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 

Abstract—We propose a new band-phase-randomized 
surrogate data method to evaluate the chaotic dynamics in the 
high (HF) and low frequency (LF) bands of heart rate 
variability (HRV) in healthy subjects. The chaotic strength of 
normal HRV as assessed by a noise titration assay completely 
vanished when its power spectrum was phase-randomized over 
the entire frequency band or the HF band alone, but not the LF 
band alone. This finding confirms recent evidence that chaotic 
dynamics in normal HRV is ascribable mainly to the HF 
component, or respiratory sinus arrhythmia. 

I. INTRODUCTION 

N 1981, Akselrod and coworkers [1, 2] showed that heart 
rate variability (HRV), when Fourier-transformed into the 

power spectrum, displayed characteristic high-frequency 
(HF), low-frequency (LF) and very-low-frequency (VLF) 
peaks that could be identified with neurohumoral influences. 
Since then, spectral analysis (or equivalent time-domain 
analysis) of HRV [3] or other cardiovascular variabilities has 
been widely adopted as a noninvasive probe of 
cardiac-autonomic function [4]. Malliani and coworkers [5, 
6] proposed that the relative LF and HF powers represent 
sympathovagal balance reflecting physiologic push-pull 
activities of sympathetic-parasympathetic branches. This 
notion has been disputed as to whether these indices are 
correlated linearly with autonomic regulation [7, 8]. The 
current debate seems converging toward an emerging 
consensus that sympathovagal interaction probably 
represents a nonlinear phenomenon reflecting the dynamic 
fluctuations of cardiac-autonomic outflows about their means 
[8, 9].  

In a recent study [10], the nonlinear dynamics of HRV was 
evaluated by using the method of noise titration, a technique 
that has been shown to be capable of detecting chaotic 
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dynamics under significant measurement noise [11] and 
dynamic noise [12]. The results showed that the HRV in 
young healthy subjects displayed significant chaotic 
dynamics that was correlated to the HF component, and that 
such HF chaos was markedly attenuated in patients with 
congestive heart failure but not in age-matched elderly 
subjects. 

In the present work, we applied a novel band-phase- 
randomized surrogate data method in combination with the 
noise titration technique to provide strong evidence 
indicating the underlying chaotic dynamics of the HF 
component in young healthy subjects. Our results 
demonstrate that sympathovagal balance is indeed a nonlinear 
behavior rather than a linear phenomenon. 

II. METHODOLOGY 

A. Data acquisition 

The beat-to-beat (RR) interval series of healthy subjects 
were extracted from the MIT-BIH Normal Sinus Rhythm 
Database in Physionet [13] according to annotations for only 
normal beats. Sample rate was 128 Hz in 24-hr Holter 
recordings. 

B. Spectral analysis 

A linear autoregressive model (1) and its power spectral 
density (2) were applied to analyze the spectral characteristics 
of 24-hr heartbeat recordings. 
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The HRV spectral components were evaluated by 
integration of the corresponding power spectral density at 
very low frequency (VLF, < 0.04 Hz), low frequency (LF, 
0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) bands. 

C. Band-phase-randomized surrogate data 

The surrogate data method [14] is commonly used in 
combination with an appropriate statistic, such as 
approximate entropy (ApEn) [15], correlation dimension or 
other nonlinear indices. The null hypothesis of the method is 
that the test data is the output of some linear dynamical 
system responding to Gaussian white noise input, followed 
by some static nonlinear transformation that results in 
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non-Gaussian variability. Thus, rejection of the null 
hypothesis indicates that the test data did not come from 
linear dynamics. To generate phase-randomized surrogate 
data, the time series is first transformed to the frequency 
domain by Fast Fourier Transform (FFT); then the phase 
relationship in the FFT spectrum is randomized. Finally, an 
inverse FFT is performed with the original amplitude and 
randomized phase spectra (Fig. 1A). All linear dependencies, 
such as autocorrelation and power spectral density, are 
preserved while nonlinear dependencies are eliminated by the 
process of phase randomization. Any non-Gaussian 
distribution in the original time series is accounted for by 
aligning the histogram of the resultant surrogate data to that 
of the original time series [14]. 

In order to discern possible nonlinear contributions of 
specific spectral components, we propose here the 
band-phase-randomized surrogate method, which has a 
similar algorithm as the original phase-randomized surrogate 
method except that phase randomization is made in specific 
frequency bands while leaving the phase structure in other 
bands unchanged (Fig.1B). Hence, all linear dependencies 
are still preserved while the nonlinear dependencies may or 
may not disappear depending on which phase bands are 
randomized.  

D. Noise titration  

In this method [11], nonlinear determinism in a time series 
is first identified by comparing the fit of linear (1) and 
nonlinear (3) polynomial autoregressive models of the 
Volterra type to the time series data [16, 17]:  
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Volterra autoregressive models with varying memory () and 
dynamical order (d) are iteratively generated to optimally 
predict the data. The kernels am  are recursively estimated 
from (1) or (3) by using the Korenberg algorithm [18]. The 
total number of terms of the polynomial is M= (+d)!/(!d!). 
In this work we used  ≤ 6; d ≤ 3 for nonlinear fitting and  ≤ 
84; d = 1 for linear fitting. The best linear and nonlinear 
models are chosen according to the Akaike criterion:  

N

r
rrC  )(log)(                                                           (4) 

where r ≤ M is the number of polynomial terms in the model, 
N is the length of the data series and ε(r) is residual error. The 
null hypothesis–a stochastic time series with linear 
dynamics–is rejected if the best nonlinear model provides a 
significantly better fit to the data than the best linear model 
using parametric (F-test) statistics. The detection rate (DR) is 
calculated as percentage of nonlinearity detection in 
consecutive 15 data segments. 
    Once nonlinearity is detected, the method of noise titration 
is applied to the data to further analyze possible chaotic 
dynamics. The noise titration technique has been shown to 
offer a highly sensitive litmus test (sufficient proof) for 
chaotic dynamics and a relative measure of the chaos level in 
short noise-contaminated data segments [11, 12]. 
Specifically, white (or linearly correlated) noise of increasing 
standard deviations is added incrementally to the data until 
nonlinearity is no longer detected by using the above Volterra 
autoregressive modeling method. The noise limit (NL), which 
has been shown to correlate (to within a constant 
corresponding to the noise floor) with the Lyapunov 
exponent of the equivalent noise-free chaotic dynamics, is 
calculated as the percent of signal power added as noise. 
Under this numerical titration scheme, chaos is indicated as 
NL>0 where the chaos strength is estimated by the NL value. 
Conversely, if NL=0, then it may be inferred that the series 
either is not chaotic or the chaotic component is already 
neutralized by the background noise (noise floor) in the data. 

III. RESULTS 

Figure 2 illustrates the circadian variations of HRV 
spectral components and noise titration indices in healthy 
subjects. In Fig. 2A, nocturnal increases of RR interval of an 

 
Fig. 2. Linear and nonlinear circadian heart rate variability and mean RR 
interval in healthy subjects (n=3, age 30±5.3 yrs mean±SD). A. 24-hr 
beat-to-beat interval tachogram in a representative subject. B. 
Corresponding power spectral density vs. frequency plot. C. Average 
spectral powers of HF (red) and LF (blue) bands. Data points were evaluated 
at 12-min intervals and averaged over a moving 3-hr time window for each 
subject before group averaging. D. Nonlinear detection rate (blue) and noise 
limit (red) evaluated for a moving 3-hr time window with 12-min 
increments. For noise limit, segments with zero noise limit were not 
included in the moving-average calculation. 
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Fig. 1. Flow charts of the conventional phase-randomized surrogate
method (A) and band-phase-randomized surrogate method (B). Both 
phase randomization methods can be amplitude adjusted [14] to account 
for non-Gaussian probability distribution in the time series. 
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individual mirrored well-known increases of vagal-cardiac 
restraint [19] and decreases of sympathetic stimulation during 
sleep [20]. Paralleling the circadian RR interval were HF 
peaks which occurred only at night, with occasional tiny 
peaks in siesta during daytime (Fig. 2B), acute increases of 
HF power nocturnally and slightly concomitant increases of 
LF power (Fig. 2C). Figure 2D illustrates the corresponding 
circadian variations of detection rate (DR) and noise limit 
(NL) in the group. Comparison of Figs. 2C and 2D shows that 
these noise titration indices correlated strongly with the HF 
component. 

To verify the chaotic dynamics of the HF component, we 
further compared noise titration of the test data in 
combination with the band-phase-randomized surrogate data 
method. The total frequency band (0-0.5Hz) was first divided 
into two sub-bands: a HF band and a “LF band” which 
included the LF band and the rest of the power spectrum 
except the HF band [0-0.15 and 0.4-0.5 Hz].  Randomizations 
of the phases of HF- and LF-band are denoted HF- and 
LF-randomization respectively. Accordingly, abolition of NL 
and DR after HF- but not LF-randomization would indicate 
that heart rate chaos occurred primarily in the HF band, and 
vice versa. Results were similar when the phase-randomized 
surrogates were amplitude-adjusted to account for 
non-Gaussian distributions.  

Figure 3 shows the noise titration and ApEn results [15] for 
the test data and its band-phase- randomized surrogates from 
a healthy subject. The noise limit of the test data was 
34.5±1.5% (mean±SEM) in 20 titrations (Fig. 3A) and was 0 
for the conventional surrogate data with phase randomization 
over the total band width of 0-0.5 Hz (Fig. 3B), indicating the 

inherent nonlinearity in the test data. However, when the test 
data was band-phase-randomized, the noise limit was reduced 
to 0 only for HF- (Fig. 3C) but not LF-randomization (Fig. 
3D). This observation confirmed that the bulk of the chaotic 
dynamics was ascribable to the HF component. Chaotic 
dynamics in the LF band could not be verified because a 
decrease in NL after LF-randomization could also result from 
an increase in the noise floor for the primary HF chaos, which 
remained intact after LF-randomization.  In contrast, the 
ApEn results of test data and its surrogates are similar, 
indicating the unreliability of the surrogate data method per 
se in distinguishing the nonlinearities of the HF and LF 
components. 

To illustrate the close correlation of the HF component and 
the noise titration indices as suggested in Fig 2, we analyzed 
the circadian variations of the noise limit and detection rate of 
the RR series and its band-phase- randomized surrogates in 3 
healthy young subjects (Fig. 4). Circadian variations of the 
noise titration results for the test data were similar to Fig. 2D. 
However, strong diurnal/nocturnal variations of NL and DR 
were seen only in the LF-randomized surrogates, but not the 
HF-randomized surrogates. Moreover, there were significant 
differences between HF- and LF-randomizations at night 
indicating HF-dominant chaotic dynamics, but not during 
daytime, where HF chaos is weakest.  

IV. DICUSSION 

Spectral analysis has long been recognized as a linear test 
of HRV [3]. However, previous studies using the surrogate 
data method have indicated that the normal HRV has 
nonlinear components [21]. The surrogate data method is 
used to answer whether the test data comes from a linear 
process with possible static nonlinear transformation (null 
hypothesis) [14]. Rejection of the null hypothesis is only a 
necessary condition to infer nonlinearity.  In contrast, the 
noise titration technique provides a sufficient test of chaotic 
dynamics even under significant measurement noise [16, 17]. 
However, none of the above methods, as well as other 

 
Fig. 3. Noise limit and approximate entropy (ApEn) of test data and its 
phase-randomized surrogates. The test data was a nocturnal segment with 
1024 beats from a representative subject; all surrogates were amplitude 
adjusted [14]. Right ordinate is noise limit (red circles) and left ordinate is 
corresponding power spectral density (PSD, blue lines); lower abscissa is
frequency band and upper abscissa is beat number of time series (half-tone 
tracings). A. Noise limit of test data was 34.5±1.5% (mean±SEM) in 20 
titrations. B. Noise limits vanished for conventional surrogate data with 
phase randomization in the entire frequency band (shading under the PSD 
plot). C. Noise limit also vanished after phase randomization in the HF band 
(0.15-0.4 Hz) alone. D. In contrast, if phase randomization was restricted to 
the LF band and the remaining frequency spectrum other than the HF band, 
noise limit was reduced (22.9±4.2%) but not abolished. ApEn results (right 
upper corner) are marginally different between the various conditions.  

 
Fig. 4. Circadian variations of noise limit (A) and detection rate (B) of test 
data and its surrogates in healthy subjects (n=3, 36±8.8 yrs; mean±SD). 
The 24 hr RR series was divided into 48 segments. In each segment, a 
series with 1024 beats was analyzed. NL and DR were evaluated in each 
segment and averaged over a moving 3-hr time window for each subject 
before group averaging. 
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nonlinear indicators, can be applied to test the contribution of 
specific spectral components to the nonlinearity of HRV. The 
hybrid method of band-phase-randomized surrogates and 
noise titration presently proposed is the only method to offer a 
sufficient test of chaotic spectral component in HRV.  

Among the three main peaks in the HRV spectrum, the HF 
component has received the greatest attention, because it is 
directly related to respiratory sinus arrhythmia (RSA) in the 
time domain. The frequency value of RSA is the ratio of 
respiratory frequency and heart rate, and remains relatively 
stable during spontaneous breathing. RSA is also considered 
as an index of cardiopulmonary balance [22-24]. The present 
revelation of chaotic RSA by using our hybrid method of 
band-phase-randomization and noise titration strongly 
supports the previous finding of circadian covariation of HF 
power with nonlinear detection rate and noise limit [10]. Such 
HF chaos is imparted possibly in part by chaotic respiratory 
activity [25] via its gating of vagal-cardiac neural activity 
[26], and in part by cardio-respiratory coupling at the level of 
either central nervous system or pre- and post-synaptic 
interaction on the sinoatrial node [9, 27].  

The observed difference between diurnal and nocturnal 
behaviors in HF chaos may be attributed to circadian changes 
in neurohumoral activities beyond close-loop regulation of 
the cardiovascular system. Besides reflex feedback, the 
activities in both cardiovascular and respiratory centers are 
also affected by descending signals from high-level centers, 
such as the defense area in the midbrain, or cerebral cortex. 
Defense reaction is originally defined as the response when 
an animal faces an enemy; now it has been extended to 
behaviors with sympathetic hyperactivity, such as mental 
arithmetic and the stress of daily urban life [28]. Effects of 
defense reaction include tachycardia and increase of blood 
pressure. Such exogenous and endogenous disturbances from 
either physical or mental activities or from metabolic 
processes are inevitable especially during daytime. These 
stochastic disturbances may obscure the intrinsic nonlinear 
determinism of HRV by increasing the physiologic noise 
floor that mars the chaotic dynamics of RSA.  
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