
A Model-Based Systems Engineering Framework for
Concept Development

by
Brian London

B.S., Electrical and Computer Engineering, Lafayette College, 2002
M.S., Electrical Engineering, Stevens Institute of Technology, 2004

Submitted to the System Design and Management Program in Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Engineering and Management _____

MASSACHUSETS INSMiTTE
at the I OF TECHNOLOGYat the

Massachusetts Institute of Technology MAR08 2012
2012

ARCRAIES

@ 2012 Brian Nathaniel London. All rights reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part in any medium now

known or hereafter created.

Signature of Author
Brian N. London

System Design and Management Program
January 2010

Certified by
Donna H. Rhodes

Thesis Supervisor
Senior Lecturer, Engineering System Division

Accepted by
Patrick Hale

Director
System Design and Management Program



Abstract

The development of increasingly complex, innovative systems under greater constraints has been the
trend over the past several decades. In order to be successful, organizations must develop products
that meet customer needs more effectively than the competitors' alternatives. The development of
these concepts is based on a broad set of stakeholder objectives, from which alternative designs are
developed and compared. When properly performed, this process helps those involved understand the
benefits and drawbacks of each option. This is crucial as firms need to effectively and quickly explore
many concepts, and easily determine those most likely to succeed.

It is generally accepted that a methodical design approach leads to the reduction in design flaws and
cost over a product's life cycle. Several techniques have been developed to facilitate these efforts.
However, the traditional tools and work products are isolated, and require diligent manual inspection. It
is expected that the effectiveness of the high-level product design and development will improve
dramatically through the adoption of computer based modeling and simulation. This emerging
capability can mitigate the challenges and risks imposed by complex systems by enforcing rigor and
precision.

Model-based systems engineering (MBSE) is a methodology for designing systems using interconnected
computer models. The recent proliferation of MBSE is evidence of its ability to improve the design
fidelity and enhance communication among development teams. Existing descriptions of leveraging
MBSE for deriving requirements and system design are prevalent. However, very few descriptions of
model-based concept development have been presented. This may be due to the lack of MBSE
methodologies for performing concept development. Teams that attempt a model-based approach
without well defined, structured strategy are often unsuccessful. However, when MBSE is combined
with a clear methodology, designs can be more efficiently generated and evaluated.

While it may not be feasible to provide a "standard" methodology for concept development, a
framework is envisioned that incorporates a variety of methods and techniques. This thesis proposes
such a framework and presents an example based on a simulated concept development effort.

Thesis Supervisor: Dr. Donna H. Rhodes, Senior Lecturer, Engineering System Division



Acknowledgments

It is with utmost sincerity that I extend this thanks to all those who have contributed to my incredible

experience with the SDM program. I would like to thank my thesis advisor, Donna Rhodes, for her

invaluable guidance. Donna's input and expertise were essential in helping me focus my attention on a

topic that truly interested me, and helping me to find the resources required to complete this thesis. I'd

like to thank Pat Hale, and the rest of my SDM friends. I enjoyed getting to know and learning from each

of you.

My thanks goes out to all those who participated in the interviews. Your insights and experience helped

sculpt and reinforce the theories discussed herein. I'd also like to thank Bog, Nick, and the rest of my

coworkers who constantly challenge me to be a better engineer.

This achievement would not be possible without the inspiration, motivation, and constant support of my

family. Without you, I would not be who I am. I'd especially like to thank my wonderful wife, Anne, who

gave me all the love and support needed to accomplish this goal. Thank you for your patience. I

couldn't have done this without you.



Table of Contents

Abstract.........................................................................................................................................- ...----.. 2

Acknow ledgm ents ........................................................................................................................................ 3

List of Figures ................................................................................................................................................ 6

1. Introduction.........................................................................................................................................9

1.1 Research Objectives.................................................................................................................... 13

1.2 Approach and Research Overview .......................................................................................... 13

1.3 Thesis Contents...........................................................................................................................14

2. Background ......................................................................................................................................... 15

2.1 System s Engineering ................................................................................................................... 15

2.1.1 Life-Cycle Stages..................................................................................................................16

2.1.2 System s Engineering Process.......................................................................................... 18

2.1.3 Concept Developm ent ..................................................................................................... 21

2.1.4 Decision Analysis................................................................................................................. 25

2.2 M odel-Based System s Engineering........................................................................................ 31

2.2.1 Benefits ............................................................................................................................... 32

2.2.2 Tools.................................................................................................................................... 42

2.2.3 Views and View points..................................................................................................... 43

2.2.4 Languages ........................................................................................................................... 44

2.2.5 M ethodology.......................................................................................................................62

2.3 DODAF.........................................................................................................................................71

3. M BSE Fram ework for Concept Developm ent ................................................................................. 74

3.1 Problem Identification ................................................................................................................ 78

3.2 Problem Definition......................................................................................................................82

4



3.2.1 Glossary Creation ................................................................................................................ 84

3.2.2 Stakeholder Analysis ....................................................................................................... 85

3.2.3 Context Definition ......................................................................................................... 89

3.2.4 Use Case Development .................................................................................................. 92

3.2.5 Requirements Development.............................................................................................100

3.2.6 Requirement Prioritization ............................................................................................... 104

3.2.7 Verification M ethods ........................................................................................................ 106

3.2.8 Requirements and Design Reviews...................................................................................108

3.3 Architecture Definition ............................................................................................................. 108

3.3.1 Functionality Analysis........................................................................................................111

3.3.2 Structural Analysis.............................................................................................................118

3.3.3 Allocation of Behavior to Structure .................................................................................. 125

3.3.4 Constraint and Relationship Definition.............................................................................126

3.3.5 Dom ain Expert Collaboration............................................................................................ 129

3.4 Generation of Alternatives........................................................................................................131

3.5 Decision Analysis....................................................................................................................... 137

3.5.1 Priority Assessm ent...........................................................................................................138

3.5.2 Effectiveness Determ ination............................................................................................. 140

3.5.3 Concept Selection ............................................................................................................. 141

4. Conclusions and Recom mendations ......................................................................................... 143

5. Future W ork..............................................................................................................................147

W ork Cited ................................................................................................................................................ 148



List of Figures

Figure 1: Ability to Influence Construction Cost over Tim e .................................................................... 10

Figure 2; DoD Project Lifecycles.............................................................................................- .......... - .--17

Figure 3: NASA Project Lifecycles...............................................................................................................18

Figure 4: W aterfall M ethod ....................................................................................................................... 19

Figure 5: System s Engineering Vee M odel .............................................................................................. 20

Figure 6: General Spiral Developm ent M odel ......................................................................................... 21

Figure 7: House of Quality .......................................................................................................................... 28

Figure 8: Sam ple Utility Curve..................................................................................................................... 29

Figure 9: Sam pl e DSM ................................................................................................................................ 31

Figure 10: Changing the Paradigm .............................................................................................................. 33

Figure 11: Interdisciplinary M odel Based Environm ent .......................................................................... 40

Figure 12: Exam ple OPM Elem ents............................................................................................................. 46

Figure 13: Functional Flow Block Diagram Exam ple ............................................................................... 47

Figure 14: Exam ple of an EFFBD ................................................................................................................. 48

Figure 15: Relationship between SysM L and UM L ................................................................................. 49

Figure 16: The Four Pillars of SysM L .......................................................................................................... 50

Figure 17: SysM L Diagram Types ................................................................................................................ 50

Figure 18: Exam ple of Use Case Diagram ................................................................................................ 51

Figure 19: Exam ple of an Activity Diagram .............................................................................................. 52

Figure 20: Exam ple of a Sequence Diagram (Add One w ith tim ing)....................................................... 54

Figure 21: Exam ple of State Diagram .......................................................................................................... 55

6



Figure 22: Example of Block Definition Diagram ................................................................................... 56

Figure 23: Example of internal Block Diagram........................................................................................ 57

Figure 24: Example of Requirements in Diagram ................................................................................... 58

Figure 25: Example of Parametric Constructs and Diagram ................................................................... 59

Figure 26: Example of MOE Definition.................................................................................................... 60

Figure 27: Example of Block Properties ................................................................................................. 61

Figure 28: Vitech MBSE Activities Performed at Each Layer.................................................................. 64

Figure 29: OOSEM Methodology ................................................................................................................ 68

Figure 30: Rational Harmony Integrated Systems / Embedded Software Development Process......... 69

Figure 31: Rational Harmony for MBSE ................................................................................................. 70

Figu re 32 : D O D A F V iew s ............................................................................................................................ 72

Figure 33: Concept Development Methodology ................................................................................... 76

Figure 34: Problem Identification ............................................................................................................... 78

Figure 35: Example of a UAV's Most Important Requirements............................................................. 81

Figure 36: Allocating Requirements to MOE .......................................................................................... 82

Figure 37: Problem Definition ..................................................................................................................... 83

Figure 38: Stakeholder Need Identification .......................................................................................... 88

Figure 39: Example of Actor Decomposition .......................................................................................... 89

Figu re 4 0 : U A V C o ntext............................................................................................................................... 9 1

Figure 41: Additional Interface Information.......................................................................................... 92

Figure 42: UAV CONOPS............................................................................................................................. 93

Figure 43: Use Case Diagram for UAV Operations................................................................................. 95

Figure 44: Example of Scenario for UAV Launch ................................... ..... 99
7



Figure 45: Capturing Requirements as Use Case Attributes.....................................................................103

Figure 46: Static Requirement Prioritization ......................................... 106

Figure 47: Verification Methods and Test Cases ...................................................................................... 107

Figure 48: Architecture Definition Process ............................................................................................... 110

Figure 49: Example of an Activity Diagram .............................................................................................. 113

Figure 50: Alternative Methods for Depicting Cyclic Activities ............................................................... 115

Figure 51: Example of UAV Sequence Diagram ....................................................................................... 116

Figure 52: Example of a UAV State Diagram............................................................................................. 117

Figure 53: Conceptual UAV Decomposition............................................................................................. 121

Figure 54: Example of an Implementation Specific Structural Decomposition ........................................ 122

Figure 55: Example of UAV Subsystem Interfaces....................................................................................124

Figure 56: Parametric Diagram Relating W eight to Propulsion Power .................................................... 127

Figure 57: Parametric Model of UAV Coverage Analysis ......................................................................... 128

Figure 58: Generation of Alternatives ...................................................................................................... 132

Figure 59: Controlled Convergence .......................................................................................................... 133

Figure 60: Alternative Lift Supplier Techniques ....................................... 136

Figure 61: Decision Analysis.....................................................................................................................137

Figure 62: Example of Parametric Trade Study Calculation......................................................................142

8



1. Introduction

Since the beginning of civilization, humans have sought to develop new products in order to better

themselves and their communities. As society progressed technically, so did the complexity of the

products created. The current rapid technical expansion and current global competitive environment is

producing more demanding, sophisticated customers in every market. Many companies struggle with

anticipating future customers' needs. This is partially due to customers not always knowing what they

want. When this uncertainty is coupled with the existing ease of communication, markets change

rapidly. Capabilities initially thought to be frivolous may quickly become essential. Assessing the

customers' needs to deliver the most valuable options has always been the key to success, but products

now need to get to market faster and more efficiently.

Speed in development is rooted in the ability to adapt to changing requirements and rapidly solve

problems. Building the wrong features is a costly form of waste in engineering development. To

identify the functionality that will maximize value over the product lifetime, a rigorous requirement

capture process is necessary. Some organizations charge ahead without realizing that the original

statement of the problem may not be the best, or even the right one (Karban et al., 2011).

When the needs are identified, organizations sometimes struggle with setting clear objectives and

sharing the project's intent throughout the organization. Complex system development usually requires

the collaboration of multidisciplinary teams, who must have a common understanding of the design and

customer needs. Each participant must be able to efficiently capture and communicate their needs,

feasibility assessments, and designs to other teams. However, the standard practice is for domain



specialists to operate in functional "chimneys" communicating primarily through requirement

documents and occasional integrated product team meetings. The lack of a closely coordinated design

can lead to integration issues. An extreme example of this is the development of an aircraft component

factory. As the factory completion neared, it was determined that the doors were not large enough to

accommodate the wings it assembled (Wheelwright and Clark, 1992). This gross oversight demonstrates

how crucial it is to understand the impact of design decisions. The relationships between requirements,

elements, and functions must be communicated in order to develop realistic, effective concepts.

The largest degree of freedom and greatest number of possible solutions exist when a problem is first

defined. As design decisions are made, the number of possible solutions diminishes, establishing the

life-cycle costs. Figure 1 shows the relationship between life-cycles costs and the design stages. This

commitment to life-cycle costs and loss of design freedom make the early stages of concept design

among the most important of a program (Wheelwright and Clark, 1992). This emphasizes the necessity

of efficient processes for defining large, complex systems. However, effective, systematic techniques to

develop conceptual systems and operations are not well known (Shadrick et al., 2005).



Ability to Construction Cost

100% Influence Costs 100%

Conceptual Planning
and Feasibility Studies

0 Design and
Engineering

CD

Procurement and Construction

C0

-F C)

01)

-J

Start Project Time

Figure 1: Ability to Influence Construction Cost over Time (Hendrickson, 1998 )

Effective concept development presents a dilemma. While exp-loring a large number of options is

difficult, innovation is best achieved by exploring as broad a set of concepts as possible. If concepts are

selected too quickly, a sufficient number of perspectives may not have been considered.

Organizations require methodologies to quickly explore many concepts, and easily determine those

most likely to succeed. A framework is presented in this thesis to increase concept development

effectiveness by employing the most suitable, established concept generation tools and processes. It

provides the structure to converge on a solution that answers the stakeholder needs with a high degree

of confidence by system influences. A standard process is not advocated. Instead, the framework

provides the organizational structure and guidance for a number of processes, regardless of concept

domain. A number of potential processes are suggested, but developers can select their own. This is

crucial as every problem and team is unique and will require different tools and processes.



The methodology merges the best practices of system engineering with the use of rigorous modeling

and automation. Models are used to identify the requirements, develop candidate solutions, and assess

the options. They provide a cohesive source for all project information, improving communication and

system understanding. This helps identify errors and poor assumptions earlier in the development

cycle, saving time and money as fewer errors have to be corrected in later stages.

Design is also greatly improved by enforcing consistency between design elements. As an analogy,

consider the state of engineering drawings before the onset of parametric computer-aided design (CAD).

In the past, engineering solutions were documented through hand-written or isolated computer

drawings. A slight change to one schematic could have a cascade throughout multiple others.

Whenever a change was required, each drawing had to be closely reviewed and updated to maintain

consistency. With the advent of parametric CAD, components could be linked to each other, allowing

component changes to cascade through the design, easily identifying any inconsistencies.

The adoption of integrated model-based systems engineering (MBSE) is expected to provide similar

improvements for system concept development. Optimizing speed, cost, and quality requires a

revolutionary change in product development, and this outcome is expected from MBSE (Paredis, 2011).

Early uses of MBSE are showing evidence of reduced development time and lower error rates. This can

be partially attributed to better understanding of the problem. "With a traditional functional

requirements decomposition approach, we estimate that we would have only captured 50% of the

problem understanding. Using operational concepts with use cases and scenarios, we caught more than

90% of the problem understanding the first time through" (Jorgensen, 2011). Hard numbers for the

development time reductions are hard to come by, early survey results indicate that up to 40% fewer



requirement defects were found on MBSE programs (Long, 2011). While, most current MBSE

performance data is collected heuristically, quantitative metrics are being collected to provide more

conclusive evidence (Estefan et al., 2011).

1.1 Research Objectives

The primary research objective of this thesis is to investigate and propose a methodology for the

development of system concepts using an MBSE approach, specifically using the SysML language. The

goal is propose generic processes that could apply to different organizations and efforts, but the results

may be biased by the application of this methodology in the selected case studies. The specific

questions that this thesis will seek to answer include:

1. Can MBSE support concept generation, refinement, and evaluation?

2. How can the best practices of systems engineering and concept development be integrated?

3. Does MBSE improve the efficiency and effectiveness of concept development teams?

4. What processes and external tools facilitate or enhance the development process?

5. What views, elements, and constructs are useful to improve communication?

1.2 Approach and Research Overview

The interview method was used to compare the methodology proposed in this thesis against traditional,

non-model-based approaches. Two rounds of one-on-one interviews were conducted. The first

rounded consist of questions to identify the unmet needs, best practices, and hindrances to concept

development. The interviewees were selected based on their availability and experience developing

advanced solutions to extremely challenging problems. While primarily Draper Laboratory systems

engineers were interviewed, their backgrounds represented a range of engineering domains.

13



Data collected from the first set of interviews was compared against the documented systems engineer

best practices. In addition, concept development techniques from engineering, marketing, and other

creative domains were examined. As a result of the literature survey, the MBSE framework for concept

development was developed. It was designed using Sparx System's Enterprise Architect to produce the

views described in the thesis. Enterprise Architect was selected based on availability, and is not

specifically advocated by MIT.

The second round of interviews began after the initial establishment of the framework. In addition to

experienced systems engineers, widely recognized leaders in the field of MBSE were interviewed. The

focus was on the MBSE methodology, existing systems best practices, and their integration.

During these interviews the framework was reviewed and compared to traditional development

practices. Examples of good and bad execution were shared to obtain a better assessment of the

benefits, with a focus on:

e Visualization and clarity
* Impact on known best practices

* Ability to assess design errors or inconsistencies
e Traceability and knowledge capture
* Ease of use and expected learning curve
" Productivity impact
" Ability to support design decisions

1.3 Thesis Contents

Chapter Two summarizes the concept development methods, traditional system engineering practices,

and model-based tools, methodologies, and languages. This chapter provides pertinent background

information to introduce the techniques that are leveraged in this proposed framework. It does not

contain sufficient details to teach them, but sources are cited that can provide additional information.

14



Chapter Three introduces a framework to leverage the advantages of MBSE for concept development.

The chapter introduced the framework that uses commercially available tools and SysML. Examples are

provided to demonstrate the proposed methodology from the requirement definition, system

architecture development, and UAV design selection. The examples are based from 1998 report

describing the use of Unmanned Aerial Vehicles (UAV) for a proposed notional UAV force structure.

The Fourth chapter describes the conclusions of the proposed framework regarding its benefits and

applicability across various programs. These conclusions are based on the feedback from experienced

systems engineers and architects after reviewing the framework and the UAV example application.

Chapter Five concludes with recommendations for future work.

2. Background

2.1 Systems Engineering

Systems engineering is an interdisciplinary field that emerged as an effective way to manage complexity

and change. It focuses on defining customer needs and required functionality early in the development

cycle, and proceeding through design synthesis to system validation while considering the complete

problem (INCOSE). Systems engineering is based on a holistic perspective of problems and design.

Practitioners consider how systems fit into the larger context, how they impact it, and how they are

influenced. Just as importantly, they consider how the interacting system components relate to each

other.

The objective of systems engineering is to ensure that the stakeholder's needs are satisfied in a cost-

effective, timely manner. These needs are translated into requirements and drive the selection of the

15



best, implementable design from a number of alternatives. In order to accomplish this decision making,

systems engineers use a disciplined approach to collaborate with interdisciplinary teams.

Systems engineering can be traced back to the early 1800's, but experienced rapid advancement in the

1950's and 60's (Oliver et al.). Since then several methodologies and processes emerged to emphasize

and improve complex system optimization and trade-offs. Among these are architecture frameworks,

systems engineering process standards, new tools, modeling standards, and data exchange standards.

A methodology can be defined as a collection of related processes, methods, and tools. Moreover, it

provides the underling rules used in an approach. For example, Harvard Business School uses a case-

based methodology for teaching in lieu of a lecture based one. Frameworks provide the underlying

structure for a methodology. Processes are logical sequences of tasks performed to achieve a particular

objective. A process for building a house could include laying the foundation, erecting the frame, etc. It

defines what is to be done, without specifying how. The specific techniques are defined in methods.

The method could describe the steps for installing a specific type of appliance. Tools are instruments

that can enhance the efficiency of a method when properly used. Most processes and methods use

several tools to simplify or improve their efficiency.

A variety of methodologies, processes, and tools are used by engineers to develop complex systems. A

system is defined by International Council of Systems Engineers (INCOSE) as a combination of interacting

elements organized to achieve one or more stated purposes (SE Handbook Working Group, 2011). It can

also be thought of as a collection of different components exhibiting emergent properties.

2.1.1 Life-Cycle Stages



Every system has life cycles stages even if they are not formerly defined. They encompass the

sequential phases of requirements identification, development, production, use, and retirement. One

could argue that even natural systems stem from an identification of requirements as biological

advantages and environmental changes induce the emergence of natural systems.

The United States Department of Defense (DoD) has rigidly defined life-cycle stages to facilitate system

acquisitions, graphically described in Figure 2. This life-cycle model exists to assist in the management

of billions of dollars of system development efforts. In accordance with DoD standards, the

management process is structured into discrete phases separated by major decision points known as

milestones.

* The Materiel Development Decision precedes
entry into any phase of the acquisition

User eedsmanagement system

.. ........ e Entrance criteria met before entering phase

PrE-Ssoe y otu tio n Evolums Acusisition or single step to
Full Capability

(Program
A L Initiation) C11OC FOC

ateri:D Egifeering and Production & Operations &
Solution Manufacturing A i vp it
Analysis Development Dpomn upr

ment-- LRIP1IOT&E n

\Pre-systems Acquisitio Systems AcquisitionSutimn/

Q=Decision Point L= Milestone Review f. '=Decision Point If PDR Is not conducted before Milestone B

Figure 2: DoD Project Lifecycles (Under Secretary of Defense, 2008)

The materiel solution analysis, which leads to Milestone A, is the initial development phase in the

Defense Acquisition Management System. It contains a robust analysis of alternatives to identify the

potential solutions, assess their benefits and drawbacks, identify key technologies, and examine

operational concepts. This is equivalent to the concept development described in this thesis.



The National Aeronautics and Space Administration (NASA) also oversees budgets totaling several billion

dollars and has its own lifecycle model and milestones, known as key decision points. Figure 3 illustrates

the NASA development phases. Projects in the Pre-Phase A stage generate and evaluate a wide range of

ideas and mission alternatives. The purpose of this phase is to determine system feasibility, develop

initial mission concepts, identify the preliminary system requirements, and identify potential technology

needs (Kapurch and et al, 2007). Phase A projects undergo more through feasibility and need

assessments than those in Pre-Phase A. Through the Phase A activities, final mission concepts, system

requirements, and technology development plans are developed. The concept development framework

described herein could be applied to either NASA development stages as the primary differentiator

between the two are the range of alternatives considered or the amount of information available for

each one.

NASA Life-
Cycle Phases Formulation Implementation

Project Life-
Cycle Phases

Key Decision
Points

KPA BO1 OI'KPI O

Figure 3: NASA Project Lifecycles (Kapurch and et al)

2.1.2 Systems Engineering Process

In each life-cycle stage, systems engineering teams follow processes to define complex systems. They

generally begin with the development of requirements and culminate in verification and validation. As

the design of complex system always includes a number of unknown unknowns, failure to use a

disciplined, holistic approach can result in project failure. Several alternative processes exist for

18



organized systems engineering development and management. They describe the engineering process

across a system's life-cycle. The most common are the Waterfall, Vee, and Spiral models.

2.1.2.1. Waterfall Model

The Waterfall model breaks the development process into a series of sequential phases as Figure 4. As

the name implies, the Waterfall model assumes a one-way cascading progression of tasks from

requirements development to use (shown as maintenance in Figure 4). It assumes each phase is

complete before moving to the next one. For example, it assumes that all requirements are fully

defined before moving on to design.

Implementation

Verification -,

Figure 4: Waterfall Method (Wikipedia, 2011b)

The major shortcoming with the model is that it cannot handle downstream changes or incomplete

stages. The development process is simplified to present an orderly progression of phases, but

problems will always surface downstream, inducing change to the requirements or design. Therefore, it

poorly reflects complex or length projects, and is widely acknowledged as a flawed model.



2.1.2.2. Vee Model

The Vee model depicts the system evolution from concept of operations (CONOPS) and user

requirement identification, through detailed design and verification to final system validation. In the

Vee model, time and system maturity proceed from left to right, as shown in Figure 5. The left side of

the Vee model indicates the development activities while the right side depicts the integration and

verification activities. Each level on the horizontal axis is associated indicating the relationship between

a development and verification (or validation at the CONOPS) level. It is not feasible to go backwards in

the model so if any iterations are required, the project stays at the same point on the vertical axis.

Verification
and

Validation
ProjectnDefinition

DeTee n Project
Design Ve atten Test arnd

Integ ration

Iraplernntaden

Time

Figure 5: Systems Engineering Vee Model (Wikipedia, 2011a)

2.1.2.3. Spiral Model

The Spiral model can have the same phases as the Vee model, but explicitly accounts for risk and

reevaluation. Software developers have long understood that most projects are not well suited to a

sequential process and require a number of iterations (Maier, 2009). In the spiral model, shown in



Figure 6, the angular sections represent progress, and the radius of the spiral represents maturity.

Developers work through each phase (e.g., requirement development, design, test) in each iteration.

The first cycle is often focused on assessing the aspects of the design with the most risk. This is useful in

situations where requirements cannot be fully defined prior to system design, or if immature technology

is required. The model assumes that missing requirements or technology viability will be revealed after

each spiral iteration. At the completion of the first loop, initial prototypes are used to assess risk

allowing the customer to evaluate the project future with minimal cost investment. If the project

continues, it iterates through each phase again. Each subsequent spiral builds upon the baseline.

Detailed
design /

System-level
design

Integration
d test

Time
Release

Planning

Figure 6: General Spiral Development Model (Ulrich and Eppinger, 2004)

2.1.3 Concept Development

Concept development is focused on identifying a design to maximize stakeholder value over the system

lifetime. Effective concept development considers the needs of each stakeholder and develops

requirements that do not overly constrain the design space. Failure to do so can result in systems that

21



do not meet a need or are poorly designed. These efforts thoroughly, yet effectively, explore a wide

range of solutions by identifying options and how they will meet the specified needs.

Concept development is not new. A number of different mechanisms exist today to help engineers

determine the best solutions. A variety of mockups, models, simulations, and prototypes are used to

better understand problems, develop candidate solutions, and validate their decisions. They are

dependent on the type of problem (e.g., latent or explicit need), available resources and information,

and development team experience. Like with the possible solutions, there are benefits and drawbacks

to each tool and method. A subset is discussed herein.

2.1.3.1. Lead User Observation

As the name suggests, this method involves the observation or recording of experts performing specific

tasks. It is based on the premise that asking them to actually perform tasks generates more valid

knowledge than asking them to simply describe the required steps (Wright & Ayton, 1987). The experts

are asked to "think out loud" while performing an assignment so their thought process is understood.

These experts are often lead users who are unusually accurate, skillful, and reliable in their domain (von

Hippel, 1986). While this technique is often conducted to identify needs, these lead users may also

disclose innovative solutions, developed to address their personal needs. This information can

significantly simplify the alternative generation activities.

2.1.3.2. Knowledge Elicitation

Knowledge elicitation uses interviews to understand the needs and habits of subject matter experts.

The method can be used to identify future concepts by asking experts to generate best-guess estimates



based on an anticipated set of new capabilities (Shadrick et al., 2005). A series of direct and indirect

questions are posed to determine how domain-specific tasks are performed in a case dependent

interview technique. Once the information is collected, other subject matter experts are guided through

the thought process to collect other insight and needs. The responses aggregate into a single

representation of need (Shadrick et al., 2005).

Knowledge elicitation can be used to assess how valuable a set attributes are to individuals and groups.

However, it must be used carefully when interviewing lead users in that they may have a different

outlook than the majority of the population (von Hippel, 2005).

2.1.3.3. Technological Forecasting

Technology is often a key driver in the development of any new product or system. The ability to

accurately predict the availability of a given technology will have a critical impact on the success of a

given program, project, or system. Technological forecasting, as the name suggests, is interested in

forecasting the types of technologies that will be available in a future time period, the characteristics of

those technologies, and a realistic estimate of their availability. Technological forecasting considers the

innovations due to scientific and technical advancement and those pulled by environmental factors (i.e.,

social, economic, political) (Shadrick et al., 2005). Alternatively, teams can identify how a desired future

should look, and "backcast" to determine how to get there (Shadrick et al., 2005).

This tool is dangerous as it makes concept development dependent on the invention of new technology

or processes. As the results of invention are unpredictable, this reliance invariably causes delays in the

concept development. When used, a thorough risk mitigation plan is required.



2.1.3.4. Brainstorming

Brainstorming is a problem solving method where solutions are spontaneously generated by team or

group members. This method seeks to address specific questions by collecting as many options as

possible. Therefore, the quality of each contribution is not addressed or criticized during the session.

"Bad" or "wild" ideas are welcomed and encouraged as they may promote to better suggestions.

Variations of Brainstorming require members to arrive at the session with a short list of ideas. This can

be useful to help jumpstarts discussions.

2.1.3.5. TRIZ

TRIZ, an acronym for the method's Russian name, is a systematic approach for identifying solutions to a

specific problem. It was developed by Genrich Altshuller, who observed patterns of invention. Based on

the theory that most problems reflect a need to overcome contradictions between two elements, TRIZ

provides 40 principles to identify ways to overcome the tension (Altshuller et al., 1998). Examples of

TRIZ principles include "segmentation", such as creating modular couches, and "preliminary action",

used to create pre-glued wallpaper. This is an extremely powerful method, and can be combined with

other such as Brainstorming or Synectics, a similar method based on metaphors.

2.1.3.6. Morphological Analysis

Morphological analysis is a solution identification method. It is generally applied to multi-dimensional,

complex problems where quantifiable analyses are not possible or desired. Morphological analysis

identifies possible solutions by creating a matrix. It lists the problem or solution attributes (e.g. are

subsystems, properties, qualities) as row headings and adds the possible alternatives in each row. New



combinations and poorly conceived concepts can be discovered using this method by varying the

combinations (Ritchey, 2009).

2.1.4 Decision Analysis

Engineering decisions often require systematic evaluations of multiple options, based on a set of criteria.

Numerous techniques for conducting trade studies are available, and a subset of which are discussed

below. Each one seeks to answer the same basic questions: what are the potential solutions to the

problem, how do they perform, and which is the best one (Borer et al., 2009)?

The objectives or requirements for the selection must be clearly and accurately defined. When possible,

the criteria are prioritized. Not all methods require this step. Care must be taken to properly select the

evaluation criteria weights as they can lead to incorrect ranking. The credible alternatives are then

enumerated. Some techniques eliminate alternatives incapable of meeting the basic needs. This is

useful as the number of alternatives that can be evaluated is constrained by human information

processing abilities. Finally, the remaining alternatives are compared and ranked. The diverse tools and

analysis fidelities are available to meet the specific needs of the development team.

2.1.4.1. Decision Tree

A decision tree graphically illustrates the alternatives and their attributes. These attributes can be

possible consequences, costs, probabilities, or utilities. Decision trees decompose large trade studies

into several smaller trade studies to reduce the total number of required comparison. For example, in

lieu of performing a trade study to select the best meal from a menu, independently compare the



different appetizers, main dishes, and drinks. These techniques can be useful to visually assess the

available options.

2.1.4.2. Delphi Method

The Delphi method was originally developed to elicit expert knowledge and develop group consensus,

while avoiding the groupthink bias of interactive groups (Shadrick et al., 2005). In traditional

implementations, group members interact solely with the facilitator, not each other. The facilitator

gathers responses, and provides them to the group anonymously. After reviewing the responses

provided by other members, each participant submits a revised response. The process is repeated as

many times as necessary.

The Delphi method can also be used to assess available options. Individuals are individually presented

with the alternatives and asked to assess them. The facilitator again gathers responses, and provides

them to the group anonymously. Again, the individuals have an opportunity to revive their assessment.

This is an effective technique for identifying stakeholder requirement preferences.

2.1.4.3. Pugh Method or Pugh Decision Matrix

Pugh method is a quantitative tool used to rank and compare options. It uses a simple matrix and pre-

established criteria to compare options. This approach uses subjective opinions to compare alternative

against a baseline, which may be one of the alternatives or the current product or service. The key

attributes are enumerated and used to compare against a baseline. Often, simple scores of worse (-1),

same (0), or better (+1) are used. Alternatively, numerical scales can be used (e.g., 2, 1, 0, -1, -2). The



options are rated by multiplying each option by the weight. The relative scores are the used to identify

if an option is better, equivalent, or worse than the baseline.

2.1.4.4. Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a multicriteria, pairwise comparison technique that can combine

qualitative and quantitative factors for ranking and evaluating alternatives (Saaty, 1983). AHP is used

when subjective verbal expressions (e.g., insufficient, undesirable, satisfactory, good, great) are easier to

provide than numerical (i.e., 1 to 10) assessments. Values are then ascribed to the words in order to

develop a score for each of the options. The requirements or measures of effectiveness (MOE) are also

evaluated two at a time (Saaty, 1983). A scale for assigning importance is provided by the method. This

approach allows for delineation of the facts and rationale that go into the subjective assessment of each

of the options (Goldberg et al., 1994).

2.1.4.5. House of Quality / QFD

The House of Quality (HoQ) is a tool used for decision analysis by transforming user needs into design

quality attributes in order to rank alternatives. Through a series of matrices, the HoQ maps originating

requirements to engineering characteristics. Starting with the customer's most important

requirements, the tool decomposes these attributes into lower level requirements (Hauser and Clausing,

1988).

This format, based on Quality Function Deployment (QFD), is often used to evaluate and qualitatively

rank each design option to enable multi-criteria decision analysis. The HoQ is named after its structure,

shown in Figure 7, which resembles that of a house.



Correlations

Figure 7: House of Quality

The relative importance of these customer attributes is identified to calculate the importance of each

engineering characteristic. The engineering characteristics are the controllable, measurable parameters

that are provide the major design tradeoffs. An assessment is made of how well each alternative meets

the engineering characteristics and is numerically scored. Often an absolute scale is used to identify the

scores. Using these scores and the calculated importance weightings, the alternatives are ranked.

2.1.4.6. Multi-Attribute Utility Analysis

Multi-attribute utility (MAU) is a powerful tool for evaluating alternatives and selecting the "best"

option (Ross, 2003). It uses explicit value functions to perform direct comparison of many diverse

measures. Like HoQ method, MAU provides a numerical score, but some feel it does so more explicitly

(The Research Foundation of SUNY, 2009). The structured approach requires and clearly shows the



numerical importance values placed on each parameter, often using 0-1 scale with 0 representing the

worst preference and 1 the best. While this explicit definition of relative importance is required for

MAU, it can be difficult to obtain as the tool is predominantly used in group decision making situations

where several perspectives must be considered (The Research Foundation of SUNY, 2009). However,

discussing the attributes' overall importance and the concept's ability to achieve them with potential

users or customers can be a great learning experience.

The stakeholder value proposition, what they want from the system, can be defined using utility curves.

Utility curves define the function relating the specific desired capabilities or attributes in terms of its

range of values. Often graphs or mathematic functions are used to capture the benefit of an attribute

using a dimensionless plot (Ross and Rhodes, 2009). When concepts are evaluated, the scores of each

alternative can be independently determined using utility curves, such as the one shown in Figure 8, and

combined using the relative importance weights.

Excluded Attribute Values
Curve TBD

Excess Attribute Values
(typically assigned Utility = 1)

0

Attribute value
Figure 8: Sample Utility Curve (Ross and Rhodes, 2009)

2.1.4.7. Multi-Attribute Tradespace Exploration



Multi-attribute tradespace exploration (MATE) is method for fully exploring tradespaces of possible

solutions rather than settling quickly on an optimum. It highlights the important trade-offs possibly

overlooked by traditional methods to help identify compromise solutions that may be a better solution

for the multiple stakeholders. MATE can be used to evaluate sets of design options, not just point

solutions (Ross and Rhodes, 2009). Using this method the feasibility of large numbers of design choices

can be quantitatively assessed early in the concept development process. It is also useful in identifying

the stakeholder preferences.

MATE broadly scopes the mission objectives to avoid excluding creative solutions. It compares the

alternatives based on the key, independent attributes, their lowest acceptable value, and highest

meaningful value. These attributes are refined into utility curves, and aggregated into a single function

for the trade study execution. Using design and constants vectors, the attributes values that cover the

range of realistic possible solutions, and the design vector quantities, respectively, the performance of

each option can be calculated in terms of attributes, costs, and utilities (Ross, 2003).

2.1.4.8. DSM

Unlike the other decision analysis tools, a design structure matrix (DSM) is not traditionally considered a

trade study tool. However, it does assist in the evaluation of complex structures and behaviors. This

matrix assists in the visualization of the relationships and dependencies between elements, interfaces,

and data flows. DSMs can be useful in identifying less complicated physical architectures and sequences

(Ulrich and Eppinger, 2004). One of the best heuristics in architecture is "Keep It Simple Stupid" often

called KISS. KISS can increase system reliability while decreasing lifecycle costs and development time.



To adhere to this principle, it is advisable to (1) have clear subsystem partitions, (2) maintain low

external complexity, and (3) minimize interdependencies.

As shown in Figure 9, if DSM were to be used to evaluate a process for example, the tasks would be

placed in a sequential order along the rows and corresponding columns of the matrix. Dependencies

among the tasks are labeled by ones in the matrix, corresponding to the directed arcs in the graph.

_JA IRCQDEIFIGHIIJKLMIN

Receive specifiation A X X X X
gFenerate select conceDt 8 XrX X

Desig bets cartride C X1XX
Produce beta cartridges e X
Deie testin E X X X
Test beta caride F XX
Design prod'n cartrkg G X X x X

Deinmold 14 X X X X
Desig assem* toolf I X XO X
Purchase MFG equipment J X
Fabricate molds K X Xo I
Debug molds L X
Certify cartridge M X
Initial production run N

Figure 9: Sample DSM (Ulrich and Eppinger, 2004)

2.2 Model-Based Systems Engineering

Systems engineering is one of the last engineering domains to embrace model-based development. In

engineering and the sciences, models emphasize certain properties of interest in order to efficiently and

practically communicate or identify results. In this context, models are digital expressions of designs.

Used in the mechanical and electrical domains for decades, model-based engineering is a methodology

in which electronic abstractions are used to develop and capture designs. Computer-aided design (CAD)

31



programs are now standard tools for the creation and manipulation of digital models. By using the tools

and methodologies, increasingly detailed models are created and integrated. The use of electronic

models has been shown to greatly improve development efficiently.

Model-based systems engineering (MBSE) uses a graphical language to generate and record details

pertaining to a system's requirements, design, analysis, verification, and validation. This is not novel.

Systems engineers have generated design abstractions for years. However, these descriptions were

uncoupled static drawings. When new depictions were created or others modified, the drawings

became out of date. Maintaining these separated system descriptions is an expensive, manual task.

Complex descriptions were difficult to evaluate, as consistency was not enforced. As a result, errors

were not apparent until much later in the development cycle. With advances in technology over the

past decade, computer applications were developed to apply object-oriented software concepts to

systems engineering to support high-level complex systems development.

MBSE implies that the models are composed of an integrated set of representations. All leading MBSE

tools and methodologies assume that the representations of behavior and structure are interconnected

in a central repository. Each descriptive element can be represented in many forms to create a variety

of design and architectural representations. Expanding upon the INCOSE definition, MBSE is a

methodology where models are central to the specification, design, integration, verification, and

validation of systems (Estefan, 2008). The representations of system behavior and structure are

captured along with statements of needs and verification methods.

2.2.1 Benefits



MBSE promises to be a more rigorous and effective means of developing complex systems (Tepper,

2010). The methodologies are intended to make the complete systems engineering efforts as efficient

as possible. The value of a model-based engineering emerges from the collection of the all system

information in a central repository. This enables the interconnection of model elements and the ability

to effectively retrieve any desired information. This interconnectivity enables the automatic

propagation of design changes, consistency checking, error identification, which in turn provide the

major primary benefits.

2.2.1.1. Reduction of Costs and Schedule

Substantial efforts and costs are incurred in the development of complex systems. As shown in Figure

10, while most development costs are incurred later in the development efforts, early design decisions

commit the program to these expenses. Therefore the overall system value is determined at the

beginning of a program, and must be considered as part of concept evaluations. Better life-cycle cost

assessments can be determined by understanding the design implications, risks, and dependencies.

MBSE provides the means of obtaining this information to enable stakeholders to make more informed

decisions in as indicated in Figure 10.



100%

Concept Detail Production Use Concept Detail Production Use
Development Design Development Design

Figure 10: Changing the Paradigm (Ross and Rhodes, 2009)

Development costs are expected to be substantially reduced through the use of MBSE as they can obtain

a better understanding of the system needs and implications. Programs can proceed more quickly and

efficiently if there is a complete understanding about the way the design elements move together.

Document-based approaches can be time consuming as information is often spread across several

documents. Through its complete description of system behavior and structure, the model becomes an

effective prototype. This can lead to dramatic gains in productivity and product quality.

By more thoroughly defining the stakeholder needs and assessing designs, the risks and uncertainties

can be more accurately captured and reduced. Issues can be discovered early through the enforced

consistency and relationship visibility (Baker et al.). Moreover, the early discovery of errors will reduce

the cost and duration of the expensive integration and test phase.

In some situations, identifying stakeholder needs and priorities is a major challenge. The resulting

ambiguity often delays decision making. MBSE methodologies and tools facilitate the elucidation of

these requirements and priorities. When system requirements are more effectively translated from the

stakeholders needs, the projects are more likely to succeed.
34



Creating models is expensive, but this happens regardless of the MBSE approach. However, with MBSE,

less effort is extorted to maintain dependencies between views, or recreating the same information

(e.g., different diagrams, requirements documents, design documents). As a result, the time spent

identifying, accessing, and performing analyses is reduced.

2.2.1.2. Communication

One of the greatest benefits of MBSE is the improvement in communications among a diverse group of

stakeholders (e.g. customers, users, management, and specialty engineering disciplines). Systems

engineers must be able to easily and clearly communicate the problem, potential solutions, and

rationales. Failure to do so leads to inconsistent system designs and ambiguity. In turn this leads to

design flaws, resulting in urgent corrective actions, delaying schedules, and raising costs. This could

instead result in program cancelations or unsuccessful product launches.

Traditionally, system engineering processes are "document centric", focusing on the generation of text

requirements, specifications, and descriptions (Cole et al., 2010). However, standalone requirements

documents are known to have gaps, conflicts, and provide an inadequate understanding of the actual

requirements (Oliver et al., 1997). They are isolated from the actual system design and defined with

ambiguous, natural language.

As MBSE tools and languages express each design element using constructs with a single, defined

meaning, they provide an unambiguous and precise description that can be evaluated for consistency,

correctness, and completeness. As the designs can be created from multiple perspectives, engineers

can manage the complexity of each view. Developers can trade off clarity and completeness. Views can

be created to provide a complete description of one aspect of a system design. Alternatively, views can

35



hide some details to clearly present one aspect of a design. Using several complimentary, focused views

to express the system structure, behavior, and interfaces is a much more effective way to communicate

complex systems (Tepper, 2010).

Through the expressiveness and rigor of models, the relationship between the requirements and design

can be more clearly conveyed. This traceability is traditionally performed manually. An emerging

standard is to use requirements management tools (e.g., IBM DOORS) to link requirements to each

other, verification methods, and design. While such tools are helpful, they cannot provide a digital

connection enabling browsing between requirements and design.

Integrated models allow developers and reviewers to navigate through views to assess design impact or

to inspect previous decisions. They mitigate ambiguity and promote consistency across the entire

program and team (Tepper, 2010). Not only can elements be linked from one view to a dependent

element in another, but the model provides traceability to previous decisions, issues, requirements, or

risks. This may involve traversing through different levels of abstraction, several components, or

external sources. Through these connections, the system objectives can be traced to the system

components that implement it.

While the views alone can greatly enhance communication, MBSE tools provide the capability to greatly

improve system understanding. Ideally, all models should be readily understood, without extensive

education or experience. However, stakeholders have different experiences and backgrounds. Not all

of them are interested or able to read modeling languages. Using the views to review the model with

these stakeholders is ineffective and the desired information will not be ascertained. This is troubling



because as George Bernard Shaw said, "The single biggest problem in communication is the illusion that

it has taken place." (Wikiquote, 2011a)

Executing the model can prevent this communication breakdown. The understanding obtained through

the dynamic visualization is one of the key benefits of MBSE. Consider trying to learn about the human

heart. If depictions of the four chambers and flow of blood was presented, a fundamental

comprehension of its architecture could be gained. However, if an animation of the beating and

exchange of blood in slow motion was used, a much deeper understanding would be retained.

2.2.1.3. Knowledge Capture

Complex system development efforts, especially those designed for the military, can exceed ten years.

Over that time the rationale for design decisions are often lost. This is unavoidable when traditional

systems engineering approaches are used. Maintaining isolated documents often results in lost

knowledge leading to effort duplication and increased costs.

MBSE provides and effective means for capturing, assimilating, and retaining design decisions and

details. In an electronic repository, the information is portable, and can be reused if modifications are

required in later lifecycles. The models serve as the project memory, preventing information from being

lost due to staff turnover. Significant time can be spent recreating or discovering lost knowledge.

2.2.1.4. Decision-Making

The primary means of capturing and communication designs is currently through static drawing tools

such as Microsoft PowerPoint and Visio. This is problematic as change is unavoidable in complex system



designs. Currently, a careful review of static drawings and documents is required to manually update

each one to capture and analyze design changes. Obviously, this can be a slow, arduous process.

In comparison, changes in MBSE tools are instantly reflected across the entire design. This allows

developers to more efficiently and accurate assess the impact of potential changes and reduces the

document maintenance burden. Increased knowledge, including apparent uncertainties, allows better

decisions. While the sum of information stored in the model may be too much for humans to take into

account at one time, by storing and relating the data across the model, it can be effectively accessed

when needed. This can be useful in design or requirement reviews. Most requirement reviews are

isolated from the information about previous design decisions or future implications. Reviews

leveraging information in the model can facilitate the exposure of this information and improve team

endorsement.

Executable models support improved decision analysis by conducting system design trade-offs based on

a set of requirements. By assessing how well the system design meets them, designers can make better

decisions. Design risks and cost can also be incorporated into the model to enhance the decision-

making process with trade study tools. The repository can provide the basis for the technical decisions,

and the means of recording them.

2.2.1.5. Error Checking and Design Verification

In traditional systems engineering methodologies, the requirements and design validity are reviewed

almost independently. Requirements are inspected individually and through their tractability to other

requirements. Designs are primarily reviewed after reading the requirements. With integrated models,

designs and requirements can be explicitly traced to each other, enabling more complete reviews.

38



As discussed briefly, models can be checked for correctness by engineers and tools. Similar to a

software compiler performing syntax checking, MBSE tools can validate the model consistency and

conformance to standards. Successful model execution indicates the lack of "grammatical" errors.

Moreover, by reviewing the model execution, developers can affirm that the right system is being built

(Baker et al.) . Using this capability, the design completeness and accuracy can be assessed, a

formidable task using traditional techniques. The identification of inconsistencies indicates design flaws.

Regular design inspection allows developers to be more effective and consistent right from the start.

The expense of correcting an error is minor in a program's earliest stages, but becomes significant in

later stages.

Simulating the model can verify the logical, consistent behavioral flow, interfaces, and triggers. Some

permit system analysis though a discrete event simulator. The integration of performance models aid in

the analysis of alternatives to determine the optimum design within the given constraints.

An emerging capability is the integration of MBSE tools with those used by other engineering domains.

When data is automatically exchanged, programs will experience a significant reduction in errors,

development times, and costs. As shown in Figure 11, an interface tool or translator could be used to

create a cross-discipline model based development approach. This would enhance the entire product

development lifecycle, by enhancing of the benefits of model based engineering. Design parameters

would be exchanged automatically, eliminating simple errors. Trade studies could include more

variables or be more detailed to find better solutions or find the solutions faster.

Tool independent translators can convert systems engineering models into formats required by other

disciplines with minimal customization. Once the interface tool adds the capability to read or write data



to a new tool, that data can be exchanged with all other tools. This minimizes the number of

customized interfaces and plug-ins required to achieve a fully integrated development environment.

wBS

--p,_cedlw
Figure 11: Interdisciplinary Model Based Environment

2.2.1.6. Documentation

Documents are expected to remain an essential part of MBSE (Logan and Harvey, 2011). Considered by

many to be a "source of truth", documents will remain the primary means for most stakeholders to

examine the model's contents. As it is unlikely that many non-specialist reviewers will be able navigate

systems engineering model, document generation will continue to be important to support information

exchange, reviews, and contractual obligations.

MBSE tools allow for the development of templates that automatically generate formatted documents

from the repository. Using the templates, developers can automatically generate documentation based

40

software
Tools

ools

E -7 E Analysis

Tools 
I

Simulation
TCbols

Mechanical
Tc Isools

re-sentation
Tc lsTools

rE01'e c t r i c a I
bosis



on the current design status. Unlike the traditional practices where documents generally capture the

design status at the completion of the program, they can now be regularly created with very little effort.

When combined with model reviews, developers can generate complete, up-to-date design descriptions

and requirement documentation to keep the stakeholders informed.

2.2.1.7. Reuse

The reuse of model elements is one of the major advantages of a MBSE methodology. From a single

repository, multiple consistent views can be produced to communicate and analyze designs. Manually

maintaining diagrams and attempting to maintain consistency from uncorrelated elements is error

prone and wastes resources. MBSE allows for the creation of alternative views while reusing common

elements. Moreover, portions of system models can be reused for alterative designs. This supports

trade studies and insures consistency, while providing traceability with minimal additional work.

Reusing of data items allows for the efficient creation and refining of data dictionaries or Interface

Control Documents. As these are refined they can be reused across different programs by creating

element libraries, domain specific constructs, and generic conceptual patterns. This has been shown to

greatly reduce the time needed to develop similar system models and documentation (London, 2011).

Reduced development and maintenance costs can be achieved through the use of consistent design

patterns to capture information and by leveraging multiple levels of abstraction. Consider the benefits

of electric CAD packages. These tools have reusable parts in a local repository, and can organize them in

any (accepted) fashion to design schematics. Some part properties are specified, while others are

customizable. Commercial parts are provided by their vendors to promote reuse and design efficiency.

Perhaps, this will be available for systems engineering models in the future.

41



Some tools allow for elements to be created and analyzed in one graphical language, and to be reused in

another (Wilson, 2011). This powerful capability can be used to reduce the risk of miscommunication by

creating stakeholder specific views in order.

2.2.2 Tools

Generically, tools are things used by people to simplify or make their work more efficient. Tools help

people automate what they already know how to do by hand (Maier, 2009). MBSE tools are developed

to automate portions of a process, but they must be properly utilized. If used incorrectly, MBSE tools

will only exacerbate the situation. An investment in methodology and tool use training is required to

make MBSE adoption effective and can be the most expensive investment (Oliver et al.).

MBSE tools are available across a range of cost and capabilities. Using an interconnected central

repository, most tools provide the capability to manage requirements, develop architectures, insure

traceability, and specify verification methods. However, the features they provide to support these

activities vary. Some MBSE tools can easily support large distributed teams, and others are more suited

for smaller groups. While most tools are integrating technologies for trade studies, others provide

interfaces to external analysis tools. The range of supported processes and methodologies provides

developers with several options for MBSE implementation.

OPCAT, short for Object-Process CASE Tool, is intended to support the OPM MBSE language. Primarily

an architecture development tool, trade study support or model execution is not currently available.

However, the tool automatically generates natural language text from the graphic input and vice versa

(Dori, 2008).



Sparx Systems Enterprise Architect is a MBSE tool supporting software, systems and business processes

modeling. Based on an open standard, several third-party extensions provide a wide range of

features to expand the integrated tool capabilities. Almost completely unconstrained, Enterprise

Architect supports any MBSE methodology.

Vitech CORE Spectrum and GENESYS tools integrate multiple languages and representations to improve

communication and analyze designs. While these tools can simulate designs to validate the model using

simulation, they have yet to include features that support integrated trade studies. However, this

feature is expected shortly.

One of the most expensive and powerful options, IBM Rational Rhapsody product suite provides MBSE

support for systems and software engineers. While several modeling languages are supported, the IBM

tools are intended to be used with specific methodologies to leverage the benefits of its integrated

functionality.

The MagicDraw System Engineering solution developed by No Magic, supports the full range MBSE

capabilities through third-party plug-ins. While multiple languages are supported, MagicDraw provides

specific perspectives for modelers based on their role and experience.

2.2.3 Views and Viewpoints

In each MBSE tool, methodologies and frameworks are organized by "views". Views are diagrams or

descriptions that display a subset of the model in order to convey a specific set of information. To

insure there are no misunderstandings, views should be developed to capture a specific aspect of a

design.



As incomplete technical messages focus on one message, they can communicate the point more

effectively (Long, 2011). Often these views are created to meet the needs of a specific stakeholder. An

analogy proposed by Jim Cunningham in a recent discussion was of a model of a house (Cunningham,

2011). Views of the front, back and each floor must be used to convey the architecture. One view is

insufficient. Furthermore, specific views must be used to convey the design to the customer, electrician,

plumber, etc. Each stakeholder has a different perspective and concern, known as a viewpoint. When

developing these views, modelers should consider the recipient of the information. What is their

background and expectations? What information must be communicated?

2.2.4 Languages

The selection of a language is critical to the MBSE effort as complex systems cannot be effectively

modeled using unnecessarily complex or ambiguous languages. Most systems engineers use graphical

representations to communicate, selecting the language based on their education and experience.

There are various modeling languages available to the systems engineers, including: Object Process

Methodology (OPM), the Unified Modeling Language (UML), Enhanced Functional Flow Block Diagrams

(EFFBD), and the Systems Modeling Language (SysML). These modeling languages, like any other

language, are composed of semantics and syntax. Semantics are the meaning behind words and

symbols. Syntax is the rules for representing semantics and their relationships. The language dictates

how elements are created and manipulated within a tool.

MBSE languages must have formal, unambiguous semantics and syntax to eliminate the chance for

miscommunication. The languages should support the full characterization of the static and time-

dependant system characteristics, their hierarchy, and use. Relationships between elements should be

44



explicitly represented to insure traceability. Effective languages should be clear and intuitive, so they

can be quickly taught and easily understood.

2.2.4.1. Object-Process Methodology

Developed by Dr. Dov Dori, OPM is a generic language that integrates system's structure and behavior in

one view by simultaneously representing structure and behavior using a relatively small alphabet. OPM

is based on three types of entities: objects, processes, and states, with objects and processes being the

higher-level building blocks (Dori, 2002). For OPM, they are defined as:

e Objects are the things that exist or have the potential of existence, physically or conceptually

" Processes transform objects by creating, consuming, or changing their state

* States are the situations that objects can be in

The symbols for objects and processes are depicted as rectangles and ellipses, respectively as shown in

Figure 12. Objects and processes are connected with structural relations (i.e., aggregation,

generalization) and procedural links (i.e., enabling, transformation, and events). Complexity is managed

through three refinement/abstraction mechanisms: (1) Unfolding/ folding, which refines or abstracts the

structural hierarchy of an object (2) In-zooming/ out-zooming, which exposes or hides the inner details

of a object, and (3) state expressing/ suppressing, which exposes or hides an object's state (Estefan,

2008).



Figure 12: Example OPM Elements (Dori, 2008)

2.2.4.2. Functional Flow Block Diagrams

Functional flow block diagrams (FFBD) provide a chronological, sequential description of behavior. One

of the oldest systems engineering modeling languages, FFBDs describe an object's functions in the order

in which they are to be performed. Sequences are described using arrows from predecessors to their

successors. Function completion criterion can be appended to arrows to further specify behavior. As

depicted in Figure 13, FFBDs are represented as rectangles labeled with the function names. Conditional

constructs (i.e., AND, OR) are shown in text contained in small circles. Using these constructs,

concurrent and iterative behaviors can be defined. One of the major drawbacks of FFBDs is the inability

to express any information relating to the triggers or flow of data between functions.



1.0 2.0 3.0 4.0
Identify need Manufacture Operate andand determine Design and -- tsystem ainsystem develop system production)
requirements

L............-----------Feedback------*------

4.0 REF 4.1 4.2 4.3

Operate and Operate system Operate system GO Operate systemmaintain rin mode A in mode B G in mode Csystem

NO-G

14.0 14.1 14.2 14.3
Remove and Transport faulty

Isolate fault to unit to GO Repair faulty
unit" level replace faulty maintenance unit

unit shop

NO-GO

Figure 13: Functional Flow Block Diagram Example (Hale and Quayle, 2009)

2.2.4.3. Enhanced Functional Flow Block Diagrams

Enhanced Functional flow block diagrams (EFFBD) overlay the control structure and sequencing of FFBD,

with the data exchanges, as shown in Figure 14. EFFBDs were one of the first diagrams to represents

functions, control flows, data flows, and their dependencies (Long, 2009). The language provides

constructs that graphically distinguish triggering and non-triggering data inputs.

One of the drawbacks of EFFBDs is the number of elements required to communicate the design.

Edward Tufte, one of the most influential authorities on the visual communication of information,

contends that non-informative and information-obscuring elements reduce the accuracy and clarity of

the information conveyed (Tufte, 2001). The conditional constructs used in FFBDs and EFFBDs may

reduce the clarity of design descriptions. However, these diagrams are thought to be more easily

understood by military trained personal than other modeling languages (Wilson, 2011).

47



1 2 3

Ref -- Source of Function Sink of Ref
External Input Decomposed External Output

In Next Figure

External External
Input Output

Figure 14: Example of an EFFBD (Bock, 2005)

2.2.4.4. Unified Modeling Language

Unified Modeling Language (UML) is a general purpose, graphical modeling language for object-oriented

software engineering. It was developed in 1997 by the Object Management Group (OMG), an open

membership, not-for-profit consortium. Now widely taught and used for software design, UML is a

robust, flexible modeling language. UML defines several semantics for specifying software designs, but it

is not necessarily to use each one.

The language describes the interactions between systems and external objects using use cases. Several

structure diagrams are used to describe the system components, classes, and objects. State charts

describe the conditions that classes assume over time. Activity diagrams describe the system

workflows. Several interaction diagrams, describe the flow of control and data among system

components. Additional information can be found via the UML standard (Object Management Group,

2011b).

2.2.4.5. Systems Modeling Language

Systems Modeling Language (SysML) is a graphical modeling language used to specifying requirements,

structure, behavior, and allocations across a system's lifecycle. The language enables the design,



analysis, and verification of complex systems. It was also developed under the auspices of the OMG in

response to an initiative sponsored by INCOSE. SysML is considered by many to be a young language

although it is based on the established UML, well known requirement constructs, and other standard

systems engineering elements (Cole et al., 2010). SysML reuses and extends many UML diagrams as

shown in the Venn diagram in Figure 15.

UML 2 Sys L

extensions to
UML

not required
by SysML UML reused by

SysML
(UMLAysML)

Figure 15: Relationship between SysML and UML (Object Management Group, 2011a)

Many envision SysML becoming the standard systems engineering language (Friedenthal, 2009). While

other languages support aspects of MBSE, SysML can be applied to each systems engineering activity.

This is achieved by providing diagrams for modeling system requirements, behavior, structure, and

parametrics. These categories, known as the "four pillars of SysML", are shown in Figure 16.



1. Structure 2. Behavior
interaction -

definition e

c...u .11 ta4SCte tTr~ci~m PV*t Mad," O"p&mJ

Coes I atsat 

r
activity/ ' '" *d

function

V WOO" Robe. use rgw V&L

3. Requirements 4. Parametrics

Each graphical view expresses one aspect of the design. By offering a more complete representation of

systems, SysML helps reducing errors and ambiguities during system development processes. When

used properly, the language can greatly improve the value of system model, compared to pure textual

system descriptions. The SysML diagram types are identified in Figure 17 and summarized below.

or& Ilor

C~uws Digneu Omagn Wiwn~w

MSe as UML 2

* Nemdgnun

I--- " """" - g

Figure 17: SysML Diagram Types (Object Management Group, 2011a)

50



One of the most beneficial features of SysML is the variety of constructs it provides to describe behavior.

However, SysML diagrams can also complete describe the system structure, depicting its hierarchy,

interconnection, and properties. The language also provides specific constructs for specifying

requirements and their relationships.

2.2.4.5.1. Use Case Diagrams

The use case diagram, shown in Figure 18, depicts the high-level system functionality in terms of its

usage by external entities known as actors. Actors can represent any external elements, such as other

systems, environmental conditions, or people. Use case diagrams provide basic behavioral descriptions

through the interactions to each actor and must be elaborated via other behavior representations.

uc HSUVUseCases [Operational Use Cases]

HybndSUV

Lextends

~ eincudea~ Acceleratelncluden

Driver N lincluden

Figure 18: Example of Use Case Diagram (Friedenthal et al., 2009)



Use cases are further defined through scenarios, specific paths of execution that list system interaction

with the actors. Scenarios can fully describe the system functionality using a primary and several

secondary scenarios. Secondary scenarios describe alternative paths and error conditions. These

scenarios are sometimes captured using sequence or activity diagrams. Other MBSE tools automatically

generate these diagrams from text based scenarios.

2.2.4.5.2. Activity Diagrams

Activity diagrams, shown in Figure 19, depict the complete flow of system operations. They are one of

the most powerful and comprehensive depictions of behavior. The diagrams describe all of the possible

paths of behavior and the order in which they must precede. Forks and joins, the solid black horizontal

lines, on the activity diagram are used to show concurrent paths. Guard conditions on the control flows

can stipulate alternative paths and when they are to be used. The diagrams also represent the flow of

data (e.g., messages, commands), physical elements (e.g., fluid) or energy (e.g., force) between

activities. These exchanges can be shown using rectangular constructs as shown in Figure 19.

Figure 19: Example of an Activity Diagram (Friedenthal et al., 2009)

52

act PreventLodcup [Activity Diagram]



The richness of this description also has a drawback. The views can contain too much information and

therefore be hard to read. Care must be taken to clearly convey the intended message, and insure that

the diagram meets the needs of its readers. Several comparisons of EFFBDs and activity diagrams have

been made (Bock, 2005; Herzog, 2005) to identify the most intuitive language, however the results

indicate very different conclusions. Therefore, it appears that reader's background and education

impact their abilities to efficiently read the different languages. SysML seems to be natural for software

and systems engineers, but may be difficult for those with military or mechanical engineering

backgrounds, who may have a more natural affinity for EFFBDs. It appears that those with software and

systems engineering backgrounds have a tendency to easily comprehend activity diagrams, while those

with military or other domain expertise may prefer EEBDs (Cole, 2010; Long, 2011; Wilson, 2011).

2.2.4.5.3. Sequence Diagrams

Sequence diagrams describe the interaction between system elements and external entities as shown in

Figure 20. They capture individual threads of behavior, timing, and exchange of messages. These

diagrams do not have the capability to characterize control (Karban, 2011), and therefore several

sequence diagram may be required to enhance the a single activity diagram. These messages are

displayed as arrows and can be specified as synchronous or asynchronous, a call or return, and a specific

type. The duration of an action can be important for some behavior flows. Sequence diagrams can

explicitly capture these durations as shown in Figure 20.



sd [Package] System Behavior [Set UAV]

:UAV Launcher

:Ground Assets

I Settings(Lat/ Long, MET Data, Target Postion) Status

seconds}I Initialization Message(GPS Keys, Launch Pos, Target Pos) :Status

{0.5 seconds}
Status()

-r

Figure 20: Example of a Sequence Diagram

2.2.4.5.4. State Diagrams

State or state machine diagrams are used to group similar behavior, describing a period of time with an

invariant condition. As shown in Figure 21, they depict the trigger initiating the transition from one

state to another, and the actions performed in response to events. State diagrams are frequently used

to show the life cycle of a block (Friedenthal, 2009b). They can be leveraged with other states to act as

"modes".

:UAV



Figure 21: Example of State Diagram (Object Management Group, 2010)

2.2.4.5.5. Block Definition Diagrams

Block definition diagrams, such as the one shown in Figure 22, are used to describe how elements relate

to each other. These views are primarily used to statically decompose elements. By breaking systems

down through multiple levels of abstraction, simplified representations can be used to clearly convey

and characterize the elements. While the diagrams generally capture the physical hierarchy and

classifications, they can be used to decompose activities as well. Other common relations such as

associations, generalizations, and multiplicity can be specified in block definition diagrams. The

diagrams can also be used to specify the relationship between blocks and other constructs (e.g.,

requirements, activities, and actors).



bdd [Package] Structure [ Overal Structure J

Figure 22: Example of Block Definition Diagram (Friedenthal, 2009b)

Blocks are the primary unit of structure in SysML and can represent hardware, software, people, or any

other element (Object Management Group, 2011a). Other descriptive characteristics can be assigned to

the blocks such interfaces, parts, values, and attributes. Ports and flow ports represent the inputs to

and outputs from blocks. Interfaces are defined using standard ports and flow ports, which specify

required operations or signals, and what can flow in or out of the block respectively. Constraints and

attributes are the block's properties. They may have default values, or could be selected later in the

design.

2.2.4.5.6. Internal Block Diagrams



Internal block diagrams are used to describe the Blocks' internal structure in terms of its parts, ports,

and connectors. As shown in Figure 23, they specify how the internal elements and ports are connected

as well as the objects that flow between them. Internal block diagrams generally show a frame

representing the enclosing block and specifying its external interfaces. All internal elements are

instances of block components specified in block definition diagrams.

Figure 23: Example of Internal Block Diagram (Friedenthal, 2011)

2.2.4.5.7. Requirements Diagrams

Requirement diagrams are used to graphically depict the hierarchy between requirements and their

relationships to other model elements. Using graphical construct to capture text based requirements,

these diagrams can clearly convey the elements that satisfy, refine, and verify the requirements. They

can also provide a bridge between the traditional requirements management tools and SysML models

(Object Management Group, 2011a).

ibd [Block] [ Connecting Nested Parts with Ports })



As shown in Figure 24, requirements derivations and rationales can also be expressed. SysML defines

seven constructs to capture the relationships between requirements, such as (e.g., containment, derive)

and other model elements (e.g., satisfy, trace) (2009; Rosenberg and Mancarella, 2010).

req Safety test

2.2.4.5.8.

orequirmenta
Adhesion udlizadon

370ereqerani)
37-9D0ex

lPavement frctOn
orequirerr

thod covers id.a S6.2I Veocn
A peak text The road est

of paved surface produces a peak da"S74,
andard fncuoncoeflcient( FC)of tex

0O9 whenirmeasured using
SRTT) asa nlca Sce for
ication NdenveReqt* Tes and Materials

ger car refere ui test tr In Test and proced
acc.dance wVth ASTMcon
Metiod E 1337-90, text= (a) IBT 65

IC (212 F)
(uf) Test sud" ace: PF

Figure 24: Example of Requirements in Diagram (Object Management Group, 2010)

enti.

ditiana

Ui

Parametric Diagrams

Parametrics can support trade studies and analysis of non-functional requirements (e.g., cost, weight,

performance, quality, flexibility). Using constructs such as those shown in Figure 25, parametric

diagrams can perform calculations based on the block's value properties. In addition to trade studies,

they can be used to compute technical performance metrics or other critical budgets based on the

attributes of lower level components.

orequirern
ASTM R13

id =A 24241'
texi xTbis test fm
the measurement a
braking coefficient
surfaces using a st
reference test tire (
described in Speci
E1136 that represe
technology passen
radial ties

I
aeconckbons

C (149 F), 5100

C of at least 0.4



uconstraint))
ConstraintBlock1

cons tranfs

{{L1} x > y}
nested: ConstraintBlock2

parates
x: Real par Block1
y: Real

leng th: Real

x: Real Cl: Constraint1
width: Real

Cl: Constraint1 y:

y: Real

constrainta
C1: ConstraintL

]x: Real

]y: Real

Figure 25: Example of Parametric Constructs and Diagram (Object Management Group, 2010)

Parametric diagrams use constructs that express equations, parameters, and logical relationships to

constrain or calculate block properties. The constraint blocks and constraints are shown in Figure 25

with a constraint instance. The figure also specifies the parameters, x and y, and their value properties,

"real". A constraint block is a generic definition of a constraint that can be reused to form organized

equation networks. Constraints are equations such as "F=m*a". In constraint blocks, the equation

variables (e.g., force, mass, acceleration) known as parameters, are not specified as inputs or outputs.

Parameters are specified as variables or products of the equation using constraint properties, the

instances of constraint block. Constraint properties explicitly define the quantifiable characteristic, such

as force or mass. The parameters known as value properties are typically defined with value types such

as units, quantities, or probability distributions (Peak et al., 2007a).



Once the input and output parameters of each constraint block are captured, the constraint equations

can be explicitly defined. This is generally achieved using a scripting language providing the

mathematical basis for execution. While tools can accommodate a number of different scripting

languages, they must be consistent throughout the model.

Parametrics can support trade studies and analysis of non-functional requirements (e.g., cost, weight,

performance, and the "ilities"). This can be performed by specifying the relationship between a

system's measures of effectiveness (MOEs) and each implementation. By formally specifying the

relationship, robustness analyses can be performed. An example of a parametric diagram specifying

MOEs can be seen in Figure 26. For additional information, refer to (Peak et al., 2007a; Peak et al.,

2007b).

par [block] MeasuresOfEffectiveness [HSUV MOEs]

Figure 26: Example of MOE Definition (Object Management Group, 2010)



2.2.4.5.9. Element Attributes

SysML elements are often defined through the explicit specification of their attributes. These

descriptors provide an effective way of describing system properties and managing critical parameters.

Attributes can capture the operations, values, assumptions, constraints, characteristics, or qualities of

any element. Figure 27 demonstrates the definition of a block using a variety of attributes. Qualities

such as security, response time, or reliability can be associated with these constructs and refined at

lower levels. Most tools enable the direct inheritance of attributes so that they can be identified in

conceptual elements and specified in the implementations. The specification can also be performed

using parametric diagrams.

(block))
{encapsulated}

Block1
constraints

{x>y}
operations

operation 1 (p1: Type 1): Type2

parts
propertyl: Block2

references

property2: Block3 [0..*] {ordered}

values
property3: Integer = 99 {readOnly}
property4: Real = 10.0

properties
property5: Typel

Figure 27: Example of Block Properties (Object Management Group, 2010)

While almost infinite descriptions can be added to the constructs, it is important to select only the

quality attributes that add value. They should be key and relevant to the application and model. Each

attribute should be clearly named and have a well defined type and value. In addition, it is also

beneficial to add a rationale statement or link to source describing the need for the attribute.



2.2.5 Methodology

Formal methodologies insure that consistent approaches are used to meet the expectations of all

stakeholders. They provide structure to standardize the development process and deliverables, and

essential practice for large projects to communicate effectively and efficiently perform design activities

(Oliver et al.). While there are several existing systems engineering and MBSE methodologies, each one

follows similar processes for requirements definition, design, and verification. Each MBSE methodology

starts with the reception of defined customer requirements. Based on these needs, a variety of

processes are used to guide teams from requirement analysis through detailed design, and finally

system verification. A description of the established MBSE methodologies is maintained by OMG and

INCOSE within the MBSE Wiki (Estefan et al., 2011). The leading MBSE methodologies are discussed

herein.

Prior to the establishment of MBSE methodologies, numerous organizations developed systems

engineering process standards to improve requirement development and multi-disciplinary

development efforts. One of the original and most well known processes was MIL-STD-499.

After several decades, a significantly updated version, MIL-STD-449B, was poised to be released.

However, many military standards were canceled in 1994, including MIL-STD-449B. It should be noted

that the Air Force and other organizations continued to use the unratified MIL-STD-449B. Shortly after

the intended release, the Electronic Industries Alliance (EIA) released a commercial version, which

became American National Standard (ANSI/EIA 632). The standard describes an integrated fundamental

process to guide systems engineering efforts (Estefan, 2008). ANSI/EIA 632 provided many of the



guiding principles for the international standard ISO/IEC 15288 and the INCOSE Systems Engineering

Handbook (SE Handbook Working Group, 2011).

Other organizations have developed or formalized their own methodologies or processes. NASA, which

has recognized the value of the formal processes since its inception, has its own standard, NASA NPR

7123.1A (NASA, 2009). NPR 7123.1A describes a required set of internal technical and managerial

processes for performing, supporting, and evaluating systems engineering efforts. In addition, it

specifies the roles, tools, and lifecycle reviews for system development.

Capability Maturity Model Integration for Development (CMMI-DEV) is part of one the largest non-

government design methodologies. It contains a comprehensive, integrated set of best practices and

guidelines that can be applied to any product or service development domain (Product Team CMMI,

2011). CMMI-DEV is divided into five engineering processes, and follows an iterative approach through

development to verification and validation.

The Aerospace System Engineering Process (ASEP) is an example of a corporate systems engineering

methodology. Systems, Inc., Draper Laboratory, and many other large companies have defined internal

methodologies. ASEP is focused on defense systems development (Maier, 2009), starting with an

analysis of the potential system value. ASEP is one of the few methodologies to have disparate steps for

candidate conceptual and implementation solution development. Like the other established systems

engineering methodologies, ASEP does not suggest processes for detailed design and verification.

Instead it focuses on concept development, culminating with a selection and formal architecture or

concept definition.



MBSE methodologies, tools, and languages are separate entities that in theory could be combined in any

way. However, the trend at the time of this thesis is towards their customization. The only tool

currently supporting the OPM language is OPCAT. The Rational Harmony methodology is heavily

focused on SysML and has been tailored for IBM Rational Rhapsody software. Vitech MBSE tools, which

historically supported non-SysML languages, are tied to the homegrown STRATA methodology.

2.2.5.1. Vitech STRATA Methodology

STRATA, an abbreviation of strategic layers, is a design methodology based on a layered process of

analysis and design decisions. Initially developed by Jim Long, Marge Dyer, and Mack Alford, this MBSE

approach has been continually updated by Vitech Corporation. The methodology follows the systems

engineering onion model, stepping through the design in increasingly granularity. At every design level,

STRATA seeks to remove ambiguity and make design decisions. Starting at the most general level,

requirements, functional behavior, and architecture are developed, verified, and validated as shown in

Figure 28 (Vitech Corporation, 2011).

Input From
Previous Layer

Figure 28: Vitech MBSE Activities Performed at Each Layer (Vitech Corporation, 2011)



The Vitech MBSE methodology is based on the four concurrent activities, labeled as "domains". The

methodology assumes that the work products are linked and maintained through a model repository.

The requirements domain takes descriptions of the intended system use and purpose in order to create

"child" requirements. The domain culminates in an agreed upon set of acceptance criteria and the

"verification requirements" required to assess them.

The functional behavior analysis identifies the characteristics, object flow, and the stimuli response

behaviors for the system. It is focused on decomposing the problem into solvable pieces, insuring that

the complete logical flow is defined.

The architecture synthesis domain starts by examining the system and the elements that transition the

system boundary. These design activities are strongly influenced by behavior domain models, which

guide the physical partitioning and allocation. At leach layer of development, the partition is assessed

and compared to the products of the other domains.

STRATA uses both graphical and textual language to define the architecture. It stresses a well organized

syntax and semantics to support behavior model execution (Vitech Corporation, 2011). At the

conclusion of this domain, an executable model is created with physical partitions, clearly defined object

flows, and explicit behavioral allocation. The execution ensures that the assumptions, interfaces,

functions, and architectures are convergent, consistent, and complete.

STRATA enforces the system verification and validation throughout the development of the other

domains. The methodology insures that at each level the requirements trace to system components,

and that the layer's model is consistent with the others. At the conclusion of the verification and

validation, automatically generated documentation is used to communicate the layer's designs. At the

65



highest level, the domain also insures that the design meets the acceptance criteria based on the

verification requirements.

The methodology assumes it is used in conjunction with a tool automating many functions. By enforcing

reuse and integration, it lets tools to do the "perspiration stuff' and human brains to do the "inspiration

stuff." (Vitech Corporation, 2011).

STRATA is based on the fundamental Onion Model principles of completely and consistently addressing

the design activities at each layer. As the development team completes a system design level, they

"peel off a layer of the onion" and develop the design at the next level of decomposition. The

methodology seeks to avoid the cycle of rework and fixing errors by insuring that constraints are

discovered early in design process. Vitech claims it makes the design process "virtually fail safe" (Vitech

Corporation, 2011). To use this approach, it is crucial to discover the constraints early in system design

process. STRATA stipulates that developers should never iterate between more than one layer.

Changes across several layers can significantly impact cost and schedule.

2.2.5.2. INCOSE Object-Oriented Systems Engineering Method

The INCOSE Object-Oriented Systems Engineering Method (OOSEM) is a top-down systems engineering

development approach intended to be applied in conjunction with SysML and tools supporting object-

oriented modeling. While OOSEM is based on the Vee development model, it uses a recursive, spiral-

like approach to design and system decomposition. The methodology was developed in 1998 and

refined under a joint Lockheed Martin Corporation and Systems and Software Consortium endeavor.

OOSEM uses a Use Case and scenario-driven design strategy to support requirements analysis as well as



the development, evaluation, and verification of complex systems (Wolfrom, 2011). It advocates

element reuse to accommodate design evolution and requirement modifications.

One of the greatest differentiators of this methodology is the system analysis from the viewpoint of

structure, in lieu of the more common behavior (Ryder, 2006). Advocates of the methodology claim

that structural decomposition, and hence designs based on structure, can be grasped more clearly.

These objects, abstract or specific implementations, are refined by allocating activity and state

descriptions.

As shown in Figure 29, OOSEM is divided into four primary phases. The pink boxes in Figure 29 identify

the major systems engineering activities, while the green boxes indicate common tasks performed

throughout the process. The methodology begins with a stakeholder needs analysis using use cases to

scope and define the problem. Using these use cases, requirements and measures of effectiveness are

then developed. Processes are suggested to insure that requirements are necessary, concise, feasible,

complete, unambiguous, consistent, and verifiable. Through the system requirement development, the

system scenarios, states, and interfaces are defined (Wolfrom, 2011).



* -Causal Analysis
.Top Level Domain Block Definition Diagram
*Mission Use Case Diagrams

-Systemn Context
-Systemn Scenario
-Input/Output Definitions

eLogical Hierarchy
eLogical Interconnection

-Trade studies -Logical Scenarios
Atamatve *Parametric Diagrams

*Allocations to

Maam-Spec Tree suppot HWSW, Data
Rumnt *Reqt's vali&1o a Test cases Architecture

-Traceabili verfcto -Test procedures

Figure 29: OOSEM Methodology (Wolfrom, 2011)

Once the requirements are documented, the abstract, or logical, structural architecture is developed.

The abstract structural architecture specifies the subsystem interfaces required to realize the scenarios.

To fully define each subsystem, their states and activity flows are specified. Next, each object is traced

to the driving requirement.

In the final phase, specific hardware, software, and data implementations are specified based on the

abstract physical architectures. The particular physical components are linked to the logical one and

further defined though the specification of the critical component properties. As a result of the

subsystem design implementation, requirements are generated and the process is repeated. Alternative

designs are assumed to be developed and evaluated in parallel to the requirement and architecture

analyses. OOSEM assumes the analysis is performed using SysML parametric diagrams and constraints.

2.2.5.3. Rational Harmony for Systems Engineering

68



Rational Harmony for systems engineering is a subset of the overall Rational Harmony development

methodology shown in Figure 30. By looking at the figure, it is apparent that the methodology mirrors

the classical "Vee" lifecycle development model. Rational Harmony for Systems Engineering, hereafter

called simply Harmony, originated at I-Logix, Inc., which became part of IBM through a series of

acquisitions. When used in conjunction with the IBM Rhapsody tool suite, the methodology defines

specifies the specific processes that should be followed. However, Harmony can be applied to any MBSE

effort, and is not Rhapsody specific.

Change Request

Stakeholder Harmony' for
Requirements Systems

Engneerig system
nerlos J~o~ps) Validation

Requirements Models, - -Plan

System Use Cases Model

Test

Executtable - Scenarios 06

Use Case Mo~oi) ayissse

Architectural Analysis Modls)- Plan
System Architecture Mode

Co

System Prcation Harmony"' for
Architecture Poeure Embedded RT

Baseln WP oue Development

Sotwvare
Implementation

ModelSWIpeetio

Figure 30: Rational Harmony Integrated Systems / Embedded Software Development Process (Hoffmann, 2011b)

As the focus here is on concept development, the phases following the system architecture baseline

shown in Figure 30 will be ignored. The key systems engineering objectives in Harmony are to derive

the required system functions, identify the system states, and allocate these behaviors to subsystem



structure. The methodology is divided into three high level activities; requirements analysis, functional

analysis, and design synthesis. They are depicted in more detail in Figure 31.

Stakeholder Requirements

Stakeholder Requirements

System Requirements VAQ

System Use Cases Model s)

Use Cms Scenarios (Black-Box)
No-ucinlOseraqiont

Updated System Requirements

Architectural Analysis Model(s)

o UC Activity Diagram(s) (White-Box)

UCr poidn Ac~avity armsWieBx
UDeelomenScenarios (Tt-Box

product of the devAeloprmet. Al traeultintyuetto s eeae saman fdsrbtn

Nfraex aeraegon ofthorsin
RihFutirsage ite methhat st

provided.~ 4 Asphghlght d inyiguem 31,qtheempasioftspheitodrvsyemeqrmns

Uent Oncshe (Dr

*Tad Sysum-eve

Cr ArchiArchitecturalsisAnadysis

Acitectural Design

Detailed
Scerwios WhiteBArchitectural Design

Syte orgn A eu r etur oe (tei
Unksprovdin traeabiityLogical [CDs

to WW rUh~ntsHWlSW -HWMBW Req Specs
Development W o cnro

Figure 31: Rational Harmony for MVBSE (Hoffmann, 2011b)

The process assumes that model and requirements artifacts are maintained in a central model

repository. Like other leading MVBSE methodologies, Harmony considers the model is the primary work

product of the development. All resulting documentation is generated as a means of distributing

information on a segment of the design.

Requirements analysis, the first stage in the methodology, assumes that stakeholder requirements are

provided. As highlighted in Figure 31, the emphasis of this phase is to derive system requirements

based on these stakeholder requirements and other documents. Once the system requirements are



identified, each one is allocated to a use case. Several alternative, but detailed processes are defined for

each Harmony stage. They can be selected based on the tool and development team experience.

The focus of the system functional analysis is to define the scenarios that describe each use case.

Alternate processes exist within the Harmony methodologies. One process suggests that use cases be

developed as if they were the sections in the user guide, and that approximately 20 scenarios should be

defined for each one (Hoffmann, 2001). An alternate, more flexible process allows activity, sequence, or

state diagrams to be developed in any order. This "Hoffmannized" process specifies that activity

diagrams must be created first and that sequence diagrams are generated automatically by the tool.

There are more similarities than differences. Each process stresses the definition of ports and data

flows in this phase. Harmony uses states as the means of capturing and coalescing system behavior.

The model is verified through execution based on these states.

The objective of the design synthesis is to select a concept and refine the design. As shown in Figure 31,

the stage starts by developing candidate solutions and performs a trade study to select one of them.

The selected concept is refined by allocating the system and subsystem behaviors to the appropriate

physical models. Like the other MBSE methodologies, Harmony results in a number of deliverables to

other domains. These include several requirement documents, interface control documents, models for

integrated software or firmware development, and test scenarios.

2.3 DODAF

In addition, to the development methodologies, a number of frameworks exist to guide the developing

common architectures representations. One such framework is the United States Department of

Defense Architecture Framework (DODAF). It specifies common presentations of information in order

71



to improve the communication, integration, and evaluation of architectures across organizational and

national boundaries. Currently focused on describing data, DODAF establishes data element definitions,

rules, and relationships for consistent description of systems and architectures (United States

Department of Defense, 2007). As shown in Figure 32, DODAF provides four basic views:

e All view (AV) with two work products

* Operational view (OV) with seven work products

* Systems and services view (SV) with 11 work products

* Technical standards view (TV) with two work products

All-View
Describes the Scope and Context (Vocabulary) of the Architecture

Operational
View

Idnife Wha Needs__ to__be

Systems and Services
View

- Specific System Capabilities

Exchanges

Technical Standards Criteria
Governing Interoperable
implementation/Procurement of
the Selected System Capabilities

Figure 32: DODAF Views (United States Department of Defense, 2007)

Each view has a specific purpose. Given the wide range of possible designs and architectures that can be

developed, DODAF provides 22 possible views communicate the necessary descriptions. However, it is

not necessary to develop each one, as many of these will not provide new information.



DODAF seeks to provide an integrated description with unique elements that are consistently used

across all views within the architecture (United States Department of Defense, 2007). One of the ways

to accomplish this goal is to combine DODAF with a MBSE tool and language, such as SysML. DODAF

and SysML are already well aligned, as the language can be used to implement most views. The Object

Management Group, the developers of the UML and SysML modeling languages, are looking to develop

a modeling standard supporting DODAF. The standard, known as UPDM, an acronym for Unified Profile

for DODAF/MODAF, is looking to formally specify this relationship (Okon and Hause, 2009). As indicated

by the name, UPDM would include the UK Ministry of Defence Architecture Framework (MODAF), one

of many similar military architecture frameworks.

When developing documentation for stakeholders who expect DODAF views, it is crucial to discuss the

specific views that are useful. Once these are established, they can be developed using SysML diagrams

using any other the tools and methodologies described in this chapter.



3. MBSE Framework for Concept Development

This chapter presents a Model-Based System Engineering (MBSE) Framework for Concept Development.

This framework specifically addresses the needs of the early stage systems engineering projects. While

the established MBSE methodologies provide structured strategies, they start from a defined set of

requirements. However, most concept development efforts do not start with a well-defined set of

statements encompassing the complete set of required functions, interfaces, and performance. These

requirements must be identified as part of the development process.

The framework integrates traditional systems engineering techniques and tools with the MBSE. The

fundamental problem solving activities are followed, but in an integrated electronic environment. It

provides flexible, yet robust methodology to insure that not only the right design is identified, but it

solves the right problem. By leveraging the benefits of MBSE, the dynamic interactions between system

alternatives and users can be understood. This insight provides a more thorough assessment of design

features. Using SysML models, a methodology is described to obtain an understanding of the problem,

identify and develop potential solutions, analyze them, and suggest the best alternative.

The framework integrates existing concept development tools with model-based development methods

to execute projects more effectively. Systems engineers have developed a rich collection of tools, as

described in Chapter 2. The framework allows development teams to select the right tools for their

needs. Consider a carpenter with a large tool collection. While one could use a reciprocating saw to cut

2x4s, the carpenter may prefer to use a circular saw. A methodology should not constrain developers

from using their preferred tools.



Alternative processes are presented to accommodate diverse development efforts. While an ideal

process is identified, alternatives can be tailored to meet the specific development team and program

needs. Leveraging MBSE will not automate the concept development process, but it will enable more

efficient analysis and communication. Developers will likely go through the same thought process, but

the consistencies enforced by the processes will help identify errors earlier.

A high level view of the methodology is depicted in Figure 33. It starts by identifying the problem,

which, as discussed in Chapter 2, could result from the reception of customer requirements or an active

needs analysis. Once the problem is identified, it is suggested that the development team fully define

the problem. However, if the problem is similar to previously defined problems, the team may seek to

immediately evaluate the architecture. If the customer or team has a solution in mind, it may be

prudent to start identifying other possible solutions. While the framework allows for any of these

activities after the problem identification, it is best to follow the suggested process. If teams focus too

early on defining the architecture or identifying alternative solutions, their efforts may be wasted.



Activitylnitial

Concept Selection

Legend

Suggested Start

Figure 33: Concept Development Methodology

The problem definition is the most important step in the development process. If this is not done

correctly, the team could develop a system without a market or customer base. All solutions must meet

specific needs at an affordable cost and be available in an acceptable amount of time (Maier, 2009). The

details of each of these criteria must be refined by working with the various stakeholders. By framing

and decomposing the problem into its expected functionality and performance attributes, a set of

requirements can be developed to guide the design process.

Creating system architectures involves the development of system concepts, specifying what they are

and what they do. Architecture is not only about the system structure. The focus should actually be on

the system functionality required to meet the stakeholder needs. Leveraging MBSE tools, executable

behavior models are made to insure design consistency and accuracy. Alternative flows of behavior can

be captured to support concept evaluation. Conceptual structures are created to implement the system

at different levels of abstraction before defining specific ways to implement them. The allocation of

behavior to structure is concept dependant and performed only after possible solutions are identified.

76



This development activity should be supported by domain experts, in order to determine the best,

feasible solutions.

The identification of possible solutions is often performed in parallel to the system architecture

definition. Developers and customer do not always know what they want until they consider what is

feasible. Many tools and techniques have been developed to improve the effectiveness of this process,

and this framework employs these methods. It does not seek to import the results into SysML models

until the solution space is sufficiently focused. Using various tools, the full list of alternatives and results

of each activity can be connected via hyperlinks. This facilitates the retention of information and the

capture of design rationale.

Once the solution space is sufficiently focused and the alternative concepts sufficiently defined, trade

studies can be conducted to select the best alternative, based on the measures of effectiveness. The

selected concept must be assessed to be feasible and able to satisfy the high-level requirements. This

evaluation is conducted at the system level, based on contributions from all necessary domain experts.

If a feasible solution is not found among the alternatives, the team must cycle back to an earlier step.

Iterations are often conducted prior to the final trade study. New information is discovered about the

problem and alternative solutions are discovered as the team converges to a final design. No matter

how much is known about a given problem, there are always unique aspects to new solutions that must

be discovered. There are too many possible feedback loops to show in the example depicted in Figure

33. Teams will iterate through each step of the framework as designs are refined. Often new

technologies are introduced in complex system development without understanding their actual

performance and design impact. Designs that will not meet the stakeholder needs may then be



selected. As the process is highly iterative, no criteria for moving to the next step are defined, but it is

advised to spend as much time as possible on the problem definition activities.

3.1 Problem Identification

The first activity in this framework is to correctly identify the problem to provide the foundation for all

design activities. Systems are developed in response to specific stakeholder needs and goals. Once a

need is identified, the proposed system capabilities and performance must be specified, as expressed in

Figure 34. These requirements serve to focus the development effort and facilitate discussion between

the stakeholders and design team. Care must be taken to capture the problem in a solution neutral

manner to avoid introducing artificial limitations.

Start

Most Important Requirements:

-Capabilities of Interest
-Measures Of Effectiveness

Define Problem

Figure 34: Problem Identification

There are several ways in which a problem can be identified. As with other MBSE methodologies, the

problem definition can be performed by receiving a requirement document. If this is the case, the

requirements can be imported to an electronic repository and analyzed. The team uses this material to

78



easily identify the criteria necessary to properly scope the problem. Whenever adding a requirement or

any other element to the model, a short text description should be included so future reviewers can

understand its purpose. Hyperlinks can also be added to external sources for additional information.

It is important to question the provided requirements. They may not have correctly identified the

problem. One of the best examples of poorly specified requirements involves the F-16 fighter (Maier,

2009). The "Father of the F-16", Harry Hillaker, questioned the original requirement of a high

supersonic capability, which would necessitate difficult and expensive solutions. As result of the inquiry,

It was determined that the real need was to provide a quick exit from combat. Therefore, the original

requirement was replaced with those specifying rapid acceleration and exceptional maneuverability.

Other problems are much more loosely defined and are the focus of this framework. One such category

is high-level problem statements. Examples of such challenges include President John F. Kennedy's

th
speech to a Special Joint Session of Congress on May 25 , 1961. Here he stated the goal, "before this

decade is out, of landing a man on the moon and returning him safely to the Earth"(2011b). Another

more current example is President Barack Obama's challenge that the United States obtain 80 percent

of its energy from "clean" sources in less than 25 years (RenewableEnergyWorld.com Editors, 2011).

These problem definitions provide a large trade-space.

It is more challenging when the problem is not known. Development teams may seek a latent need to

develop a new product or move into a new market. Existing operations may be examined to determine

deficiencies and potential opportunities. In these cases identifying the need is a major challenge itself,

as the users may not be aware of a need. Additional effort must be extorted to accurately capture and

absorb the stakeholder feedback. This challenge is compounded when potential users have no



foundation on which to provide opinions. In 1915, when David Sarnoff proposed that radio be used to

broadcast information into people's homes, no one could have expressed a need for this type of product

since they didn't know it was feasible (Leonard and Rayport, 1997). However, Sarnoff recognized that

humans had a need for entertainment and enjoyed spending time at home.

Problem statements can be extracted from user observation data, interviews, focus groups,

benchmarking, and survey. A clear and unmistakable statement of need must be developed. It is crucial

that the development team does not pollute the value statement with their personal opinions. Only

those of the external stakeholders should be captured in the problem statement. While David Sarnoff

identified a solution before a need statement, he (perhaps subconsciously) verified that such a need

existed by applying his knowledge of family behaviors within their homes.

Once the information has been collected to correctly characterize the problem, it should be explicitly

stated. This can be achieved by defining the capabilities of interest (COI) and measures of effectiveness

(MOE). COI are functional goals such as landing a man on the moon, obtaining energy, or being

entertained at home. The value proposition specified by a COI is enhanced using MOE, to describe the

critical, distinguishing problem attributes or constraints. The COI in President Kennedy's challenge was

to get a man to the moon. The MOE provided the details such as the: (1) timeliness of less than 9 years,

(2) human safety, and (3) distance to the moon and back.

MOE are synonymous with the "most important requirements." For example, when identifying the MOE

for an Unmanned Aerial Vehicle (UAV), requirements such as range, endurance, and availability may be

specified. An example of using SysML to capture the top requirements for a UAV is shown in Figure 35.



Most Important Requirements

-requirement-
Time To Target

notes
The UAV shall reach the target
position within 20 ninutes.

-requirement- [
Transportability

notes
The UAVs shall be carried with
(infantry) battle units.

-requirement- -requirement. -requirement- -requirement- C -requirement"
Range Endurance Target Designation Tracking and Surveillance Availability

tags notes notes notes notes
id = UAV-2 The UAV shall have a rininrn The LA Vshall designate up to The UAV shall be able to The UAV shall support dayand
Priority = 0.2 loiter tine of 60 ninutes. 45 (TBR) tareln. continuously gather visible night operation

text Coment Ta annihilate one infsurrtion
the UA V would be required Is

notes designate at least 100-200.
The UAV shall have a range of There may be up to 1600
60 km targets.
Corents:

-requirement- -requirement [
Target Coverage Target Detection

notes notes
The UA V shall cover a Kill Zone The UA Vshall be able to
with a nhininm radius sf 40 hm Identify Friend or Foe (IFF) and

Counter Recon.

Figure 35: Example of a AAV's Most Important Requirements

In the cases when requirement documents are provided, the MOEs are the subset of the requirements

providing the criteria for success or failure. Usually only a few are appropriate, less than a dozen even

for large complex systems (Oliver et al., 1997). The MOEs will provide the criteria for selecting one of

the concepts later in the project. They must truly capture the needs of customers and users. For

commercial products they should reflect the criteria used in the decisions to buy a product and define

the product placement in the marketplace (Green, 2001). It is crucial that customers, developers, and

other decision makers agree on the MOE to avoid discrepancies in the design and trade study.

SysML now provides specific constructs to define the MOE. As shown in Figure 36, they can be linked

directly to the most important requirements to maintain consistency. This provides an effective way of

collecting rationales and other background information, while specifying the decision making criteria.

T



am<oen Availability

Availability-------__--_--_--_-- _ _notes
Atrace- The UAV shall support day

and night operation.

Range
amoe notes
Range - - - - - - - - - - - -- The UAV shall have a range

trace" of 60 km
Conmnts:

-Endurance
cm oen

notes
Endurance ------------- The UAV shall have atrace" 1 rrinimum loiter tirre of 60

ranutes.

Time To Target
"moe.F1 notes
Speed - - - - - - - - - - - - - The UAV shall reach the"trace" target position within 20

minutes.

a4moen Transportability
Transportability - - - - - - - - - - - - - notes

(trace>) The UAVs shall be carried
with (infantry) battle units.

Figure 36: Allocating Requirements to MOE

3.2 Problem Definition

The primary goal of this phase is to communicate the problem understanding between system

developers and stakeholders such as customers and management. The problem definition extends the

problem identification to derive the required system functions and detailed system performance. It

builds off the broad system objectives to develop verifiable requirements through the methodology

depicted in Figure 37. The true benefits of MBSE tools and methodologies are leveraged here to identify

the system context and refine the problem statement through the development of system concept of

operations (CONOPS).



CONOPS System Assessment
Document Requirements critoris

Problem Identified

Trade Study

Constraints

Define Architecture Verification

Figure 37: Problem Definition

Capturing the definition in a mode-based environment can prevent other developers from having to

interpret isolated natural language specifications. Furthermore, the methodology helps engineers find

errors in the complex details that are difficult to identity in loosely coupled models or documents. It

helps developers apply their experience to find the "unknown-unknowns", and work with the

stakeholders to resolve issues.

In this phase, the team should collect and review all available information to accurately capture the

problem. Information can be directly imported or stored externally, but accessible from the model using

hyperlinks. By tracing model elements to these sources, their rationale can be captured.

The Problem Definition activities are shown in Figure 37. The first three activities of the problem

definition are concurrent and in general have no established order. Most likely these activities occur in

an iterative cycle with the use case development. It should be assumed that developers are constantly

iterating through these activities until the alternative concepts are evaluated. Capturing the problem

and domain specific terminology in a glossary is a key activity of successful programs, as it reduces

83



miscommunication and insures consistency. By specifying the system context, all stakeholders can

obtain an explicit understanding of the problem and system scope. Each stakeholder and external

system influence must be enumerated so their requirements can be addressed in future analyses. The

external influences include the operational environment, external systems, and classes of users.

After identifying the desired system capabilities and MOEs, the development team must consider how

the system is to be used. The missions, features, and functions must be refined to develop the system

CONOPS. Each use case can be further defined to describe the iterations with each external entity.

A full description of the required system functionality and performance is required to guide the

development effort. Traditional systems engineering methods create and maintain requirements that

may be redundant, contradictory, unverifiable, or poorly written. Manual interpretation is error prone

and can drive up development costs and delay schedules. Unless the requirements and specifications

are captured in a precise and executable language, they will remain ambiguous and error prone (Oliver

et al.). A MBSE approach provides techniques to help system engineers recognize these issues, and

provides more robust systems requirements.

As one of the last problem definition activities, verification methods must be assigned to each

requirement. This helps insure that they are well defined and may identify additional requirements to

support test and integration activities. The requirement priorities must also be established to support

trade studies. As discussed in Chapter 2, some tools do not require a ranking, and can skip this activity.

3.2.1 Glossary Creation



Systems engineers collaborate with different disciplines to more effectively develop and design a

concept. Working with different domain specialists can create potential communication challenges due

to the variety of specialized vocabulary. In addition, design efforts tend to develop their own language

over time as they find ways to communicate ideas more clearly and effectively. Capturing the language

in a glossary and consistently abiding by its terminology insures design consistency. It is surprising how

often teams can develop diverging definitions, potentially leading to major confusions.

While its contents will most likely be refined over the course of the development, by starting the

collection early, a complete list can be developed and miscommunication can be prevented. Glossaries

also help new team members unfamiliar with the lexicon become involved and effective more rapidly. It

can also help developers search through the model. For example, if an engineer wanted to find

information related to an automobile, but searched "car" he or she may assume that it had yet to be

included in the design. Enforcing the terms and conventions can prevent such miscommunication.

Different terminology is common when working with different branches of the military or civilian

applications. Organizations have completely different definitions for common elements or operations.

An example of this is states and modes. Some software and systems engineers consider modes the

higher-level construct. Others define it the opposite way. A glossary insures that all of the project's

stakeholders use a consistent vocabulary.

A guide for the creation of a glossary is to capture each uncommon noun or acronym used in the

development effort. Some MBSE tools provide features to collect and maintain the glossary.

3.2.2 Stakeholder Analysis



An often overlooked step in many actual programs is the stakeholder identification. Stakeholders are

those that have a say or interest in the development or outcome of a project. They may be directly or

indirectly affected by the project. This analysis is intended to identify the needs and interests that can

determine the project's success. Through this process, stakeholder needs are interpreted to develop

system requirements.

Many efforts only focus on customers or users. While they may be one of the most important

stakeholders, others may have specific requirements as well. The entire program's life cycle should be

considered as developers, corporate management, testers, and maintenance personal are all

stakeholders. By considering their needs, requirements can be specified early in the program,

preventing omissions or expensive future modifications. Often overlooked requirements include special

features to support diagnostic testing, units of measure (i.e., metric only), and maintenance constraints.

It should be simple to identify the initial stakeholders as it if difficult to develop products without

someone in mind. However, this is not always true. For example, consider a group developing a new

movie steaming service. While the developers may envision a customer, they may not understand the

user's demographics or specific needs. In order to identify these stakeholders, developers should ask:

"who benefits?", "who pays?", "who supplies?", "who loses?", and "when and where should their needs

be met?" (Maier, 2009) The decision-makers should be identified. Developers should seek to

understand how decisions will be made, and the type and extent of involvement the decision-makers

will have in the development. It is also, important to identify how early and often the system will be

evaluated, as it will guide the overall development process.



During the process, it is necessary to reach out to the stakeholders so their inputs can be captured. As

these opinions are likely to change, the team may have to repeat this process over the project duration.

A perfect example of this is Iridium, the satellite phone company. One of the problems that contributed

to the fall of the billion-dollar company was the disappearance of potential customers. With the

advances in cellular technology, there was very little need for an expensive, global communication

system (Finkelstein and Sanford, 2000). If the company had surveyed its expected client base, it might

have discovered the problem and minimized its losses. Several techniques have developed to evaluate

stakeholders, but they will not be summarized in this thesis. Refer to Lynda Bourne's book for more

information (Bourne and Weaver, 2010).

It is also important to gauge the stakeholders' assessment of good, bad, and fair performance. As

technology advances so does the expected performance. For example, consider the change in television

resolution. Today's consumers will not accept a new technology or product that does not meet the

current resolution standards. The stakeholder assessment can help identify other constraints, such as

time to market, costs, or technical efficiently.

As stakeholder analysis can be slow and expensive, effort cannot be wasted in this process. Only the key

stakeholders should be thoroughly examined. One way to accomplish this is to determine if each

stakeholder is "important." If so, the resources should be exerted to assess their needs and

expectations. If not, only the assumed influences and needs should be captured.

Stakeholders can be added to the model as actors. This provides a consistent mechanism to capture any

information that can be useful in the requirements analysis. Once the stakeholders' concerns and

interests have been identified, the information should be documented and linked to the applicable



Actors, as shown in Figure 38. Requirement constructs, notes, or links to external documents can be

used to accomplish this.

Range

notes
The UAV shall have a range of 60 km

-- 'express)

Time To Target
-- - - - - "express,-, - notes

The UA V shall reach the target position within 20 ninutes.

Commander 4,e xpre ss>

Availability

notes
The UA V shall support day and night operation.

- - express)

--- -- -- -- -- --- >
A -express"

Ground Assets

- - - - - - - - - - - - - ->
~express"

Storage and
Transportation
Environment

Endurance

notes
The UAV shall have a ninirum loiter tirre of 60 ninutes

Transportability

notes
The UAVs shall be carried with (infantry) battle units.

Figure 38: Stakeholder Need Identification

Some find it useful to specify these needs using either "customer requirement" or "stakeholder

requirement" stereotypes. In these situations, it may be beneficial to document the need in their

language and later refine it into a verifiable requirement. Others prefer to use attributes, as shown in

Figure 39. For example, the view indicates the ground assets' need to use metric wrenches and wear

gloves that limit their dexterity.



bdd [Actor] User [User]

User

(block#,

blockUser::Launcher

User::Ground
Station

Operator Commander Ground Assets
- Available Tools :Wrenches= Metric
- Equipment :Gloves= M-Pact 2

Figure 39: Example of Actor Decomposition

Also shown in Figure 39, views can be generated to explain the relationship between the Actors. This is

useful to capture relationships such as military command structures, environmental conditions, and

classes of users. This can be used to group categories of actors such as indicating that operators,

commanders, and ground assets are all subtypes of users.

Stakeholders can be added to use case or context diagrams as Actors. As with all new elements, they

should be characterized in the notes field or attributes. It is advisable to define the stakeholders in the

Glossary, as they may not be known or constantly defined.

3.2.3 Context Definition

Many systems engineering methodologies use context diagrams to specify the system boundaries and

interfaces. The selection of elements and behavior belonging in the system can be one of the most

important factors in scoping the system cost, performance and market acceptance (Oliver et al.). It



forces the team to think about all the possible external influences. If an external interface was

improperly addressed or omitted until a future stage, it could drastically increase the development costs

and schedule. Some of the most valuable discoveries occur during context analysis (Oliver et al., 1997).

To prevent omissions, it can be useful to identify the system, or system of systems, that would contain

the item under development. By examining the interfaces and behaviors of connecting systems,

developers can obtain a better understanding of the intended system context.

Context diagrams are not standard SysML views, but can be created using block definition diagrams

(BDD) or internal block diagrams (IBD). Figure 40 is an example of a UAV context diagram created using

a BDD. The figure also provides an example of using custom images in lieu of the standard SysML actors

constructs. This practice has been found to more clearly express the external interfaces.



Developers

Figure 40: UAV Context

A simple way to create context diagrams is to add the system of interest as a block along with each actor

that interacts with the system. Associations can then be used to identify the necessary interactions.

While this initial model is rough and abstract, it serves a specific purpose. Developers should avoid

cluttering diagrams by completely describing each interface. Instead, to capture the details, the

interface descriptions and object flows can be captured in IBDs separately, as shown in Figure 41.

91



ibd [Package] Interfaces [interfaces]

-blocka- -blocka ablock#
UAV Launcher AV UAV Command & Control

-flowPort-
Force (Lift) _ dataType- Commands

-flowPort -- ---------------
Communication ,dataTypen Telemetry owPort# Antenna

C>OC

"flowPort' Setter flowPortn GPS Antenna

<dataType" gps key cryptography,
dataType Launch Position,

"dataTypen Target Position adataTypen GPS Signal
-flown e temFlown

Ground Assets GPS :Satellites

Figure 41: Additional Interface Information

3.2.4 Use Case Development

A key component of concept development is identifying how the intended system will be used over its

entire life cycle. The DoD, NASA, and associated organizations define a system's behavior in concept of

operations (CONOPS) documents. The DoD often summarizes the CONOPS using a DODAF view known

as OV-1. An example of this view is shown in Figure 42. When well documented, CONOPS are an

efficient method to communicate a system's operation to all stakeholders. They traditionally describe

the key operational scenarios for all modes of operation, each system interface, and the primary

constraints.



Operational Scenario*
60,km) BE Kill

Decisive Phase BE engages
commences upo

BE Inserlo

PODs

60 km 80 km J

Deadly Zone

*TR AC Briefing: Explaring Tactiedl ard
Opearartl cps in Sypmm t ofAmr Aperr Next 14 k|m{3

24 U&MDEPARTMENT OF SYSTIEMS ENGINE ERING a,

Figure 42: UAV CONOPS (Sullivan et al., 1998)

An effective way to synthesize, analyze, and refine these details is to develop use cases. Use cases

graphically describe behavior from the actors' point of view, treating the system as a black box. As this

view depicts the system boundaries and external relationships, it must be consistent with the context

diagram. Using these SysML diagrams, designers can describe consistently capture the system

interactions and responses.

Some conventions show the system as a boundary on the use case diagram. By depicting the use cases

inside the system, these diagrams imply that use cases are functions. This is misleading as the system

under development is only a participant in the use case (Lempia and Jorgensen, 2011).



3.2.4.1. Use Case Identification

When developing systems without a well defined CONOPS, it is often helpful to consider the use of any

current or similar systems. By creating use cases to define the capabilities, limitations, and potential

improvement of similar systems, those for the proposed system can be developed.

For revolutionary systems, it may be difficult to know where to start developing use cases. Often, the

first use cases can be identified by considering the operational capability and target actors. Other

processes start by considering the most important actors and what they need from the system. For the

example of getting a man to the moon and back, it may be best to start by considering the astronauts'

mission. This process decomposes the capability of interest and works through examples until the uses

cases are well defined. After considering the primary actors, consider the supporting actors (e.g., the

environment) and their interaction with the system.

Figure 43 provides an example of use case diagrams developed to meet the CONOPS specified in Figure

42. A hyperlink to the source material is shown at the top of the diagram. The example also provides an

example of specifying performance characteristics and constants using attributes on the associations. At

the risk of cluttering the view and being inconsistent with those directly assigned to use cases, this

helpful information is provided for reviewers. For example, it could help developers realize that the

Operational Environment, shown on the top left, will not be constant across the four use cases. By

specifying different environment conditions, design constraints can be reduced.



'l 1998 Army After Next UAV Study

User

Figure 43: Use Case Diagram for UAV Operations

Use cases must be defined for each lifecycle phase, such as production, deployment, and maintenance.

These SysML views provide the basis to answer high-level questions. While issues may be overlooked,

they should be identified in future stages of the MBSE methodology.

3.2.4.2. Use Case Structure



Use cases should have a descriptive name that clearly conveys their most important function and

follows a verb-noun convention. It is best to avoid vague verbs like (e.g., do, process, and make) and

low-level verbs (e.g., create, read, or update) (Karban et al., 2011).

Summarizing the use cases' purpose in a text-based format can be helpful in capturing its focus. The

primary actor's reason for interacting with the system should be specified. As use cases are refined,

more information should be added about the interaction including the stimuli that triggers it and the

system's response.

It is important that use cases are complete as they are associated with system validation. Constraints

from external systems, human expectations, logistical and maintenance realities, and organizational

objectives should be captured. This transparency will help instill stakeholders with the confidence that

the system will meet their needs.

3.2.4.3. Scenario Definition

Use cases provide only a high level description of system behavior. Precise descriptions must be added

to refine them. For complex systems there are often a number of possible threads of interaction

between the system and its actors. Most MBSE languages label these alternatives as "scenarios".

Accurately and completely capturing the sets of scenarios is critical as they are direct linked the system

internal behavior model (Oliver et al.).

Scenarios are composed of a number of functional steps for specific sequences of events. Each step

should identify the performer (i.e., specific actor, system). The actors' knowledge, skills, and other

characteristics should be considered. If the development team is unsure about the actor's ability to



perform the function, questionnaires, subject-matter expert consultations, and direct observation can

resolve the ambiguity.

Once scenarios are analyzed from the perspective of the primary actor, the secondary influences can be

considered. The necessary conditions for each scenario should be defined, as well as any that could

prevent them. The data and objects passed between systems and actors must also be specified,

including the triggers that initiate the scenario, their frequency, and timing. Each scenario results in a

specific outcome, an externally observable consequence. This should be documented as well as the

environmental conditions and system state that exist after its completion. If any of these are not

universally recognized, they should be defined in the glossary.

While several scenarios may be defined, developers should initially focus on capturing the behavior

when everything goes right. This is colloquially called the "happy path". Next, the scenarios that exist

when the actors perform alternative actions can be described. Finally, the "the rainy day paths" should

be enumerated. These describe what might go wrong and facilitate the security, safety, and reliability

analysis. The alternate and error paths are often branches from the primary scenarios, and several

branches and merges may exist. It is advised to challenge constraints. Throughout this analysis,

developers should ask "why" and "what if'. When documenting the scenarios, nontechnical and easily

understood terminology should be used.

Systems engineering teams can refine the use cases and scenarios ad infinitum. As this could violate the

program schedules, teams must assess what is sufficient. A good heuristic is to only develop scenarios if

they are expected to expose any additional functions, requirements, or interfaces (Cole et al., 2010).

Start with the use cases containing the most uncertainty, and work towards the less interesting ones.



Use cases should not be decomposed to the point at which they resemble activities. They should be

classes of functionality, not hierarchies of behavior trees. Appropriate scenarios provide a solid model

foundation with the right amount of flexibility to accommodate the architecture development. Activity

diagrams can be used to fully define the use cases.

3.2.4.4. CONOPS Review

While many consider activity diagrams to be the best method for defining use cases (Hoffmann, 2011a;

K6sters et al.), text-based descriptions can be more useful and easy to read. Capturing the CONOPS in

narrative form can provide a clear depiction of the intended use. An example of such an application is

shown in Figure 44. It is very valuable for those who will not immerse themselves in modeling. Some

tools automatically generate activity diagrams from text scenarios. This can be useful in getting

stakeholder buy-in. Once the flows are captured in SysML diagrams, they can be executed. This is a

powerful way to specify and review the necessary system behavior.

The scenarios must be reviewed to build consensus with decision makers. It is generally advisable to

involve relevant stakeholders and specialty engineers in each phase of the CONOPS development.

Obtaining inputs from specialty engineers prior to the establishment of a system design can help identify

key system functions or qualities, as they bring unique perspectives. When problems are identified, the

issue should be documented along with the resolution.

To refine the required functionality and performance from the MOEs, it can be helpful to discuss specific

examples of good and bad system behavior with the stakeholders (Maier, 2009) in that they may have a

significantly different perspective than the development team.



UseCase:Launch

E Properties
General
Tagged Values

8 Rules
Requirements
Constraints
scenarios

E9 Related
Files
Links

Scenario-
fBasic Path

Description structured specification

Step Action Uses
1 The User power the UAV

E 2 The UAV performs a self test and report the
status

9 3 The User provides configurations (including
MET data, payload, mission, etc) and
inializes GPS

9 4 The UAV acknowledges reception of data
9 5 The User places the UAV in/on a launcher
E 6 The UAV indicates readiness for launch
9 7 Thp I lIer lInehpt 116V

Entry Points Context References | Constraints

Step Path Name

Type:
j Basic Path

State ±

Join
0 Basic Path Basic Path -

2a BIT Failed Exception 1
4a Communication Error E xception 1
7a Launch Canceled Alternate End

SI ) Ij
Figure 44: Example of Scenario for UAV Launch

While text CONOPS documents can be generated directly from the model, more animated visualizations

based on the data captured in the tool can greatly facilitate the comprehension of complex data

(Mostashari et al., 2011). Several tools are starting to integrate or connect to external software

packages and can provide this capability.

Design reviews should be held regularly, at least one per concept development phase. This helps

perform verification at each level. Unlike the verification steps shown in the traditional system

engineering "Vee model", verification is not a single culminating event in MBSE efforts. Use case

99

IResults

IType



verification helps insure that the system will meet the stakeholder needs. By checking that each layer of

abstraction is correct, complete, and consent with the others, models can be constantly verified. The

intermediate work products become evidence of system integrity and the ability to meet the

requirements.

3.2.5 Requirements Development

Requirements documents are easy to read and disseminate. They are also necessary components of

development efforts due to their contractual use. For these reasons, it is unlikely that these traditional

mediums will ever be replaced by MBSE (Logan and Harvey, 2011). Specifying requirements in this form

is problematic however, because even the best documents are ambiguous and imprecise. Each

statement is normally written as "[The system] shall [perform a task]." By itself, this statement is

insufficient as several elements are omitted to make the statement easier to read. To truly understand

the requirement, it must be associated with:

e The trigger(s) that can initiate a function and the conditions where it can be received

* The expected performance associated with the function

e Any other associated, parallel functions

e Any data or objects that will be transmitted during the process

e The trigger(s) or results that terminate the function

e The resulting system and external conditions

By connecting the requirements with other modeling elements these associations can be identified,

reducing the ambiguity of the English language. To accommodate the needs of various programs, three

processes will be discussed for integrating requirement management with system descriptive models.

100



3.2.5.1. Traditional Requirements Analysis

As discussed earlier, text based requirements may be provided from customers in format such as

Microsoft Word, PDF, IBM DOORS database, rigorous models, or "hard copies". Often, each statement

is categorized as an interface, functional, or performance requirement. This source material should not

be treated as system requirements, as it may be inconsistent, unclear, impractical, or not testable. To

generate system requirements, the first step is to combine and assess all available information. All

collected data should be categorized, loaded to repositories, and linked to applicable views. If the

documents change, these should be explicitly tracked. It can be advantageous to name packages in the

model browser with the same name as the documents, as it simplifies reviews and linking.

System requirements will be derived from all available source material, but may require additional

information. This should be determined by reviewing use cases to determine the gaps. The desired

information may be implicit knowledge, captured only in the minds of users or other domain experts.

By reviewing the uses cases and assumptions, the knowledge may be extracted. Test, assembly, or

production requirements are often overlooked at this stage of development. However, it can be useful

to address these life-cycle needs to avoid solutions that are too expensive or not supportable.

Systems engineering teams should include hardware, software and problem specific domain experts to

assess the available information. They can help identify conflicting requirements early in the project,

preventing incompatible designs. Furthermore, these experts can identify unrealizable requirements or

those that would negatively impact development costs and schedules.

101



Once the system requirements are identified, they should be allocated to the applicable use cases. This

practice assists in the allocation of requirements to behavior and makes it easier for developers and

stakeholders to understand.

3.2.5.2. Use Case Based Requirement Analysis

Isolated requirements analysis can lead to a system that is technically correct, but does not meet the

customer needs. This is problematic as there is often more payback in getting the requirements right

than getting the design right (Ross, 2003). Using use cases and scenarios to generate the system

requirements can be very effective. This process generates requirement statements that mimic the

descriptive model elements. As the requirement statements and models contain the same basic

information, the system requirements in essence become "derived requirements". In the context of use

cases, requirements can be much easier for many stakeholders to understand. Capturing and

maintaining requirements in this fashion facilitates the tracing and allocation.

This technique focuses on the user's perspective rather than isolated requirements. Interface

requirements are generated for each actor in the context diagram. Functional requirement statements

can be generated for each system focused scenario statement. The use case and context diagrams can

also be used to determine the non-functional requirements, including the "ilities". Requirements such

as "security" or "interoperability" should never be accepted without an understanding of the actual

customer expectations (Maier, 2009). Each one should be applicable to specific use cases.

An example of capturing requirements per use case is shown in Figure 45. Performance requirements

can be generated after considering the needs and attributes of each use case. By considering the needs

of each actor, requirements for often ignored issues such as security, culture, political, and legal

102



concerns can be identified. This also helps to insure that requirements are generated to address each

phase of the system lifecycle.

Scope: P e Fue survivabilit y

Bctiq PrFoperties

Del Type: p f acisheda b mission
Tagged Values

8 Rules inUiaVAu 50
ConstraintslSta 

ardnyph-
Ains ISRD-6

Scope: Iuicg- r static r cont r Is itea

containment |N4otSpecified r Propeoty

Notes

Survivabilty is defin-ed as "the capabilty of a system to avoid or^
withstand hostie natural and rnade envionments without
suffering abortive irnpairrnent of its abity to accomplish its,

... J aVei Delete
Name Tiniulvalue j Al

etha (number of) sdt targets d.. 0
e range (Objective) kilometers 300
*range (TIveshold) kiometers 140
0reiabity hours 72
gaurvivabk percn of accompihd... 50 

Figure 45: Capturing Requirements as Use Case Attributes

Requirements should express only what is not acceptable. Reviews should insure that no additional

constrains have been levied and that all documented assumptions have been validated by the

stakeholders. By developing the requirements though MBSE techniques, the labor required for this

effort will be minimized (Oliver et al.).

If a separate requirements management database (e.g., DOORS) is used, the requirements must be

updated after each iteration. Additional steps may be required to trace each requirement to the use

case or interface.

103



3.2.5.3. Strict Model-Based Requirements Analysis

While creating text-based requirements from use cases or other model elements produces

requirements that accuracy capture the desired system operation, this translation can be error prone

and requires additional maintenance. Emerging MBSE tools and methodologies enable the efficient

communication of the system requirements while minimizing the text based requirements (London,

2011). These processes develop text requirement documents directly from the interface, functional,

and performance descriptions in the model.

The key customer requirements, the MOE, can be refined with use case specific attributes (Brito et al.).

They capture the performance requirements, defining the necessary characteristics in engineering

terms. Each system focused scenario statement is in essence a black box functional requirement. The

attributes and constraints can completely and accurately define the needs of each actor. By capturing

the attributes of the actors, such as the environment, the interface requirement can be specified. If

necessary, they can be decomposed further to the individual activities.

While there are obvious benefits to these techniques, there may be issues with crosscutting attributes,

those associated with multiple use cases (Brito et al.). These may appear as redundant in the auto-

generated documentation. Techniques to identify and remove duplicate requirements must be used.

3.2.6 Requirement Prioritization

Problem definition is performed properly only if the development team can objectively and rationally

rank solution alternatives (Maier, 2009). The priorities are used in trade studies to select the system

concept. Generally, a subset of the requirements is used; perhaps three to fifteen in number even for

104



large complex systems (Oliver et al., 1997). They are the criteria that drive the project success or failure.

If stakeholders cannot agree on what the most import requirements are, there will be future problems,

because they form the criteria for the final concept selection.

To select the optimum concept, development teams should use the previously identified MOE. Using

MOEs in this way helps mitigate the risk of artificially limiting the trade space. As the MOEs' relative

values can be subjective, their values should be defined by the key stakeholders. However, most

customers struggle with articulating their preferences (Ross and Rhodes, 2008).

If stakeholders are expected to be able to truthfully communicate their preferences, a number of

techniques have been developed to elicit the requirement weights. The priorities can be obtained by

surveying the preferences of owners, operators, or potential users. Once identified, the preferences can

be recorded using the requirements' attributes or "tagged values" in MBSE tools, as shown in Figure 46.

As the weights can be very subjective, it can be helpful to force stakeholders to make decisions about

the comparative significance of the criteria by insuring that the weights must add up to a fixed number,

normally 1 or 10.

It is difficult and sometimes impossible to know the actual requirements priorities until end-users have

an opportunity to acquaint themselves with the final system or at least with a realistic representation

(Ogren, 2000). Survey results from those shown the alternative designs are likely to be different.

Therefore, it may be helpful to conduct or repeat the surveys once the final candidate solutions are

identified. If the desired system is not well understood, the priorities may not be obtainable. Any

trusted preferences information should be captured, but priorities should not be artificially created.

Trade study techniques exist for such conditions, and will be discussed in Section 3.5.1.

105



El Properties
Properties
SysMVL1.1I

G- Related
Links
Files

8 Requirement (Range)
Priority 0.2

OF 46ntai Help

Figure 46: Static Requirement Prioritization

3.2.7 Verification Methods

Verification methods must be associated with each requirement. Before identifying how the verification

will be performed, the fact that it is possible determined. Some MOEs are created at a high level,

however they can be difficult to verify. For a requirement to be verifiable there must be a qualitative or

quantitative measure that can assess if the design satisfies the requirement. Once the requirements are

deemed to be verifiable, the method to achieve this must be designated. The possible verification

methods are: (1) inspection, (2) analysis, (3) test, or (4) demonstration.

The verification methods can be decomposed to different "test cases". While the verification methods

are useful, test cases provide more insight on the actual verification methods. Use cases, scenarios, and

106

VRequirem-ent



associated requirements can be duplicated and modified to develop the test cases and associated

verification procedures as they are their primary sources. An example of this is shown in Figure 47.

Often the test cases are generated in parallel to the original design, but early test case development can

identify additional capabilities that should be included in the system design to support integration and

test activities. Test case details can be developed in a similar fashion to scenarios, using actors to

represent the people and external equipment involved. These become the test plans and procedures.

Developing tests and manufacturing processes before completing the design insure that all required

functionality and features are included. To put it simply, this helps insure the system is designed right

the first time.

arequirementa

Endurance

notes
The UAV shall have a ninirwm
loiter tirre of 60 rinutes.

I v

trify" 'verify" "vent y

arequirement-

Target Designation

notes
The UA V shall designate up to
45 (TBR) targets.
Corrmrnt: To annihilate enemiy
the UA V would be required to
designate at least 100-200.
There nray be up to 1600

Ltargets.

averify"

X
Demonstration

Figure 47: Verification Methods and Test Cases

107

arequirementw-C

Range

notes
The UA V shall have a range of
60 km
Conrrrnts:

\ (

-requirementn-
Time To Target

Th A hnotes
Th /A hl reach the target

position within 20 nyinutes.

\ |



3.2.8 Requirements and Design Reviews

Once the requirement verification methods have been defined, the requirements and the verification

methods should be reviewed. If the development methodology was followed, the use cases and

scenarios should be generally accepted after having been previously reviewed. As the requirements

should be based on the scenarios, fewer questions should be expected. The review should be focused

on ensuring the requirements are correct, unambiguous, verifiable, and consistent with the MOE, use

cases and other views.

The design should be evaluated at every level with informal reviews taking place regularly with the

design team. It can also be beneficial to include other stakeholders on a monthly basis. As discussed

earlier, model execution aids in this simulation and helps verify completeness, consistently, and

accuracy. Specialized simulation tools can also be incorporated for these reviews as some stakeholders

may struggle with SysML and navigation of the model.

3.3 Architecture Definition

Architecture can be a process or a description. Edward Crawley defines architecture as the mapping of

function to form, or what the system does to what the system is (Crawley 2007). His definition of

function is identical to the SysML's behavior. He defines function as the operations and transformations

that cause, create, or contribute to performance. Professor Crawley's definition of form also translates

well to the SysML structural constructs, capturing the physical and informational elements of a design.

ISO/IEC 42010, the international standard for architecture descriptions of systems and software, defines

architecture as "the fundamental organization of a system embodied in its components and their

108



relationship to each other and the environment and the principles guiding its design and evolution."

(Logan and Harvey, 2011)

The methodology used to generate these descriptions is analogous to the those performed by architects

(Maier, 2009). An architect designing a building works with customers to identify their needs, and based

on their intended uses and tastes, he or she will design a structure. The architect also works closely with

builders, civil engineers, plumbers, electricians, and decorators to refine the design and see it realized.

Over the past decade, CAD tools have emerged to improve this process.

The development of a complex system architecture using MBSE follows a similar process. It uses an

integrated environment to capture designs and collaborate with other stakeholders. After identifying

the indented uses and needs, the specific uses are identified (e.g., sleep 5 people, provide space for the

family to watch TV, host 12 person dinners), conceptual designs are developed (two story colonial), and

finally an implementation is developed through close collaboration with various domain experts.

Architectures define the invariant design aspects that enable the creation of product families (Oliver et

al., 1997). Families of alternative concepts must be generated in a consistent manner to be compared

against the stakeholder needs. To accomplish this efficiently, reference architectures can be developed

by defining behavior separately from structure. It is generally advisable to start with behavioral

modeling, as indicated in Figure 48. Form follows function because behavior usually captures the user

needs better than structure (Crawley 2007). Once the conceptual system-level behavior is defined, the

structural models must be developed.

Care must be taken to not make decisions prematurely that artificially constrain the design. The initial

structural models should be free of any implementation-specific terminology that could subconsciously

109



limit the tradespace (i.e., in lieu of "keyboard" use "data entry mechanism"). Using instances and

aggregation of these abstractions rigorously, the effort to manipulate and design several alternatives is

reduced. This is the essence of architecting. If the team does not start with a conceptual design, the

alternative implementations will not share an architecture (Maier, 2009). Without a common platform,

it may be difficult to compare the alternatives, and any modifications could require complete redesigns.

Varifj and Iterate --

Define Behavior

Legend

Suggested Start

[Verified]

( S o
Identify PsAble Soluticnis

Figure 48: Architecture Definition Process

110

Problem Definition

Defi no Structure

,P:



Once the alternative physical implementations are identified, behavior can be partitioned and allocated

to each structural element. In reality, most of the behavior and structural design is performed

concurrently. This may be difficult to do without inferring or assuming a particular technical solution

(Vitech Corporation, 2011). While it requires a surprising amount of discipline, adhering to conceptual

modeling can yield truly innovative solutions, simplify the trade studies, and enable product platforms.

3.3.1 Functionality Analysis

Several different, but connected views are required to adequately define the system architecture

(Maier, 2009). A single diagram cannot and should not try to capture all the necessary information. The

system behavior can be completely defined by using a combination of SysML activity, state, and

sequence diagrams. The suite of SysML diagrams can capture the behavior in a rigorous and executable

form. This is crucial as a poor or incorrect functional analysis will lead to deficient physical

implementations (Oliver et al., 1997). Depending on the application, teams may choose to start by

developing any of the three behavior diagrams.

Activity diagrams describe all of the possible flows of behavior and the interactions between external

actors and the system. This is a natural starting point after development of scenarios as indicated using

the green arrow in Figure 48. Sequence diagrams describe the timing for specific threads of behavior. If

timing is the crucial element of system behavior, the developers may choose to start by creating

sequence diagrams. Alternatively, if the system is strongly state dependant, this may be a preferable

starting point. While these states may have become apparent during the scenario development, it is

likely that aggregating activity diagrams may be a more effective way to generate state diagrams.

111



It is generally advisable to start defining the behavior that corresponds with the use cases that contain

the most uncertainty or provide the most benefit to the user. Unresolved issues can be identified and

researched. Multiple iterative cycles will be required, but capturing the team's understanding and

assumptions will help identify the "unknown unknowns".

Each type of diagram is not required for every application. Engineers should only model what they need

to capture. By navigating through the different views, development teams can assess the design, model

maturity, and completeness.

3.3.1.1. Activity Diagrams

Activity diagrams are natural extensions of the scenarios. As discussed earlier, some tools use activities

to describe scenarios, while others directly create them from text descriptions. Additional analyses of

the auto-generated activities are usually required as the system logic is fully developed. One of the first

required steps is to separate the activities performed by the system and the external actors, such as the

environment. Some processes suggest capturing both the external behaviors that excite the system and

those performed by the system in response. These diagrams allocate the activities to the appropriate

element, (i.e., system, actors) as shown in Figure 49. Hans-Peter Hoffmann warns against this practice

stating that three times more time is spent specifying the actor's behavior than on the system

(Hoffmann, 2001). When any allocation is performed, it can be achieved using partitions, also known as

swimlanes. The partitions should be linked to their associated elements to insure proper traceability.

The activities must be decomposed to break up the problem into solvable pieces. The resulting level of

detail must be sufficient to effectively partition the system behavior to its subsystems while preserving

its performance characteristics.

112



It is crucial to consider the functional order and flow. If alternative paths can be performed, this must

be captured. Concurrent, parallel behavior should also be made explicit. Cyclic, also known as "looping"

or "iterative", behaviors are common in complex systems. They too should be explicitly shown. Using

activity decomposition and logic transitions, views can be created to clearly convey this critical behavior.

An example of an activity diagram describing a UAV system interaction with multiple stakeholders is

shown in Figure 49.

act Launch Data

:UAV Launcher :User :UA :GPS

Start

-data ype- Seoft

Initialization Data

dataType o Status Activitynitial

[UAV Set] -dataType- GPS P(Y) Code,
-dataTypen, GPS M-code

:UAV

-continuous-

1GPS Acquired)

-dataType- Status

ActivityFinal

ME W - La unchn

0End

Figure 49: Example of an Activity Diagram

When developing the behavioral sequences, both the control and data flows must be considered. The

items that trigger the initiation or termination of activities must be specified. Often more than one

113



triggering item may be possible, so the appropriate level of abstraction should be considered. Every

system input and output must be properly addressed, including those that are unintended or wanted.

The response should be also identified and specified. Often customers and subject matter experts can

provide the crucial information on the stimuli and response.

The exchanged information and object characteristics, including the range of possible values and units,

must be considered. Instead of adding text descriptions of the data exchanged, "libraries" of units,

interfaces, data-types, and specific messages can be created. Not only will consistency across the design

be insured, but interface control documents can be automatically generated.

Once the initial control flows are developed, the exchange of data and objects can added. This can lead

the team through a second cycle of discovery as new activities are identified and others modified. After

the views are updated to reflect the new information, they should be reviewed. The error handling and

fault recovery for the system should be questioned. Each activity should be named with solution neutral

terms. For example, instead of "burn fuel" an activity should be named "transform potential energy to

kinetic energy." This allows implementations that do not burn fuel, such as a glider, preventing the early

exclusion of possible solutions.

At times it may be beneficial to generate multiple diagrams in order to clearly describe the behavior.

Simple views also help focus the reader on a specific message. However, the distribution of information

can result in the apparent duplication of functions. Confusion can result from the generation of similar

functions with different names or functions with the same name that handle different types of

information (Vitech Corporation, 2011). The adoption of modeling standards can minimize these issues.

114



One of the benefits of SysML activity diagrams is being able to capture the cyclic behaviors without

additional decision nodes. Figure 50 depicts two options. Both are grammatically correct, but Method 1

uses fewer constructs. This can significantly reduce the clutter present in complex behavior

descriptions.

Loop Method 1 Loop Method 2
Acti vityinitial Acti vitylniti a]

[Criteri a A]

[El s]

Criteria A]
ActivityFinal

[E Ise]

ActivityFinal

Figure 50: Alternative Methods for Depicting Cyclic Activities

3.3.1.2. Sequence Diagrams

Sequence diagrams are extremely useful in analyzing the exchange of information. They can be used to

identify the duration of functions, the rate in which inputs are consumed, and the rate they are output.

While sequence diagrams only show one potential thread through the activities, the important

information can be captured with a subset of the flows. Like other forms of modeling, generating

sequences is a discovery process which often leads to realizations of challenges with timing, bandwidth,

115



or errors in activity diagrams. These views offer a means of early issue detection. An example of the

sequence diagram describing UAV communication is shown in Figure 51.

sd 1_BasicPath

:User

1.The Userpowerthe UAV()

:CGPS :Launcher

2.The UAV performs a self test and
report the status(

3.The User provides configurations (including MIT data, payload, mission, etc) and inializesGPS_

4.The UAV aclnowledges
reception of datao

5.The User placesthe UAV in/on a launcher

6.The UAV indicates readiness
for launcho

Figure 51: Example of UAV Sequence Diagram

3.3.1.3. System State

State diagrams are most useful for aggregating similar behavior. Several activity diagrams can be

combined and linked to state diagrams. The integration can be achieved by looking for common stimuli,

interfaces, or functionality. The thought process required to aggregate the independent activities into a

coherent behavior model is important. If scenarios and response threads cannot be coherently

combined, they likely contain several errors. Independent descriptions of behavior must be combined

to avoid integration problems when the system is built and assembled. The complexity of the state

116

:UAV



diagram can also indicate if the aggregation was properly performed. If the state diagram is too large or

complicated, it may be beneficial to combine more activity diagrams. The opposite may be true for

diagrams with only "On" and "Off' states. Many tools use states as the basis for model execution, which

stresses the importance of state diagrams. An example state diagram capturing the UAV states is shown

in Figure 52.

stm [Package] System Behavior [System Behavior]

Initial Off

Power Removed

Power is Received

EntryPoint

Trigger Detected Else

Checkout
Initialization Tracking

Nav Error Detected

O/\

Nav Error Detected

Track Command Received

Navigation Solution Obtained

Guidance Search Command Received Search

Figure 52: Example of a UAV State Diagram

3.3.1.4. Simulation and Analysis

117



In MBSE, one of the key benefits is being able to produce an executable model. Nearly every MBSE tool

has this functionality integrated or available via a plug-in. The fact that a model can be executed

indicates that no "grammatical" errors were created by the development teams. The primary benefit of

the execution is the understanding obtained through the dynamic visualization. Consider trying to learn

about the human heart. If views of the four chambers and flow of blood were shown, a fundamental

comprehension of its architecture could be gained. If instead, a video showed the beating and exchange

of blood in slow motion, observers would obtain a much deeper understanding of the heart. By

simulating the behavior based on a set of stimuli, the designs can be verified to be right and meet the

needs of the stakeholders.

The systems engineering field has developed a number of tools to support effective design analysis and

optimization. By exporting designs captured in modeling tools to Microsoft Excel or other commercial

engineering tools, powerful, legacy tools can be used in conjunction with MBSE methodologies. By

exporting model data, these tools can be applied to MBSE projects. As one example, design structure

matrices (DSM) can be used to analyze the flow of behavior or data between elements in complex

systems by helping visualize their relationships.

External simulation tools can be integrated with the MBSE tools to provide various triggers and

messages for the simulation. Also, graphical packages can be integrated to create more powerful

visualization simulations. This can be an effective capability for communicating with customers and

other high level stakeholders.

3.3.2 Structural Analysis

118



Structural analysis is performed to develop a system's physical hierarchy and to identify the interfaces

between internal and external components. At each level of hierarchy, the system is represented using

several views. The enumeration and description of the components is specified in block definition

diagrams, while the component interfaces are defined using internal block diagrams.

3.3.2.1. System Decomposition

Structural model development begins by decomposing the system using BDDs. This hierarchy of parts is

a fundamental systems engineering abstraction used to simplify analyses. Often many of these objects

are identified during the behavioral analysis as most people can think more effectively by using

examples. The decomposition must insure that each system component is captured. As humans cannot

consider the complete set of components, levels of hierarchy are used to divide systems into

subsystems and subsystems into lower-level components. The aggregation is often best achieved by

decomposing into five to nine elements (Oliver et al., 1997).

Effective partitioning should be based on the criterion most applicable to the problem and design space.

Options for the primary criterion include: interface complexity, functionality and performance

implications, modularity (support for technology insertion or replacement), and component risk (Vitech

Corporation, 2011).

BDDs provide the capability of representing dense amounts of data. Attributes used to capture the

performance metrics can be shown in the hierarchy. While subsystem performance characteristics can

be redefined (e.g., failure rate could be changed to mean time to failure) their relationship to the MOEs

must be made apparent and preserved so they can later be evaluated against the trade criterion.

119



Subsystem interfaces can be specified in the BDDs, but must be implemented in IBDs. If interfaces are

added, care must be taken not to overwhelm the reader with too much information.

3.3.2.1.1. Conceptual Decomposition

It is advisable to maintain options as long as possible in the design and implementation of complex

systems in that they will be needed in future design phases. Similarly, MBSE is most effective when

elements can be reused as often as possible. Using multiple levels of abstraction can greatly enhance

this. The options for each element can be collected in a catalogue for future reuse.

To accommodate this practice, the decomposition and interface definition should be performed using

conceptual elements. The implementation of these elements can be specified later and linked to the

existing views. Designs are moving targets and in the early phases there is little benefit to constraining

the tradespace. As shown in Figure 53, conceptual names should be selected to avoid subconsciously

focusing the design team (i.e., In lieu of "radio" name a block "communication device"). Structural

models change rapidly if selected implementation and available technologies are in flux, but behavior

and conceptual designs are relatively stable (Vitech Corporation, 2011). If an implementation must

change it is relatively easy to determine the impact by reviewing the possible changes to the conceptual

view through the model's traceability.

120



Figure 53: Conceptual UAV Decomposition

This methodology supports the development of product families. Architectures and common

components can be used for multiple products reducing the overall development time and lifecycle

costs. Changes between model versions are explicit due to the model's native traceability.

3.3.2.1.2. Implementation

Based on the conceptual physical architectures, specific implementations can be developed. Several

structural alternatives may need to be carried forward to tradeoff analysis. The choices under

consideration can be expressed directly in the modeling. All of the important attributes must be

captured (e.g., weight, volume, engine horsepower). Budgeted values for these attributes can be

supplied to use as design targets for lower level design. Assumptions and descriptions of applicability

can be added to the views (Paredis). This information assists domain specialists assess the

implementations to determine their feasibility.

121



Implementations can inherit features specified by the conceptual objects. Attributes and ports that are

commonly created for conceptual designs are leveraged in design implementations. This reduces

rework and insures consistency across a number of designs and views.

A physical decomposition for a specific UAV implementation, identified as FastLook, is shown in Figure

54. Each block indicates the conceptual object it implements. For example, the FastLook UAV uses a

projectile as the "containment subsystem" specified in Figure 53.

bdd [Package] FastLook [FastLook]

Figure 54: Example of an Implementation Specific Structural Decomposition

As the number of alternatives under consideration can be quite large, traditional systems engineering

tools should support the design optimization. One way to compactly represent the set of combinations

from which options can be generated is a Morphological Matrix. These matrices can be generated from

modeling tools once alternative technologies or implementations are identified.

122



It may not be necessary to create SysML objects for each alternative concept or available technology.

Some developers may prefer maintaining the full list in non-MBSE tools. Hyperlinks can be used to

connect the complete list of options to conceptual views. When the team feels it is appropriate, the

most likely candidates can be added and refined in the model.

Development teams may seek to perform risk reduction development or experiments based on the

identification of candidate solutions. Depending on the number and type of alternativeness, systems

engineers may choose to use design of experiments (DOE), a common statistical procedure for planning

experiments to efficiently obtain data (Box et al., 1978). The variables, called factors in DOE, and their

values, known as levels, can be generated based on alterative captured in the model. Any resulting data

can be imported and attributed to a concept if desired. To generate these variables it may be useful to

create instances in BDDs, not the standard IBDs to capture and organize the numerical quantities (Cole

et al., 2010). Each instance can be copied to the IBDs as needed.

3.3.2.2. System Composition

Once the system structure is defined, the composition must be specified. This is generally performed

using IBDs. While conceptual compositions can be created to define platform architectures, these views

are often reserved for modeling of specific implementations. They describe the subsystems interfaces

and relationships. The creation of these views normally leads to significant discoveries. Systems

engineers should solicit information from subject matter experts regarding their biggest concerns (e.g.,

electromagnetic interference, self heating, packaging). These factors could then be added to views to

specifically address each of these concerns.

123



SysML provides three options for specifying interfaces: (1) standard ports, used to provide abstract

interfaces representing provided or requested services (2) flow ports, used for combinations of

mechanical and data interfaces, and (3) nested ports, used to decompose the structural and data

descriptions. Nested ports provide for greater reuse and clarity as different levels of abstraction, and

can fully describe the interface (Friedenthal, 2011).

Once the interfaces are defined, the flow of objects over each one can be identified. This may be

information, materials, data, or energy. The data types and elements should be added to model

libraries to increase their reuse across programs. This practice helps maintain consistency, as different

terminology could be used if text was used to describe the flow of objects. The development of concept

specific libraries also facilitates the automatic generation of interface control documents. Different

levels of arbitrations should be used to capture the object categories, values, units, or other details. An

example of the IBD showing the subsystem communication interfaces is shown in Figure 55.

composite structure QuickLook

F-4-
FastLook / <flowPort- GPS Antenna

Camera : GB02139 ,lwoL-GP

FastLookAvioni "flowPort, Telemetry & Commands
uflowPort- 1/O 3

-flowPort- Camera

",flow[Port" Data

-flowPort- Control Actuator$afo 
ornDt

:C-Band LOS Data
Link

"flowPortn Antenna

aflowPort- Commands <lwot Ste flowPortn
Communication Antenna

Figure 55: Example of UAV Subsystem Interfaces

124



Any of the inputs may be a trigger for activities or state transitions. Therefore, it is important to identify

how long an exchange persists, and its impact to the ordering of functions. This is achieved by

examining the allocation of behavior to structure.

3.3.3 Allocation of Behavior to Structure

To complete a concepts' architectural description, the manner in which behavior is allocated to

structure must be explicitly defined. By specifying the relationship between the physical components

and behavior, the design consistency can be verified. Developers can insure that the data and objects

exchanged in the behavior models are consistently mapped to ports in the structural views. Any

overlooked or incomplete designs can be detected through this process. The allocation completes the

system traceability as the structure, behavior, data, and requirements are all connected.

As shown in Figure 49, partitions (swimlanes) are an effective way to perform this allocation. Some

methodologies and tools require explicit SysML constructs to formally define the relationship. They also

recommend partitioning the behavior diagrams, but the constructs are only used to visually convey the

allocation. It is often beneficial to note the rationale behind the allotment as it may be questioned in

the future.

The execution of allocated behavior models provides an excellent means of verifying the design. The

execution identifies design flaws such as endless processing loops, elements waiting for a message from

each other, and improper distribution or assessment of performance. Trial behavior allocation can be

easily updated or discarded if the architectures are incapable of meeting the system requirements.

125



The mapping of behavior to structure will also provide an assessment of the concepts' performance with

respect to meet the MOEs. However, to obtain more a more detailed assessment, the performance

metrics should be calculated directly.

3.3.4 Constraint and Relationship Definition

Each component contains a set of critical attributes that directly impacts the total system performance.

These attributes are application specific, but may include parameters such as accuracy, weight, cost,

power consumption, or reliability. When isolated drawings tools are used to capture the design, these

parameters are defined in isolated documents and databases. In these situations, each design and

analysis must separately maintain the attributes. However, by using parametrics to define the

relationship at different levels of abstraction and by using elements from libraries, the attributes can be

consistently defined, tracked, and reused. This provides an effective methodology for the definition of

detailed characteristics, physical laws, and external systems constraints.

Figure 56 provides an example of a parametric diagram describing the relationship between the UAV

subsystems' weight and propulsion power. The view indicates that the system weight is the sum of the

subsystems' weights and the power balance drops as power is drawn by each subsystem. Other views

can be created to calculate the UAV range based on factors such as total weight, force, and lift. By

linking these attributes, the consistency of the values can be insured. As a result, the model can be used

in conjunction with simulations to determine if concepts can meet their performance goals when

constraints such as weight and available power are varied.

126



powePfopu :
KW

powernt:
KW Krot pow - KW

Figure 56: Parametric Diagram Relating Weight to Propulsion Power (InterCAX LLC, 2011)

Parametrics can be used in conjunction with requirements constructs to flow down requirements to

subsystems. If subsystem requirements are based on values or properties of system performance,

MOEs, or other systems, it is more effective to dynamically link the values than to use requirement

elements. By capturing the relationships between requirements and constraint blocks, a concept's

ability to meet specific requirements can be verified. This capability will enable reviewers to insure

consistency, validate assumptions, and assess tradeoffs.

Block attributes and parametrics also provide a means of exchanging values and value types to other

model based tools. For example, the values for each subsystem in Figure 56 could be acquired from

mechanical CAD models created in tools such as SolidWorks or ProEngineer.

127



When creating parametric diagrams the inputs and outputs to attributes must be assigned. The views

can also insure that the attributes are specified with the appropriate units (i.e., kg, KW), as shown in

Figure 56. Values can then be assigned to the parameters and saved for later reference. Once the

models are executed, the simulation input values and results should be stored to provide the

documented rationale for the future decisions.

One of the primary purposes of these diagrams is to perform trade studies. Parametrics can be used to

define and evaluate performance, reliability and other physical characteristics. An example of a

parametric diagram created to compute the UAV coverage is shown in Figure 57. This diagram shows

the constructs and relationships that evaluate how well a concept can meet the range and endurance

requirements. Other views such as the one in Figure 26 can related the equations to the MOEs.

A 3abeIulleds 
RalI

tme : Real [Hi m

Figure 57: Parametric Model of UAV Coverage Analysis (InterCAX LLC, 2011)

Paramedics are an effective means of capturing executable constraints based on mathematical

relationships and element attributes. However, MBSE tools may have processing and execution

limitations. Dedicated analysis and optimization tools such as MathWorks MATLAB, Microsoft Excel, and

Wolfram Research Mathematica will most likely continue to be the preferred trade study tools.

128

berAvailableAircra ResI
nnu: Roal H

it: Scanningl5cln

F nasz : RW

R"I



Parametric diagrams can be used in conjunction with these tools to define and capture the relationships,

but the calculations could be performed by external tools. For example, if utility curves are to be used

for a trade study, they could be developed in parametric diagrams and externally executed in MATLAB.

3.3.5 Domain Expert Collaboration

A critical component of systems engineering is the collaboration with other domain experts, a necessary

aspect of all large, complex programs. Each domain has different perspectives, concerns, and tools.

While the MBSE tools do not, and should not, seek to replace the functionality of the domain specific

views, a suitable "handoff" must be identified. These views must provide the information required by

each teammate in a format that that can easily understand. When separately described, the views or

"requirements" can be efficiently communicated to the respective engineering domains.

3.3.5.1. Collaboration with Software Domain Experts

The interface to software engineers is one of the simplest as SysML is an extension to UML and many

MBSE tools include support for model-based software development. While systems and software teams

can use the same development tools, a specific handoff should be established.

When decomposing the system, the software and hardware components and their interfaces must be

specified. Systems engineers often decompose the software into its major components (e.g., operating

system, web browser, word processor). The blocks should be the interface to software developers.

They represent Computer Software Configuration Items (CSCI) and are traditionally developed based on

a software requirement specification (SRS).

129



If the software development team can access the MBSE repository, a standalone SRS may not be

required. It also depends on the structure and formality of the development effort. If this is the case,

the interfaces, data elements, and activities specified in the systems models form the requirements for

the software team. They must insure that the software design is traced to each of these elements.

Weekly software and systems reviews may be required to insure that this is done consistently, but these

informal reviews also serve to improve the design quality. If an SRS is needed, it can be generated from

the systems model like other requirement documents.

3.3.5.2. Collaboration with Electrical Domain Experts

The handoff to electrical engineers can be created using IBDs to specifically address their needs. The

electrical perspective provides insight on all electrical connections in the system, such as boards, cables,

connectors, and signal levels. The views can be limited to high-level designs or be very detailed like a

wiring scheme. This depends on the application and design team. Systems engineers and MBSE tools

should not replace domain engineers or their tools, but teams may choose to document the electrical

engineer's design in SysML views in lieu of Visio or PowerPoint. However, many design teams may

believe that this is not appropriate. It is dependent on the team experience and preferences.

Either approach can be supported using IDBs and reviews with electrical engineers. Flow or nested

ports can be used as placeholders for connectors. Once the connectors are specified, they can be

defined using one of the elements in a library. Connections between elements can be shown using

associations with specifically assigned cables captured as blocks. Systems engineers will envision the

high-level connections early in the development process. These views can be instrumental in allowing

electrical engineers to verify any design decisions or raise concerns.

130



3.3.5.3. Mechanical Domain Perspective

The mechanical engineering handoff is one of the simplest and most abstract. Initial mechanical

depictions are often cartoons of the concepts identifying where the primary components are located.

Even this high-level view should not be created in MBSE tools. The mechanical perspective shows how

system elements are connected and interact mechanically. These views should be created in other

modeling or drawing tools, and linked or copied to the MBSE views. As the designs mature, each system

component should have a corresponding mechanical CAD model. Properties, like design, materials, and

dimensions should be synchronized between MBSE and mechanical CAD tools.

In order to create these initial concepts, mechanical engineers must understand the constraints. Only

external constraints may be identified initially, but internal constrains will be identified as concepts

mature. For example, when developing UAV concepts, the size and form will initially be constrained by

external entities such as the launch system. Once subsystems are identified, the internal constrains will

emerge including expected component geometries (e.g., cylindrical, rectangular), connector position

(e.g., top, bottom), or volume (e.g., battery will likely be about six cubic centimeters). These constraints

should be provided as abstractly as possible to avoid unnecessarily constraining designers. The BDDs

depicting the constraints provide an effective means of accomplishing this handoff.

3.4 Generation of Alternatives

Concept development trade studies require the establishment of distinct alternative solutions to a

specified problem. A number of existing, non-domain specific methods have been developed by

engineering, marketing, and other creative disciplines to generate these options. The technique

131



selection is often dependant on the problem being solved and the amount of information available. Any

of these can be used in conjunction of this framework.

The generation of alternatives is focused on identifying options that are expected to meet the

stakeholder needs in order to compare them in a subsequent analysis. As shown in Figure 58, three

activities generally take place during this phase. Alternatives are identified, assessed, and instigate risk

mitigation activities. While they are shown as sequential activities, they are often performed iteratively.

Most Important Requirements Constraints Available
- Capabilities of Interest Technologies Candidate
- Measures Of Effectiveness Solutions

Risk/ Performance
[Else] Assessment

Activitynitialn
/Kt\

Alternative CONOPS/ Risks

Solutions Behav ior Models

ActivityFinal

[2 to 10 Candidate Feasible
Solutions Identified]

Evaluate Options

Figure 58: Generation of Alternatives

Pugh advocated that product development teams engage in an iterative process of reducing and adding

to the concepts under consideration (Hale and Quayle, 2009). This can be performed using a systematic

downselection process known as "controlled convergence", depicted in Figure 59. By sequentially

expanding and contracting the problem, a larger number of concepts can be considered without

overwhelming the development team (Maier, 2009). The downselection process postpones making

132



decisions until sufficient information is available to describe an option. It prevents making "bad"

decisions, and helps focus the team on the key trade-offs.

<- Initial Coincept (eneration >

<-Initial Number Reduced ->

Ones

Concept Selected

Figure 59: Controlled Convergence

Some efforts seek to solve specific problems while others are looking for new opportunities. Either one

can use the previously specified MOEs as the basis for generating alternatives. While some processes

incrementally provide the requirements to those proposing alternatives, they should all be disclosed by

the end of the exercise.

A number of existing techniques are known to facilitate the generation of alternatives. Some of these

are discussed in Section 2.1.3. They include tools for collecting expert insight and ideas, identifying

complete concepts, and cataloging representative solutions. Some are best for identifying potential

solutions that can meet each requirement, while others are better for listing alternatives for each

function. Most projects find it beneficial to collect as many diverse options as possible. Even wild ideas

133



can lead to the identification of one that meet will meet the system goals. The technique should be

selected based on the problem context and program phase. However, it is likely that the several

techniques will be used as efforts proceed through sequential generation and assessment cycles.

While it is important to document each generated idea, it is not required to capture the list in a MBSE

language. Often, maintaining a list in its original form (e.g., flipboards, pictures) or in another tool (e.g.,

spreadsheets, word documents) is equally useful. Electronic copies can be stored to a repository and

linked to the model.

After identifying the alternatives, developers must determine if they could yield a viable solution. Each

candidate should be qualitatively compared to determine if it should be carried forward into the trade

study. The criterion may include the MOEs, CONOPS, "the -ilities", development time, affordability,

available technologies, and risk tolerance. Other situation dependant factors include environmental

impact, failure modes, hazard analysis, or technical obsolescence. Based on these factors the strengths,

weaknesses, opportunities, and threats of these alternatives can be determined. Some processes

compare each alternative against each other, while others evaluate the concepts against a benchmark.

An effective technique for the assessment is to rank the concepts, and to discard those that fall below a

feasibility threshold.

The results of the analysis should be shared with the team and other decision makers. Involving all

stakeholders to eliminate non-viable concepts early can reduce the potential for wasted effort. With

each assessment and review, new information is revealed about the decision criteria. Teams can obtain

a better understanding of what is feasible and truly important. New ideas may be generated as based

on this information.

134



If a subset of alternatives appears to satisfy constraints and achieve the stakeholder needs, then this

subset can be carried through another cycle or to a more detailed evaluation. If feasible options cannot

be identified to meet the specified system performance, then the requirements should be revisited and

relaxed. This is less likely to occur with the MBSE Concept Development Framework as the

requirements should not be unnecessarily constraining. However, customers may seek capabilities that

are beyond the limits of technology given a certain risk and cost tolerance. The assessment should

provide sufficient details to allow stakeholders to identify the constraints that may be relaxed, if any.

The evaluation will most likely be performed in an electronic medium. Whenever possible, tools, inputs,

and results should be linked to the model to provide a common location for finding information as

design decisions are revisited. The process ends with a fully defined catalog of alternatives, describing

the parameters, ranges, and possible combinations. The results of each assessment should be imported

to the SysML tool where they can be reused for current and future design efforts. Many tools can

import data in spreadsheets or tables to minimize the manual data entry and prevent "copy and paste"

errors. Figure 60 depicts several alternatives methods to create lift for a UAV concept. These options

could have been the only ones that were imported to the model after an evaluation cycle deselected

others such as balloon or rocket. Instances of each of option can be defined for each system concept.

The values of each attributes could be defined in other tools, and imported to the model, further

reducing possible error sources or inconsistencies.

135



bdd [Package] Lift Supplier [Lift Supplier]

"block
Wing

Fixed Wing

::Lift Supplier
+ lift coefficient :newton
+ size :square meter
+ weight :klograms

Inflatable Wing

::Lift Supplier
+ lift coefficient :newton
+ size :square meter
+ weight ilograms

,block.
Subsystems::ift Supplier

+ lift coefficient :newton
+ size :squaremeter
+ weight :kilograms

ablock o
Parachute

::ift Supplier
+ lift coefficient :newton
+ size :square meter
+ weight :klograms

constraints
{Weight})

Folding Wing

::if Supplier
+ lift coefficient :newton
+ size :square meter
+ weight :klograms

ainvariant,
---- {Weight less than 10

ablock)
Rotors

::Lift Supplier
+ lift coefficient :newton
+ size :square meter
+ weight ilograms

ainvariant*

{Weight = 2.2 kg}

Figure 60: Alternative Lift Supplier Techniques

In complex system developments, the alternative feasibility is often evaluated through risk mitigation

efforts. Issues with potential technologies or implementations should be identified and addressed early

to minimize the likelihood that when integrated, they fall short of the required functionality or

performance. This step may include prototyping, architecture modeling, technology development,

experimentation, or detailed analysis. The MBSE methodology can reduce design risk by verifying

designs at multiple levels of decomposition. While most risk mitigation efforts will be performed

separately from model-based tools, integrating the results with structural and behavioral models further

reduces system risks. If high risk elements are considered, contingency plans should be identified.

136



The outcome of the generation of alternatives is an assessment of each candidate's performance and

risk. The data, in the form of static numbers, distributions, numerical ranges, or qualitative statements,

can be used for a trade study.

3.5 Decision Analysis

Decision analysis is focused on the methodical evaluation of compromises. No alterative can have ultra-

performance, ultra-quality, and be inexpensive. When each concept exceeds the stakeholder needs on

different axis, tools must be used to effectively make unbiased decisions. The final concept

development activity is to qualitatively evaluate the design options against the MOE, and select the best

option. A variety of tools are available to perform this selection, and any of them can incorporate the

methodology. The integration of SysML models and proven decision analysis techniques provides a

robust approach to decision analysis as the previously defined MOE are used. Figure 61 describes the

decision analysis methodology used to select a concept. It consists of the identification and allocation of

weights, assessment of each alternative's effectiveness, and trade study execution.

Most Important Requirements Candidate
- Capabilities of Interest Solutions
- Measures Of Effectiveness

Solutions Identified ActivityFinal

Assessment Risk/ Performance Proposed Solution
Criteria Assessment

Figure 61: Decision Analysis

137



It is crucial in these evaluations that the MOE are evaluated at a system level. The objective is not to

optimize the individual components, but the entire system. While attributes from multiple tiers of

system decomposition are used in the analysis, they should be aggregated at the system level. It may be

prudent to revise the MOE prior to performing a trade study. The needs of a key stakeholder may have

been omitted when the MOE were defined.

Once the trade is executed, the results must be evaluated manually as the ranking cannot be accepted

as truth. While the decision analysis is an optimization process, it is not strictly a computational one.

These methods and tools provide data for human decision making.

3.5.1 Priority Assessment

One of the crucial steps any trade study is the prioritization of specific desirable attributes. The

priorities are assigned to the key, differentiating requirements. This framework assumes that the MOE

are used as the trade criteria. Depending on the level of access to stakeholders, it can be challenging to

determine the MOE priorities as they may be in constant flux. Several effective methods exist to

identify the stakeholders' preferences, a subset of which is highlighted in Section 3.2.6.

Although the MOE priorities may have been captured in earlier phases, the trade study weights must be

determined. These weights could have been obtained by surveying the preferences of potential users or

owners. If this is possible and consensus can be achieved, specifying explicit, numerical weights may be

effective. It should be noted that the survey results from those who were shown the alternative designs

is likely to be different. It could be helpful to conduct the surveys after the options are identified, or at

least repeated. As the weights can be very subjective, it can be helpful to force stakeholders to make

138



decisions about the comparative significance of each criterion by insuring that the weights must add up

to a fixed number, normally 1 or 10.

Additional decomposition may be required to assign the stakeholder preferences to measurable

attributes that can differentiate between the designs. This can be performed using the attributes that

influence the MOE described in the parametric diagrams. This priority assessment can be carried out in

a similar manner to the high-level priority determination, but must involve the applicable domain

experts. Some attributes that can be listed or calculated may not be important for the decision analysis.

They should be ignored during the trade study to avoid reducing the impact of crucial factors.

As discussed earlier, determining the MOE priorities through statistically valid methods of stakeholder

interrogation is preferred. However, this is not always feasible. If the desired system is not well

understood, or consensus cannot be achieved, specifying explicit, numerical weights may be impractical.

As a result, some tools dynamically set weights using nondominated utility trade methods (Borer, 2006).

The process sets the priorities based on the possible ranges or probability distributions to determine the

concepts most often identified as the "best". These priorities can also be captured using attributes

similar to those defined in Figure 46. Other methods discourage applying the weights to identify the

"best" answer. Other techniques prioritize and combine the MOE into a single cost function. Such

techniques would require additional parametric diagrams.

Regardless of the process selected, whenever modifications are made to the MOE, the impact to the

trade study should be examined as it differs greatly based upon the specific criterion, magnitude of the

change, and priority technique. For example, if the MOE were defined using utility curves, the impact of

the weight would be highly dependent on the concept's assessed performance.

139



3.5.2 Effectiveness Determination

To define how well each candidate solution performs with respect to the MOE, values must be assigned

for each trade criterion. Using MBSE, these metrics can be obtained directly from the concept's

previously established attributes. The performance assessment is achieved through measurement of

actual components, simulations, or by estimation.

Obtaining values from product specification sheets, calculations, or risk mitigation test results is

preferable. These measurements should be documented and collected from the blocks' attributes

based on the aggregation equations captured in the model. Attributes related to the concepts' behavior

and timing can be associated with activities and handled similarly.

When parts are not available or when the measurement process is expensive or time consuming,

attribute values can be calculated by simulation. Simulations are fundamental to decision analysis, and

can be very effective if the right assumptions are made (Cole et al., 2010). These performance

calculations must be based on the laws of physics, physiology, logic, and biology, but can be performed

in either MBSE or external tools. When using simulations to determine concept effectiveness, the

inputs, assumptions, and results should be linked to the appropriate constructs to support reviews and

future analysis.

When neither measurement nor simulation is possible, developers can resort to estimation (Oliver et

al.). When this technique is utilized, the values should be obtained by querying subject matter experts.

To obtain a better assessment, it is helpful to obtain multiple estimates for the same attribute using

surveys.

140



3.5.3 Concept Selection

Once the trade criteria have been fully defined and the performance each concept has been established,

trade study tools can rank the alternatives. Several processes for executing trade studies within SysML

models and tools have been documented. Some tools, such as like InterCAX (InterCAX LLC, 2011)

execute parametric models to automate trade studies. Figure 62 provides an example of the results

from such an analysis. These tools are well suited for computing performance, reliability, and cost for

several concepts based on performance equations and attributes.

Some trade studies require Monte Carlo or optimization calculations may not supported in MBSE tools.

Intensive mathematical analyses may be best suited for external, specialized tools such as MATLAB,

Excel, and open source engines Maxima. By exporting parameters and relationships from SysML models

to computational tools, developers can leverage existing trade study capabilities such as optimization

algorithms and Monte Carlo analyses. Several examples have been published describing the

combination of MBSE with external tools (Hoffmann, 2011b) and advanced analysis such as mixed

integer nonlinear programming (Paredis, 2011). The results of any of these can be recorded in the MBSE

tools. To facilitate these advanced analyses, the tools should aim to integrate with other analytical

programs (Cole et al., 2010). Fortunately, the apparent trend is for MBSE tools to support both SysML

parametric execution and integration with external trade study tools.

141



Name
Analysis

m ilesScannedPer24Hours
Ei milesScannedPerHourPerAircraft
ER numberAvailableAircraft
Ei numberAvailableCrews
lli numberAvailableFueLoads
Ei numberAvailableSystems

8 f iles
8 air

E dutyCydeAiraaft
H dutyCyde_!CameraRefit
ER dutyCydeMaintenance
Ei dutyCyde_ Turnaround
-R milesScannedPerHourPerAircraft
ER numberAircraft
E6 numberAvailableAircraft
ER nunberAvailableAircraftByDay
FA numberAvailableAircraftByNight
-6 numberDayCameras
.5 numberNightCameras
crew

M crewTimeOn
EA numberAvailableCrews
Sl numberCrews

8 fuel
E daiyFueLoadPerAircraft
EA fuelSupplyPerDay
Ei numberAvallableFueLoads

Qualifie... Type
Model::Lit... Analysis

REAL
REAL
REAL
REAL
REAL
REAL

Model::Lit... LittleEyeSystem
Model::Lit... LttieEyeAircraft

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

Model::Lit... LittleEyeCrew
REAL
REAL
REAL

Model::Lit... LittleEyeFuel
REAL
REAL
REAL

Expand Collapse All [e s Update to SysL

root (Analysis)

Name Local One... Relation Active
bco Y numberAvadableFueLoads=miles.cew.numberAvailableCrews
bc1 Y E numberAvailableAircraft=miles.air.numberAvailableAircraft
bc2 Y mlesScedParHoPerAircraft-miles.ar milesScaviedPerHourPer ...
bc3 Y num rAvaiableCrews-miles.fuenumberAvailableFuelloads
sae Y numberAvalableSystems-min(numberAvailableAcraftnumberAval ...
se Y milesScannedPer24ours-numberAvaableSystems*milesScannedP...

Figure 62: Example of Parametric Trade Study Calculation (InterCAX LLC, 2011)

142

Causality Values

target 2,016
ancillary 40
ancillary 2.403
ancillary 5
ancillary 2.1
ancillary 2.1

ancillary 0.687
given 0.09
given 0.02
given 0.23
given 40
given 4
ancillary 2.403
ancillary 3
ancillary 4
given 3
given 7

given 0.42
ancillary 2.1
given 5

given 50
given 250
ancillary 5

\ Solvea R1 beta - Analysis0 1 - n X



4. Conclusions and Recommendations

This thesis explores the feasibility of leveraging the rigorous design methodology for the development of

system concepts using MBSE. Based on the UAV example and the responses of interview results, the

specific questions were answered. Although the answers are discussed in detail throughout the

document, they are summarized here.

1. Can MBSE support concept generation, refinement, and evaluation?

As shown by the examples scattered throughout Chapter 3, MBSE can be applied to concept

development. The suggested methodology enables the development and design of different

concepts, and the selection of an alternative to best meet the stakeholder needs. Consistent

examples were provided to depict the development of a conceptual UAV model developed

though simulated stakeholder interactions. The alternative structured processes discussed

herein provide significant enhancements over the non-model-based concept development

approaches. From the conceptual model, a design implementation was presented and carried

through to the point of a trade study. Discussions of the behavior simulations and other

external analysis techniques were presented to enhance the evaluation of the system

architecture and design. By integrating SysML and the MBSE tools, not only can the traditional

concept development activities be performed, but they can be made more efficient.

2. How can the best practices of systems engineering and concept development be integrated?

As discussed earlier, MBSE contains three critical elements: the language, tool, and

methodology. The systems engineering principles and best practices developed over the past

decades are integrated within the methodology, arguably the most critical element of MBSE. All

143



MBSE tools enable element reuse, connect design elements, and provide an effective means of

knowledge capture. These enable a number of best practices that must be followed by adopting

an effective methodology. Error checking and verification can be greatly enhanced through

powerful MBSE tools by providing capabilities such as simulation.

This thesis presents a number of consistent methods to clearly exchange information for design

activities, reviews, and documentation. Throughout each phase of the methodology, advice was

provided on how to follow systems engineering best practices. Requirements development is

one of the fundamental system engineering tasks, and several alternative processes for

generating them using MBSE are presented. Each one follows the best practices and leverages

the benefits of model-based engineering.

One of interesting results of the research was the determination that concept identification

activities did not have to be integrated into the MBSE tools. Traditional identification and

documentation methods can be used and linked directly to model elements. While the tools

provide many benefits, they must be used appropriately.

Some MBSE tool vendors may inhibit steps that could potentially violate the best practices.

While this may limit advanced modelers, it reduces the learning curve and barriers of adoption

for new practitioners.

3. Does MBSE improve the efficiency and effectiveness of concept development teams?

While this thesis did not qualitatively or heuristically yield any metrics on the benefits of a

model-based approach to concept development, it is expected to greatly enhance the efficiency

and effectiveness of development teams as indicated by the overwhelmingly positive survey

144



responses. Some of the expected benefits of the framework can be determined by the observed

by other MBSE life-cycle activities as summarized in Section 2.2.1.

4. What processes and external tools facilitate or enhance the development process?

A number of tools were mentioned as options within the concept development methodology.

Developers can select any tool that meet the needs of their team and problem space, as almost

any tool can be integrated with the MBSE programs.

5. What views, elements, and constructs are useful to improve communication?

Surprisingly, each SysML view was found to be important for the concept development

methodology. Use case and requirement views were important to capture the stakeholder

needs. Activity, sequence, and state diagrams were each discovered to play key roles in the

development of the system behavior. It was verified that block definition and internal block

diagrams were essential to the concept definition descriptions. Parametric diagrams were also

found to be essential to support the various trade study techniques. The MOE construct was

identified as an efficient means of communicating the most important stakeholder needs and

supporting trade studies. The traceability resulting from interconnected models proved to

greatly improve the identification of complex relationships and the impact of design decisions

and changes. Model execution was found to be a critical element of the MBSE methodology. In

addition to improving the communication of the system model, execution enforces consistency

and reveals design errors.

Overall, the framework was determined to provide a logical methodology for concept development. It is

based on the systems engineering best practices proposed by the leaders of the systems engineering

145



field. By incorporating the benefits of MBSE, the concept development project may see the same

improvements as the early adopters of parametric computer aided design (CAD) in the mechanical and

electrical engineering fields.

146



5. Future Work

This framework appears to provide a significant advantage in concept development over traditional

concept development methodologies. Future analysis of its benefits should be determined through its

adoption on an actual program. Pilot programs without customers may not get the attention required

to enforce the rigors of MBSE and systems engineering best practices. As a result, the effectiveness of

the model-based methodology may be poorly assessed. If customers and problems can be identified to

sponsor such a concept development effort, the methodology could be used to improve the efficiency of

concept exploration. When such an effort is initiated, the specific processes and tools should be

selected prior to the project commencement, based on the tool and management plan.

In addition, automated techniques to populate or create external trade study tools could be developed.

The automatic generation of a design structure matrix (DSM), house of quality, or any other frequently

used tool, could benefit multiple design efforts.

147



Work Cited

Altshuller, G., Shulyak, L., Rodman, S., 1998. 40 Principles: TRIZ Keys to Technical Innovation. Technical
Innovation Center.

Baker, L., Clemente, P., Cohen, B., Permenter, L., Purves, B., Salmon, P., 2000. Foundational Concepts for
Model Driven System Design. INCOSE, INCOSE Model Driven System Design Interest Group.

Bock, C., 2005. SysML and UML 2 Support for Activity Modeling, Systems Engineering. U.S. National
Institute of Standards and Technology.

Borer, N.K., 2006. Decision Making Strategies for Probabilistic Aerospace Systems Design, School of
Aerospace Engineering. Georgia Institute of Technology.

Borer, N.K., Schwartz, J.L., Odegard, R.G., Arruda, J.R., 2009. A Unified Framework for Capturing Concept
Development Methods, IEEE Aerospace Conference, Big Sky, Montana.

Bourne, L., Weaver, P., 2010. Construction Stakeholder Management, in: Chinyio, E. (Ed.). Blackwell
Publishing, London, UK.

Box, G.E.P., Hunter, W.G., Hunter, J.S., 1978. Statistics for Experimenters: An Introduction to Design,
Data Analysis, and Model Building. John Wiley & Sons

Brito, I., Moreira, A., Araijo, J., 2002. A requirements model for quality attributes, Instituto Politecnico
de Beja, Beja, Portugal.

Cole, B., Delp, C., Donahue, K., 2010. Piloting Model Based Engineering Techniques for Spacecraft
Concepts in Early Formulation, INCOSE Los Angeles Meeting, Los Angeles.

Cunningham, J., 2011. MBSE Discussion, New England Chapter INCOSE MBSE Workshop.
Dori, D., 2002. Object-Process Methodology -A Holistic Systems Paradigm. Springer, New York.
Dori, D., 2008. Object-Process Methodology MIT ESD.36 Systems Engineering.
Estefan, J.A., 2008. Survey of Model-Based Systems Engineering (MBSE) Methodologies, B ed.

ModelBased Systems Engineering (MBSE) Initiative.
Estefan, J.A., Sprecht, M., Friedenthal, S., Watson, J.C., Baker, J.D., 2011. MBSE Wiki.
Finkelstein, S., Sanford, S.H., 2000. Learning From Corporate Mistakes: The Rise and Fall of Iridium.
Friedenthal, S., 2009. Model Based Systems Engineering. INCOSE, INCOSE Central Florida Chapter.
Friedenthal, S., 2011. Modeling System Interfaces with SysML v1.3.
Friedenthal, S., Moore, A., Steiner, R., 2009. OMG Systems Modeling Language (OMG SysML')Tutorial
Goldberg, B.E., Everhart, K., Stevens, R., Babbitt, N.I., Clemens, P., Stout, L., 1994. System Engineering

'Toolbox' for Design-Oriented Engineers, NASA Reference Publication 1358. National
Aeronautics and Space Administration, Marshall Space Flight Center, Alabama.

Green, J.M., 2001. Establishing System Measures of Effectiveness, AIAA 2nd Biennial National Forum on
Weapon System Effectiveness. OSD Pentagon Washington, DC, John Hopkins University/ Applied
Physics Laboratory.

Hale, P., Quayle, T., 2009. Session 6: Requirements Engineering, MIT ESD.33 Systems Engineering.
Hauser, J.R., Clausing, D., 1988. The House of Quality, Harvard Business Review, pp. 63-73.
Hendrickson, C., 1998 Organizing for Project Management, Project Management for Construction.

Carnegie Mellon University, Pittsburgh, PA
Herzog, E., Pandikow, A., 2005. SysML- an Assessment.
Hoffmann, H.-P., 2001. Methodology Best Practices Discussion, in: London, B. (Ed.).

148



Hoffmann, H.-P., 2011a. Deskbook Release 3.2 Extension Model Based Systems Engineering with
Rational Rhapsody and Rational Harmony for Systems Engineering, Release 3.2 ed. IBM
Corporation.

Hoffmann, H.-P., 2011b. IBM Rational Harmony Deskbook Model Based Systems Engineering with
Rational Rhapsody and Rational Harmony for Systems Engineering, Release 3.1.2 ed. IBM
Corporation.

INCOSE, 2004. What is Systems Engineering? International Council on Systems Engineering.
InterCAX LLC, 2011. Solvea - SysML Parametric Solver and Integator add-in for Enterprise Architect.
Jorgensen, R.W., 2011. Defining Operational Concepts using SysML: System Definition from the Human
Perspective, in: Rockwell Collins, I. (Ed.), INCOSE International Symposium, Denver, CO.
Kapurch, S.J., et al, 2007. NASA Systems Engineering Handbook, in: Administration, N.A.a.S. (Ed.), 1 ed,

Washington, D.C.
Karban, R., Weilkiens, T., Peukert, A., Hauber, R., Zamparelli, M., Diekmann, R., Hein, A., 2011. Cookbook

for MBSE with SysML. MBSE Initiative - SE2 Challenge Team.
K6sters, G., Six, H.-W., Winter, M., 2000. Validation and Verification of Use Cases and Class Models.
La Trobe University, 2009. Practical Session 2: The Use Case and Requirements Model, La Trobe

University Practical Sessions. La Trobe University, http://www.sparxsvstems.com.
Lempia, D., Jorgensen, R.W., 2011. Practical SysML Applications: Methodology to Describe the Problem

Space, INCOSE International Symposium. Rockwell Collins, Denver, CO.
Leonard, D., Rayport, J.F., 1997. Spark Innovation Through Emphatic Design, Management Science.

Harvard Business School.
Logan, P.W., Harvey, D., 2011. Documents as Information Artefacts in a Model Based Systems

Engineering Methodology, 5th Asia-Pacific Conference on Systems Engineering, Seoul, Korea.
London, B., 2011. Specifying Customer Requirements in a Model Based Systems Engineering

Environment, INCOSE New England Chapter MBSE Workshop, Burlington, MA.
Long, D., 2011. Representations and Models: SysML and Beyond, INCOSE New England Chapter MBSE

Workshop, Burlington, MA.
Long, J., 2009. Relationships between Common Graphical Representations in Systems Engineering.

Vitech Corporation.
Maier, M.W., 2009. Art and Science of Systems Architecting, Aerospace Corporation.
Mostashari, A., McComb, S.A., Kennedy, D.M., Cloutier, R., Korfiatis, P., 2011. Developing a Stakeholder-

Assisted Agile CONOPS Development Process
NASA, 2009. NASA Systems Engineering Processes and Requirements, NPR 7123.1A.
Object Management Group, 2010. OMG Systems Modeling Language (OMG SysML"). Object

Management Group, Needham, MA.
Object Management Group, 2011a. OMG Systems Modeling Language, The Official OMG SysML site
Object Management Group, 2011b. OMG Unified Modeling Language (OMG UML), Infrastructure.
Ogren, I., 2000. On principles for model-based systems engineering. Systems Engineering Journal 3 (1),

38-49.
Okon, W., Hause, M., 2009. DoD Unified Profile for DoDAF & MoDAF (UPDM), DoD Enterprise

Architecture Conference, St. louis, MO.
Oliver, D.W., Kelliher, T.P., Keegan, J.G.J., 1997. Engineering Complex Systems with Models and Objects.

McGraw-Hill.
Paredis, C., 2011. Model-Based Systems Engineering: A Roadmap for Academic Research. Georgia Tech,

Model-Based Systems Engineering Center.
149



Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M., Kim, I., 2007a. Simulation-Based
Design Using SysML Part 1: A Parametrics Primer, INCOSE International Symposium, San Diego.

Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M., Kim, I., 2007b. Simulation-Based
Design Using SysML Part 2: Celebrating Diversity by Example, INCOSE International Symposium
San Diego.

Product Team CMMI, 2011. CMMI for Development, , Version 1.3 ed.
RenewableEnergyWorld.com Editors, 2011. Obama Calls for 80% "Clean Energy" by 2035,

RenewableEnergyWorld.com.
Ritchey, T., 2009. Morphological Analysis. Ritchey Consulting AB, The Millennium Project.
Rosenberg, D., Mancarella, S., 2010. Embedded Systems Development Using SysML, An Illustrated

Example using Enterprise Architect, Sparx Systems Pty Ltd.
Ross, A.M., 2003. Multi-Attribute Tradespace Exploration with Concurrent Design as a Value-Centric

Framework for Space System Architecture and Design Engineering Systems Division.
Massachusetts Institute of Technology.

Ross, A.M., Rhodes, D., 2009. Concept Design and Tradespace Exploration. MIT/ SEAri, ESD.33 Systems
Engineering.

Ross, A.M., Rhodes, D.H., 2008. Using Attribute Classes to Uncover Latent Value during Conceptual
Systems Design, IEEE International Systems Conference, Montreal, Canada.

Ryder, C., 2006. Introducing Object Oriented Systems Engineering Methods to University Systems
Engineering Curricula. Johns Hopkins University Applied Physics Laboratory.

Saaty, T.L., 1983. Priority Setting in Complex Problems. IEEE Transactions on Engineering Management
EM-30, 140-155.

SE Handbook Working Group, 2011. Systems Engineering Handbook, in: Haskins, C. (Ed.). International
Council on Systems Engineering, San Diego, CA.

Shadrick, S.B., Lussier, J.W., Hinkle, R., 2005. Concept Development for Future Domains: A New Method
of Knowledge Elicitation. United States Army Research Institute for the Behavioral and Social
Sciences.

Sparks, G., 2010. Enterprise Architect User Guide. Sparx Systems.
Sullivan, L.J.F.J., Brouillette, M.G., Joles, M.J.K., 1998. 1998 Army After Next Unmanned Aerial Vehicle

Studies, USMA Opertaions Research Center of Excellence. West Point, New York
Tepper, N., 2010. Explorinitg the use of Model-Based Systems Engineering (MBSE) to develop Systems

Architectures in Naval Ship Design, Mechanical Engineering and the Systems Design and
Management Program. Massachusetts Institute of Technology.

The Research Foundation of SUNY, 2009. Multi-Attribute Utility (MAU) Models, Center for Technology in
Government.

Tufte, E.R., 2001. The Visual Display of Quantitative Information. Graphics Press, CT.
Ulrich, K.T., Eppinger, S.D., 2004. Product Design and Development. McGraw-Hill, New York, NY.
Under Secretary of Defense, 2008. Operation of the Defense Acquisition System, in: Defense, D.o. (Ed.).
United States Department of Defense, 2007. DoD Architecture Framework, Version 1.5.
Vitech Corporation, 2011. A Primer for Model-Based Systems Engineering, 2nd Edition ed. Vitech

Corporation.
von Hippel, E., 1986. Lead Users: A Source Of Novel Product Concepts. Management Science 32 (7).
von Hippel, E., 2005. Democratizing Innovation. MIT Press, Cambridge, MA.
Wheelwright, S.C., Clark, K.B., 1992. Revolutionizing Product Development: Quantum Leaps in Speed,

Efficiency, and Quality. Free Press
150



Wikipedia, 2011a. V-Model (software development).
Wikipedia, 2011b. Waterfall model.
Wikiquote, 2011a. George Bernard Shaw, Wikiquote.
Wikiquote, 2011b. John F. Kennedy, Wikiquote.
Wilson, S., 2011. MBSE and Concept Development Discussion.
Wolfrom, J., 2011. Model-Based Systems Engineering (MBSE) Using the Object-Oriented Systems

Engineering Method (OOSEM). The Johns Hopkins University Applied Physics Laboratory.

151


