensive solutions. As result of the inquiry,
It was determined that the real need was to provide a quick exit from combat. Therefore, the original

requirement was replaced with those specifying rapid acceleration and exceptional maneuverability.

Other problems are much more loosely defined and are the focus of this framework. One such category
is high-level problem statements. Examples of such challenges include President John F. Kennedy's
speech to a Special Joint Session of Congress on May 25" 1961. Here he stated the goal, “before this
decade is out, of landing a man on the moon and returning him safely to the Earth”{2011b). Another
more current example is President Barack Obama’s challenge that the United States obtain 80 percent
of its energy from “clean” sources in less than 25 years (RenewableEnergyWorld.com Editors, 2011).

These problem definitions provide a large trade-space.

It is more challenging when the problem is not known. Development teams may seek a latent need to
develop a new product or move into a new market. Existing operations may be examined to determine
deficiencies and potential opportunities. In these cases identifying the need is a major challenge itself,
as the users may not be aware of a need. Additional effort must be extorted to accurately capture and

absorb the stakeholder feedback. This challenge is compounded when potential users have no

79



foundation on which to provide opinions. In 1915, when David Sarnoff proposed that radio be used to
broadcast information into people’s homes, no one could have expressed a need for this type of product
since they didn't know it was feasible (Leonard and Rayport, 1997). However, Sarnoff recognized that

humans had a need for entertainment and enjoyed spending time at home.

Problem statements can be extracted from user observation data, interviews, focus groups,
benchmarking, and survey. A clear and unmistakable statement of need must be developed. It is crucial
that the development team does not pollute the value statement with their personal opinions. Only
those of the external stakeholders should be captured in the problem statement. While David Sarnoff
identified a solution before a need statement, he (perhaps subconsciously) verified that such a need

existed by applying his knowledge of family behaviors within their homes.

Once the information has been collected to correctly characterize the problem, it should be explicitly
stated. This can be achieved by defining the capabilities of interest (COI) and measures of effectiveness
(MOE). €Ol are functional goals such as landing a man on the moon, obtaining energy, or being
entertained at home. The value proposition specified by a COl is enhanced using MOE, to describe the
critical, distinguishing problem attributes or constraints. The COIl in President Kennedy’s challenge was
to get a man to the moon. The MOE provided the details such as the: (1) timeliness of less than 9 years,

(2) human safety, and (3) distance to the moon and back.

MOE are synonymous with the “most important requirements.” For example, when identifying the MOE
for an Unmanned Aerial Vehicle (UAV), requirements such as range, endurance, and availability may be

specified. An example of using SysML to capture the top requirements for a UAV is shown in Figure 35.

80



Most Important Requirements I

text =

notes
The UAV shall have a range of

|| Conment: To annihilate enemy
the UAV would be required to

«raquirement»
Transportability

i

60 km

notes
The UAVs shall be carried with
(infantry) battle units

Comments:
«requirements
Target Coverage

—

notes
The UAV shall cover a Kill Zone
with a mnimum radius of 40 km

designate at least 100-200.
Thera may be up to 1600

«requirements o =requirements «requirements «requirements | «requirement» i} | «requirement» —
Time To Target Range Endurance Target Designation racking and Surveillance Av ailability
notes tags notes | notes notes 1 notes
The UAV shall reach the target id = UAV-2 The UAV shall have a minimum The UAV shall designate up fo The UAV shall be able to i| The UAV shall support day and
pasition within 20 minutes. Priority = 0.2 loiter time of 60 minutes. || 45 (TBR) targets. continuously gather visible night operation.

information.

targets.

wrequirement»
Target Detection

[1mm]|

notes
The UAV shall be able to
Kentity Fiend or Foe (IFF) and
Counter Recon.

Figure 35: Example of a UAV’s Most Important Requirements

In the cases when requirement documents are provided, the MOEs are the subset of the requirements

providing the criteria for success or failure. Usually only a few are appropriate, less than a dozen even

for large complex systems (Oliver et al., 1997). The MOEs will provide the criteria for selecting one of

the concepts later in the project. They must truly capture the needs of customers and users. For

commercial products they should reflect the criteria used in the decisions to buy a product and define

the product placement in the marketplace (Green, 2001). It is crucial that customers, developers, and

other decision makers agree on the MOE to avoid discrepancies in the design and trade study.

SysML now provides specific constructs to define the MOE. As shown in Figure 36, they can be linked

directly to the most important requirements to maintain consistency. This provides an effective way of

collecting rationales and other background information, while specifying the decision making criteria.

81



Availability

«trace»

3.2 Problem Definition

operations (CONOPS).

«moe» |
Availability = — — —— —— ——— __ - notes
| «trace» The UAV shall suppont day
and night operation.
Range
“mees notes
Range - —————— ——— — ] The UAV shall have a range
: whiace of 60 km
————— Comments:
Endurance
mo :
*moes i notes
Endurance |- ——— e 7T T The UAV shall have a
E «lrace minimum loiter time of 60
T minutes.
Time To Target
oo notes
Speed == ] The UAV shall reach the
“tacer target position within 20
— mnutes.
«moe» Transportability
Transportability K_ ____________ notes

The UAVs shall be caried
with (infantry) battle units.

Figure 36: Allocating Requirements to MOE

82

The primary goal of this phase is to communicate the problem understanding between system
developers and stakeholders such as customers and management. The problem definition extends the
problem identification to derive the required system functions and detailed system performance. It
builds off the broad system objectives to develop verifiable requirements through the methodology
depicted in Figure 37. The true benefits of MBSE tools and methodologies are leveraged here to identify

the system context and refine the problem statement through the development of system concept of




lterate &
Validate

CONOPS System Assessment
Document | Requirements Criteria

Problem Identified

®— ®

Trade Study

Constraints o o

Define Architecture

Verification

Figure 37: Problem Definition

Capturing the definition in a mode-based environment can prevent other developers from having to
interpret isolated natural language specifications. Furthermore, the methodology helps engineers find
errors in the complex details that are difficult to identity in loosely coupled models or documents. It
helps developers apply their experience to find the “unknown-unknowns”, and work with the

stakeholders to resolve issues.

In this phase, the team should collect and review all available information to accurately capture the
problem. Information can be directly imported or stored externally, but accessible from the model using

hyperlinks. By tracing model elements to these sources, their rationale can be captured.

The Problem Definition activities are shown in Figure 37. The first three activities of the problem
definition are concurrent and in general have no established order. Most likely these activities occur in
an iterative cycle with the use case development. It should be assumed that developers are constantly
iterating through these activities until the alternative concepts are evaluated. Capturing the problem

and domain specific terminology in a glossary is a key activity of successful programs, as it reduces

83



miscommunication and insures consistency. By specifying the system context, all stakeholders can
obtain an explicit understanding of the problem and system scope. Each stakeholder and external
system influence must be enumerated so their requirements can be addressed in future analyses. The

external influences include the operational environment, external systems, and classes of users.

After identifying the desired system capabilities and MOEs, the development team must consider how
the system is to be used. The missions, features, and functions must be refined to develop the system

CONOPS. Each use case can be further defined to describe the iterations with each external entity.

A full description of the required system functionality and performance is required to guide the
development effort. Traditional systems engineering methods create and maintain requirements that
may be redundant, contradictory, unverifiable, or poorly written. Manual interpretation is error prone
and can drive up development costs and delay schedules. Unless the requirements and specifications
are captured in a precise and executable language, they will remain ambiguous and error prone (Oliver
et al.). AMBSE approach provides techniques to help system engineers recognize these issues, and

provides more robust systems requirements.

As one of the last problem definition activities, verification methods must be assigned to each
requirement. This helps insure that they are well defined and may identify additional requirements to
support test and integration activities. The requirement priorities must also be established to support

trade studies. As discussed in Chapter 2, some tools do not require a ranking, and can skip this activity.

3.2.1 Glossary Creation

84



Systems engineers collaborate with different disciplines to more effectively develop and design a
concept. Working with different domain specialists can create potential communication challenges due
to the variety of specialized vocabulary. In addition, design efforts tend to develop their own language
over time as they find ways to communicate ideas more clearly and effectively. Capturing the language
in a glossary and consistently abiding by its terminology insures design consistency. It is surprising how

often teams can develop diverging definitions, potentially leading to major confusions.

While its contents will most likely be refined over the course of the development, by starting the
collection early, a complete list can be developed and miscommunication can be prevented. Glossaries
also help new team members unfamiliar with the lexicon become involved and effective more rapidly. It
can also help developers search through the model. For example, if an engineer wanted to find
information related to an automobile, but searched “car” he or she may assume that it had yet to be

included in the design. Enforcing the terms and conventions can prevent such miscommunication.

Different terminology is common when working with different branches of the military or civilian
applications. Organizations have completely different definitions for common elements or operations.
An example of this is states and modes. Some software and systems engineers consider modes the
higher-level construct. Others define it the opposite way. A glossary insures that all of the project’s

stakeholders use a consistent vocabulary.

A guide for the creation of a glossary is to capture each uncommon noun or acronym used in the

development effort. Some MBSE tools provide features to collect and maintain the glossary.

3.2.2 Stakeholder Analysis

85



An often overlooked step in many actual programs is the stakeholder identification. Stakeholders are
those that have a say or interest in the development or outcome of a project. They may be directly or
indirectly affected by the project. This analysis is intended to identify the needs and interests that can
determine the project’s success. Through this process, stakeholder needs are interpreted to develop

system requirements.

Many efforts only focus on customers or users. While they may be one of the most important
stakeholders, others may have specific requirements as well. The entire program’s life cycle should be
considered as developers, corporate management, testers, and maintenance personal are all
stakeholders. By considering their needs, requirements can be specified early in the program,
preventing omissions or expensive future modifications. Often overlooked requirements include special

features to support diagnostic testing, units of measure (i.e., metric only), and maintenance constraints.

It should be simple to identify the initial stakeholders as it if difficult to develop products without
someone in mind. However, this is not always true. For example, consider a group developing a new
movie steaming service. While the developers may envision a customer, they may not understand the
user’s demographics or specific needs. In order to identify these stakeholders, developers should ask:
“who benefits?”, “who pays?”, “who supplies?”, “who loses?”, and “when and where should their needs
be met?” (Maier, 2009) The decision-makers should be identified. Developers should seek to
understand how decisions will be made, and the type and extent of involvement the decision-makers
will have in the development. It is also, important to identify how early and often the system will be

evaluated, as it will guide the overall development process.

86



During the process, it is necessary to reach out to the stakeholders so their inputs can be captured. As
these opinions are likely to change, the team may have to repeat this process over the project duration.
A perfect example of this is Iridium, the satellite phone company. One of the problems that contributed
to the fall of the billion-dollar company was the disappearance of potential customers. With the
advances in cellular technology, there was very little need for an expensive, global communication
system (Finkelstein and Sanford, 2000). If the company had surveyed its expected client base, it might
have discovered the problem and minimized its losses. Several techniques have developed to evaluate
stakeholders, but they will not be summarized in this thesis. Refer to Lynda Bourne’s book for more

information (Bourne and Weaver, 2010).

It is also important to gauge the stakeholders’ assessment of good, bad, and fair performance. As
technology advances so does the expected performance. For example, consider the change in television
resolution. Today’s consumers will not accept a new technology or product that does not meet the
current resolution standards. The stakeholder assessment can help identify other constraints, such as

time to market, costs, or technical efficiently.

As stakeholder analysis can be slow and expensive, effort cannot be wasted in this process. Only the key
stakeholders should be thoroughly examined. One way to accomplish this is to determine if each
stakeholder is “important.” If so, the resources should be exerted to assess their needs and

expectations. If not, only the assumed influences and needs should be captured.

Stakeholders can be added to the model as actors. This provides a consistent mechanism to capture any
information that can be useful in the requirements analysis. Once the stakeholders’ concerns and

interests have been identified, the information should be documented and linked to the applicable

87



Actors, as shown in Figure 38. Requirement constructs, notes, or links to external documents can be

used to accomplish this.

Range

notes
The UAV shall have a range of 60 km

Time To Target

notes
The UAV shall reach the target position within 20 minutes.

Availability

notes
The UAV shall support day and night operation.

Endurance

notes
The UAV shall have a minimum loiter time of 60 minutes.

- ’:
e = - »
_ — — T«express»
-
—————— «express»— — — —>f
. ~
-
-~
-
Commander «express»
™ ~
~
™ ~
_=
e
- i
_ —— 7 ‘«express»
«EXpress»
Ground Assets
«eXpress»
Storage and

Transportability

notes
The UAVs shall be caried with (infantry) battle units.

Transportation
Environment

Figure 38: Stakeholder Need Identification

Some find it useful to specify these needs using either “customer requirement” or “stakeholder
requirement” stereotypes. In these situations, it may be beneficial to document the need in their
language and later refine it into a verifiable requirement. Others prefer to use attributes, as shown in
Figure 39. For example, the view indicates the ground assets’ need to use metric wrenches and wear

gloves that limit their dexterity.

88



bdd [Actor] User [User]

>0

User

—2

«block»

User::Launcher
«block» e
User::Ground
Station —

Operator Commander Ground Assets
Available Tools :Wrenches = Metric
Equipment :Gloves= M-Pact 2

Figure 39: Example of Actor Decomposition

Also shown in Figure 39, views can be generated to explain the relationship between the Actors. This is
useful to capture relationships such as military command structures, environmental conditions, and
classes of users. This can be used to group categories of actors such as indicating that operators,

commanders, and ground assets are all subtypes of users.

Stakeholders can be added to use case or context diagrams as Actors. As with all new elements, they
should be characterized in the notes field or attributes. It is advisable to define the stakeholders in the

Glossary, as they may not be known or constantly defined.

3.2.3 Context Definition

Many systems engineering methodologies use context diagrams to specify the system boundaries and
interfaces. The selection of elements and behavior belonging in the system can be one of the most

important factors in scoping the system cost, performance and market acceptance (Oliver et al.). It

89



forces the team to think about all the possible external influences. If an external interface was
improperly addressed or omitted until a future stage, it could drastically increase the development costs

and schedule. Some of the most valuable discoveries occur during context analysis (Oliver et al., 1997).

To prevent omissions, it can be useful to identify the system, or system of systems, that would contain
the item under development. By examining the interfaces and behaviors of connecting systems,

developers can obtain a better understanding of the intended system context.

Context diagrams are not standard SysML views, but can be created using block definition diagrams
(BDD) or internal block diagrams (IBD). Figure 40 is an example of a UAV context diagram created using
a BDD. The figure also provides an example of using custom images in lieu of the standard SysML actors

constructs. This practice has been found to more clearly express the external interfaces.

90



u Storage and Transportation Environment
ser

«block»
UAv

Enemy

TRADOC

Maintainer
Developers

Figure 40: UAV Context

A simple way to create context diagrams is to add the system of interest as a block along with each actor
that interacts with the system. Associations can then be used to identify the necessary interactions.
While this initial model is rough and abstract, it serves a specific purpose. Developers should avoid
cluttering diagrams by completely describing each interface. Instead, to capture the details, the

interface descriptions and object flows can be captured in IBDs separately, as shown in Figure 41.

91



ibd [Package] Interfaces [Interfaces]

«block» «block» «blocks
UAV Launcher 1 UAV UAV Command & Control
«flowPort» | dataT c 4
Force (Lift) SRR YPAM LOMIMANGS. .
[H «flowPort» [‘"_________________>E£|
Communication «dataType» Telemetry «{lowPort» Antenna
Antenna

«dataType» gps key cryptography, A
«dataType» Launch Position, \\
«dataType» Targ,et Postion «dataType» GPS Signal

«flow» «itemFlow»

I \
\
N\
Ground Assets GPS Satellites

Figure 41: Additional Interface Information

3.2.4 Use Case Development

A key component of concept development is identifying how the intended system will be used over its

entire life cycle. The DoD, NASA, and associated organizations define a system’s behavior in concept of

operations (CONOPS) documents. The DoD often summarizes the CONOPS using a DODAF view known

as OV-1. An example of this view is shown in Figure 42. When well documented, CONOPS are an
efficient method to communicate a system’s operation to all stakeholders. They traditionally describe
the key operational scenarios for all modes of operation, each system interface, and the primary

constraints.

92



4 Operational Scenario*
60 Kin) BE Kill
' BE engages 7

i Decisive Phase
| commences upo
BE Insertio

PODs

*TRAC Briefing: Exploring Tactical and :
Operarional Conceprs in Support of Army Afrer Next 1 40 km D
MORS

Senv ] |  DEPARTMENT OF SYSTEMS ENGINEERING |

Figure 42: UAV CONOPS (Sullivan et al., 1998)

An effective way to synthesize, analyze, and refine these details is to develop use cases. Use cases
graphically describe behavior from the actors’ point of view, treating the system as a black box. As this
view depicts the system boundaries and external relationships, it must be consistent with the context
diagram. Using these SysML diagrams, designers can describe consistently capture the system

interactions and responses.

Some conventions show the system as a boundary on the use case diagram. By depicting the use cases
inside the system, these diagrams imply that use cases are functions. This is misleading as the system

under development is only a participant in the use case (Lempia and Jorgensen, 2011).

93



3.2.4.1. Use Case Identification

When developing systems without a well defined CONOPS, it is often helpful to consider the use of any
current or similar systems. By creating use cases to define the capabilities, limitations, and potential

improvement of similar systems, those for the proposed system can be developed.

For revolutionary systems, it may be difficult to know where to start developing use cases. Often, the
first use cases can be identified by considering the operational capability and target actors. Other
processes start by considering the most important actors and what they need from the system. For the
example of getting a man to the moon and back, it may be best to start by considering the astronauts’
mission. This process decomposes the capability of interest and works through examples until the uses
cases are well defined. After considering the primary actors, consider the supporting actors (e.g., the

environment) and their interaction with the system.

Figure 43 provides an example of use case diagrams developed to meet the CONOPS specified in Figure
42. A hyperlink to the source material is shown at the top of the diagram. The example also provides an
example of specifying performance characteristics and constants using attributes on the associations. At
the risk of cluttering the view and being inconsistent with those directly assigned to use cases, this
helpful information is provided for reviewers. For example, it could help developers realize that the
Operational Environment, shown on the top left, will not be constant across the four use cases. By

specifying different environment conditions, design constraints can be reduced.

94



1998 Amy After Next UAV Study

Operational System

«Invariant»
{5 Hour Mission}

Operational Environment

«Process»
{Duration: 30-60
minutes} User

M-Code

\

GPS :Satellites

«Process»
{Anti-aircraft capabilty}

Enemy

«Pre-condition»
{Range = 40-50 km}

Figure 43: Use Case Diagram for UAV Operations

Use cases must be defined for each lifecycle phase, such as production, deployment, and maintenance.
These SysML views provide the basis to answer high-level questions. While issues may be overlooked,

they should be identified in future stages of the MBSE methodology.

3.2.4.2. Use Case Structure



Use cases should have a descriptive name that clearly conveys their most important function and
follows a verb-noun convention. It is best to avoid vague verbs like (e.g., do, process, and make) and

low-level verbs (e.g., create, read, or update) (Karban et al., 2011).

Summarizing the use cases’ purpose in a text-based format can be helpful in capturing its focus. The
primary actor’s reason for interacting with the system should be specified. As use cases are refined,
more information should be added about the interaction including the stimuli that triggers it and the

system’s response.

It is important that use cases are complete as they are associated with system validation. Constraints
from external systems, human expectations, logistical and maintenance realities, and organizational
objectives should be captured. This transparency will help instill stakeholders with the confidence that

the system will meet their needs.
3.2.4.3. Scenario Definition

Use cases provide only a high level description of system behavior. Precise descriptions must be added
to refine them. For complex systems there are often a number of possible threads of interaction
between the system and its actors. Most MBSE languages label these alternatives as “scenarios”.
Accurately and completely capturing the sets of scenarios is critical as they are direct linked the system

internal behavior model (Oliver et al.).

Scenarios are composed of a number of functional steps for specific sequences of events. Each step
should identify the performer (i.e., specific actor, system). The actors’ knowledge, skills, and other

characteristics should be considered. If the development team is unsure about the actor’s ability to

96



perform the function, questionnaires, subject-matter expert consultations, and direct observation can

resolve the ambiguity.

Once scenarios are analyzed from the perspective of the primary actor, the secondary influences can be
considered. The necessary conditions for each scenario should be defined, as well as any that could
prevent them. The data and objects passed between systems and actors must also be specified,
including the triggers that initiate the scenario, their frequency, and timing. Each scenario resultsin a
specific outcome, an externally observable consequence. This should be documented as well as the
environmental conditions and system state that exist after its completion. If any of these are not

universally recognized, they should be defined in the glossary.

While several scenarios may be defined, developers should initially focus on capturing the behavior
when everything goes right. This is colloquially called the “happy path”. Next, the scenarios that exist
when the actors perform alternative actions can be described. Finally, the “the rainy day paths” should
be enumerated. These describe what might go wrong and facilitate the security, safety, and reliability
analysis. The alternate and error paths are often branches from the primary scenarios, and several
branches and merges may exist. !t is advised to challenge constraints. Throughout this analysis,
developers should ask “why” and “what if”. When documenting the scenarios, nontechnical and easily

understood terminology should be used.

Systems engineering teams can refine the use cases and scenarios ad infinitum. As this could violate the
program schedules, teams must assess what is sufficient. A good heuristic is to only develop scenarios if
they are expected to expose any additional functions, requirements, or interfaces (Cole et al., 2010).

Start with the use cases containing the most uncertainty, and work towards the less interesting ones.

97



Use cases should not be decomposed to the point at which they resemble activities. They should be
classes of functionality, not hierarchies of behavior trees. Appropriate scenarios provide a solid model
foundation with the right amount of flexibility to accommodate the architecture development. Activity

diagrams can be used to fully define the use cases.

3.2.4.4. CONOPS Review

While many consider activity diagrams to be the best method for defining use cases (Hoffmann, 20113;
Kosters et al.), text-based descriptions can be more useful and easy to read. Capturing the CONOPS in
narrative form can provide a clear depiction of the intended use. An example of such an application is
shown in Figure 44. It is very valuable for those who will not immerse themselves in modeling. Some
tools automatically generate activity diagrams from text scenarios. This can be useful in getting
stakeholder buy-in. Once the flows are captured in SysML diagrams, they can be executed. Thisis a

powerful way to specify and review the necessary system behavior.

The scenarios must be reviewed to build consensus with decision makers. It is generally advisable to
involve relevant stakeholders and specialty engineers in each phase of the CONOPS development.
Obtaining inputs from specialty engineers prior to the establishment of a system design can help identify
key system functions or qualities, as they bring unique perspectives. When problems are identified, the

issue should be documented along with the resolution.

To refine the required functionality and performance from the MOEs, it can be helpful to discuss specific
examples of good and bad system behavior with the stakeholders (Maier, 2009) in that they may have a

significantly different perspective than the development team.

98



E'UseCase : Launch

[=)-Properties Scenario: Tupe:
' General IBasic Path :] |Easic Path =]
. Tagged Yalues
El Rules Description [ Structured Specification ]
Wil T EIRNE ¥ 0% SR 2IPAT ,
. | EEEEEE Step JAction | Uses | Results | State I_‘_‘
= Rj?'at?d 2 1 The User power the UAY
3 F.lles & 2 The UV performs a self test and report the
- Links status
% 3 The User provides configurations (including
MET data, payload, mission, etc] and
inializes GFS
S 4 Theuay acknowledages reception of data
% 5 The User places the L&Y infon a launcher e
5! B The UAY indicates readiness for launch
@ 7 Thellserlanchas |18 =l
Entry Points | Context References | Constraints
Step I Path Name Type | Join I
0 Basic Path Basic Path .
2a BIT Failed Exception 1
4a Communication Eror Exception 1
7a Launch Canceled Altemnate End

| 0K I Cancel Apply Help

Figure 44: Example of Scenario for UAV Launch

While text CONOPS documents can be generated directly from the model, more animated visualizations
based on the data captured in the tool can greatly facilitate the comprehension of complex data
(Mostashari et al., 2011). Several tools are starting to integrate or connect to external software

packages and can provide this capability.

Design reviews should be held regularly, at least one per concept development phase. This helps
perform verification at each level. Unlike the verification steps shown in the traditional system

engineering “Vee model”, verification is not a single culminating event in MBSE efforts. Use case

99



verification helps insure that the system will meet the stakeholder needs. By checking that each layer of
abstraction is correct, complete, and consent with the others, models can be constantly verified. The
intermediate work products become evidence of system integrity and the ability to meet the

requirements.

3.2.5 Requirements Development

Requirements documents are easy to read and disseminate. They are also necessary components of
development efforts due to their contractual use. For these reasons, it is unlikely that these traditional
mediums will ever be replaced by MBSE {Logan and Harvey, 2011). Specifying requirements in this form
is problematic however, because even the best documents are ambiguous and imprecise. Each
statement is normally written as “[The system] shall [perform a task].” By itself, this statement is
insufficient as several elements are omitted to make the statement easier to read. To truly understand
the requirement, it must be associated with:

e The trigger(s) that can initiate a function and the conditions where it can be received

e The expected performance associated with the function

e Any other associated, parallel functions

e Any data or objects that will be transmitted during the process

e The trigger(s) or results that terminate the function

e The resulting system and external conditions

By connecting the requirements with other modeling elements these associations can be identified,
reducing the ambiguity of the English language. To accommodate the needs of various programs, three

processes will be discussed for integrating requirement management with system descriptive models.

100



3.2.5.1. Traditional Requirements Analysis

As discussed earlier, text based requirements may be provided from customers in format such as
Microsoft Word, PDF, IBM DOORS database, rigorous models, or “hard copies”. Often, each statement
is categorized as an interface, functional, or performance requirement. This source material should not
be treated as system requirements, as it may be inconsistent, unclear, impractical, or not testable. To
generate system requirements, the first step is to combine and assess all available information. All
collected data should be categorized, loaded to repositories, and linked to applicable views. If the
documents change, these should be explicitly tracked. It can be advantageous to name packages in the

model browser with the same name as the documents, as it simplifies reviews and linking.

System requirements will be derived from all available source material, but may require additional
information. This should be determined by reviewing use cases to determine the gaps. The desired
information may be implicit knowledge, captured only in the minds of users or other domain experts.
By reviewing the uses cases and assumptions, the knowledge may be extracted. Test, assembly, or
production requirements are often overlooked at this stage of development. However, it can be useful

to address these life-cycle needs to avoid solutions that are too expensive or not supportable.

Systems engineering teams should include hardware, software and problem specific domain experts to
assess the available information. They can help identify conflicting requirements early in the project,
preventing incompatible designs. Furthermore, these experts can identify unrealizable requirements or

those that would negatively impact development costs and schedules.

101



Once the system requirements are identified, they should be allocated to the applicable use cases. This
practice assists in the allocation of requirements to behavior and makes it easier for developers and

stakeholders to understand.

3.2.5.2. Use Case Based Requirement Analysis

Isolated requirements analysis can lead to a system that is technically correct, but does not meet the
customer needs. This is problematic as there is often more payback in getting the requirements right
than getting the design right (Ross, 2003). Using use cases and scenarios to generate the system
requirements can be very effective. This process generates requirement statements that mimic the
descriptive model elements. As the requirement statements and models contain the same basic
information, the system requirements in essence become “derived requirements”. In the context of use
cases, requirements can be much easier for many stakeholders to understand. Capturing and

maintaining requirements in this fashion facilitates the tracing and allocation.

This technique focuses on the user’s perspective rather than isolated requirements. Interface
requirements are generated for each actor in the context diagram. Functional requirement statements
can be generated for each system focused scenario statement. The use case and context diagrams can
also be used to determine the non-functional requirements, including the “ilities”. Requirements such
as “security” or “interoperability” should never be accepted without an understanding of the actual

customer expectations (Maier, 2009). Each one should be applicable to specific use cases.

An example of capturing requirements per use case is shown in Figure 45. Performance requirements
can be generated after considering the needs and attributes of each use case. By considering the needs

of each actor, requirements for often ignored issues such as security, culture, political, and legal

102



concerns can be identified. This also helps to insure that requirements are generated to address each

phase of the system lifecycle.

£ Decisive Phase Attributes: survivability ; R i v _EI
v Prms‘ ol Name: | survivability
Detail T cent of issi
: . "ype: |p—et accomplished mission El __]
& Rules Initial Value: (50 _J
Constraints Stereope: | =l _I
Alias: {SRD-61

Scope: IPLHC "I [~ Static I Const I [&Literal
Containment: [NotSpeciied »] I Propety | __|

Notes:

Survivability is defined as "the capability of a system to avoid or

withstand hostile natural and manmade environments without
suffering abortive impairment of its ability to accomplish its

ilij NﬂlCmISaveI Deletal
Name

| Type [ iniialvale [
@ lethality [number of) soft targets d... 0
@ 1ange (Objective) kilometers 300
@1ange (Threshold) kilometess 140
@ 1eliability hours 72
i survivability peicent of accomplished ... 50 >

uo-u|l:uulj Heb]

Figure 45: Capturing Requirements as Use Case Attributes

Requirements should express only what is not acceptable. Reviews should insure that no additional
constrains have been levied and that all documented assumptions have been validated by the
stakeholders. By developing the requirements though MBSE techniques, the labor required for this

effort will be minimized (Oliver et al.).

If a separate requirements management database (e.g., DOORS) is used, the requirements must be
updated after each iteration. Additional steps may be required to trace each requirement to the use
case or interface.

103



3.2.5.3. Strict Model-Based Requirements Analysis

While creating text-based requirements from use cases or other model elements produces
requirements that accuracy capture the desired system operation, this translation can be error prone
and requires additional maintenance. Emerging MBSE tools and methodologies enable the efficient
communication of the system requirements while minimizing the text based requirements (London,
2011). These processes develop text requirement documents directly from the interface, functional,

and performance descriptions in the model.

The key customer requirements, the MOE, can be refined with use case specific attributes (Brito et al.).
They capture the performance requirements, defining the necessary characteristics in engineering
terms. Each system focused scenario statement is in essence a black box functional requirement. The
attributes and constraints can completely and accurately define the needs of each actor. By capturing
the attributes of the actors, such as the environment, the interface requirement can be specified. If

necessary, they can be decomposed further to the individual activities.

While there are obvious benefits to these techniques, there may be issues with crosscutting attributes,
those associated with multiple use cases (Brito et al.). These may appear as redundant in the auto-

generated documentation. Techniques to identify and remove duplicate requirements must be used.

3.2.6 Requirement Prioritization

Problem definition is performed properly only if the development team can objectively and rationally
rank solution alternatives (Maier, 2009). The priorities are used in trade studies to select the system

concept. Generally, a subset of the requirements is used; perhaps three to fifteen in number even for

104



large complex systems (Oliver et al., 1997). They are the criteria that drive the project success or failure.
If stakeholders cannot agree on what the most import requirements are, there will be future problems,

because they form the criteria for the final concept selection.

To select the optimum concept, development teams should use the previously identified MOE. Using
MOEs in this way helps mitigate the risk of artificially limiting the trade space. As the MOEs’ relative
values can be subjective, their values should be defined by the key stakeholders. However, most

customers struggle with articulating their preferences (Ross and Rhodes, 2008).

If stakeholders are expected to be able to truthfully communicate their preferences, a number of
techniques have been developed to elicit the requirement weights. The priorities can be obtained by
surveying the preferences of owners, operators, or potential users. Once identified, the preferences can
be recorded using the requirements’ attributes or "tagged values" in MBSE tools, as shown in Figure 46.
As the weights can be very subjective, it can be helpful to force stakeholders to make decisions about
the comparative significance of the criteria by insuring that the weights must add up to a fixed number,

normally 1 or 10.

It is difficult and sometimes impossible to know the actual requirements priorities until end-users have
an opportunity to acquaint themselves with the final system or at least with a realistic representation
(Ogren, 2000). Survey results from those shown the alternative designs are likely to be different.
Therefore, it may be helpful to conduct or repeat the surveys once the final candidate solutions are
identified. If the desired system is not well understood, the priorities may not be obtainable. Any
trusted preferences information should be captured, but priorities should not be artificially created.

Trade study techniques exist for such conditions, and will be discussed in Section 3.5.1.

105



E 'Requirement : o LI

=)+ Properties A= & e S | B LY
: ” 24 F A A (52 @
: - Properties i

" E Requirement [Range]

i SysML1.1 s,
. S—— Priority 0.2

= Rglate
- Links
i--Files

oK I Cancel Help

Figure 46: Static Requirement Prioritization

3.2.7 Verification Methods

Verification methods must be associated with each requirement. Before identifying how the verification
will be performed, the fact that it is possible determined. Some MOEs are created at a high level,
however they can be difficult to verify. For a requirement to be verifiable there must be a qualitative or
quantitative measure that can assess if the design satisfies the requirement. Once the requirements are
deemed to be verifiable, the method to achieve this must be designated. The possible verification

methods are: (1) inspection, (2) analysis, (3) test, or (4) demonstration.

The verification methods can be decomposed to different “test cases”. While the verification methods

are useful, test cases provide more insight on the actual verification methods. Use cases, scenarios, and

106



associated requirements can be duplicated and modified to develop the test cases and associated

verification procedures as they are their primary sources. An example of this is shown in Figure 47.

Often the test cases are generated in parallel to the original design, but early test case development can
identify additional capabilities that should be included in the system design to support integration and
test activities. Test case details can be developed in a similar fashion to scenarios, using actors to
represent the people and external equipment involved. These become the test plans and procedures.
Developing tests and manufacturing processes before completing the design insure that all required
functionality and features are included. To put it simply, this helps insure the system is designed right

the first time.

«requirement» 1 «requirement» 1] «requirement» ] «requirement» 1y
Range Endurance I Time To Target Target Designation
notes notes i notes ] notes
The UAV shall have a range of The UAV shall have a minimum The UAV shall reach the target The UAV shall designate up to
60 km loiter time of 60 mnutes. position within 20 mnutes. 45 (TBR) targets.
Conents: | Comment: To annihilate eneny
—— — — —— — e - the UAV would be required to
5\: N = designate at least 100-200.
8 | 7 There may be up to 1600
N | / targets.
N I / e A e
|
|
«verify»
|

X

Demonstration

«testCase» C) ; «testCasen D ‘

Operational Test HWIL Test

Figure 47: Verification Methods and Test Cases

107



3.2.8 Requirements and Design Reviews

Once the requirement verification methods have been defined, the requirements and the verification
methods should be reviewed. If the development methodology was followed, the use cases and
scenarios should be generally accepted after having been previously reviewed. As the requirements
should be based on the scenarios, fewer questions should be expected. The review should be focused
on ensuring the requirements are correct, unambiguous, verifiable, and consistent with the MOE, use

cases and other views.

The design should be evaluated at every level with informal reviews taking place regularly with the
design team. It can also be beneficial to include other stakeholders on a monthly basis. As discussed
earlier, model execution aids in this simulation and helps verify completeness, consistently, and
accuracy. Specialized simulation tools can also be incorporated for these reviews as some stakeholders

may struggle with SysML and navigation of the model.

3.3 Architecture Definition

Architecture can be a process or a description. Edward Crawley defines architecture as the mapping of
function to form, or what the system does to what the system is (Crawley 2007). His definition of
function is identical to the SysML’s behavior. He defines function as the operations and transformations
that cause, create, or contribute to performance. Professor Crawley’s definition of form also translates
well to the SysML structural constructs, capturing the physical and informational elements of a design.
ISO/IEC 42010, the international standard for architecture descriptions of systems and software, defines

architecture as “the fundamental organization of a system embodied in its components and their

108



relationship to each other and the environment and the principles guiding its design and evolution.”

(Logan and Harvey, 2011)

The methodology used to generate these descriptions is analogous to the those performed by architects
(Maier, 2009). An architect designing a building works with customers to identify their needs, and based
on their intended uses and tastes, he or she will design a structure. The architect also works closely with
builders, civil engineers, plumbers, electricians, and decorators to refine the design and see it realized.

Over the past decade, CAD tools have emerged to improve this process.

The development of a complex system architecture using MBSE follows a similar process. It uses an
integrated environment to capture designs and collaborate with other stakeholders. After identifying
the indented uses and needs, the specific uses are identified (e.g., sleep 5 people, provide space for the
family to watch TV, host 12 person dinners), conceptual designs are developed (two story colonial), and

finally an implementation is developed through ciose collaboration with various domain experts.

Architectures define the invariant design aspects that enable the creation of product families (Oliver et
al., 1997). Families of alternative concepts must be generated in a consistent manner to be compared
against the stakeholder needs. To accomplish this efficiently, reference architectures can be developed
by defining behavior separately from structure. It is generally advisable to start with behavioral
modeling, as indicated in Figure 48. Form follows function because behavior usually captures the user
needs better than structure (Crawley 2007). Once the conceptual system-level behavior is defined, the

structural models must be developed.

Care must be taken to not make decisions prematurely that artificially constrain the design. The initial

structural models should be free of any implementation-specific terminology that could subconsciously

109



limit the tradespace (i.e., in lieu of “keyboard” use “data entry mechanism”). Using instances and
aggregation of these abstractions rigorously, the effort to manipulate and design several alternatives is
reduced. This is the essence of architecting. If the team does not start with a conceptual design, the
alternative implementations will not share an architecture (Maier, 2009). Without a common platform,

it may be difficult to compare the alternatives, and any modifications could require complete redesigns.

e _m..\
/ ™
RN

2
2 g [

Define Behavior

Problem Definition

@

Define Structure

: - [Verified]
Legend
. Suggested Start

®
Identify Passble Soluticns

Figure 48: Architecture Definition Process

110



Once the alternative physical implementations are identified, behavior can be partitioned and allocated
to each structural element. In reality, most of the behavior and structural design is performed
concurrently. This may be difficult to do without inferring or assuming a particular technical solution
(Vitech Corporation, 2011). While it requires a surprising amount of discipline, adhering to conceptual

modeling can yield truly innovative solutions, simplify the trade studies, and enable product platforms.

3.3.1 Functionality Analysis

Several different, but connected views are required to adequately define the system architecture
(Maier, 2009). A single diagram cannot and should not try to capture all the necessary information. The
system behavior can be completely defined by using a combination of SysML activity, state, and
sequence diagrams. The suite of SysML diagrams can capture the behavior in a rigorous and executable
form. This is crucial as a poor or incorrect functional analysis will lead to deficient physical
implementations (Oliver et al., 1997). Depending on the application, teams may choose to start by

developing any of the three behavior diagrams.

Activity diagrams describe all of the possible flows of behavior and the interactions between external
actors and the system. This is a natural starting point after development of scenarios as indicated using
the green arrow in Figure 48. Sequence diagrams describe the timing for specific threads of behavior. If
timing is the crucial element of system behavior, the developers may choose to start by creating
sequence diagrams. Alternatively, if the system is strongly state dependant, this may be a preferable
starting point. While these states may have become apparent during the scenario development, it is

likely that aggregating activity diagrams may be a more effective way to generate state diagrams.

111



It is generally advisable to start defining the behavior that corresponds with the use cases that contain
the most uncertainty or provide the most benefit to the user. Unresolved issues can be identified and
researched. Multiple iterative cycles will be required, but capturing the team’s understanding and

assumptions will help identify the “unknown unknowns”.

Each type of diagram is not required for every application. Engineers should only model what they need
to capture. By navigating through the different views, development teams can assess the design, model

maturity, and completeness.

3.3.1.1. Activity Diagrams

Activity diagrams are natural extensions of the scenarios. As discussed earlier, some tools use activities
to describe scenarios, while others directly create them from text descriptions. Additional analyses of
the auto-generated activities are usually required as the system logic is fully developed. One of the first
required steps is to separate the activities performed by the system and the external actors, such as the
environment. Some processes suggest capturing both the external behaviors that excite the system and
those performed by the system in response. These diagrams allocate the activities to the appropriate
element, (i.e., system, actors) as shown in Figure 49. Hans-Peter Hoffmann warns against this practice
stating that three times more time is spent specifying the actor’s behavior than on the system
(Hoffmann, 2001). When any allocation is performed, it can be achieved using partitions, also known as

swimlanes. The partitions should be linked to their associated elements to insure proper traceability.

The activities must be decomposed to break up the problem into solvable pieces. The resulting level of
detail must be sufficient to effectively partition the system behavior to its subsystems while preserving

its performance characteristics.

112



It is crucial to consider the functional order and flow. If alternative paths can be performed, this must
be captured. Concurrent, parallel behavior should also be made explicit. Cyclic, also known as “looping”
or “iterative”, behaviors are common in complex systems. They too should be explicitly shown. Using
activity decomposition and logic transitions, views can be created to clearly convey this critical behavior.
An example of an activity diagram describing a UAV system interaction with multiple stakeholders is

shown in Figure 49.

act Launch Data

:UAV Launcher ; :User :UAV e :GPS

=dataType» Self
Test Results

«dataType»
Initialization Data

«dataType» Status Activitylnitial

«dataType= GPS P(Y) Cede,
| <dataType~ GPS M<ode

[UAV Set]

«continuous»

«dataType» Stalus

ActivityFinal

Figure 49: Example of an Activity Diagram

When developing the behavioral sequences, both the control and data flows must be considered. The
items that trigger the initiation or termination of activities must be specified. Often more than one

113



triggering item may be possible, so the appropriate level of abstraction should be considered. Every
system input and output must be properly addressed, including those that are unintended or wanted.
The response should be also identified and specified. Often customers and subject matter experts can

provide the crucial information on the stimuli and response.

The exchanged information and object characteristics, including the range of possible values and units,
must be considered. Instead of adding text descriptions of the data exchanged, “libraries” of units,
interfaces, data-types, and specific messages can be created. Not only will consistency across the design

be insured, but interface control documents can be automatically generated.

Once the initial control flows are developed, the exchange of data and objects can added. This can lead
the team through a second cycle of discovery as new activities are identified and others modified. After
the views are updated to reflect the new information, they should be reviewed. The error handling and
fault recovery for the system should be questioned. Each activity should be named with solution neutral
terms. For example, instead of “burn fuel” an activity should be named “transform potential energy to
kinetic energy.” This allows implementations that do not burn fuel, such as a glider, preventing the early

exclusion of possible solutions.

At times it may be beneficial to generate multiple diagrams in order to clearly describe the behavior.
Simple views also help focus the reader on a specific message. However, the distribution of information
can result in the apparent duplication of functions. Confusion can result from the generation of similar
functions with different names or functions with the same name that handle different types of

information (Vitech Corporation, 2011). The adoption of modeling standards can minimize these issues.

114



One of the benefits of SysML activity diagrams is being able to capture the cyclic behaviors without
additional decision nodes. Figure 50 depicts two options. Both are grammatically correct, but Method 1
uses fewer constructs. This can significantly reduce the clutter present in complex behavior

descriptions.

Loop Method 1 Loop Method 2

, Activitylnitial Activitylnitial

[Els=]

ActivityFinal

ActivityFinal

Figure 50: Alternative Methods for Depicting Cyclic Activities

3.3.1.2. Sequence Diagrams

Sequence diagrams are extremely useful in analyzing the exchange of information. They can be used to
identify the duration of functions, the rate in which inputs are consumed, and the rate they are output.
While sequence diagrams only show one potential thread through the activities, the important
information can be captured with a subset of the flows. Like other forms of modeling, generating
sequences is a discovery process which often leads to realizations of challenges with timing, bandwidth,

115



or errors in activity diagrams. These views offer a means of early issue detection. An example of the

sequence diagram describing UAV communication is shown in Figure 51.

sd 1_Basic_Path

i g i

6.The UAV indicatesreadiness
for launch()

7.The User launches UAV ()

:User ] :GPS :Launcher
I o | I
I | | I
| 1.The User power the UAV/() | I I

| |
| |
| |
2.The UAV performsa self test and | |
report the status() | |
| |
! !
1
3.The User provides configurations (including MET data, payload, mission, etc) and inializes GPS, I :
bII:] I
| |
| |
| 4.The UAV acknowledges 1
| reception of data() I
| |
| I
5.The User placesthe UAV in/on a launcher() I
I
I
I
I
I
I
I
|
I
I
|
I

detL

Figure 51: Example of UAV Sequence Diagram

3.3.1.3. System State

State diagrams are most useful for aggregating similar behavior. Several activity diagrams can be
combined and linked to state diagrams. The integration can be achieved by looking for common stimuli,
interfaces, or functionality. The thought process required to aggregate the independent activities into a
coherent behavior model is important. If scenarios and response threads cannot be coherently
combined, they likely contain several errors. Independent descriptions of behavior must be combined

to avoid integration problems when the system is built and assembled. The complexity of the state

116



diagram can also indicate if the aggregation was properly performed. If the state diagram is too large or
complicated, it may be beneficial to combine more activity diagrams. The opposite may be true for

diagrams with only “On” and “Off” states. Many tools use states as the basis for model execution, which
stresses the importance of state diagrams. An example state diagram capturing the UAV states is shown

in Figure 52.

stm [Package] System Behavior [System Behavior]

Initial

Power Removed

Power is Received

EntryPoint

Trigger Detected

Initialization Tracking

—

Track Command Received

Nav Ermor Detected

Nav Emor Detected

Navigation Solution Obtained

Guidance ] Search Command Received

Search

Figure 52: Example of a UAV State Diagram

3.3.1.4. Simulation and Analysis

Bl 7



In MBSE, one of the key benefits is being able to produce an executable model. Nearly every MBSE tool
has this functionality integrated or available via a plug-in. The fact that a model can be executed
indicates that no “grammatical” errors were created by the development teams. The primary benefit of
the execution is the understanding obtained through the dynamic visualization. Consider trying to learn
about the human heart. If views of the four chambers and flow of blood were shown, a fundamental
comprehension of its architecture could be gained. If instead, a video showed the beating and exchange
of blood in slow motion, observers would obtain a much deeper understanding of the heart. By
simulating the behavior based on a set of stimuli, the designs can be verified to be right and meet the

needs of the stakeholders.

The systems engineering field has developed a number of tools to support effective design analysis and
optimization. By exporting designs captured in modeling tools to Microsoft Excel or other commercial
engineering tools, powerful, legacy tools can be used in conjunction with MBSE methodologies. By
exporting model data, these tools can be applied to MBSE projects. As one example, design structure
matrices (DSM) can be used to analyze the flow of behavior or data between elements in complex

systems by helping visualize their relationships.

External simulation tools can be integrated with the MBSE tools to provide various triggers and
messages for the simulation. Also, graphical packages can be integrated to create more powerful
visualization simulations. This can be an effective capability for communicating with customers and

other high level stakeholders.

3.3.2 Structural Analysis

118



Structural analysis is performed to develop a system’s physical hierarchy and to identify the interfaces
between internal and external components. At each level of hierarchy, the system is represented using
several views. The enumeration and description of the components is specified in block definition

diagrams, while the component interfaces are defined using internal block diagrams.

3.3.2.1. System Decomposition

Structural model development begins by decomposing the system using BDDs. This hierarchy of parts is
a fundamental systems engineering abstraction used to simplify analyses. Often many of these objects
are identified during the behavioral analysis as most people can think more effectively by using
examples. The decomposition must insure that each system component is captured. As humans cannot
consider the complete set of components, levels of hierarchy are used to divide systems into
subsystems and subsystems into lower-level components. The aggregation is often best achieved by

decomposing into five to nine elements (Oliver et al., 1997).

Effective partitioning should be based on the criterion most applicable to the problem and design space.
Options for the primary criterion include: interface complexity, functionality and performance
implications, modularity (support for technology insertion or replacement), and component risk (Vitech

Corporation, 2011).

BDDs provide the capability of representing dense amounts of data. Attributes used to capture the
performance metrics can be shown in the hierarchy. While subsystem performance characteristics can
be redefined (e.g., failure rate could be changed to mean time to failure) their relationship to the MOEs

must be made apparent and preserved so they can later be evaluated against the trade criterion.

119



Subsystem interfaces can be specified in the BDDs, but must be implemented in IBDs. If interfaces are

added, care must be taken not to overwhelm the reader with too much information.

3.3.2.1.1. Conceptual Decomposition

It is advisable to maintain options as long as possible in the design and implementation of complex
systems in that they will be needed in future design phases. Similarly, MBSE is most effective when
elements can be reused as often as possible. Using multiple levels of abstraction can greatly enhance

this. The options for each element can be collected in a catalogue for future reuse.

To accommodate this practice, the decomposition and interface definition should be performed using
conceptual elements. The implementation of these elements can be specified later and linked to the
existing views. Designs are moving targets and in the early phases there is little benefit to constraining
the tradespace. As shown in Figure 53, conceptual names should be selected to avoid subconsciously
focusing the design team (i.e., In lieu of “radio” name a block “communication device”). Structural
models change rapidly if selected implementation and available technologies are in flux, but behavior
and conceptual designs are relatively stable (Vitech Corporation, 2011). If an implementation must
change it is relatively easy to determine the impact by reviewing the possible changes to the conceptual

view through the model’s traceability.

120



«block»
vav

1,2 0. 0. 1 1. il 21 14
«blocke «blocks «blocks | «block» «blocke «blocks «blocks «blocks
Lift Supplier Thrust Suppli R y Containment | |C icati Surveiliance sl pons
fob i Subsy Supplier Subsystem Subsystem
1
«block» «block»
Steering GN&C Subsystem)
Mechanism

Figure 53: Conceptual UAV Decomposition

This methodology supports the development of product families. Architectures and common
components can be used for multiple products reducing the overall development time and lifecycle

costs. Changes between model versions are explicit due to the model’s native traceability.

33212 Implementation

Based on the conceptual physical architectures, specific implementations can be developed. Several
structural alternatives may need to be carried forward to tradeoff analysis. The choices under
consideration can be expressed directly in the modeling. All of the important attributes must be
captured (e.g., weight, volume, engine horsepower). Budgeted values for these attributes can be
supplied to use as design targets for lower level design. Assumptions and descriptions of applicability
can be added to the views (Paredis). This information assists domain specialists assess the

implementations to determine their feasibility.

121



Implementations can inherit features specified by the conceptual objects. Attributes and ports that are
commonly created for conceptual designs are leveraged in design implementations. This reduces

rework and insures consistency across a number of designs and views.

A physical decomposition for a specific UAV implementation, identified as FastLook, is shown in Figure
54. Each block indicates the conceptual object it implements. For example, the FastLook UAV uses a

projectile as the “containment subsystem” specified in Figure 53.

bdd [Package] FastLook [FastLook]

«interface»
“H Giilizan [155mm How itzer |
«blocke
Fastlook |~~~ 777~ 15y
EEE———
2 1 1 0.1
Wing| |Power Sub. Contaii | |C ications Sub: Recovery Element| | GN&C Subsystem| |Suwveillance Supplier| |Surveillance Supplier|
Inflatable Wing FL Power ablocks | «block» i «block» i «blocke «block «block»
Subsy Projectile C-Band LOS Data Link Self Destruction FastLook Laser Designator | EO/R
| Avionics
Steering Mechanism| Power Distibutor Battery| wblocks «bloclke | «blocies hlode bloE
Tail Fin Assembly FastLook PDU ablocks Accel ter | Autopil P Gyroscope GPS Antenna |
FL-BTRY-22 0.1 f0.13} 0.4 0.4

Figure 54: Example of an Implementation Specific Structural Decomposition

As the number of alternatives under consideration can be quite large, traditional systems engineering
tools should support the design optimization. One way to compactly represent the set of combinations
from which options can be generated is a Morphological Matrix. These matrices can be generated from

modeling tools once alternative technologies or implementations are identified.

122



It may not be necessary to create SysML objects for each alternative concept or available technology.
Some developers may prefer maintaining the full list in non-MBSE tools. Hyperlinks can be used to
connect the complete list of options to conceptual views. When the team feels it is appropriate, the

most likely candidates can be added and refined in the model.

Development teams may seek to perform risk reduction development or experiments based on the
identification of candidate solutions. Depending on the number and type of alternativeness, systems
engineers may choose to use design of experiments (DOE), a common statistical procedure for planning
experiments to efficiently obtain data (Box et al., 1978). The variables, called factors in DOE, and their
values, known as levels, can be generated based on alterative captured in the model. Any resulting data
can be imported and attributed to a concept if desired. To generate these variables it may be useful to
create instances in BDDs, not the standard IBDs to capture and organize the numerical quantities (Cole

et al., 2010). Each instance can be copied to the I1BDs as needed.
3.3.2.2. System Composition

Once the system structure is defined, the composition must be specified. This is generally performed
using IBDs. While conceptual compositions can be created to define platform architectures, these views
are often reserved for modeling of specific implementations. They describe the subsystems interfaces
and relationships. The creation of these views normally leads to significant discoveries. Systems
engineers should solicit information from subject matter experts regarding their biggest concerns (e.g.,
electromagnetic interference, self heating, packaging). These factors could then be added to views to

specifically address each of these concerns.

123



SysML provides three options for specifying interfaces: (1) standard ports, used to provide abstract
interfaces representing provided or requested services (2) flow ports, used for combinations of
mechanical and data interfaces, and (3) nested ports, used to decompose the structural and data
descriptions. Nested ports provide for greater reuse and clarity as different levels of abstraction, and

can fully describe the interface (Friedenthal, 2011).

Once the interfaces are defined, the flow of objects over each one can be identified. This may be
information, materials, data, or energy. The data types and elements should be added to model
libraries to increase their reuse across programs. This practice helps maintain consistency, as different
terminology could be used if text was used to describe the flow of objects. The development of concept
specific libraries also facilitates the automatic generation of interface control documents. Different
levels of arbitrations should be used to capture the object categories, values, units, or other details. An
example of the IBD showing the subsystem communication interfaces is shown in Figure 55.

composite structure QuickLook

Fastl.ook / «flowPort» GPS Antenna

{1}

«flowPort» GPS
Camera : GB02139

[z}

«flowPort» Telemetry & Commands
«flowPort» /1O

«flowPort» Data

: C-Band LOS Data
Link

«flowPort» Antenna

~«flowPort» Commands «flowPort»

Communication Antenna

«flowPort» Setter
{2} E

Figure 55: Example of UAV Subsystem Interfaces
124



Any of the inputs may be a trigger for activities or state transitions. Therefore, it is important to identify
how long an exchange persists, and its impact to the ordering of functions. This is achieved by

examining the allocation of behavior to structure.

3.3.3 Allocation of Behavior to Structure

To complete a concepts’ architectural description, the manner in which behavior is allocated to
structure must be explicitly defined. By specifying the relationship between the physical components
and behavior, the design consistency can be verified. Developers can insure that the data and objects
exchanged in the behavior models are consistently mapped to ports in the structural views. Any
overlooked or incomplete designs can be detected through this process. The allocation completes the

system traceability as the structure, behavior, data, and requirements are all connected.

As shown in Figure 49, partitions (swimlanes) are an effective way to perform this allocation. Some
methodologies and tools require explicit SysML constructs to formally define the relationship. They also
recommend partitioning the behavior diagrams, but the constructs are only used to visually convey the
allocation. It is often beneficial to note the rationale behind the allotment as it may be questioned in

the future.

The execution of allocated behavior models provides an excellent means of verifying the design. The
execution identifies design flaws such as endless processing loops, elements waiting for a message from
each other, and improper distribution or assessment of performance. Trial behavior allocation can be

easily updated or discarded if the architectures are incapable of meeting the system requirements.

125



The mapping of behavior to structure will also provide an assessment of the concepts’ performance with
respect to meet the MOEs. However, to obtain more a more detailed assessment, the performance

metrics should be calculated directly.

3.3.4 Constraint and Relationship Definition

Each component contains a set of critical attributes that directly impacts the total system performance.
These attributes are application specific, but may include parameters such as accuracy, weight, cost,
power consumption, or reliability. When isolated drawings tools are used to capture the design, these
parameters are defined in isolated documents and databases. In these situations, each design and
analysis must separately maintain the attributes. However, by using parametrics to define the
relationship at different levels of abstraction and by using elements from libraries, the attributes can be
consistently defined, tracked, and reused. This provides an effective methodology for the definition of

detailed characteristics, physical laws, and external systems constraints.

Figure 56 provides an example of a parametric diagram describing the relationship between the UAV
subsystems’ weight and propulsion power. The view indicates that the system weight is the sum of the
subsystems’ weights and the power balance drops as power is drawn by each subsystem. Other views
can be created to calculate the UAV range based on factors such as total weight, force, and lift. By
linking these attributes, the consistency of the values can be insured. As a result, the model can be used
in conjunction with simulations to determine if concepts can meet their performance goals when

constraints such as weight and available power are varied.

126



weight! : WeightBalance
w: Kg wl : Kg w2 : Kg w3 : Kg w4 Kg
. o
o = Fxaprsision inst : lnslnlmems con : (ontrol psys | PoerSystem
weight : Kg : - .
ightPropul : weightinst ; weightControl fwe ightPowerSys
Kg Kg ' Kg :
powerPropul : powerinst [powerControl - .
KW KW W power : KW
pl1: KW P2 KW ki p: KW

power! : PowerBalancs

Figure 56: Parametric Diagram Relating Weight to Propulsion Power (InterCAX LLC, 2011)

Parametrics can be used in conjunction with requirements constructs to flow down requirements to
subsystems. If subsystem requirements are based on values or properties of system performance,
MOEs, or other systemes, it is more effective to dynamically link the values than to use requirement
elements. By capturing the relationships between requirements and constraint blocks, a concept’s
ability to meet specific requirements can be verified. This capability will enable reviewers to insure

consistency, validate assumptions, and assess tradeoffs.

Block attributes and parametrics also provide a means of exchanging values and value types to other
model based tools. For example, the values for each subsystem in Figure 56 could be acquired from

mechanical CAD models created in tools such as SolidWorks or ProEngineer.

127



When creating parametric diagrams the inputs and outputs to attributes must be assigned. The views
can also insure that the attributes are specified with the appropriate units (i.e., kg, KW), as shown in
Figure 56. Values can then be assigned to the parameters and saved for later reference. Once the
models are executed, the simulation input values and results should be stored to provide the

documented rationale for the future decisions.

One of the primary purposes of these diagrams is to perform trade studies. Parametrics can be used to
define and evaluate performance, reliability and other physical characteristics. An example of a
parametric diagram created to compute the UAV coverage is shown in Figure 57. This diagram shows
the constructs and relationships that evaluate how well a concept can meet the range and endurance

requirements. Other views such as the one in Figure 26 can related the equations to the MOEs.

nas : Real numberAvailableAircraft - Real

nms : Real - milesScannedPerZ4Hours : Real

|
|

nac: Real 4 numberAvailableCrews : Real
f

. ! ,‘ |
jie PemnningEqn ;: sse : SystemAvailsbilityEgn |

nas : Real numberAvailableSyst: : Real nas : Resl |

msph : Real milesScannedPerHourPerAiraaft - Real

nafl : Real

numberAvailableFuelLoads : Real

\ »

Figure 57: Parametric Model of UAV Coverage Analysis (InterCAX LLC, 2011)

Paramedics are an effective means of capturing executable constraints based on mathematical
relationships and element attributes. However, MBSE tools may have processing and execution
limitations. Dedicated analysis and optimization tools such as MathWorks MATLAB, Microsoft Excel, and

Wolfram Research Mathematica will most likely continue to be the preferred trade study tools.

128



Parametric diagrams can be used in conjunction with these tools to define and capture the relationships,
but the calculations could be performed by external tools. For example, if utility curves are to be used

for a trade study, they could be developed in parametric diagrams and externally executed in MATLAB.
3.3.5 Domain Expert Collaboration

A critical component of systems engineering is the collaboration with other domain experts, a necessary
aspect of all large, complex programs. Each domain has different perspectives, concerns, and tools.
While the MBSE tools do not, and should not, seek to replace the functionality of the domain specific
views, a suitable “handoff” must be identified. These views must provide the information required by
each teammate in a format that that can easily understand. When separately described, the views or

“requirements” can be efficiently communicated to the respective engineering domains.
3.3.5.1. Collaboration with Software Domain Experts

The interface to software engineers is one of the simplest as SysML is an extension to UML and many
MBSE tools include support for model-based software development. While systems and software teams

can use the same development tools, a specific handoff should be established.

When decomposing the system, the software and hardware components and their interfaces must be
specified. Systems engineers often decompose the software into its major components (e.g., operating
system, web browser, word processor). The blocks should be the intefface to software developers.
They represent Computer Software Configuration Items (CSCl) and are traditionally developed based on

a software requirement specification (SRS).

129



If the software development team can access the MBSE repository, a standalone SRS may not be
required. It also depends on the structure and formality of the development effort. If this is the case,
the interfaces, data elements, and activities specified in the systems models form the requirements for
the software team. They must insure that the software design is traced to each of these elements.
Weekly software and systems reviews may be required to insure that this is done consistently, but these
informal reviews also serve to improve the design quality. If an SRS is needed, it can be generated from

the systems model like other requirement documents.

3.3.5.2. Collaboration with Electrical Domain Experts

The handoff to electrical engineers can be created using IBDs to specifically address their needs. The
electrical perspective provides insight on all electrical connections in the system, such as boards, cables,
connectors, and signal levels. The views can be limited to high-level designs or be very detailed like a
wiring scheme. This depends on the application and design team. Systems engineers and MBSE tools
should not replace domain engineers or their tools, but teams may choose to document the electrical
engineer’s design in SysML views in lieu of Visio or PowerPoint. However, many design teams may

believe that this is not appropriate. It is dependent on the team experience and preferences.

Either approach can be supported using IDBs and reviews with electrical engineers. Flow or nested
ports can be used as placeholders for connectors. Once the connectors are specified, they can be
defined using one of the elements in a library. Connections between elements can be shown using
associations with specifically assigned cables captured as blocks. Systems engineers will envision the
high-level connections early in the development process. These views can be instrumental in allowing

electrical engineers to verify any design decisions or raise concerns.

130



3.3.5.3. Mechanical Domain Perspective

The mechanical engineering handoff is one of the simplest and most abstract. Initial mechanical
depictions are often cartoons of the concepts identifying where the primary components are located.
Even this high-level view should not be created in MBSE tools. The mechanical perspective shows how
system elements are connected and interact mechanically. These views should be created in other
modeling or drawing tools, and linked or copied to the MBSE views. As the designs mature, each system
component should have a corresponding mechanical CAD model. Properties, like design, materials, and

dimensions should be synchronized between MBSE and mechanical CAD tools.

In order to create these initial concepts, mechanical engineers must understand the constraints. Only
external constraints may be identified initially, but internal constrains will be identified as concepts
mature. For example, when developing UAV concepts, the size and form will initially be constrained by
external entities such as the launch system. Once subsystems are identified, the internal constrains will
emerge including expected component geometries (e.g., cylindrical, rectangular), connector position
(e.g., top, bottom), or volume (e.g., battery will likely be about six cubic centimeters). These constraints
should be provided as abstractly as possible to avoid unnecessarily constraining designers. The BDDs

depicting the constraints provide an effective means of accomplishing this handoff.

3.4 Generation of Alternatives

Concept development trade studies require the establishment of distinct alternative solutions to a
specified problem. A number of existing, non-domain specific methods have been developed by

engineering, marketing, and other creative disciplines to generate these options. The technique

131



selection is often dependant on the problem being solved and the amount of information available. Any

of these can be used in conjunction of this framework.

The generation of alternatives is focused on identifying options that are expected to meet the
stakeholder needs in order to compare them in a subsequent analysis. As shown in Figure 58, three
activities generally take place during this phase. Alternatives are identified, assessed, and instigate risk

mitigation activities. While they are shown as sequential activities, they are often performed iteratively.

Most Important Requirements| Constraints Available

Capabilities of Interest | || Technologies Candidate
Measures Of Effectiveness

Solutions

Risk/ Performance
Assessment

Activitylnitial

CONOPS/
Behavior Models|

Alternative :
Solutions @

ActivityFinal

[2 to 10 Candidate Feasible
Solutions |dentified)

Evaluate Options

Figure 58: Generation of Alternatives

Pugh advocated that product development teams engage in an iterative process of reducing and adding
to the concepts under consideration (Hale and Quayle, 2009). This can be performed using a systematic
downselection process known as “controlled convergence”, depicted in Figure 59. By sequentially
expanding and contracting the problem, a larger number of concepts can be considered without

overwhelming the development team (Maier, 2009). The downselection process postpones making

132



decisions until sufficient information is available to describe an option. It prevents making “bad”

decisions, and helps focus the team on the key trade-offs.

&—— Initial Concept Generation —>

<—Initial Number Reduced —>

<— New Ones Added —>

Concept Selected

Figure 59: Controlled Convergence

Some efforts seek to solve specific problems while others are looking for new opportunities. Either one
can use the previously specified MOEs as the basis for generating alternatives. While some processes
incrementally provide the requirements to those proposing alternatives, they should all be disclosed by

the end of the exercise.

A number of existing techniques are known to facilitate the generation of alternatives. Some of these
are discussed in Section 2.1.3. They include tools for collecting expert insight and ideas, identifying
complete concepts, and cataloging representative solutions. Some are best for identifying potential
solutions that can meet each requirement, while others are better for listing alternatives for each

function. Most projects find it beneficial to collect as many diverse options as possible. Even wild ideas

133



can lead to the identification of one that meet will meet the system goals. The technique should be
selected based on the problem context and program phase. However, it is likely that the several

techniques will be used as efforts proceed through sequential generation and assessment cycles.

While it is important to document each generated idea, it is not required to capture the list in a MBSE
language. Often, maintaining a list in its original form (e.g., flipboards, pictures) or in another tool (e.g.,
spreadsheets, word documents) is equally useful. Electronic copies can be stored to a repository and

linked to the model.

After identifying the alternatives, developers must determine if they could yield a viable solution. Each
candidate should be qualitatively compared to determine if it should be carried forward into the trade
study. The criterion may include the MOEs, CONOPS, “the —ilities”, development time, affordability,
available technologies, and risk tolerance. Other situation dependant factors include environmental
impact, failure modes, hazard analysis, or technical obsolescence. Based on these factors the strengths,
weaknesses, opportunities, and threats of these alternatives can be determined. Some processes
compare each alternative against each other, while others evaluate the concepts against a benchmark.
An effective technique for the assessment is to rank the concepts, and to discard those that fall below a

feasibility threshold.

The results of the analysis should be shared with the team and other decision makers. Involving all
stakeholders to eliminate non-viable concepts early can reduce the potential for wasted effort. With
each assessment and review, new information is revealed about the decision criteria. Teams can obtain
a better understanding of what is feasible and truly important. New ideas may be generated as based

on this information.

134



If a subset of alternatives appears to satisfy constraints and achieve the stakeholder needs, then this
subset can be carried through another cycle or to a more detailed evaluation. If feasible options cannot
be identified to meet the specified system performance, then the requirements should be revisited and
relaxed. This is less likely to occur with the MBSE Concept Development Framework as the
requirements should not be unnecessarily constraining. However, customers may seek capabilities that
are beyond the limits of technology given a certain risk and cost tolerance. The assessment should

provide sufficient details to allow stakeholders to identify the constraints that may be relaxed, if any.

The evaluation will most likely be performed in an electronic medium. Whenever possible, tools, inputs,
and results should be linked to the model to provide a common location for finding information as
design decisions are revisited. The process ends with a fully defined catalog of alternatives, describing
the parameters, ranges, and possible combinations. The results of each assessment should be imported
to the SysML tool where they can be reused for current and future design efforts. Many tools can
import data in spreadsheets or tables to minimize the manual data entry and prevent “copy and paste”
errors. Figure 60 depicts several alternatives methods to create lift for a UAV concept. These options
could have been the only ones that were imported to the model after an evaluation cycle deselected
others such as balloon or rocket. Instances of each of option can be defined for each system concept.
The values of each attributes could be defined in other tools, and imported to the model, further

reducing possible error sources or inconsistencies.

135



bdd [Package] Lift Supplier [Lift Supplier]

«block»
Subsystems::Lift Supplier| «invariant»
— el i {Weight less than 10
+ lift coefficient :newton kg)
+ sdize :square meter
+ weight :klograms
«block» «block» «block»
Wing Parachute Rotors
zLift Supplier s:Lift Supplier
+ lift coefficient :newton | + lift coefficient :newton
+ Size :square meter + size :square meter
+ weight :kilograms + weight :klograms
constraints [ - %
{Weight) T
- " «invariant»
{Weight = 2.2 kg}
Fixed Wing Inflatable Wing Folding Wing
zLift Supplier :Lift Supplier ::Lift Supplier
+ lift coefficient :newton + lift coefficient :newton + lift coefficient :newton |
+ size :square meter + size :square meter | | + size :square meter
+ weight :kilograms + weight :kilograms | | + weight :klograms

Figure 60: Alternative Lift Supplier Techniques

In complex system developments, the alternative feasibility is often evaluated through risk mitigation
efforts. Issues with potential technologies or implementations should be identified and addressed early
to minimize the likelihood that when integrated, they fall short of the required functionality or
performance. This step may include prototyping, architecture modeling, technology development,
experimentation, or detailed analysis. The MBSE methodology can reduce design risk by verifying
designs at multiple levels of decomposition. While most risk mitigation efforts will be performed
separately from model-based tools, integrating the results with structural and behavioral models further
reduces system risks. If high risk elements are considered, contingency plans should be identified.

136



The outcome of the generation of alternatives is an assessment of each candidate’s performance and
risk. The data, in the form of static numbers, distributions, numerical ranges, or qualitative statements,

can be used for a trade study.

3.5 Decision Analysis

Decision analysis is focused on the methodical evaluation of compromises. No alterative can have ultra-
performance, ultra-quality, and be inexpensive. When each concept exceeds the stakeholder needs on
different axis, tools must be used to effectively make unbiased decisions. The final concept
development activity is to qualitatively evaluate the design options against the MOE, and select the best
option. A variety of tools are available to perform this selection, and any of them can incorporate the
methodology. The integration of SysML models and proven decision analysis techniques provides a
robust approach to decision analysis as the previously defined MOE are used. Figure 61 describes the
decision analysis methodology used to select a concept. It consists of the identification and allocation of

weights, assessment of each alternative’s effectiveness, and trade study execution.

Most Important Requirements Candidate

Capabilities of Interest Solutions
Measures Of Effectiveness

Solutions Identified ActivityFinal

Assessment Risk/ Performance Proposed Solution
Criteria Assessment

Figure 61: Decision Analysis

137



Itis crucial in these evaluations that the MOE are evaluated at a system level. The objective is not to
optimize the individual components, but the entire system. While attributes from multiple tiers of
system decomposition are used in the analysis, they should be aggregated at the system level. It may be
prudent to revise the MOE prior to performing a trade study. The needs of a key stakeholder may have

been omitted when the MOE were defined.

Once the trade is executed, the results must be evaluated manually as the ranking cannot be accepted
as truth. While the decision analysis is an optimization process, it is not strictly a computational one.

These methods and tools provide data for human decision making.

3.5.1 Priority Assessment

One of the crucial steps any trade study is the prioritization of specific desirable attributes. The
priorities are assigned to the key, differentiating requirements. This framework assumes that the MOE
are used as the trade criteria. Depending on the level of access to stakeholders, it can be challenging to
determine the MOE priorities as they may be in constant flux. Several effective methods exist to

identify the stakeholders’ preferences, a subset of which is highlighted in Section 3.2.6.

Although the MOE priorities may have been captured in earlier phases, the trade study weights must be
determined. These weights could have been obtained by surveying the preferences of potential users or
owners. If this is possible and consensus can be achieved, specifying explicit, numerical weights may be
effective. It should be noted that the survey results from those who were shown the alternative designs
is likely to be different. It could be helpful to conduct the surveys after the options are identified, or at

least repeated. As the weights can be very subjective, it can be helpful to force stakeholders to make

138



decisions about the comparative significance of each criterion by insuring that the weights must add up

to a fixed number, normally 1 or 10.

Additional decomposition may be required to assign the stakeholder preferences to measurable
attributes that can differentiate between the designs. This can be performed using the attributes that
influence the MOE described in the parametric diagrams. This priority assessment can be carried out in
a similar manner to the high-level priority determination, but must involve the applicable domain
experts. Some attributes that can be listed or calculated may not be important for the decision analysis.

They should be ignored during the trade study to avoid reducing the impact of crucial factors.

As discussed earlier, determining the MOE priorities through statistically valid methods of stakeholder
interrogation is preferred. However, this is not always feasible. If the desired system is not well
understood, or consensus cannot be achieved, specifying explicit, numerical weights may be impractical.
As a result, some tools dynamically set weights using nondominated utility trade methods (Borer, 2006).
The process sets the priorities based on the possible ranges or probability distributions to determine the
concepts most often identified as the “best”. These priorities can also be captured using attributes
similar to those defined in Figure 46. Other methods discourage applying the weights to identify the
“best” answer. Other techniques prioritize and combine the MOE into a single cost function. Such

techniques would require additional parametric diagrams.

Regardless of the process selected, whenever modifications are made to the MOE, the impact to the
trade study should be examined as it differs greatly based upon the specific criterion, magnitude of the
change, and priority technique. For example, if the MOE were defined using utility curves, the impact of

the weight would be highly dependent on the concept’s assessed performance.

139



3.5.2 Effectiveness Determination

To define how well each candidate solution performs with respect to the MOE, values must be assigned
for each trade criterion. Using MBSE, these metrics can be obtained directly from the concept’s
previously established attributes. The performance assessment is achieved through measurement of

actual components, simulations, or by estimation.

Obtaining values from product specification sheets, calculations, or risk mitigation test results is
preferable. These measurements should be documented and collected from the blocks’ attributes
based on the aggregation equations captured in the model. Attributes related to the concepts’ behavior

and timing can be associated with activities and handled similarly.

When parts are not available or when the measurement process is expensive or time consuming,
attribute values can be calculated by simulation. Simulations are fundamental to decision analysis, and
can be very effective if the right assumptions are made (Cole et al., 2010). These performance
calculations must be based on the laws of physics, physiology, logic, and biology, but can be performed
in either MBSE or external tools. When using simulations to determine concept effectiveness, the
inputs, assumptions, and results should be linked to the appropriate constructs to support reviews and

future analysis.

When neither measurement nor simulation is possible, developers can resort to estimation (Oliver et
al.). When this technique is utilized, the values should be obtained by querying subject matter experts.
To obtain a better assessment, it is helpful to obtain multiple estimates for the same attribute using

surveys.

140



3.5.3 Concept Selection

Once the trade criteria have been fully defined and the performance each concept has been established,
trade study tools can rank the alternatives. Several processes for executing trade studies within SysML
models and tools have been documented. Some tools, such as like InterCAX (InterCAX LLC, 2011)
execute parametric models to automate trade studies. Figure 62 provides an example of the results
from such an analysis. These tools are well suited for computing performance, reliability, and cost for

several concepts based on performance equations and attributes.

Some trade studies require Monte Carlo or optimization calculations may not supported in MBSE tools.
Intensive mathematical analyses may be best suited for external, specialized tools such as MATLAB,
Excel, and open source engines Maxima. By exporting parameters and relationships from SysML models
to computational tools, developers can leverage existing trade study capabilities such as optimization
algorithms and Monte Carlo analyses. Several examples have been published describing the
combination of MBSE with external tools (Hoffmann, 2011b}) and advanced analysis such as mixed
integer nonlinear programming (Paredis, 2011). The results of any of these can be recorded in the MBSE
tools. To facilitate these advanced analyses, the tools should aim to integrate with other analytical
programs (Cole et al., 2010). Fortunately, the apparent trend is for MBSE tools to support both SysML

parametric execution and integration with external trade study tools.

141



[ Solvea R1 beta - Analysis01 3[=]3]

Name Qualifie... Type Causality  Values .
B Analysis Model::Lit... Analysis ‘
i+~ milesScannedPer24Hours REAL target 2,016 ‘
-8 milesScannedPerHourPerAircraft REAL andllary 40 ‘
i--[8 numberAvailableAircraft REAL andillary 2,403
‘- [8 numberavailableCrews REAL ancillary 5 |
. numberAvailableFuelLoads REAL andllary 2.1 ‘
-2 numberAvailableSystems REAL ancilary 2.1 ‘
=- By, miles Model::Lit.., LitleEyeSystem |
- R air Model::Lit... LitheEyeAircraft
-8 dutyCyde_Aircraft REAL andillary 0.687
-8 dutyCyde_CameraRefit REAL given 0.09
-8 dutyCyde_Maintenance REAL given 0.02 |
i[8 dutyCyde_Turnaround REAL given 0.23 |
--[58 milesScannedPerHourPerAircraft REAL given 40 i
numberAiraraft REAL given 4 |
-8 numberAvailableAircraft REAL ancilary 2,403 I
;-8 numberAvailableAircraftByDay REAL andillary 3 I
i@ numberAvailableAircraftByhight REAL andllary 4 l
--[58 numberDayCameras REAL given 3
: 8 numberNightCameras REAL given Z
= R aew Model::Lit... LitheEyeCrew
; -4 arewTimeOn REAL given 0.42
B8 numberAvailableCrews REAL ancillary 21
: -[d numberCrews REAL given 5
=By, fuel Model::Lit... LitdeEyeFuel
: dailyFuelLoadPerAircraft REAL given 50
i--[md fuelSupplyPerDay REAL given 250
"8 numberAvailableFuelLoads REAL ancillary 5
[ epand ][ colapsean | cove [ Reset | Update toSysML |
root ( Analysis )
Name Local One...  Relation Active
bbco Y [] |numberAvailableFuelloads=miles.crew.numberAvailableCrews V]
bbct Y []  |numberAvailableAircraft=miles.air.number Available Aircraft [v]
bbc2 i [[] |miesScannedPerHourPerAircraft=miles.air.milesScannedPerHourPer... [v]
jbc3 Y inumber AvailableCrews=miles. fuel.numberAvailableFuelLoads v
sae Y [] InumberAvailableSyste: in(numberAvailable Aircraft,number Avail. .. [v]
ise i ImilesScannedPer 24Hours =numberAvailableSystems *milesScannedP. .. v

Figure 62: Example of Parametric Trade Study Calculation (InterCAX LLC, 2011)

142



4. Conclusions and Recommendations

This thesis explores the feasibility of leveraging the rigorous design methodology for the development of
system concepts using MBSE. Based on the UAV example and the responses of interview results, the
specific questions were answered. Although the answers are discussed in detail throughout the

document, they are summarized here.

1. Can MBSE support concept generation, refinement, and evaluation?
As shown by the examples scattered throughout Chapter 3, MBSE can be applied to concept
development. The suggested methodology enables the development and design of different
concepts, and the selection of an alternative to best meet the stakeholder needs. Consistent
examples were provided to depict the development of a conceptual UAV model developed
though simulated stakeholder interactions. The alternative structured processes discussed
herein provide significant enhancements over the non-modei-based concept development
approaches. From the conceptual model, a design implementation was presented and carried
through to the point of a trade study. Discussions of the behavior simulations and other
external analysis techniques were presented to enhance the evaluation of the system
architecture and design. By integrating SysML and the MBSE tools, not only can the traditional

concept development activities be performed, but they can be made more efficient.

2. How can the best practices of systems engineering and concept development be integrated?

As discussed earlier, MBSE contains three critical elements: the language, tool, and
methodology. The systems engineering principles and best practices developed over the past

decades are integrated within the methodology, arguably the most critical element of MBSE. All

143



MBSE tools enable element reuse, connect design elements, and provide an effective means of
knowledge capture. These enable a number of best practices that must be followed by adopting
an effective methodology. Error checking and verification can be greatly enhanced through

powerful MBSE tools by providing capabilities such as simulation.

This thesis presents a number of consistent methods to clearly exchange information for design
activities, reviews, and documentation. Throughout each phase of the methodology, advice was
provided on how to follow systems engineering best practices. Requirements development is
one of the fundamental system engineering tasks, and several alternative processes for
generating them using MBSE are presented. Each one follows the best practices and leverages

the benefits of model-based engineering.

One of interesting results of the research was the determination that concept identification
activities did not have to be integrated into the MBSE tools. Traditional identification and
documentation methods can be used and linked directly to model elements. While the tools

provide many benefits, they must be used appropriately.

Some MBSE tool vendors may inhibit steps that could potentially violate the best practices.
While this may limit advanced modelers, it reduces the learning curve and barriers of adoption

for new practitioners.

3. Does MBSE improve the efficiency and effectiveness of concept development teams?

While this thesis did not qualitatively or heuristically yield any metrics on the benefits of a
model-based approach to concept development, it is expected to greatly enhance the efficiency

and effectiveness of development teams as indicated by the overwhelmingly positive survey

144



responses. Some of the expected benefits of the framework can be determined by the observed

by other MBSE life-cycle activities as summarized in Section 2.2.1.

4. What processes and external tools facilitate or enhance the development process?

A number of tools were mentioned as options within the concept development methodology.
Developers can select any tool that meet the needs of their team and problem space, as almost

any tool can be integrated with the MBSE programs.

5. What views, elements, and constructs are useful to improve communication?
Surprisingly, each SysML view was found to be important for the concept development
methodology. Use case and requirement views were important to capture the stakeholder
needs. Activity, sequence, and state diagrams were each discovered to play key roles in the
development of the system behavior. It was verified that block definition and internal block
diagrams were essential to the concept definition descriptions. Parametric diagrams were alsc
found to be essential to support the various trade study techniques. The MOE construct was
identified as an efficient means of communicating the most important stakeholder needs and
supporting trade studies. The traceability resulting from interconnected models proved to
greatly improve the identification of complex relationships and the impact of design decisions
and changes. Model execution was found to be a critical element of the MBSE methodology. In
addition to improving the communication of the system model, execution enforces consistency

and reveals design errors.

Overall, the framework was determined to provide a logical methodology for concept development. Itis

based on the systems engineering best practices proposed by the leaders of the systems engineering

145



field. By incorporating the benefits of MBSE, the concept development project may see the same
improvements as the early adopters of parametric computer aided design (CAD) in the mechanical and

electrical engineering fields.

146



5. Future Work

This framework appears to provide a significant advantage in concept development over traditional
concept development methodologies. Future analysis of its benefits should be determined through its
adoption on an actual program. Pilot programs without customers may not get the attention required
to enforce the rigors of MBSE and systems engineering best practices. As a result, the effectiveness of
the model-based methodology may be poorly assessed. If customers and problems can be identified to
sponsor such a concept development effort, the methodology could be used to improve the efficiency of
concept exploration. When such an effort is initiated, the specific processes and tools should be

selected prior to the project commencement, based on the tool and management plan.

in addition, automated techniques to populate or create external trade study tools could be developed.
The automatic generation of a design structure matrix (DSM), house of quality, or any other frequently

used tool, could benefit multiple design efforts.

147



Work Cited

Altshuller, G., Shulyak, L., Rodman, S., 1998. 40 Principles: TRIZ Keys to Technical Innovation. Technical
Innovation Center.

Baker, L., Clemente, P., Cohen, B., Permenter, L., Purves, B., Salmon, P., 2000. Foundational Concepts for
Model Driven System Design. INCOSE, INCOSE Model Driven System Design Interest Group.

Bock, C., 2005. SysML and UML 2 Support for Activity Modeling, Systems Engineering. U.S. National
Institute of Standards and Technology.

Borer, N.K., 2006. Decision Making Strategies for Probabilistic Aerospace Systems Design, School of
Aerospace Engineering. Georgia Institute of Technology.

Borer, N.K., Schwartz, J.L., Odegard, R.G., Arruda, J.R., 2009. A Unified Framework for Capturing Concept
Development Methods, IEEE Aerospace Conference, Big Sky, Montana.

Bourne, L., Weaver, P., 2010. Construction Stakeholder Management, in: Chinyio, E. (Ed.). Blackwell
Publishing, London, UK.

Box, G.E.P., Hunter, W.G., Hunter, J.S., 1978. Statistics for Experimenters: An Introduction to Design,
Data Analysis, and Model Building. John Wiley & Sons

Brito, 1., Moreira, A., Aratjo, J., 2002. A requirements model for quality attributes, Instituto Politécnico
de Beja, Beja, Portugal.

Cole, B., Delp, C., Donahue, K., 2010. Piloting Model Based Engineering Techniques for Spacecraft
Concepts in Early Formulation, INCOSE Los Angeles Meeting, Los Angeles.

Cunningham, J., 2011. MBSE Discussion, New England Chapter INCOSE MBSE Workshop.

Dori, D., 2002. Object-Process Methodology - A Holistic Systems Paradigm. Springer, New York.

Dori, D., 2008. Object-Process Methodology MIT ESD.36 Systems Engineering.

Estefan, J.A., 2008. Survey of Model-Based Systems Engineering (MBSE) Methodologies, B ed.
ModelBased Systems Engineering (MBSE) Initiative.

Estefan, J.A., Sprecht, M., Friedenthal, S., Watson, J.C., Baker, J.D., 2011. MBSE Wiki.

Finkelstein, S., Sanford, S.H., 2000. Learning From Corporate Mistakes: The Rise and Fall of Iridium.

Friedenthal, S., 2009. Model Based Systems Engineering. INCOSE, INCOSE Central Florida Chapter.

Friedenthal, S., 2011. Modeling System Interfaces with SysML v1.3.

Friedenthal, S., Moore, A., Steiner, R., 2009. OMG Systems Modeling Language (OMG SysML™)Tutorial

Goldberg, B.E., Everhart, K., Stevens, R., Babbitt, N.I., Clemens, P., Stout, L., 1994. System Engineering
‘Toolbox’ for Design-Oriented Engineers, NASA Reference Publication 1358. National
Aeronautics and Space Administration, Marshall Space Flight Center, Alabama.

Green, J.M., 2001. Establishing System Measures of Effectiveness, AIAA 2nd Biennial National Forum on
Weapon System Effectiveness. OSD Pentagon Washington, DC, John Hopkins University/ Applied
Physics Laboratory.

Hale, P., Quayle, T., 2009. Session 6: Requirements Engineering, MIT ESD.33 Systems Engineering.

Hauser, J.R., Clausing, D., 1988. The House of Quality, Harvard Business Review, pp. 63-73.

Hendrickson, C., 1998 Organizing for Project Management, Project Management for Construction.
Carnegie Mellon University, Pittsburgh, PA

Herzog, E., Pandikow, A., 2005. SysML — an Assessment.

Hoffmann, H.-P., 2001. Methodology Best Practices Discussion, in: London, B. (Ed.).

148



Hoffmann, H.-P., 2011a. Deskbook Release 3.2 Extension Model Based Systems Engineering with
Rational Rhapsody and Rational Harmony for Systems Engineering, Release 3.2 ed. IBM
Corporation.

Hoffmann, H.-P., 2011b. IBM Rational Harmony Deskbook Model Based Systems Engineering with
Rational Rhapsody and Rational Harmony for Systems Engineering, Release 3.1.2 ed. IBM
Corporation.

INCOSE, 2004. What is Systems Engineering? International Council on Systems Engineering.

InterCAX LLC, 2011. Solvea - SysML Parametric Solver and Integator add-in for Enterprise Architect.

Jorgensen, R.W., 2011. Defining Operational Concepts using SysML: System Definition from the Human

Perspective, in: Rockwell Collins, I. (Ed.), INCOSE International Symposium, Denver, CO.

Kapurch, S.J., et al, 2007. NASA Systems Engineering Handbook, in: Administration, N.A.a.S. (Ed.), 1 ed,
Washington, D.C.

Karban, R., Weilkiens, T., Peukert, A., Hauber, R., Zamparelli, M., Diekmann, R., Hein, A., 2011. Cookbook
for MBSE with SysML. MBSE Initiative — SE2 Challenge Team.

Kosters, G., Six, H.-W., Winter, M., 2000. Validation and Verification of Use Cases and Class Models.

La Trobe University, 2009. Practical Session 2: The Use Case and Requirements Model, La Trobe
University Practical Sessions. La Trobe University, http://www.sparxsystems.com.

Lempia, D., Jorgensen, R.W., 2011. Practical SysML Applications: Methodology to Describe the Problem
Space, INCOSE International Symposium. Rockwell Collins, Denver, CO.

Leonard, D., Rayport, J.F., 1997. Spark Innovation Through Emphatic Design, Management Science.
Harvard Business School.

Logan, P.W., Harvey, D., 2011. Documents as Information Artefacts in a Model Based Systems
Engineering Methodology, 5th Asia-Pacific Conference on Systems Engineering, Seoul, Korea.

London, B., 2011. Specifying Customer Requirements in a Model Based Systems Engineering
Environment, INCOSE New England Chapter MBSE Workshop, Burlington, MA.

Long, D., 2011. Representations and Models: SysML and Beyond, INCOSE New England Chapter MBSE
Workshop, Burlington, MA.

Long, J., 2009. Relationships between Common Graphical Representations in Systems Engineering.
Vitech Corporation.

Maier, M.W., 2009. Art and Science of Systems Architecting, Aerospace Corporation.

Mostashari, A., McComb, S.A., Kennedy, D.M., Cloutier, R., Korfiatis, P., 2011. Developing a Stakeholder-
Assisted Agile CONOPS Development Process

NASA, 2009. NASA Systems Engineering Processes and Requirements, NPR 7123.1A.

Object Management Group, 2010. OMG Systems Modeling Language (OMG SysML™). Object
Management Group, Needham, MA.

Object Management Group, 2011a. OMG Systems Modeling Language, The Official OMG SysML site

Object Management Group, 2011b. OMG Unified Modeling Language (OMG UML), Infrastructure.

Ogren, ., 2000. On principles for model-based systems engineering. Systems Engineering Journal 3 (1),
38-49.

Okon, W., Hause, M., 2009. DoD Unified Profile for DODAF & MoDAF (UPDM), DoD Enterprise
Architecture Conference, St. louis, MO.

Oliver, D.W., Kelliher, T.P., Keegan, J.G.J., 1997. Engineering Complex Systems with Models and Objects.
McGraw-Hill.

Paredis, C., 2011. Model-Based Systems Engineering: A Roadmap for Academic Research. Georgia Tech,
Model-Based Systems Engineering Center.

149



Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M., Kim, I., 2007a. Simulation-Based
Design Using SysML Part 1: A Parametrics Primer, INCOSE International Symposium, San Diego.

Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M., Kim, 1., 2007b. Simulation-Based
Design Using SysML Part 2: Celebrating Diversity by Example, INCOSE International Symposium
San Diego.

Product Team CMMI, 2011. CMMI for Development, , Version 1.3 ed.

RenewableEnergyWorld.com Editors, 2011. Obama Calls for 80% "Clean Energy" by 2035,
RenewableEnergyWorld.com.

Ritchey, T., 2009. Morphological Analysis. Ritchey Consulting AB, The Millennium Project.

Rosenberg, D., Mancarella, S., 2010. Embedded Systems Development Using SysML, An lllustrated
Example using Enterprise Architect, Sparx Systems Pty Ltd.

Ross, A.M., 2003. Multi-Attribute Tradespace Exploration with Concurrent Design as a Value-Centric
Framework for Space System Architecture and Design Engineering Systems Division.
Massachusetts Institute of Technology.

Ross, A.M., Rhodes, D., 2009. Concept Design and Tradespace Exploration. MIT/ SEAri, ESD.33 Systems
Engineering.

Ross, A.M., Rhodes, D.H., 2008. Using Attribute Classes to Uncover Latent Value during Conceptual
Systems Design, IEEE International Systems Conference, Montreal, Canada.

Ryder, C., 2006. Introducing Object Oriented Systems Engineering Methods to University Systems
Engineering Curricula. Johns Hopkins University Applied Physics Laboratory.

Saaty, T.L., 1983. Priority Setting in Complex Problems. IEEE Transactions on Engineering Management
EM-30, 140-155.

SE Handbook Working Group, 2011. Systems Engineering Handbook, in: Haskins, C. (Ed.). International
Council on Systems Engineering, San Diego, CA.

Shadrick, S.B., Lussier, J.W., Hinkle, R., 2005. Concept Development for Future Domains: A New Method
of Knowledge Elicitation. United States Army Research Institute for the Behavioral and Social
Sciences.

Sparks, G., 2010. Enterprise Architect User Guide. Sparx Systems.

Sullivan, LJ.F.J., Brouillette, M.G., Joles, M.J.K., 1998. 1998 Army After Next Unmanned Aeriai Vehicle
Studies, USMA Opertaions Research Center of Excellence. West Point, New York

Tepper, N., 2010. Explorinitg the use of Model-Based Systems Engineering (MBSE) to develop Systems
Architectures in Naval Ship Design, Mechanical Engineering and the Systems Design and
Management Program. Massachusetts Institute of Technology.

The Research Foundation of SUNY, 2009. Multi-Attribute Utility (MAU) Models, Center for Technology in
Government.

Tufte, E.R., 2001. The Visual Display of Quantitative Information. Graphics Press, CT.

Ulrich, K.T., Eppinger, S.D., 2004. Product Design and Development. McGraw-Hill, New York, NY.

Under Secretary of Defense, 2008. Operation of the Defense Acquisition System, in: Defense, D.o. (Ed.).

United States Department of Defense, 2007. DoD Architecture Framework, Version 1.5.

Vitech Corporation, 2011. A Primer for Model-Based Systems Engineering, 2nd Edition ed. Vitech
Corporation.

von Hippel, E., 1986. Lead Users: A Source Of Novel Product Concepts. Management Science 32 (7).

von Hippel, E., 2005. Democratizing Innovation. MIT Press, Cambridge, MA.

Wheelwright, S.C., Clark, K.B., 1992. Revolutionizing Product Development: Quantum Leaps in Speed,
Efficiency, and Quality. Free Press

150



Wikipedia, 2011a. V-Model (software development).

Wikipedia, 2011b. Waterfall model.

Wikiquote, 2011a. George Bernard Shaw, Wikiquote.

Wikiquote, 2011b. John F. Kennedy, Wikiquote.

Wilson, S., 2011. MBSE and Concept Development Discussion.

Wolfrom, J., 2011. Model-Based Systems Engineering (MBSE) Using the Object-Oriented Systems
Engineering Method (OOSEM). The Johns Hopkins University Applied Physics Laboratory.

151



