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Reduced-Memory Decoding of Low-Density Lattice Codes
Brian Kurkoski, Member, IEEE, and Justin Dauwels, Member, IEEE

Abstract—This letter describes a belief-propagation decoder
for low-density lattice codes of finite dimension, in which the
messages are represented as single Gaussian functions. Compared
to previously-proposed decoders, memory is reduced because
each message consists of only two values, the mean and variance.
Complexity is also reduced because the check node operations are
on single Gaussians, avoiding approximations needed previously,
and because the variable node performs approximations on a
smaller number of Gaussians. For lattice dimension 𝑛 =1000
and 10,000, this decoder looses no more than 0.1 dB in SNR,
compared to the decoders which use much more memory.

Index Terms—Low-density lattice codes, lattice decoding,
belief-propagation decoding.

I. INTRODUCTION

LOW-DENSITY lattice codes (LDLC) are lattices which
are constructed and decoded on principles similar to

low-density parity-check codes. They can be decoded in
large dimension, and error-free decoding is possible within
0.6 dB of the unconstrained-power channel capacity. The
belief-propagation LDLC decoder passes functions, rather
than real numbers as are used by low-density parity-check
code decoders. These messages may be approximated by a
discretely-quantized function, however this requires a large
amount of storage, typically 1024 values per message [1].
In subsequent work, similar performance was obtained by
instead approximating this function with a mixture of Gaussian
functions. A variable number of Gaussians were used, but
typically no more than ten, represented by 30 values [2] [3].

This letter describes a decoder for finite-dimension LDLC
lattices which uses single-Gaussian messages between the
variable nodes and check nodes. Since a single Gaussian is de-
scribed by a mean and a variance, the message consists of only
two values. This is fewer values than the previously-proposed
methods. In addition, check node complexity is reduced be-
cause the inputs are single Gaussians, and approximations are
not required. However, as in prior work, a Gaussian mixture
approximation is used internally at the variable node. But since
the input is a single Gaussian (effectively a single shift-and-
repeated Gaussian), complexity at the variable node is still
lower than other methods which must find approximations
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of a larger number of Gaussians. Variable node complexity
is reduced by using a forward-backward algorithm which
avoids the creation of periodic Gaussian mixtures, by using
the aperiodic channel message.

Single Gaussian messages have previously been used to
decode infinite-dimensional LDLC lattices, that is, to find
noise thresholds [4]. That decoder also used single Gaussians
internally at the variable node. However, when applied to
finite-dimension lattices it has poor performance. Thus, an
observation is that when decoding finite-dimension LDLC
lattices, while a single Gaussian is sufficient to approximate
the messages between the variable nodes and check nodes, that
good performance is more sensitive to the approximations that
occur internally at the variable node.

II. GAUSSIAN MIXTURES

A Gaussian function, or just “Gaussian” in this letter,
with mean 𝑚 and variance 𝑣 is denoted as 𝒩 (𝑧;𝑚, 𝑣) =

(2𝜋𝑣)−1/2 exp
(− (𝑧−𝑚)2

2𝑣

)
. A message 𝑓(𝑧) is a mixture of

𝑁 Gaussians:

𝑓(𝑧) =

𝑁∑
𝑖=1

𝑐𝑖𝒩 (𝑧;𝑚𝑖, 𝑣𝑖) , (1)

where 𝑐𝑖 ≥ 0 are mixing coefficients with
∑𝑁

𝑖=1 𝑐𝑖 = 1.
An alternative representation is a list of 𝑁 triples of means,
variances and mixing coefficients, {𝑡1, . . . , 𝑡𝑁} with 𝑡𝑖 =
(𝑚𝑖, 𝑣𝑖, 𝑐𝑖).

To approximate a true distribution 𝑝(𝑧), by another dis-
tribution 𝑞(𝑧), a reasonable approach is to choose 𝑞(𝑧) so
that the Kullback-Leibler divergence [5, p. 18] is minimized.
When 𝑞(𝑧) is a single Gaussian, selecting its mean and
variance to be the same as those of 𝑝(𝑧) will minimize the
divergence; this is sometimes known as “moment matching”
[6, Appendix A]. In particular, if 𝑝(𝑧) is a mixture of 𝑁
Gaussians 𝑡𝑖 = (𝑚𝑖, 𝑣𝑖, 𝑐𝑖), 𝑖 = 1, . . . , 𝑁 , then the single
Gaussian with mean 𝑚 and variance 𝑣 which minimizes the
divergence is given by:

𝑚 =

𝑁∑
𝑖=1

𝑐𝑖𝑚𝑖 and (2)

𝑣 =

𝑁∑
𝑖=1

𝑐𝑖(𝑣𝑖 +𝑚2
𝑖 )−𝑚2. (3)

This single Gaussian 𝑡 found by moment matching, denoted
by MM, is:

𝑡 = (𝑚, 𝑣, 1) = MM(𝑡1, . . . , 𝑡𝑁). (4)

A previously-presented Gaussian mixture reduction (GMR)
algorithm approximates 𝑓(𝑧), a mixture of 𝑁 Gaussians, by
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Fig. 1. Messages for (a) check node and (b) variable node decoding functions.

another mixture, 𝑔(𝑧), which consists of 𝑀 Gaussians, where
𝑀 < 𝑁 [2]. This algorithm is denoted as:

𝑔(𝑧) = GMR
(
𝑓(𝑧)

)
. (5)

This algorithm uses the squared distance as a metric between
two Gaussians, and greedily combines pairs of Gaussians until
𝑀 Gaussians remain.

III. SINGLE-GAUSSIAN DECODING OF LDLC LATTICES

A. Setup

An 𝑛-dimensional LDLC lattice Λ is a lattice for which
𝐻 , the inverse of the 𝑛-by-𝑛 generator matrix, is sparse; the
generator matrix is 𝐺 = 𝐻−1. If b = (𝑏1, . . . , 𝑏𝑛)

t (t denotes
transpose) with 𝑏𝑖 ∈ ℤ is any integer vector, then 𝐺b ∈ Λ.

An arbitrary element x ∈ Λ, with x = (𝑥1, . . . , 𝑥𝑛), is
transmitted over an AWGN channel with noise variance 𝜎2.
As in previous LDLC lattice studies, this model ignores the
input power constraint to concentrate on the lattice coding
gain. The received sequence is y = (𝑦1, . . . , 𝑦𝑛).

A decoder finds an estimated lattice point x̂ and a corre-
sponding integer sequence b̂, given y. The belief-propagation
decoding algorithm may be presented on a bipartite graph,
with 𝑛 variable nodes and 𝑛 check nodes. A regular matrix
𝐻 has constant row and column weight 𝑑, so all check
nodes and all variable nodes have degree 𝑑. The variable-
to-check messages are functions 𝜇(𝑧), and the check-to-
variable messages are functions 𝜌(𝑧). Associated with variable
node 𝑖 is the channel output 𝑦𝑖, and the channel message is
𝑦𝑖(𝑧) = 𝒩 (

𝑧; 𝑦𝑖, 𝜎
2
)

(𝑦𝑖 is distinct from 𝑦𝑖(𝑧)). The initial
variable-to-check message for edge 𝑘 is 𝜇𝑘(𝑧) = 𝑦𝑖(𝑧), if edge
𝑘 is connected to variable node 𝑖. Iterations for the single-
Gaussian decoder proceed as follows.

B. Check node

A check node of degree 𝑑 has input messages 𝜇𝑘(𝑧) which
are single Gaussians with mean 𝑚𝑘 and variance 𝑣𝑘, for 𝑘 =
1, . . . , 𝑑. Associated with each edge are the non-zero labels
from 𝐻 , denoted as ℎ𝑘, as shown in Fig. 1-(a). The check
node output 𝜌𝑘(𝑧) is the convolution of these messages, which
is a Gaussian with mean 𝑚̃𝑘 and variance 𝑣𝑘 given by:

𝑚̃𝑘 = − 1

ℎ𝑘

𝑑∖𝑘∑
𝑖=1

ℎ𝑖 ⋅𝑚𝑖, and (6)

𝑣𝑘 =
1

ℎ2
𝑘

𝑑∖𝑘∑
𝑖=1

ℎ2
𝑖 ⋅ 𝑣𝑖. (7)

The computation of (6) and (7) can be simplified by using a
forward-backward recursion. The description is omitted, but
is similar to the variable node recursion in the following.

C. Variable Node

A variable node of degree 𝑑 has input messages 𝜌𝑘(𝑧) which
are single Gaussians with mean 𝑚̃𝑘 and variance 𝑣𝑘 for 𝑘 =
1, . . . , 𝑑; the channel message is 𝑦(𝑧), as shown in Fig. 1-(b).

In prior work, the shift-and-repeat (periodic extension) step,
which creates a periodic Gaussian mixture, occurs at the check
node. In this work, the decoder uses single Gaussian messages,
so this function occurs at the variable node. The repetition of
𝜌𝑘(𝑧) with period 1/∣ℎ𝑘∣, is 𝜌𝑘(𝑧), given by:

𝜌𝑘(𝑧) =
∑
𝑏∈ℤ

𝜌𝑘(𝑧 − 𝑏/ℎ𝑘) =
∑
𝑏∈ℤ

𝒩 (𝑧;𝑚𝑘(𝑏), 𝑣𝑘) , (8)

where the mean of each Gaussian 𝑚𝑘(𝑏) is:

𝑚𝑘(𝑏) = 𝑚̃𝑘 +
𝑏

ℎ𝑘
. (9)

Nominally, the sum in (8) is over all integers ℤ. However,
since this periodic extension occurs at the variable node, this
sum can be restricted to those Gaussians which are near the
channel message; periodic Gaussians far from the channel
message have near-zero mixing coefficients and can be safely
ignored. In the simulations in the next section, this sum is
over {−1, 0,+1} because the all-zeros lattice point is used.

Using the periodic 𝜌𝑘(𝑧), the variable node output 𝜇𝑘(𝑧) is
the product:

𝜇𝑘(𝑧) = 𝑦(𝑧)

𝑑∖𝑘∏
𝑖=1

𝜌𝑖(𝑧). (10)

Naive computation of (10) requires 𝑑 ⋅ (𝑑 − 1) message
multiplications.

However, a forward-backward recursion can be used to
reduce the complexity to 2⋅(𝑑−1)+𝑑 message multiplications.
Also, multiplying two distinct periodic messages 𝜌𝑖(𝑧) and
𝜌𝑗(𝑧) is computationally complex, because a large number of
Gaussians with significant mixing coefficients are required.
However, since the channel message is non-periodic, the
product 𝑦(𝑧) and 𝜌(𝑧) is also non-periodic, and tend to be
well-approximated by one or two Gaussians. To exploit this,
a forward and backward recursion is used, initialized with the
channel message. Since there is only one channel message,
each recursion is initialized with

√
𝑦(𝑧), so that the final

product correctly includes 𝑦(𝑧).
To describe the forward-backward recursion in detail, de-

note a single message multiplication as:

V
(
𝛼(𝑧), 𝜌(𝑧)

)
= 𝛼(𝑧) ⋅ 𝜌(𝑧). (11)

The product V
(
𝛼(𝑧), 𝜌(𝑧)

)
, in triples representation{

(𝑚ℓ, 𝑣ℓ, 𝑐ℓ)
}
, can be computed as follows. Let 𝛼(𝑧)

be a mixture of 𝐼 Gaussians, and let 𝜇(𝑧) be a mixture of 𝐽
Gaussians, represented as:

{(
𝑚𝛼

𝑖 , 𝑣
𝛼
𝑖 , 𝑐

𝛼
𝑖

)}𝐼

𝑖=1
and

{(
𝑚𝜇

𝑗 , 𝑣
𝜇
𝑗 , 𝑐

𝜇
𝑗

)}𝐽

𝑗=1
, (12)
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Fig. 2. Probability of symbol error for the single-Gaussian decoder and the
quantized-message decoder. The Gaussians mixture size used internally at the
variable node is 𝑀 , and the lattice dimension is 𝑛.

respectively. The product is a mixture of 𝐼 ⋅𝐽 Gaussians, given
by:

1

𝑣ℓ
=

1

𝑣𝛼𝑖
+

1

𝑣𝜇𝑗
, (13)

𝑚ℓ

𝑣ℓ
=

𝑚𝛼
𝑖

𝑣𝛼𝑖
+

𝑚𝜇
𝑗

𝑣𝜇𝑗
, and (14)

𝑐ℓ =
𝑐𝛼𝑖 𝑐

𝜇
𝑗√

2𝜋(𝑣𝛼𝑖 + 𝑣𝜇𝑗 )
exp

(1
2

(𝑚𝛼
𝑖 −𝑚𝜇

𝑗 )
2

𝑣𝛼𝑖 + 𝑣𝜇𝑗

)
, (15)

for ℓ = 1, . . . , 𝐼 ⋅𝐽 , suitably indexed such as ℓ = 𝐽(𝑖−1)+ 𝑗.
The forward recursion is initialized with 𝛼0(𝑧) =

√
𝑦(𝑧).

The square root of a Gaussian distribution is another Gaussian
distribution with the same mean and twice the variance, so in
triples representation the initialization is {(𝑦, 2𝜎2, 1)}. Then
each step of the forward recursion computes a product, and
then applies the Gaussian-mixture approximation:

𝛼̃𝑘(𝑧) = V
(
𝛼𝑘−1(𝑧), 𝜌𝑘(𝑧)

)
, and (16)

𝛼𝑘(𝑧) = GMR(𝛼̃𝑘(𝑧)), (17)

for 𝑘 = 1, 2 . . . , 𝑑.
The backward recursion is similarly initialized with 𝛽𝑑(𝑧) =√
𝑦(𝑧), and computes messages 𝛽𝑘(𝑧), for 𝑘 = 𝑑 − 1, 𝑑 −

2, . . . , 1.
The variable node output is the single-Gaussian 𝜇𝑘(𝑧) found

using moment-matching:

𝜇𝑘(𝑧) = MM
(
𝛼𝑘−1(𝑧) ⋅ 𝛽𝑘(𝑧)

)
, (18)

for 𝑘 = 1, . . . , 𝑑.
Instabilities are avoided by setting a minimum variance. A

message variance 𝑣 is replaced by max(𝑣, 𝛾), where 𝛾 is a
constant. Values in the range 𝛾 = 10−3 to 10−4 were used.

D. Hard Decisions

Hard decisions on the integers, b̂, may be found by first
making intermediate decisions x̃ = (𝑥1, . . . , 𝑥𝑛)

t at each vari-
able node, and then finding 𝐻x̃. The intermediate decisions

are found as,

𝑥𝑖 = argmax
𝑧

𝑦(𝑧)

𝑑∏
𝑘=1

𝜌𝑘(𝑧). (19)

For 𝛼𝑑(𝑧) at node 𝑖, this 𝑥𝑖 is the mean of the following single
Gaussian found by moment matching:

MM
(
𝛼𝑑(𝑧)

√
𝑦𝑖(𝑧)

)
, (20)

since the maximum of a Gaussian occurs at its mean. Finally,
b̂ may be found by element-wise rounding the vector 𝐻x̃ to
the nearest integer.

IV. NUMERICAL RESULTS

The single-Gaussian decoder was evaluated numerically on
the unconstrained input power AWGN channel, and compared
with the discretely-quantized message decoder with 1024
samples per message, with sample spacing 1/128 centered on
zero. Lattices with dimension 𝑛 = 100, 1000, and 10000
were used, and the matrix 𝐻 had row and column weights
𝑑 of 3, 7 and 7, respectively. The 𝑑 non-zero entries in
each row and column of 𝐻 were ±(

1, 1/
√
𝑑, ⋅ ⋅ ⋅ , 1/√𝑑

)
.

The SNR is
(∣ det𝐺∣2/𝑛)/2𝜋𝑒𝜎2, and the matrices were

normalized so that ∣ det𝐺∣ = 1. In this case, the capacity of
the unconstrained input power AWGN channel corresponds
to channel noise variance 𝜎2 = 1/2𝜋𝑒, that is, 0 dB [7]. A
symbol error is the event that 𝑏̂𝑖 ∕= 𝑏𝑖.

As shown in Fig. 2, the losses for the single-Gaussian
decoder with 𝑀 = 2 are no more than 0.1 dB for dimension
𝑛 = 1000 and 10000 lattices. For 𝑛 = 100, this may increase
to 0.3 dB at low SNR. When only one Gaussian is allowed
internally at the variable node, that is 𝑀 = 1, there was
significant performance loss, as shown. But a mixture of two
Gaussians was sufficient to obtain good performance.

Other LDLC lattice decoders use either 1024 values (quan-
tized) or tens of values (Gaussian mixtures) for each message,
but the decoder proposed in this letter uses only two values.
Thus, memory requirements are reduced with minor loss of
performance.
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