Personal Communications
by
Chi Chong Wong

B.Sc., Systems Design Engineering
University of Waterloo

Waterloo, Canada

1989

SUBMITTED TO THE MEDIA ARTS AND SCIENCES SECTION, SCHOOL OF ARCHITECTURE AND
PLANNING, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF
MASTER OF SCIENCE
AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 1991

©Massachusetts Institute of Technology 1991

All Rights Reserved

Signature of the Author

VA ']
, iy
Media Arts antf%ciences Section

May 10, 1991

Certified by

Cliris Schmandt
Principal Research Scientist

Tliesis Supervisor

[o
Accepted By —1

e e B R VT

Stephen A. Benton

Chairman

Departmental Committee of Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 23 1991

_ LIBRARIES
oteh

Personal Communications
by

Chi Chong Wong

Submitted to the Media Arts and Sciences Section, School of Architecture and Planning, on May 10,
1991 in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts

Institute of Technology

Abstract

There is an emerging trend in the telecommmuuications industry for providing customizable
communications services. Telephony features such as call forwarding, call transfer. call waiting. hold.
conference, voice mail and ring again have hecome ubiquitous in the office environment. However,
these telephony features have greatly increased the complexity of the central office (CO) switch and the
telephone set.

One approach to managing complexity in the CO and providing a better user interface to
advanced teleconumunications services is to define a basic set of functions within the CO and to allow
external peer entities such as workstations to interface to it through an open architecture. The
integration of telecommunications systems into computer networks allows designers to shift complexity
away from the switch by distributing the burden of call processing to a customer premise workstation.
Conducting call management at the customer premise will allow the workstation to actively participate
in call processing through intelligent agents.

A phoneserver that provides an architecture to controlling telecommunications services provided
by an AT&T ISDN S5ESS switch is presented in this thesis. An automated call management entity
(:4(‘ ME) that interfaces to the phoneserver on a client’s hehalf is presented, along with other
network-based voice services that utilize the phoneserver. ACME is a rule-based system that is
configured using a graphical user interface called Phoneditor. It was found that it is a non-trivial task
to define a set of rules that could adequately specify the personalization needs of users. These findings
are discnssed along with conjectures about the utility of a phoneserver and an ACME in advanced

telecommmunications networks of tomorrow.

Thesis Supervisor: Chris Schmandt

Title: Principal Research Scientist

Contents

1 Introduction
2 Background
2.1 Etherphone B
2.2 The Modular Integrated Communications Environment (MICE)
2.3 Personal Exchange (PX)o
2.4 IC-Card Telephone System
3 Integrating the Workstation and the Network
3.1 Imtelligent Agents
3.2 User Interface
3.3 Imtermetworking
3.4 Distributed Call Processing
3.5 How is this work different from previous work?
4 Implementation
4.1 Design Philosophy L
4.2 Hardware Architecture,
4.3 Software Architecture L
5 The Phoneserver
5.1 Phoueserver Client Software Library
5.2 Network Interface
5.3 Client Applications of the Phoneserver
5.3.1 Pager
3.3.2 QDVM L L

3.3.3 Xplone

20

22
23
25

6

-~

10

11

A

Automated Call Management Entity

6.1 Call Management

6.2 Software Architecture of the ACME . . .
6.2.1 Data Structures
6.2.2 Socket Manager.
6.2.3 Call Management Example

6.3 Sorting Rules

The Telephony Language
!

Challenges of the Telephony Language

The Phoneditor

8.1 Graphical User Interface
Discussion

9.1 Privacy and Security
9.2 Difficulties with ISDN
9.3 Personal Communications Networks . . .

Summary

2 Acknowledgements

Configuring the Phoneserver

A1 Emnmerating the Event and Command Structures

A2 Call Appearance States
A3 Imterest Structure L. L L.,

..

...

......................................

...

......................................

...........................

46
46

49
49

53
53
54
54

57

58

38

60

62

B Configuring the ACME 67

B.1 Sample Rule Set File 67
B.2 Configuration File 68
B.3 AliasFiles o o oo 68
B.4 Protocol between ACME and the Phoneditor 69
C Lex and Yacc Description of Telephony Language 70
C.l Lex File —tokeudo o 70
C.2 Yacc File ~ parser.y 72

List of Figures

1-1

2-1
2-2

2-4
2-5
2-6

G-4
6-5

6-6

Examples of Call Management 8
Etherphone Architecture e e e e e e e e 10
MICE Hardware Architecture e 12
MICE Software Architecture [12
PX Hardware Architecture 13
PX Software Architecture e e e e e 14
IC-Card Telephone Set 15
System Architectureo 24
Software Architecture 26
Command Structure 29
Event Structure Lo, 29
IPC Conmnectionso oo 30
Communicating with the Phoneserver 31
Call Processing Functions oo 0L 32
Pager Program L 34
Forward: Popup Window 0o L 35
Logger Programi L 35
Rule Structure oL 39
Coudition and Action Structures L 40
Socket Manager L 41
Filled Conditions and Action Structureso 42
Cnsorted Rule Set 0oL 43
Sorted Rule Set L. L e 45

8-1

A-1
A-2

Intra-Rule Conflicts e e e e e e 47
Inter-Rule Conflicts: Second Rule Never Reached 48
Inter-Rule Set Conflicts: Cyclic Transfers v v v i ... 48
Phoneditor o o i e e e e e e, 50
Call Appearance to Interest Structure 65
Interest Structures L e e e 66

Chapter 1

Introduction

This thesis is an expceriment in intelligent call managenient agents. distributed call processing. user
interfaces and internetworking in a heterogeneous computing and telecommunications environment.
The call processing services are presented through a graphical user interface and allow the users to
customize their communication services to an extent that is not possible in today’s telecommunication

systems. For example. users can specify to the system statements such as those shown in Figure 1-1.

“No calls between 12 noon to 1pm. except if it’s from Peter.”
“Transfer my calls to wherever I am except if I'm in the cafeteria.”
“Transfer my calls to voice mail immediately if I'm not in my office.”

Figure 1-1: Examples of Call Maunagement

The thesis first examines previous related research that has been done at other laboratories in
the U.S., Canada aud Japan. Chapter 3 discusses the motivation for this work and how it is different
from the previons work. Chapter 4 discnsses implenmentation issues of the thesis such as the hardware
and software requircinents to reproduce this experiment at another lab. Chapter 5 describes the
phoneserver in detail the architecture of the software and the protocol of communications. The
automatic call manaceiment entity (ACME) used by clients to manage their communications service is
discussed in chapter 6. The rule-hased scripting language used to instruct ACME is describe in chapter
7 and the graplical interface used for generating these rules is discussed chapter 8. The remaining
chapters discuss and smnmarize the work as well as coujecture as to how this architectnre may be used

m future telecomnmuication networks.

Chapter 2

Background

In 1984. the Modified Final Judgment required the Regional Bell Operating Companies (RBOCs) to
provide equal access to their inter-lata exchanges to all long distance competitors. To meet this
mandate. the RBOCs rapidly upgraded their old electro-mechanical switches to digital stored program
control central office (CO) switches. These new digital switches paved the way for large-scale increases
m Centrex services. programmable private branch exchanges (PBX) and feature-rich telephone sets.
Such services are now commonplace in the office environment and are beginning to reach the home as
well.

Undoubtedly. these new services have added value to the existing telephone systems. However,
the added functionality has brought along with it an increase in the complexity of its user interface.
Several human factors studies have been conducted in the hopes of providing a user interface that can
effectively manage these new services [8, 10, 20, 19]. One approach to this ease-of-use problem is to nse
the office computer to help manage this complexity. In the past decade, several attempts have been
inade to integrate the world of telecommunications into the computing environment and to personalize
telephony services. Some of the published work outside of the MIT Media Laboratory has come from
Xerox PARC. Bellcore. Bell-Northern Research (BNR) and Nippon Telephone and Telegraph (NTT).
The Etherphone project. developed at PARC, analyzed the use of Ethernet for providing telephony
services [27]. Bellcore developed an intelligent network testbed, called MICE, that was designed to
provide an environment for ra.pi(l~ prototyping of customizable telephony features [10]. Unfortunately,
both Etherphone aud MICE arc no longer active projects. At BNR, researchers are working on
developing a Personal eXchange system to merge voice communications with computer applications
[14]. A recent project at NTT has focused on developing a smart telephoue that would enable the

yersonatization of telephony services [17].
1)

2.1 Etherphone

Etherphone was an experimental telephone system at Xerox PARC that was intimately tied to a
computer network. Specialized hardware was used to connect a digital telephone set to an Ethernet
local area network (LAN). This hardware enabled the Etherphone to transmit digitized voice, signaling
and supervisory information over the network. The system architecture is shown in Figure 2-1.1 A
telephone control server handled routing information and other such responsibilities typical of a PBX.
A general purpose computer and a file server were included in the system to provide voice in
computing applications. The main engineering challenge was to meet the real-time transport

requirements of voice data over Ethernet.

CENERIIXE e —

E ==
|
I

m Work.
gonmo station

Servces

Figure 2-1: Etherphone Architecture

Transporting voice and other multimedia data types along a common bus architecture provides
the opportunity for voice call processing and integrating multimedia data into a common computing
environment. The ability to perform programmable switching control opens up a whole host of possible
applications including directory-based call placement. call logging. call filtering. automatic call forward.
voice mail, voice annotation and voice editing.

The cost of this architecture is less reliable telephone s.ﬂ"\'icb.ﬂ Telejﬂmne service would be
severely degraded if the traffic on the Ethernet reached saturation and would fail completely if the
Telephone Control Server or the LAN failed. These implications would likely be unacceptable for most

companies because telephone service is such an integral part of any organization’s operations. Until

'Figure 1aken from {27}

10

computing systems evolve to the stage when their fault tolerance is comparable to today’s switches, the
integration of telephony and computer system likely will remain impractical. Etherphone was able to
overcome this reliability issue by installing a regular subscriber line to each Etherphone. This line was
used for telephone access outside the Etherphone system and could be used as a backup whenever the

network failed.

2.2 The Modular Integrated Communications Environment

(MICE)

The MICE project. at Bellcore was an attempt to reduce the complexity of introducing new service
specifications in a CO switch by developing a rapid prototyping system for network services.

The authors emphasized three services within MICE - personalization, customization and
integration. The idea of personalization meant that services were associated with users and not their
telephones. Users could customize their own personal telephone profile through the use of a finite-state
table language developed for MICE users. This construct allowed users to use arguments such as the
identity of the caller, the time of day and the line status, when making call processing decisions. Thus
new services such as conditional call forwarding. variable forwarding. routing lists . and so forth, were
made possible. Finally. integration referred to the multimedia integration of data into a common
notification. addressing and controlling mechanisi. Oue example of this is the integrated voice and
text mailing system. émail . that was built for MICE[18]. Imail allowed users to access both electronic
mail and voice wail from a computer workstation.

The anthors assumed that the computing and telecommunications world of the future would be
composed of a heterogeneouns network. The components that they used to develop MICE, shown in
Figure 2-2. reflected this decision.

The authors wrote the software to intercounect all the components. This task was divided into
three modules. as shown iu Figure 2-3 2. The foundational software was largely composed of the
Central Control Process that acted as a server aud communicated with other processes via
inter-process communication (IPC) over Ethernet and managed peripherals via a serial link. Resource
software provided device drivers and service software was the level presented to users.

The authors later attempted to introduce an ISDN switch to-the architecture. However, they
ran into more problems than they anticipated. Their hardships were documented in an internal paper

[3] and are sunmmmarized here. They claim that definitions and extensions of protocols are needed.

Pigures 2-2 and 2-3 taken from [9).

11

RADIO
PAGING

PROCESSOR

(MASSCOMP)

N

g Emmssnzea
(DEC)

))))

DIGITAL

8\ oG
STORAGE
{VOICETEK)

SWITCH
(REDCOM)

DIRECT INWARD DIAL 1 l l
TRUNK GROUP TO
LOCAL CO

DIGITAL N

Figure 2-2: MICE Hardware Architecture

BESQURCES EQUNDATION SERVICES
(INTEGRATED
CONTROL \ MESSAGING)
DECTALK
CONTROL | DIRECTORY
o— | ASSISTANCE
VOICESTORE
CONTROL | " [COMMUNICATION ‘
MECHANISM CONDITIONAL
CALL
HECOGN /
VERIFIER
|_conTro
INOTIFICATION
MESSAGE SERVICES
PAGER
INTERFACE
DATABASE USER
TERINAL INTERFACES
INTERFACE

Figure 2-3: MICE Software Architecture

Signaling mismatches exist between the telephony world and the computer communication world. Data
compatibility problems exist among different machines. Protocol conformity problems exist between

different implementations.

2.3 Personal Exchange (PX)

The PX project is exploring architectures that will enable workstations to conveniently communicate,
store, retrieve and process voice as a data type. Researchers at BNR are developing architectures that
will enable the workstation to establish voice connections and perform voice switching. By enabling the
workstation in this way, they are able to distribute much of the call processing capabilities to the
desktop rather than concentrating it at the switch.

The system design of the hardware in PX includes a LAN of workstations where each
workstation is associated with a telephone. The workstation is connected to the telephone through an
adaptor that also terminates a Northern Telecom ISDN-compatible key system (sce Figure 2-4). The
key system acts as a circuit server for voice connections and has a 2B+D architecture. The D channel
is a message channel that is implemented as a logical messaging bus. By allowing the workstations to
read and write messages to this bus through the adaptor. the workstation can instruct the key system
to establish voice counections through the B channels. Thus, the key system serves as a circuit switch

with an open external control interface.

Packet L:(:::)//
2,

Figure 2-4: PX Hardware Architecture

There are three layers in the software architecture of PX: device drivers. services and

applications (sec Fignre 2-5 3). The telephony management toolkit in the middl- laver is of most

*Figures z-4 and 2-5 taken from [2].

13

interest to this thesis. This layer provides high-level abstractions for telephony management services to
the application programmer. The abstractions provided allow the programmer to initiate, receive and

manipulate calls.

Applications: appointment) voice) telephone | otc
agent editor attendant
Base:
PX -
services telephony voice speech ote
management management processing
device -
drivers (workstauon) telephone workstation
adapter sot devices ete

Figure 2-5: PX Software Architecture

The PX project is looking at applications to use the workstation to assist voice communications.
to integrate voice and data and to enable delivery and retrieval of data from a workstation through the
voice channel. The applications to assist in voice communications are using the workstation to provide
a better user interface to advanced telecommunications services. This is done through a screen-based
telephony interface and using the workstation as an interactive answer machine. Applications that
integrate voice and data include voice annotation of text documents and voice entry to an on-line text
calendar. Finally. the workstation is being nused to deliver voice messages for applications such as
‘t..elemarker-ing and to remotely retrieve electronic mail by reading the text out using a text-to-speech

synthesizer.

2.4 IC-Card Telephone System

The IC-Card Telephone System developed at NTT is an atteinpt to provide personal télephone
services. The services that the researchers at NTT wish to provide include: directory dialing, voice
calling, automatic transfer. automatic answering and call charge accumulation. They have placed much
more hardware in the telephone to enable these services and provide a better interface (see Figure 2-6).
I order to provide personalized services. a removable IC-card is used to store information about the

-y Tonw s1iFaneniadlaan ob e ~ee o)l IR e P o 4SynAC mas seeeesses v
USCT. Lh(‘; IOTIIANION SLOTeaG O tad 100L¢ LALOOTS, Aates, CilNles. ALISWOTILE

machine messages, schedules, and so on, are transferred to RAM when the IC-card is inserted into the

telephone.

Communication Control CPU
{ | Basic Telephone Circutts I To DSU
C___—‘/J\uomrmmmlr
RO s
Recsiver n,i A /1
I "t § e
Tranemitter { T)
Microphone (M)} —J /‘__,\ Main Control CPU
i | |Loudspeaker \‘_‘/
Circult
Pushbutton Disl ' LN . :
e [t e Y G
Koys o
C—— W
[— \ V| I\ Fr
oonm "

Figure 2-G: IC-Card Telephone Set

Chapter 3

Integrating the Workstation and
the Network

This chapter will exarnine the issues involved in integrating the workstation into the network. In this
thesis, the personal enginecring workstation will be simply referred to as the workstation and the
AT&T 5ESS ISDN switch that connects MIT with the rest of the international telecommunications
network will be referred to as the network. First, the benefits of integrating the workstation into the
network will be examined in sections 3.1 and 3.2 and then the architecture needed to provide tlhese
benefits will be discussed in sections 3.3 and 3.4. Finally, section 3.5 will examine how the architecture

of the systemn built in this rhesis differs from previous related work.

3.1 Intelligent Agents

One way of abstractly viewing the telecommunications industry is that it is a pointer industry. The
entire network represents a linge storage baunk of pointers represented by telephone numbers that
people can use to access intormation or to gain access to other people. Viewed in this way, the
telecommmunications network facilitates human to human communications by providing links that may
span great distances. Unforrunately this comnmnications system sometimes may fail because people
are mobile and pointers arc static.

Placiug a workstation at the periphery of the network as an end terminal, gives the network
avcess to the nformation aud capabilities available in the computer world. From a user’s perspective.
the workstation acts as an agent on behalf of the user to manage the network for hini. This may mean

processing transactions. scivduling eveuts. waking it easier to use this lmge network of pointers or

16

participating in call management by providing the network with the correct pointer.

Consider the list of factors that commonly go into making a call management decision. Clearly,
these factors will vary from person to person; in general, however, these factors may be broken down
into static and dynamic parameters. Static parameters are those parameters that rarely change with
time. For example, a user may always want his telephone to be forwarded to his voice mail when he
does not answer his call. Dynamic parameters change with time. An example would be if a user
schedules a meeting in her office and wants all her calls to be handled by voice mail for the duration of
the meeting. If the workstation can model the activity of the user, it can provide useful and dynamic
information to the network about call routing. The dynamic information that can be used at the
workstation may include the following: entries from an on-line calendar, the time of day, the location
of the user. the status of the user’s telephone line. the calling party, a list of people the user has
recently called. what activity is currently happening on the user’s machine. and so on. The agent built

and proposed in this thesis, called ACME, is an attempt at create a dynamic call processing agent.

3.2 User Interface

As mentioned in the previous section. the workstation can be used to make it easier to manage the
network. One approach. such as the one described in section 2.4 is to make the telephone more
sophisticated. Another approach would be to enhance the switch. The approach proposed in this thesis
is to migrate some of the telephony tunctiounality away from the telephone to the computer. It is
difficult ro see how the telephone can offer user interface comparable to what a workstation can
provide. without becoming prohibitively expensive. Also there is motivation to simplify the CO switch
as discussed 1n section 3.4.

While the amount of functionality that is to be moved is unclear, two guidelines cau be followed.
i’ irst. at the very minimum. the telephoue set should provide Plain Old Telephone Services (POTS)
since POTS is too imiportant to lose when the workstation fails. Thus, the workstation should focus on
value added network services. Secondly. researchers at Bellcore have found in [10] that the telephone is
attractive for non-control functions such as listening to a message or placing a call. However, display
devices were found to be more attractive than touchtone keypads for service control of any complexity,
such as forwarding or deleting messages.

It is argued in [22] that using display devices. such as workstations. iniproves the user interface
and enlisnces functionality for several reasons. Workstations have better input devices, such as a
monse and full kevboard. and have superior displays that are larger and easier to read than teleplione

displays. Also. giving the workstation access to telephiony functionality provides an opportunity for

integrating the communications services provided by the network with the communication services
available in the computer network, such as electronic mail. Finally, there is more opportunity for
personalization of services because the workstation has access to databases.

Recent studies at Bellcore indicate that enhanced network services are hard to remember and
often not used [20]. Researchers at Bellcore proposed a mnemonic command syntax for controlling
advanced telecommunications services. What they discovered was that the mnemonic command syntax
did help users to remember the commands but did not change their pattern of usage. This finding
indicates that there exists a significant amount of inertia for introducing any value-added network
service. Any new service ought to be useful enough to noticeably add value while being easy enough to
use so that the benefits outweigh the cost to the user of Laving to adapt to the new service. What is
needed is a simple set of abstractions that will increase tlie functionality of the system while reducing
the complexity of its usage. The abstractions are mechanisms by which users can conveniently think of
and express to the computer how they would like their commmunication services to be managed. The
approach taken in ACME is to use the IF-THEN paradigm to establish service control (see section 6.1)

and provide a graphical user interface called Phoneditor, described in chapter 8.

3.3 Internetworking

The intelligent integration of computing technology and the telecommunications world is a subject of
mrternational research. Perhaps nowhere is this topic more intensely studied than in the area of ISDN.
This should cowe as no surprise, since integrating a telecommmuications network with the digital
computer would seein to be a natural evolutionary path for a digital network such as ISDN. In fact.
the name ISDN itself. Integrated Services Digital Network, hmplies the integration of service to a
digital network.
' Tuternetworking the telecommumnications network with the computer network was performed at
the network layer as defined by the seven-layered OSI reference model for software. In ISDN, the
network layer uses the Q.931 protocol defined by the CCITT. A protocol engine to drive the Q.931
protocol from the workstation end was used (as discussed in section 5.2). The phoneserver resides on
top of this protocol engine and communicates with it. Significant time and effort was spent in refining
this protocol engine because of the differences between Basic Voice Services defined by the CCITT and
Supplementary Voice Services offered by the 5ESS switch runuing the 5E4 generic program.

Building ACME required both hardware and software integration. The hardware integration.

involved networking a host of peripherals - ISDN-PC boards. text-to-speech synthesizers, active

badges' and workstations. The software integration involved internetworking the telecommunications
network with the workstation network and integrating server processes with client and other server

processes within the same network. The implementation details are discussed in chapter 4.

3.4 Distributed Call Processing

Distributed call processing is the decentralization of call management decisions from the central office
to the end terminal or user. The ACME is distributed in the sense that the intelligence and knowledge
needed for call management is handled locally at each workstation, either automatically by computer
or manually by human intervention, while all the physical routing remains in the CO.

Distributed call processing is well motivated both from a network and a user concentric view.
From a network concentric view, the decentralization of call management decisions from the CO switch
can decrease the complexity of the switcl. Manufacturers of CO switches are now having to develop
and maintain switches that are increasing in size and complexity at a staggering rate. Given this
scenario. oue approach to managing the complexity is to define a basic set of functions within an open
architecture switch and empower customers to easily design and customize their own set of enhanced
services. This idea 1s not revolutionary and is the basic tenet behind the intelligent network proposed
by Bellcore [7].

In the Intelligent Network/2 (IN/2) proposal for the Public Switched Network in the United
States. the network architecture is characterized by distributed call processing and modular “building
blocks™ of services called Functional Components (FCs). The intent is to meet the telecommunication
and informatiou needs of customers by allowing them to arrange their network services on demand.
The current service introduction cyele is two to five years for a new service to go from coucept to
production {6]. Using IN/2. customers can create their own services by interfaciug to the switching
svstenn. The FCs. which previously resided in the switch, reside in an intelligent peripheral ontside the
switch. Signaling information is passed between the customer premise equipment. the switch and the
ntelligent peripheral using the Signaling System 7 (SS7) protocol. Customers build services by
combining FCs which can be thought of as reusable modular capabilities.

This concept of decentralizing functionality is seen in the computing world as well. Consider the
evolution of computer operating systems. The growing size and complexity of the operating system led
to the notion of placing only what is essential to a computer system in the kernel of the ()i)(’l’?l.tillg
syvstem and providing access to the kernel through an applications interface or system calls.

Decentralization of call management decisions also makes intuitive sense from a nser services

S this s a recent technology tor tracking location of badge wearers.

19

perspective. Consider the list of static and dynamic factors that commonly go into making a call
management decision. A feature-rich CO switch can be programmed (through a 12-button telephone
keypad plus a few function keys) to hold most of the static parameters people commonly use in call
management decisions. The AT&T 5ESS switch has access to the configuration table which, for a
given telephone line. provides static information on what to do if a call is not answered or if the line of
the called party is busy, and so on. However, it would be difficult if not impossible for a CO switch to
access and maintain dynamic information on all the users that it serves except for the time of day and
the telephone number of the calling and called party. It is much more likely and feasible that a
personal workstation would have access to dynamic information about the user. Hence, distributed call
processing allows the syétem to decentralize the decision making to the more knowledgeable

workstation.

3.5 How is this work different from previous work?

ACME differs from the Etherphone project hecause in ACME the voice is circuit switched in the
central office instead of carried over Ethernet. Also, in Etherphone, all the call processing is performed
at the centralized telephone control server which keeps track of state and sets up all connections. The
IC-Card telephone syvstem is also different in the philosophy of its architecture. This approach is
building more functionality into the teleplhone set. The emphasis in this thesis is in building network
based telephony services with distributed call processing capabilities. Value is added to
teleconmmmnications services by migrating sonte of the functionality from the teleplione set to the
workstation. This chapter has argued that this approach will be more beneficial than enhancing the
telephouc set.

The MICE and PX projects have the most similarity to ACME. The main difference in
architecture between the MICE project and ACME is that in MICE, all call management is performed
from a centralized process called Central Control Process (CCP); whereas in ACME each user has
an ACME process managing calls on their behalf. In MICE, the CCP is passed a static database in the
form of a finite state table and responds to phone events based on this static table. By providing an
ACME process for each user, the system can respond to dynamic information about a user and account
for those factors in call processing (see section 3.4). The PX project also has an architecture of
distribured call processing and more call processing is actﬁally performed at the personal workstation
in PX than in ACME. The Configuration window {2] used in PX is similar to ACME: however, PX
does not nse 11 for dynamie call routing. There is more emphasis placed on managing voice in a

personal workstation than in using the workstation for call routing.

None of the projects discussed in this chapter attempt to model the user dynamically in order to
make call management decisions. The use of BRI is another difference. PX is using an
ISDN-compatible key system and MICE tried to integrate ISDN into the system. Of the difficulties
encountered in MICE, some similar difficulties were encountered in the ACME project. In particular,
different implementations of ISDN made it hard to port ISDN network handlers from one site to

another. The differences in the protocols caused difficulties that are documented in section 5.2.

I

Chapter 4

Implementation

4.1 Design Philosophy

The emphasis in the ACME project is to build a distributed system. All the hardware is distributed
over a LAN. The workstations can be of different architectures although currently only Sun
workstarions arc being used. Indeed, the phoneserver which was originally developed on a Sun 2
workstation using a Motorola 68020 processor, has been ported to a Suu 3861 workstation using an
Iutel 80386 processor, and then was ported to a Sun Sparcstation 1 using a Sparc processor. The
software that is used in ACME is distributed over several processes awud processors.

Tliere is oue centralized process for controlling the call processing functionality. This process is
the phoneserver. The ACME processes that implement the decision making are distributed. Each user
rans an ACME process to act as an agent on their behalf at their local workstation. The wotivation
for distributing the decision making processes is to allow the ACME processes to collect and use
iforarion about a user dynawmically in call management. This is much more effectively done in a
decentralized architecture than in a centralized one. Another advantage of distributing the system is
that it provides more fault tolerance. By having different servers run ou different machines, the whole
system does not stop if one machine fails. Ouly the resources provided by the server on the machine
that failed are no longer available. In fact, separate processes residing on the same machine are
sufficiently isolated so that even if one process malfunctions it ﬁ*ill uot d«-g.;{rn‘(lc thie services of other
processes.

Sinece the ACME system is distributed across several hardware platforms and many software
processes, the integration of these subsystems becomes very important. These systens are integrated

through a protocol that is designed to he architecture independent. The processes communicate via

(]
]

inter-process commmunication. Indeed, this whole integration process is part of a bigger picture within
the Speech Group of integrating many desktop audio tools in the workstation [21].

Another requirement of the design is that all the servers should run asynchronously. The
software is designed to act as an interrupt handler to external stimuli. This is implemented in various
forms using callback facilities provided in the X Athena Widget set and the Socket Manager (see
chapter 6.2.2) and the select system call in Unix. It is important that the server processes be
asynchronously driven because the servers must be able to receive events while handling events and
cannot guarantee a real-time response. Fortunately. when dealing with interfacing to human response
times, no stringent response times are placed on the phoneserver. Perhaps the only situation where a
response is absolutely required within a finite time is when the 5ESS polls a stimulus set to see
whether it is “alive”. Responding to this message is appropriately handled at a layer below the
phoneserver - either in the network handler process in the Sparcstation 1 or in the Teleos board on the

PC. This real-time requirement is shielded from the phoneserver.

4.2 Hardware Architecture

The MIT campus installed an AT&T 5ESS switch in August 1988. the switch, running the 5E4
generic, provides ISDN Basic Rate Interface (BRI) to the entire campus.! The D-channel (or the data
channel) provides end-to-end digital communication via a 2B+D time division multiplexed
architecture. The D-channel is a 16 Kbps out-of-band signaling channel. The concept of common
channel signaling (CCS) is likely to become a foundarion for telecommunication services in the future.
CCS is a great improvement over previous in-band signaling switches because it provides greater
Hexibility n receiving and processing information. The two B-chauuels (or bearer chanuels) are 64
Kbps bit streams. Voice is carried by standard pulse code modulation while data information is
typically trausported by a protocol imposed by the subscriber. The BRI lines are terminated at the
customer premise by an S interface which typically 1)111\gs into an AT&T ISDN 7506 telephone set. 7506
sets are uniquely identified by one primary directory number (PDN) call appearance and physically
have room for nine more, not necessarily unique. secondary directory number (SDN) call appearances.
However. the actual limitation of the 5ESS switch on a BRI line is 1 PDN and up to 63 SDNs.
Running a BRI line with 64 call appearances to the plioneserver can monitor up to 64 telephones by
hm’ing access to their D-channels.

Fignre 4-1 shows a BRI terminating in a workstation: however, when the ACME project first

"ISDN ix a prohibitively large topic to address adequatcly in this thesis. The interested reader is referred to
reference [23].

Badge Badge Badge
Lab S er RJ-11 Sensar
‘ Cable |

7
tem
= e Ethernet
DECtalk |—Sedal Ether
Line . Drop
Serial |Line
Workstation Workstation Client Workstation Client
Phoneserver ACME LI ACME
Location Server Phoneditor Phoneditor
7506 OO 7506 oo
set & set
Active
BRI Lines Badge

Figure 4-1: Svstem Architecture

began. a Teleos BI00PC card that resided on an IBM PC bus was used as an interface to the 5ESS
becanse no similar ISDN board was commercially available on a Unix platform. The PC was used as a
slave to the phoneserver process residing in the Sun workstation. Logically. the PC and the server on
the workstation were a single entity. The PC delivered asynchronous messages to the phoneserver
whenever an event occurred. The information transmitted was identical to the information contained
i the event structure described in chapter 5 except that the last three fields in that structure were not
transmitted. The calling name and dn fields were filled by the phoneserver which had access to calling
table information. The time_of_day was filled using Unix time.

As the project evolved. an attempt was made to eliminate the PC interface to the 5ESS
completely. A Sparcstation 1 with a customized motherboard and BRI plug-in line was obtained. along
with proprietary ISDN device driver code from a Speech Group sponsor. These two ISDN interfaces
are further discussed in section 52 '

Active badges are a new technology from Cambridge-Olivetri Computer Research Laboratories.
The badges are roughly 2.25 inches by 2.25 inches by 0.25 inches and weigh a fow ounces. They can be
comfortably worn like any cowpany identification badge. Each badge emits a unique infrared signal

every 15 seconds. The siguals are received by sensors that in turn send a message via RJ11 phone

cables to a concentrator that sends a message to the location server process through a serial line. This
server process constantly monitors the location of each person wearing a badge and can be queried for
information by client processes [26].

The DECtalk text-to-speech synthesizer is used to provide paging. Incoming calls are announced

through the internal speaker system of the Media Lab (see section 5.3.1).

4.3 Software Architecture

The Teleos B100PC board comes with a device driver. The device driver handles all the messaging
with the SESS up to and including layer 3 - Q.931. This is a convenient level of abstraction for the
application progranumer. The PC is essentially acting as a parser and a gateway to the 5ESS. The
software extracts relevant signaling information from the switch such as calling line identification. time
staips awd ISDN calling, to pass onto the phoneserver residing in the Sun workstation.

All services operate on a client-server based paradigm. The phoneserver communicates with the
clients via unit sockets. A client side software library providés applications with an interface to the
phoneserver. The phoneserver provides the basic telephony services to a client at a programiming level.
The programming interface is described in section 5.1.

It is assumed rhat the client processes with a graphical interface will be running within the X
Window system and have access to graphical tools such as icons and pop-up notification windows. The
client processes have an automated call management entity (described in chapter 6) interfacing with
the phouneserver and location server on its behalf. The interface to the phoneserver is doue through the
client sofrware library.

The iuteraction between processes is illustrated in Figure 4-2. The circles denote processes while
the square denores a database. The figure shows only one ACME process: Liowever. each client has at
least one ACME process to interface with the plhoneserver. The protocol betiveen the ACME and the
phoneserver is architecture-independent, allowing clients to run on different machines with different

Processors,

& Client Applications iz R

ey 3 PR

L
Phoneditor Caller_id } Forward
e . -:g..-'::?'. '-'
Local Databases
ACME
Phoneserver
System Databases
Location Server ' Pager QDVM
H System Applications

Figure 4-2: Software Architecture

Chapter 5

The Phoneserver

The plioneserver is an asynchronous process that provides telephony-based network services to clients.
It receives its input from three sources: new clients registering for services, existing clients sending it
messages and signaling information from a BRI line.

When the phoneserver is first started, it loads a calling table and a translation table into
memory and initializes some states for each cell appearance (CA). The calling table maps a directory
number (DN) ! into a name in order to personalize the services that are offered. Another table is used
to trauslate a set of CAs into DNs where each DN may have one or more call appearances that appear
on one or more telephone sets. The phoneserver uses a BRI line that has 64 call appearances of 35
different DNs that are of interest to this project. The owners of most of these DNs work in the
Termial Garden of the Media Lab and may be interested in using the network phone services the
Specch Group is building. Finally. the phoneserver initializes the state of each CA to be IDLE in an
internal array at startup time. Clearly, this may be a false assumption to make about all 64 call
appearances, especially if the plioneserver is started during office hours. However, there is no known
way of easily obtaining the status of a call appearance from the switch and little damage is done if a
wrong assumption is made since it will correct itself after the first event occurs on that call appearance.

The phoneserver communicates with clients through socket-based interprocess communications.
The Internet domain format is used to establish sockets between the phoneserver and its clients. The
Internet domain is the Unix iinp]«nlpnt.ation of the IP /TCP /UDP suite of protocols fromx the DARPA
Internet standard. Addresses in the Internet domain format are composed of a machine network
address plus a unique number referred to as a port . The protocol allows for communications between

processes in the same machine aud between processes residing on separate machines that are of the

same or different architecture. The messages are exchanged through a stream socket. The actual socket
is created using the Unix socket system call. Stream communications is a connection-oriented circuit
that provides reliable and error-free data communications. No message boundaries are imposed and
the network will manage all the problems of fragmentation, ordering and error correction to ensure the
integrity of the message that is passed. After the socket name has been bound to the socket using the
bind command, reading and writing from the stream is accomplished by using the system calls read
and write, respectively. This newly created socket will be referred to as the phoneserver socket .

After the phoneserver socket has been created, the phoneserver listens to it to see if any clients
are trying to connect to it. On the client side, a similar sequence is followed to create a stream-based
socket. This socket is then connected to the publicly known port number and host machine by the
client using the system call connect. This action signals the phoneserver to accept the first connection
on the queue of pending connections and creates a new socket with the same properties of the
phoneserver socket. The Unix operating system then assigns a new file descriptor for the newly created
socket. A phoneserver client software library is provided to hide this level of detail from the application
developer and present the appropriate level of abstraction. Functions to connect to the phoneserver,
along with other functions. will be discussed later in this chapter.

Information from a BRI line is obtained from either the Teleos B100PC card or directly from
the Sparcstation ISDN device driver (see section 5.2). The phoneserver supports both sources in the
same way. If the B100PC card is being used. a serial port is opened and its file descriptor is stored. If
the Sparcstation ISDN device driver is used. a socket is opened with a network handler process called
nhatt (see section 5.2) and the socket number is stored.

At this point. the phoneserver has three sets of peers to communicate with — new clients
counecting through the phoneserver socket. a list of sockets from existing clients and either a file
descriptor for the serial port or a socket number for nhatt. The phoneserver must listen to all of these
sources and serve them as the nced arises. The system call select elegantly fills this need. Before
calling select, the socket numbers and file descriptors of every peer is masked into one master file
descriptor called masterfds. A copy of masterfds called readfds is passed to the select call élong with
the timeout parameters, which are set to block indefinitely until a message arrives. When a message
does arrive. the select statement sets the readfds mask to the file descriptor or socket number that
received the input. The application may then fetch the message by issuing a read command 'onAreadf(ls
and appropriate action may then be taken on the message.

If the input was from a new client, then the connection request is accepted, the client is added
to a linked list of existing clients and the masterfds is updated to include the new client. If the input. is

from an existing client than there are two possibilities. Either the client is closing the connection (or

has died) or is sending a command. If the client is closing the connection, the phoneserver receives a
zero length message and proceeds to close the socket, free the information block about the client from
the linked list of existing clients and update the masterfds by unmasking the closed socket. If the
message is a command, a the structure shown in Figure 5-1 is received and is passed to a parser that
determines the command type. extracts information from the relevant fields and executes the
appropriate command. The command messages are sent as large byte-oriented character strings to

provide architecture independence.

struct command {
char command[CMD_SIZE]; /* type of command */
char ca]MAX_CA_LENJ; /* call appearance */
char stc]MAX_SRC_LEN]; /* originating source */
char destfMAX_DEST _LEN]; /* destination */
int interest; /* clients interest */

}

Figure 5-1: Command Structure

Depending on the type of command. a message may be returned to the client. In gencral.
acknowledgements between the source and the receiver are not used because reliable data
cominunications is assuued to be provided by the stream-based socket IPC as described above. If the

nmessage was from nhatt or the B100PC card, an event structure shown in Figure 5-2 is filled.

struer event {
cliar state[STATE_LEN];
char ca[MAX_CA_LEN];
char ISDN _call info[ISDN_CALL_INFO_LEN];
char calling dn[MAX_DN_LEN]:
char forwarded from_-dn[MAX_DN_LEN];
char calling nameMAX_NAME_LEN];
long time.of.day;

¢har dn[LOCAL_DN_LEN];

1
J

Figure 3-2: Event Structure

Upou recerving aw evewt packet. the phoneserver looks up the information block corresponding
to the call appearance. which is identified by the field ca . If the owner is interested in the event that

occurred as dicated by the fnicld state. then the entire data structure is sent to this client. 1he

29

internal organization of representing the interest of the clients is described in Appendix A.3.

5.1 Phoneserver Client Software Library

The phoneserver client software library provides a C programming interface to the phoneserver.

The functions init_phoneserver_ipc and reconnect_pserver (shown in Figure 5-3) open
connections to the phoneserver and return a socket. init_phoneserver_ipc initializes the connection
to the phoneserver. reconnect_pserver is used when the phoneserver fa,ils and a reconnection is
required. It first closes the existing socket, then calls init_phoneserver_ipc every sleep_count seconds
until a connection is finally made. It is important to “sleep” between attempts to reconnect to the
phoneserver: otherwise, the port used by the phoneserver socket will be constantly busy and the
phoneserver never will be given the chance to bind to the port. Sleeping for 60 seconds between
reconnection attempts has been found empirically to be sufficient amount of time for the phoneserver
to bind to the port and for most phoneserver client applications to sleep. This technique for
reconnecting to the phoneserver is inadequate for other asynchronous servers connecting to the
phoneserver that cannot afford to go to sleep. One solution to this problem is to use a timeout cellback
construct provided by the Socket Manager (see section 6.2.2). This construct allows the program to

execute init_phoneserver_ipc periodically without blocking at that point in the program.

int init_phoneserver_ipc()

int reconnect_pserver(socket, sleep_couut)
int socket;
int sleep_count;

Figure 5-3: IPC Connections

After opening a socket with the phoneserver, a client is known to the phoneserver. However. the
phoneserver still does not know what type of services the client wants. The function
register_interest. shown in Figure 5-4, allows the client to tell the phoneserver what its interests
are. The dn parameter specifies what DN the client is interested in. The interest parameter can be one
ot 13 defined states plus a WILD_STATE (see Appendix A.2). The WILD_STATE registers an interest
in every event that occurs on the specified DN. The most common states of interest are idle, active,
incowing and dialing. To register an interest in more than one state but not all states, the defined

ister_interest will

states can heanasked into one integer and passed as the inferest parameter. Reg _in

30

return a SUCCESS or FAIL to the client. Failures usually occur when the client registers an interest in
a DN not known to the phoneserver.

After the client registers an interest in particular events, the phoneserver will send the event
structures described in Figure 5-2 to the client. The function check4input checks if any messages have
arrived in the socket specified by the parameter device . The blocking-time parameter specifies the
length of time in seconds to block on the device. A value of -1 will block indefinitely. When an arrival
occurs, a non-negative value is returned and and the client can retrieve the message by calling

get_event and passing it a pointer to an empty event structure.

int registerinterest(dn, interest, sock)
int dn;
int interest;
int sock;

int check4input(device, blocking_time)
int device;
int blocking_time;

int get_event({inbuff, sock)
event inbuff:
int sock;

Figure 5-4: Communicating with the Phoneserver

The remaining functions shown in Figure 5-5 are self-explanatory except for two cases. The
phone_status function queries the phoneserver as to the state of a particular DN of interest and
returns the state. The relative_ca parameter in the call function allows the programmer to select
which call appearance to use on a particular telephone set. It is relative because this number is to be

translated to an absolute call appearance on the BRI line used by the plhoneserver.

5.2 Network Interface

As discussed in section 4.2 the ACME project evolved from terminating a BRI line at an IBM PC to a
Sparcstation 1. The Teleos B100PC comes with a device driver and application software library called
ASIN100. A *VOICE library within ASK100 provides an interface to Supplementary Voice Service
messages. It is interrupt driven and applications can send and receive ISDN signaling information

through NetBIOS [25]. Upon receiving an cvent the application will load the tirst five fields of the data

31

int

int

int

nr

int

call(sre, dest. relative_ca, sock)
char *src;

char *dest;:

char *relative_ca;

int sock:

call_pickup(ca, sock)
char *ca;
int sock:

conference(ca. dest, sock)
char *ca:

char *dest:;

int sock;

drop(ca. sock)
char *ca;
mt sock:

forward(src. dest. sock)
char *sre:

cliar *dest:

int sock:

int hold(ca, sock)
char *ca;
int sock;

int phone_status(dn, sock)
char *dn;
int sock;

int transfer(ca, src, dest, sock)
char *ca;
char *src;
char *dest:
int sock:

int unhold(ca, src. sock)
char *ca;
char *src:
int sock;

Figure 5-5: Call Processing Functions

structure shown in figure 5-2 and send it to the phoneserver through a serial connection.

A proprietary ISDN network handler, nhatt, for the Sparcstation 1 provided by a Speech Group
sponsor is being used. Nhatt is a Unix process that receives D-channel information from the memory
resident ISDN device driver. A finite state table describing the Q.931 protocol is used as a protocol
engine to comununicate with the 5ESS through the D-channel. The nhatt process connects to client
applications via inter-process communications. The phoneserver is a client and receives asynchronous
packets of ISDN signaling information from the nhatt process. Again, like in the case of the Teleos

card, this packet is received and used to fill the data structure shown in figure 5-2.

5.3 Client Applications of the Phoneserver

A lhost of client applications were written to utilize the phouneserver. This section will discuss two
system applications — pager and gdvm - and three individual client applications - xplione, forward and
logger. The section will also examine the relationship between the phoneserver and another server

called the activity server.

5.3.1 Pager

A paging program was written to serve the phoneserver clients working in the Terminal Garden. A
public called file contains a table of strings to be announced when an incoming call arrives for a given
DN and a calling file contains a table of names associated with particular DNs. For the sake of privacy.
nsers can choose to not have the identity of the calling party announced or not have the call announced
at all.

Pager is very popular with the students that work in the Garden. The presence of music in the

- Garden often drowns out the sound of ringing phone in nearby offices. Pager helps to alleviate this

problens for those people who have offices close enough to the Garden to respond to the announceruent.

The program itself is very straightforward. Pager first loads the calling tables into memory.
Then it opens a socket and registers an interest in the incoming calls of all DNs known to the
phoneserver. Finally. it sits in a loop, waiting for events and announcing the appropriate string

through the Garden speaker system using a Dectalk text-to-speech synthesizer.

5.3.2 QDVM

QDV) is a voice mail system ruuning on the Speech Grouy Sun workstations and provides voice mail
services for the entire Speech Group [13]. Electronic mail is scut to the voice mail recipient to inforin

biue of the volce mail. There Is a graphical user nterface and a releplione nrerface to tie voice mail.

33

get_tables(calling table, called-table);
sock = init_phoneserver_ipc();
register_interest(WILD DN, REG.incoming ,sock);
while(1) {
get_event (allocated_event _structure, sock);
output_to_dectalk (allocated event_structure, calling table, called_table);

}

Figure 5-6: Pager Program

All calls to the Speech Group telephones are forwarded to a central number used by QDVM. QDVM

uses the phoneserver to find information about the calling party and the called party.

5.3.3 Xphone

Xphone provides a variety of automated telephone dialing service from a workstation. It was originally
reported by the paper [22] as “Phonetool”. Xphone uses a combination of mouse and keyboard entry to
place and receive calls. A “Rolotool” application was written to provide an on-line rolodex that works
i1 conecert with Xphone. The full functionality and advantages of such an interface are reported in [22].
Xphone was recently ported to use the ISDN ploneserver. Xphone uses the calling processing
functions call and drop from the phoneserver client software library shown in Figure 5-5 to place calls
and drop calls. One current limitation inherent in the 5ESS switching system is that there is no way to
place an ATET 7506 telephoune set on speaker phone mode through software control. Thus the user is

forced to either pick up the handset or hit the speaker phone button on the 7506 set to receive calls.

5.3.4 Forward

One phenomenon that was observed with the introduction of the pager was that people began to run
to their offices to catch an announced call. A mechanism to transter the call to the Garden phones
would be very useful. One way to implement this idea is for a client application to register an interest
in the incoming calls of a particular DN. When an incoming call occurs,'t.he student may be notified at
her workstation and given the.option to transfer the call to a phone through her workstation.

The forward application was written for this task in the X Window Systems[11]. When an
incoming call occurs. the workstation “heep” is sounded and a popup window appears on the screen
{~ee Figure 3-7). The user i told that he has an incoming call frony a given person (or number. if one
is known) and given four pushbutton comunands to select. from. He may choose to transfer the call to

the phoue nearest his workstation. trausfer the call to a secretary. transter the call to voice mail or

34

dismiss the call completely.

| here I secretarg—][voice mail | [disnissl

Figure 5-7: Forward: Popup Window

This program was functional for a short time, but was not reliable enough to offer to people
outside the speech group. The transferring function was not robust enough to withstand sustained
usage.

However, a successful application that evolved from the forward application is caller_id . caller.id
is the forward application with no selection buttons. Displaying the call on the screen is much more
readable than on the 48 character LCD display on the AT&T ISDN 7506 set. This feature a much

more effective way of alerting the user to the identity of the calling party before picking up the receiver.

5.3.5 Logger

The logger program was written originally to debug the phoneserver and was later enhanced to retrieve
data for the study proposed in section 10.1 Though the study was not conducted in this project. logger
proved to he one of the most useful utilities from the user concentric view. The most interesting event
in everyday use is the incoming call. Thus, the logger opens a socket with the phoneserver. registers an
interest in REG.ncomiug on the telephone number of the user and then sits in a loop waiting for

events from the phoneserver and recording the events (see Figure 5-8).

sock = init_phoneserver_ipc();
registerinterest(my.dn, REG_incoming ,sock);
while(1) {
get_event (allocated_event_structure, sock);
record (allocated_event_structure, output_filename):

Figure 5-8: Logger Program
Ar inieresiing side effeci of this uiility is lis social Lplications. I is cousidered o be courieons

35

to return a telephone call. The people who are aware of the fact that I am logging calls may expect me
to return a call even if they did not leave me a voice mail message. However, unlike voice mail, when
the logger or phoneserver processes fail, there is no way for the calling party to discern that the call is
not being logged. This lack of feedback may cause users of the logger program to unknowingly violate

social expectations when the logging process fails.

5.3.6 Activity Server

The activity server provides high-level information about the current activity of a set of users [16]. It
receives information from three sources: the finger server, the location server and the phoneserver.
Based on this information, the activity server makes inferences about the activity of a user at a given
time by establishing interdependencies and resolving conflicts in the infoi;mation retrieved. It may be
used as a tool within a trusting user community to coordinate office activities.

The activity server requests state information from the phoneserver. The critical state

information required by the activity server.are: onhook, offhook and incoming call states.

36

Chapter 6

Automated Call Management
Entity

The Automated Call Management Entity (ACME) is a process that is associated with a single DN. Its
function is to manage the telephony services as specified by a user for a particular DN. To accomplish
this task. the ACME interprets a rule-base created by the user and interfaces with the phoneserver to

manage the events that the phoneserver reports.

6.1 Call Management

Cousider how one manages a telephone call. Decisions as to what to do with an incoming call are made
based on many factors, including: the calling party, the time of day and the activity that one is
currently involved in.

. The first two items. calling party and time, are straightforward to obtain from the network. The
Q.931 protocol delivers to the called party information fields that contain the calling party’s number
and time of day. A much niore difficult problem for a workstation is to determine the current activity
of a person.! The information that is available to workstations in the Media Lab comes from various
sources. The location of active badge bearers on the third floor of the Media Lab is available to the
ACME from the location server. The current phone status for clients of the phoneserver is available to
the ACME from the phoneserver. Finally. information about users is available on-line from the user’s
calendar and from the operating system.

Making inferences about a user’s activity based on calendar information is a very complex

CIhis problem is addressed in Sanjay Manandhar's Masters thesis [15).

37

problem, unless the calendar entries are extremely structured and simplifying assumptions are made
about each entry. One solution may be to format the calendar so that each line begins with a block of
time, where a filled block implies that the user is busy. However, the granularity of the information
provided in this solution is not detailed enough to be useful to an ACME. Also, Speech Group
members use the Unix calendar file format with an X Window interface, Xcal, that enables the
inclusion of sounds within the calendar. The presence of sound files and the fact that the Unix
calendar file format permits unconstrained text entry into each date makes the problem of deducing
the activity of a user at a given time to be difficult.

Information provided by the Unix operating system and its associated software tools does
provide a tractable solution to obtaining information about the activity of the user. The finger
command in the Unix operating system can provide information as to where a user is logged in and
how long the user has been idle. This information is available to the ACME from the finger server [15].
In this era of highly networked workstations that permit remote logins to various host machines, the
combination of both login information and idle time is necessary to reliably determine at which
workstation a user is physically working. The finger server finds the hosts with the least idle time and
traces back hosts until a host console is found. The workstation with the host console is assumed to be

where the user is physically working [15].

6.2 Software Architecture of the ACME

6.2.1 Data Structures

The ACME is an asvachronously driven event manager. It is a standalone process that sets up its
initial conditions by reading ASCII database files containing aliases and rules for call management. It
receives external input events from two sources - the phoneserver and the phoneditor. External inputs
are managed by a Socket Manager [12] that provides socket-based inter-process communication. After
the external inputs are recelved. they are tested against the database of conditions and appropriate
actions are taken.

The user can set up a personal alias file to supplement the system-wide alias files. These aliases
are used for convenience and also manifest themselves in the options button within the dialog box of
the Phoneditor (sce Figure 8-1). All personal alias files found in the root directory of a user supersede
svstem-wide aliases. The most common alias files used are .cme_rooms and .cme_group_names, which
specify aliases for a group of locations and a group of people respectively (see Appendix B.1 for
;»lellll)l()s)‘ The ACME reads these alias files and maintains a linked list for each alias. The ACME

s

IRV EEU LI RS B I T L O R AT IS . |
llj(lll(lsl'h VLI I TR LERCUL 1D L \)IA“llllllJls (Rt llll\lll\‘ UL Oy 1)\‘('1)1|' tlicti bl

TS I MmN
N A N PR I UL R

38

This list is used in the situation where the calling party argument is specified to be someone I recently
called.

A user’s rule set is also placed in the user’s root directory, in the file .cme_rules.<DN>, where
<DN> is an extension representing the DN for that rule set. At execution time the ACME reads this
file, parses it, sorts (see section 6.3) and loads the rules into three data structures — a linked list of
rules, a linked list for the conditions in each rule and a structure for the action to be taken. The rule
structure is shown in Figure 6-1. The num_conditions field contains the number of conditions for a
given rule while the rule field contains the actual rule string. The condition_ptr and action_ptr are
pointer to the condition and action structures (as shown in Figure 6-2), respectively. Finally, the next

field is a pointer used to link the rules together.

struct rules {
it num-conditions;
char rule MAX_RULE_LEN];
condition *condition_ptr;
action *action_ptr;
struct rules *next;

}

Figure 6-1: Rule Structure

Each rule has one or more instances of conditional structures and exactly one instance of an
action structure. The condition structure contains four fields and a pointer to allow for a linked lisr.
All conditions in the linked list are combined by the boolean operator and. The type field contains
information on the type of condition: calling party. time, location, workstation or telephone status.
The operator ficld contains a logical operator such as not. before. after or around. that is to be applied
t.o an operand ficld. The two operand ficlds. op! and op2. contain information entered by the user at
the time the rnle was created such as names. telephone numbers. roomn numbers. time, machine names.
and so forth.

The action structure contains three fields and is considered only when all the conditions for that
action have been fulfilled. The type ficld contains information on the function to trigger while the opI
field is a parameter passed to the function. The operand may conr"a,i'u iufoﬁnation such as names or
telephoue nmunbers. The delay field specifies the number of seconds to wait before triggering the action

routine.

39

struct condition { struct action {

int type; int type;

int operator; int delay;

char op1[64]; char op1[64];

char op2[64]; }) ’

struct condition *next;

}

Figure 6-2: Condition and Action Structures

6.2.2 Socket Manager

At this point ACME has initialized all its internal data structures and is ready to communicate with
other processes. It is a client to the location server 2 and phoneserver and a-server to the phoneditor.
Thus. it establishes connections with the location server and the phoneserver and then adds a new
network service called acme_port for the Phoneditor to connect to. This is all done through the Socket
Manager. The Socket Manager provides management of sockets between clients and their
corresponding server and is typified by its use of asvnchronous callback routines. It is loosely modeled
on parts of the design of the X Window System.

The mechanism by which sockets are managed in ACME is described in Figure 6-3. First,
SmInit is called to initialize the Socket NManager. SmOpen connects the process to the server identified
by the flrst argnment and returns the socket number. SmAddService adds a new service to the server
and the service name is translated into a port number for clients to bind to. When clients bind to this
port or communicare with it. the SmNewSocketCallBack routine will invoke the newclientcb routine
to execute. The first SmSetReadCallBack routine watches for data in sock_phone and calls
phone_handler when some input arrives and also passes the pointer phone-date . Similarly. this is
done for the location server. Finally. SmMainLoop is called after all the callbacks are set up. It
dispatches events to the callbacks when events occur and never returns.

Oue call missing from Figure 6-3 is ACME registering an interest with the phoneserver in
ineoming and outgoing call events for a specified DN before SmSetReadCallBack is issued. The ACME
conld be coded to register an interest in more types of events; however, incoming and outgoing call
events are the events that have been found to be useful thus far. Since the ACME registers an interest

in ouly oue DN. it can manage calls for only one DN. If a user has more than one DN to manage,

“AUME ideally should connect to the activity server for more reliable data. However, at the time of writing
the ACMIE code, the activity server was not reliable enough for use since it was also under development. See
~cetion 10,4 Jor further discussion.

40

SmInit();

sock_phone = SmOpen(“phoneserver”, “”);

sock location = SmOpen(“location-server”, “”);

SmAddService(“acme_port”);

SmNewSocket CallBack(cme_port, newclientch, NULL);
SmSetReadCallBack(sock_phone, phone handler, phone_data);
SmSetReadCallBack(sock location, location-handler, location_data);
SmMainLoop();

Figure 6-3: Socket Manager

separate ACME processes have to be started for each DN. There is a line-level option to specify the
DX to monitor. Associated with-each DN is a rule base and a port number. The rule file for each DN
hLas a specified filename ending with the extension of the DN and the port number is found by table
lookup 1n a configuration ﬁle..bCurrently, three service ports within a Speech Group LAN have been
dedicated for IPC between the phoneditor and the ACME. This number can be increased simply by -
dedicating more ports.

External inputs from the phoneditor are in the form of commands. The commands are update,
sleep and wake. The inputs will cause newclientcb callback routine to execute and parse the
command. The update will cause the ACME to purge an old rule set and read in a new way. The
phoneditor can request the ACME to go to sleep (stop managing events from the phoneserver), wake
up or update its rule base after the phoneditor has modified it. For all commands, the ACME will
citlier acknowledge the successful completion of a command with an ACK message or send back a NAK or
negative acknowledgement to inform the user that the commind failed. These commands are further
discussed in section 8.1 and Appendix B.4.

External inputs from the phoneserver are in the form of events. The inputs will cause
phone_handler to exccute. Phone_handler retrieves the event packet and matches it to the condition
structure. If all the conditions are fulfilled, then an action is fired after the delay specified in the delay
v tield of the action structure. The delay mechanisin is implemented by the timeout routine,
SmSetTimeoutCallBack, provided by the Socket Manager. The simple sleep command available in
Unix is inadequate for implementing the delay because as in any asynchronous event manager, the »
ACME st monitor incoming events even during the delay. In addition to monitoring, the ACME
mmst also keep the state of all eall appearances because some action functions are contingent on the .

status of the DN.

41

6.2.3 Call Management Example

The Terminal Garden is a large computing facility where many students in the Media Lab work and
socialize. The paging facility announces incoming calls over the Garden speaker system. It is a
common occurrence that students have to run back to their offices to grab the incoming telephone call
before it is transferred to voice mail. Thus a useful rule for the ACME would be to increase the
alerting time before a call is transferred to voice mail if a student is near the phone but not in her
office. For example:

“IF I am in the Garden and the calling party is important-person THEN transfer the call to
voice mail after 15 seconds.”

For this example, ACME’s parser will fill the condition and action data structures as shown in

Figure 6-4.

Conditionl Condition2 Action
type: LOCATION CALLING_PARTY type: TRANSFER
operator: Nil Nil delay: 15
opl: me important-person opl: vimail
op2: Garden Nil

Figure 6-4: Filled Conditions and Action Structures

When an incoming call from an important-person arrives for the user and he is in the Garden,
the status of his phone is recorded to be INCOMING and then the SmSetTimeoutCallBack routine is
set to call the transfer routine after 15 seconds. The argument émportant-person is an alias set by the
user in the .cme_group_names file and is represented internally as a linked list. that is passed to the
phone_handler for matching. The ACME continues to monitor incoming phoneserver events as
normal. After 15 seconds have elapsed. the transfer function is called and the status of the phone is
checked. If the status is still INCOMING, then the transfer to voice mail proceeds. If the status has
changed. (i.c.. the user has picked up the plione and the status has hecome ACTIVE) then the action
is killed. Upon exiting from transfer. the SmSetTimeoutCallBack is reset so as to not execute
anymore. A current limitation of the Socket Manager is that only one SmSetTimeoutCallBack can be
outstanding. Thus, if an event occurs between setting the timeout aud the L',é.lll)a.ck routine being
executed. then that event must wait until the previous callback is finished.

If an action is successfully fired. the phone_handler returns control to SmMainLoop: otherwise, it
will trv to fire another rule. The action may fail for various reasous. One reason may be the case

stated above where the action is no longer valid after a change of state. Another reason may be that

the ACME rejects an invalid action such as transferring a call to where I am where the where I am

parameter is either an unknown location or the same phone (see Figure 7-1).

6.3 Sorting Rules

If only one rule could be true in a rule set at a given time, no sorting would be necessary. But, for any
given event it is possible that none or all of the rules can be true. In the example shown in Figure 6-5,
if my friend Bill calls after 6 p.m. and I am working in the Garden on the machine shasta, then all the
rules are true except for the last one. Which action should the ACME fire? A trivial solution is for the
ACME to follow exactly what the user specifies -and fire the first rule that tests to be true. The
intuitive answer seems to be that the most important rule should be fired. However, using this
approach, the ACME must assuine that 1ts metrics for measuring importance reflect the way the user
thinks: otherwise, the ACME appears unpredictable. A fundamental tradeoff is made here between the
desire for predictability of the ACME and the autonomy given to the ACME to make inferences.
begin

IF the calling party is friends THEN transfer the call to where I am after 0 seconds.

IF the calling party is Bill and the location of me is not my office THEN transfer the call to
my secvetary after 3 secouds.

IF the location of me is Garden THEN trausfer the call to voice mail after 15 seconds.

IF the status of the machine shasta is logged in THEN notify me by a pop-up window.

IF the call party is anvone and the time is after 18:00 THEN transfer my call to voice mail

after 0 seconds.
IF the status of my phone is active THEX do nothing.

Figure 6-5: Unsorted Rule Set

1t can be argued that the ACME should be given more autonomy to make inferences rather than
be constrained to behave predictably for the following reasons. First, the ACME is a distinct agent
from the previous efforts in call management hecause it is trying to use dynamic information in its call
processing. The use of dynamic information argues for ACME being intelligent and flexible and not
constrained to a static script. On the other hand. it is important that ACME behaves predictably to
the user: otherwise, the user will lose confidence in it. This reasoning argues that the ACME should
carry out the rule-base in precisely the way that the user has written it. However, having the ACME
obey rule-base exactly does not guarantee predictability. Humans are not as logical as computers and
tend to forget mmndane facts. such as rules, nmch faster thau computers. Thus. even if ACME is

behaviug in a manner that is logical and consistent with its instructions. the wser may not see it this

43

way because she misunderstands the logic of her rule set or has forgotten some rules.

The basic assumption that is made is that the precision of a rule is equated to its importance.
The more important rules are tested first; therefore, after the rule-base is loaded the rules are sorted
from the most important to the least important.

First, the rules are sorted by the number of conditions within a rule. Rules with more conditions
are assumed to be more specific than rules with fewer conditions. Before the sorting algorithm is
performed, all rules are scanned for the word “anyone™. Rules containing this word in the condition are
assumed to have one fewer condition then there actually is, since the “anyone” condition is always
true. A rule containing one condition and the keyword “anyone” will be sorted to be the last rule and
will act as the default condition since it will always fire. Thus generating a rule like, “If the calling

)

party s anyone then transfer the call to voice mail after 3 seconds,” means that the call will go to voice
mail if nothing else happens.

Next, rules with the same number of conditions are sorted according to the highest priority
condition type within a rule. The order of priority from most important to least important is as follows:
phone status, calling party, location. time and workstation status. The phone status condition is most
important because if a user is already in a phone conversation then he is physically at his telephone set
and his decision about how to manage the call should override any ACME action. Furthernore, when
a user is active, it restricts the phoneserver ACME from routing calls anyway because there are not
enough CAs (see 7.1). Thus. a useful rule for all users to have is the last rule in Figure 6-3. The second
most important condition is the calling party hecause that gives specific arguments and in general the
identity of the calling party is very important to call management. The location condition can also be
precise: however. as a factor iu call management it is intuitively less important than the identity of the
calling party. Perhaps this is because there are only two common scenarios with respect to location —
either a person is near her office plhoue or she is not. If the person is away from her office. then the
desired call management behavior generally will not change as a function of location. However, for the
calling party condition. there may exist several people or several sets of people for which the desired
call management behavior differs. The time condition specifies a range in which the condition is true
and thus it is not as precise as the previous conditions. Finally, the workstation condition is thought to
be the least important because there is the weakest association between that and telephone service. Its
utility is probably limited to aiding in locating a persou and aleiﬁing him.

After sorting between conditions, like conditions are sorted by argument. Tokeus are judged to
be more specific than aliases which are composed of a list. of tokens.

The unsorted rule set in Figure 6-5 is sorted in Figure 6-6. In this rule set friends is an alias

which contains Bill as a token. Clearly. the sorted rule set that is represented internally to the ACME

44

differs from the unsorted rule set which is saved to the rules file .cme_rules.<DN>. This may lead to
some uncertainty. To aid the user, it would be useful to display how the ACME is internally

representing the rule set. This topic is discussed in section 8.1.

begin

IF the status of my phone is active THEN do nothing.

IF the calling party is Bill and the location of me is not my office THEN transfer the call to
my secretary after 3 seconds.

IF the calling party is friends THEN transfer the call to where I am after 0 seconds.

IF the location of me is Garden THEN transfer the call to voice mail after 15 seconds.

IF the calling party is anyone and the time is after 18:00 THEN transfer my call to voice mail
after 0 seconds.

IF the status of the machine shasta is logged in THEN notify me by a pop-up window.

Figure 6-6: Sorted Rule Set

Chapter 7

The Telephony Language

The telephony language developed for ACME is a very simiple English-like language. based on the
IF-THEN construct. for call management. The possible conditions are the parameters that are '
available to the ACME to model user activity, as discussed in section 3.4. They include the identity of
the calling party, user’s locations. the time and the status of a workstation or telephone. The possible
actions are currently limited to transferring a call to a different location and alerting users their
workstation and through the paging system. The list of possible actions can he extended to include all
the actions available to the phoneserver as the need arises.

The langnage is implemented using the lex and yace Unix progranuming tools. An abbreviated
version of the program listing illustrating the granunar in a pseudo-Backus-Naur Formn is displayed in
Appendix C. The lex and yace files generate C functions are used by ACME. These functious read the
rules files. parse the rules and fill the rule, condition and action structures shown in Figure 6-1 and
Figure 6-2.

Users can specify more than one condition per rule. All the conditions in a rule nst be satisfied
before the action will be executed or fired. There is one rule set per DN and the users can specify an
unlimited number of rules per rule set. Users can specify the rules in any order they like; however. the

order of specification is significant since it affects the behavior of the ACME.

7.1 Challenges of the Telephony Language

Specifying a rule ser for call management is a challenging problem because conflicts can arise for several
reasons. There are thuoing problenis. intra-rule confliets. inter-rule conflicts and inter-rule set conflicts.
Timing problemns arise from the fact that there is a delay between when a condition is tested as

pemg e and when an action fires. Within this delay. the state ot the phoneserver may change and

46

subsequently nullify an action. Consider the last example in Figure 7-2. If Peter calls, the ACME will
test the condition to be try and fire a transfer in four seconds. However, if after one second I answer
the call, the ACME can no longer transfer the call (nor do I want it to!) to voice mail.

Timing problems also arise due to race conditions. If more than one ACME process manages a
single DN, then this may lead to events where two ACMEs are competing for the attention of the
phoneserver.

Intra-rule conflicts arise because the telephony language is implemented as a context-free
language without constraints. Thus, the langnage specification will allow for over production. In other
words, it is possible to generate well-formed rules that have nonsense or illogical semantic meaning.
For example, Figure 7-1 displays two rules that have correct syntax but are flawed. In the first
example, if I am in my office when an incoming call arrives, then the phoneserver will attempt. to
transfer the call back to my own phone. This procedure will fail on the standard BRI line with three
CAs because there will be insufficient CAs for the phoneserver to use. In the second example, the

action will never fire since both conditions cannot be simultaneously true.

~IF the location of me is my office THEN transfer to where I am after 3 seconds.”
or

“IF the calling party is Phil and the calling party is Marilyn THEN transfer the call

to voice mail after 5 seconds.”

Figure 7-1: Intra-Rule Conflicts

Resolving conditions between rules will lielp to prevent situations where certain rules are never
reached. For example, in Figure 7-2, the latter rules in both examples are never reached since the
ACME processes test the rules sequentially. It is possible to resolve this rule set and eliminate the rule
('lvomed to have a lower priority. However. if the rule with the higher priority is placed before the rule
with lower priority, then the correct rule will fire and no inter-rule resolving is necessary. The ACME
assumes that the more recently created nile has a higher priority. Thus. a newly created rule is placed
at the front of the set of rules.

Resolving rules across rule sets in a distributed environment is an even tougher problem.
Consider the example shown in Figure 7-3 of two separate ACMEs running on two separate rule sets
that have an inter-rule set conflict. Iu this exawuple. if either party receives a call, the calls will be
trausferred back and forth in an endless evele,

It will be more important to deal with these negative mieractions [1] as more advanced

conditions and actions are added to the ACME. For example, call-waiting and call-forward-on-busy are

“IF the time is before 18:00 THEN notify me by a pop-up window.”

“IF the time is before 17:00 THEN transfer my call to voice mail after 3 seconds.”
or

“IF the calling party is Peter THEN transfer my call to where I am after 0 seconds.”

“IF the calling party is Peter THEN transfer my call to 3-0673 after 4 seconds.”

Figure 7-2: Inter-Rule Conflicts: Second Rule Never Reached

“IF the calling party is anyone THEN “IF the calling party is anyone THEN
transfer my call to Peter after 0 seconds transfer my call to Chi after 0 seconds”
Chi’s Rule File Peter’s Rule File

Figure 7-3: Inter-Rule Set Conflicts: Cyclic Transfers

incompatible features for the same. call appearance. Another example of a negative interaction, shown
in Figure 7-3. is if user Chi forwards calls to Peter who himself has calls forwarded to Chi.

Fortunately, none of the problems described above is known to crash the system even if they are
allowed to occur. In the case of cyelic transfers, the calling party will probably hang up after waiting a
short time without an answer. In the case of cyclic forwards, the 5ESS will terminate a call that hops
between telephones after a few cycles and give the calling party a fast busy signal. However. though
these will not crash the system, they should be addressed because they can lead to unpredictable and
confusing results for the user. Rather than using formal mechanisms in the language to alleviate these
problews. policies in the Phoneditor and the ACME are used to preveut or resolve the confliers.

The timing problem. addressed in section 6.2.2, is resolved by using callback routines. The race
conditions can be prevented if each user is disciplined but only managing their own DN. A less trusting
solution is proposed in section 10.4. The intra-rule conflicts are either prevented by the Phoneditor as
discussed in section 8.1 or resolved in the ACME as discussed in section 6.3. The inter-rule conflicts
are alleviated by the sorting and execution method employed by the ACME as described in section 6.3.
No solution has been attempted or found for the inter-rule set conflicts. This is a problem inherent to
distributed databases and may be resolved only at a central location such as the phoneserver. Such a

solution is bevond the scope of this thesis.

e
on

Chapter 8

The Phoneditor

The Plioncditor is a graphical user interface to call management. It is written in the C language using
the Athena Widget set of the X Window systém under X11 R4. The output of the Phoneditor is an
ASCTI test file called . cme_rules.<DN> (see Appendix B.1). This file acts as a script for the ACME to

follow.

8.1 Graphical User Interface

When the Phoneditor process is runuing. a small icon (displayed in the top part of Figure 8-1) appears
on the screen. The icon is a picture beckoning the user to specify how to mauage calls. Clicking on this
icou will popup the Phoneditor window displayed in Figure 8-1. Clicking on the icon while the
Phoneditor window is already displayed will popdown the window.

The lavout of the Phoneditor is as follows. The top line of the window is an “instruction™ line
that provides contextual instructions to the user. Instructions at each point in the interaction are
provided to guide the user. The large icon selection box immediately below the instruction line
contains all the “condition™ and “action”™ icons. All the condition icons are displayed on the left-hand
side of the screen except for the “My Phone™ coudition icon in the center. The “ACME Status™ label
above the "My Phone” icon is used to inform the user as to whether the ACME process is actively
managing calls on his behalf. The arrows flowing into and out of the "My Plione™ icon convey the idea
of maunaging incoming calls and indicate that the natural flow of the screen is from left to right. The
condition icons are placed on the left side to denote the initial conditions for an incoming call. The
~action” ivons are the riglit to detote what actions to take after au incoming call arrives.

Condition icous must be selected before any action icon may be selected. Upon clicking on a

condition icou. a condition 1s generated and displaved in the "new rule” line that 1s discussed below.

49

+honeditor
Answer the dialog box.

Condition Icons

ACHE is auake

Inconing m Outgoing

N —g

Hy Phone

Transfer
to Party

! o,

VYoice
Hail

DO
NOTHING

[Sleep ACHE | Make RCME | Show Rules [Remove Rule [Help[Clear Rule JQuit]

New Rule:
IF the calling party is <{argunentl)>

[X] [G] ‘thalog box wes=ebaiPT]
Please enter <argumentl):

|
options | [ok][cancel]

Figure 8-1: Phoneditor

Also, a popup dialog box polls the user to enter how ever many arguments are required for the
condition. The user may enter the argument by typing it into the dialog box or by using a pulldown
menu available under the options button in the dialog box, as shown in Figure 8-1. This button is
provided only if a menu is available. Users can set up their own options menu by creating the alias files
described in section 4.3. Selecting mote than one condition will cause all conditions to be combined by
the boolean and operator!. The “My Phone”, “Calling Party” and “Location” condition icons cannot
be selected more than once to prevent intra-rule conflicts discussed in section 7.1. The *Time” icon can
be selected exactly twice to allow users to create upper and lower bounds on time. There is no limit on
the number of times the “Workstation” icon can be selected. After completing one or more conditions,
an action icon may be selected. The same interaction that is used to complete a condition icon is used
to complete an action icon. Only one action icon can be selected and upon completion of a selection,
the rule is written to the .cme_rules.<DN> file and an update message is immediately sent to ACME.
The ACME purges the current rule set in its memory, reads in the new rule set and acknowledges to
the Phoneditor that an update has been made. This constant update may seem very inefficient:
liowever. the protocol is designed to ensure that the rule set contained in the file .cme_rules.<dn> is
consistent with the rule set that the ACME is currently using internally.

Below the icon selection hox is a row of buttons. The Phoneditor interfaces ro the ACME
through the Socket Manager. There may be times when users wish to manage their telephone by
themselves without having to kill the ACME process. The Sleep ACME button will signal the ACME
to stop processing all calls and the "ACME Status™ label will be updated to inform the user that the
ACME is asleep. The converse of this action is performed by hitting the Wake ACME button. The
Show Rules button is provided to allow the user to see the sorted rule set that the ACME is using.
Selecting the button will display in a popup window the rule set contained in the file
.cme_rules.<dn>. which. as discussed above, is necessarily consistent with the rule set that the
ACME is currently using internally. This facility helps make ACME more predictable. To remove a
rule. the user can double click on the rule and then hit the Remove Rules button. Hitting the Help
button at any time will popup a window of context sensitive instructions for how to proceed. The
Clear button is used to clear a rule that is in the process of being created. Finally, the Quit burtou is
nsed to exit the Phoneditor application.

Below the set of buttons is the “new rule” line. This line displays the rule as it is being created.
Iu Figure 8-1. the user has began a new mle by clicking on the “Calling Party™ condition icon aund is

being asked to enter who the calling party is in argument? . The new rule line displays the contents

"The boolean or operator is not supported because the rules are tested sequentially. Therefore all rules with

Lhe wame action aee comhbined 'r-gr—-tlgr—-r effectively hv ap o aperatlor

51

currently in the rule.

Chapter 9

Discussion

9.1 Privacy and Security

The issues of security and privacy have been ignored in this thesis. It is not difficult to imagine that
this type of software can be abused. The main issues of concern regarding privacy are caller
wdentification and electronic surveillance. The issue of providing caller identification is currently being
debated in the telecommmunications world and is more of an issue for the SS7 protocol than for this
thesis. Electronic surveillance of telephoue activity can easily be accomplished by using the logger
prograni. discussed in section 5.3.5, which logs all the activity of a DN.

Tle main concern for security is telephone or PBX fraud. The open interface to the phoneserver
malkes it easy to re-route calls through the transfer routine. Tlus it is possible to steel incoming calls
wieant tor a called party. It is also possible for a uscr.to dial into a phon;‘ser\'cr line and instruct the
phoneserver to transfer the call to a long distance number and thus avoid paying long distance charges.
' The ACME project has avoided these issues for two reasons. First ACME is meant to operate
within a trusted conununity of users to provide value-added services to their communication needs.
Thus, an attitude of trust prevails. Secondly. the main focus of the ACME project is on functionality.
In order to implement a truly secure solution, an authentication server such as Kerberos. is required to
autheuticate the identity of each client process. This added complexity and substantial investment of

time in learning network security is beyvond the scope of this thesis.

9.2 Difficulties with ISDN

The difficulties encountered with interfacing the Sparcstation 1 with an ISDN BRI line have been
encountered previously in the MICE project. The researchers working on MICE found protocol
conformity problems exist between different implementations [3]. The ISDN network handler, nhatt,
was originally developed on an ISDN PBX provisioned to offer Basic Voice Services. The AT< 5ESS
ISDN switch supplies Supplementary Voice Services. There are two noticeable differences between the
protocol for Basic Voice and Supplementary Voice Services. Supplementary Voice Services has an extra
Associated Type message used to inform members of a Key System group of the status of a call.
Also, Supplementary Voice uses a Locking Shift Codeset 6 in the Call Setup message which
contains a few extra fields. These additions were put into nhatt.

An annoving feature discovered in building ACME is that the Q.931 protocol does not allow a
functional terminal to transfer a call without first answering it. The functional terminal must receive
the call. issue a transfer message to the switch, place a call on a free call appearance and then issue
another transfer message. Thus, calling parties who are dialing long distance are billed for calls as

soon as the ACME transfers it even though the call may not be successfully completed.

9.3 Personal Communications Networks

The introduction and interest in widespread tetherless portable radio communications has led to a
surge of articles in Personal Communications Networks (PCN) in the commmnications journals in the
last few years. It is generally recognized that the deployment of tetherless radio communications will
take two evolution paths - high-powered vehicular cellular mobile systems and low-powered handheld
portable sets. Both markets are experiencing fremendous growth. The cellular mobile system in the
¥.S. alone had two hundred million customers in 1988 [4]. By early next century. cars with
tactory-equipped cellular pliones could easily increase the number of mobile cellular phoue users to 100
wmillion [3]. Tle tremendously successful introduction of cordless telephones indicates that the dewsand
for low-powered handheld portable sets is also as strong. Cordless telephones were introduced in the
U.S. in the late 19705 and sales grew to two wmillion units by 1982. Since 1982 roughly four to six
million units were sold each year [4]. With such a rapid deployment of tetherless portable radio
-communications, it’s reasonable to assume that portable handheld telephone sets will becomne
ubiquitous in the urban centers of the U.S. in the not too distant future. If this assumption is true.
does it imply that wircline-based call manageient tools. such as the ones proposed in this thesis, will

become obsulete? The anuswer to this question is. "No™, for two fundamental reasons - the nature of

1 TN . B TN [l R [} A /SVET MR B I . . ¥
VI B U MCEAWOUR A Ce by o TIe A L WL TS HeEWOLRK.

54

The vision of a Personal Communications Networks in the U.S. is rapidly evolving, although it is
lagging behind that of the Europeans vision who have already deployed PCNs in a small scale in the
form of the British CT-2 effort [24]. The view put forward by Bellcore is that personal communications
should enable a person to initiate or receive a call from anywhere within regions of reasonable
population densities [5]. For economic, political and technical reasons there seems to be no easy
migration path from the cellular mobile system to the handheld portable sets. For pragmatic reasons,
handheld sets must be light and pocket-size. This requirement means that smaller batteries must be
used and that high-power electronics are precluded, to increase the mean time between battery
rechargings and also for safety reasons. Whereas high-powered vehicular cellular mobile systems
operate in the range of one to ten watts ! and cover an area of greater than three kilometers.
low-powered handheld portable sets must operate in the range of 0.001 to 0.01 watt range and cover an
area of less than 400 meters. The shorter coverage area means that the cell sizes would be smaller and
as a result the number of radio access ports for a given area would increase. Thus for economic reasons
the PCN network would have to be introduced first to areas of high population densities such as
factories, apartments, airports, shopping malls, and so forth. For economic and political reasons as
well. these radio access ports will be integrated into the existing local exchange networks. Since the
switch networks are already in place, there is no need to duplicate the effort. Also, using the existing
wireline infrastructure would impose a standard and provide access to a universal network — both of
which are needed to make PCN a truly ubiquitous service.

From a technological standpoint. using the local exchange network also makes sense because
PCXN would be able to piggvback on the intelligent network services that would be provided. Since the
PCN network will be coupled to the local exchange network, one or more processes performing similar
functions to the ACME will be useful in locating users. filtering calls and routing calls. The fact that
the PCN microcells are so small means that the network must locate the user to determine which radio
access port to service. One mechanism proposed for tracking a handheld set is for the set to contain
the user’s identity in memory (or in a “smart card” inserted by the user) and have an internal emitting
device transmit this unique identity number [5]. The nearest radio access port that receives and
decodes this number signal reports it to a central process interfacing with the local exchange network
to direct traffic. This scenario is analogons to the setup of tlie location server. However, using the
ACME to inform the network of the location of a user may be more reliable because it employs more
somrees of information thau just badge location to determine the actual location of a user. Also if the
nuser 1~ moving. the network mmst be instructed to perform handoff from one microcell to another. This

is analogous to call transfer i the local exchange network. In this scenario. the alerting mechanism

"1t i sale Tor car phones o operate at this power because the antenna is placed outside ol the car.

that is performed out-of-band may alert the handheld set and the ACME simultaneously. The ACME
may then tell the intelligent network which microcell to interface with.

These call routing and resource arbitration issues will become even more important if the plan
to implement a personal number calling service is adopted. Many major telecommunications companies
are working on a service plan to assign one number to a person and place the burden of alerting the
user on the network regardless of how many kinds of telephones he has at home, at work or in the car.
The ACME would be used here to inform the network where to route the calls. ‘

Filtering calls will be useful regardless of whether a communications network is wireline or
wireless based. For the busy office worker, it will be necessary to filter out the unimportant calls or be
able to log calls while he is busy. This filtering process will become even more important if a plan for
assigning a personal number is actually adopted. Given this service. it would be important to be able
to divide personal calls from business-related calls so that users can handle all their business calls while
at work and let the ACME handle the rest. While this is currently beyond the capabilities of the
ACME. some technology should be provided to aid the called party and protect her privacy since the
network has made it easier than ever before to reach her.

The utility of ACME in the wireline network can be scen as providing greater mobility and a
level of eall filtering. The ACME in the wireline network provides greater mobility because it uses
more channels of alerting mechanisms. Users can now be alerted by phones other than their own, by a
pager and by a workstation. The mobility is not quite as great as a tetherless system. since after being
alerted. the user still must be close to a telephione. Call filtering is perforimed by having the
workstation manage some calls without having to alert or interrupt the user.

For the reasons stated in this section. there will still be a need for software to perform functions
similar to those performed by the ACME in an environment of widespread tetherless radio
commmnications. The ACME will not be rendered useless but be used to auginent and enhance a

network such as PCN.

56

Chapter 10

Future Work

10.1 User Study

In many user interfaces it is difficult to measure the success of an interface because it is difficult to find
an objective metric of measurement. However in ACME there are some objective metrics that could he
used. Using the logger prograin described in section 5.3.5, it is possible to measure telephone activity
before and after the mstallation of the ACME. Some metrics that can be objectively measured are

listed below.
o Does this service increase the call completion percentage?
e How many calls went to voice mail and of those calls how many people left a voice mail message?
e Does this service increase the time spent on the phone?

e Do people who use this service use more telephony features such as transfer. forward. hold. etc.

than before? Can they renmember the services better than before?

Tle use of the ACME raises some other questions of interest that are miore appropriately

addressed in the form of the user stndy. These more subjective questions are listed below.
¢ Tu what way does the service replace or augment a human secretary? ’
o How does this service compare with having a cellular telephone?
e How does thix service affect liow people view their telephone services?

o How is svstewn usage affected by systewn reliability?

(831
~1

10.2 Simulations for ACME

To aid in making the ACME more predictable, it would be useful to be able to simulate different types
of incoming calls and their associated conditions. Perhaps a companion to the Phoneditor could
graphically generate event packets that would send phoneserver to the ACME under real conditions.
The output of such an event could be visually displayed. An alternative to manually generating these
packets is to run the log file that is generated by the logger program through the simulator and display

how real world telephone activities would have been handled for a user.

10.3 Robustness of the ISDN Network Interface

For ACME to become a practical working system the (jiode for the ISDN network handler, nhatt, must
become more robust. At the crux of automated call management is the transfer function. This
routine is not working for practical purposes. Once ﬁhatt. has been fully debugged, the ACME can
reach its full potential and start experimenting with other call processing routines such as
call_pickup for voice messaging systems. The forward program, described in section 5.3.4 can be
deploved on a larger scale. Perhaps this is a good first client application for people to introduce them

to call management from a workstation. *

10.4 Miscellaneous

Databases are used by the phoneserver. Phoneditor and ACME. These databases are used to convert
CAs into DNs. DNs into paging strings. alias names into lists. room numbers into telephone numbers.
names into numnbers and vice versa. Currently the databases are distributed over several locations.
Each server process has users in its own database. However, there is considerable overlap in
information between the various databases used by the different servers. In the interest of database
consistency, this information should be stored at one location.

ACME is eurrently connecting to the location server for information on the location of a user of
interest because at the present thwe the activity server is not robust enough for use. As was argued in
this thesis, it would be mmch more reliable to connect to the activity server for this purpose since it
uses many more sources of information. Also as the activity server expands to incorporate even more
information, such as the user’s calendar file, ACME will be able to take advantage of this information
as well.

Race conditlous in the plioneserver may arise if two separate ACMEs manage one DN. One

sohition i for the phoneserver to mplenent a first come-first serve policy and refuse to service tl

&2
(v e

latter ACME. However, there are situations when it is useful for an ACME to monitor the events of
another DN though not necessarily manage it. For example, a user may be more inclined to receive an
incoming call if he knows that his secretary is already busy on the phone. Thus the phoneserver may
offer two different classes of registering interest in a DN — managing and monitoring. In both classes,
clients receive the event packets of interest but only in the managing class is a client allowed to
manipulate telephony services of a DN. To prevent race conditions, the phoneserver simply has to

restrict the number of managing classes to one per DN.

Chapter 11

Summary

A system was built to enable distributed call processing by internetworking iu a heterogeneous
computing and telecommunications enviromment. By integrating the workstation in telephony. a better
user interface to advanced telecommunications services was provided by providing vaelue added network
services that focused on service control. By distributing call processing. intelligent call management
agents that could model the user could participate dynamically in call processing.

A phoneserver was developed to enable the platform described above. It bridged client
applicatious in the computing world to the call processing services available to an ISDN basic rate
interface. A client software library was developed to interface client applications to the phoneserver
through inter-process communications. All applications developed by the Specch Group used a
client-server model and ran asynchrouously.

The main application developed in this thesis was an automated call management entity
(ACME). A telephony language was defined and implemented based on the IF-THEN construct to
manage the ACME. A graphical user interface was designed to provide a better nser interface to the
rule-based system. It was found that providing an adequate and conflict free rule set was a complex
problem. Difficultics to overcome can be broken down into four parts: timing problems, intra-rule
conflicts. inter-rule conflicts and inter-rule set conflicts. Solutions to address the first three problems
were proposed. The approaches taken to these problems were to keep the entire ACME system
asynchironous. to constrain the rule set by putting constraints in the Phoneditor and to do some ’
post-processing in the ACME to resolve conflicts.

A rule sorting algorithm was developed in the ACME. The sort was performed to order the rules
frow the most importaut to the least mportant. A tradeoff was made to give the ACME more

antonowy to make decisions and act dynamically at the expense of belaving less predictably. To help

60

alleviate the problem of predictability, a Show Rules button was designed in the Phoneditor to display
how the ACME is currently interpreting the rule set.

Some proposals were made about how to extend this work and how this work will fit into future

telecommunications networks and, in particular, personal communication networks.

61

Chapter 12

Acknowledgements

I would like to acknowledge the help and support of my supervisor, Clhris Schmandt.

I am also indebted to the help of Peter Delaney and his supporting staff in the MIT
Telecommunications Department. Their assistance in providing specialized ISDN services and protocol
traces has been invaluable throughout whole project.

Ross Suvder. who was a UROP in the Speech Group. and Mick Gardina of Teleos Inc. were a
great help when this project began running off an IBM PC. I would like to thank Bill Keats, Debby
Hindus and Peter Wong for their help in proof reading this thesis.

Finally. I would like to thank the sponsors of this project — ATLT and Sun Microsystenus. In
particular. T would like to thanks Ben Stoltz of Sun, who made it possible for us to integrate an ISDN

BRI into the Sparcstation.

Appendix A

Configuring the Phoneserver

The phoneserver process may execute on two Speech Group machines: thin-mint or shasta.
thin-mint is a Sun 3861 that runs off of the chips file server and shasta is a Sparcstation 1 that runs
off of the everest file server. Using the Yellow Pages services available in SunOS, the names of both
these machines are symibolically linked to the word phoneserver on their respective file systems. On
hoth machines the source code is in the path /u/desk/src/isdu/SERVER while the executable is run
from a symbolic link in /u/ desk‘/ bin. The command line option “-d” will run the phoneserver in debug
mode. The =17 option followed by a DN is used to select the BRI line to be used.

The phoneserver on thin-mint is used for production and serves the pager and gqdvm programs
described in section 5.3. It has a serial connection to an IBM PC with a B100PC Teleos card that
wouitors the PDN 34224, The port number used by the phoneserver is resolved in the /etc/services
file. The token phoneserver used by clicuts to bind to the phoneserver is mapped to port 1400 using
Yellow Pages services. |
. The phoueserver ou shasta is used for development and runs off of the PDN 88068. The nhatt
process in /u/stoltz/PICA must be running before attempting to run the phoneserver. Again using
Yellow Pages services the token phoneserver_sparc used by clients to bind to the phoneserver is
mapped to port 1500.

When the phoneserver process is started it loads the files A
/u/desk/sre /isdn/SERVER /du_to_ca.db.<PDN> and /u /dP\l\ Jcalling.name.id into memory. The first file

maps a DX to a CA while the second file maps a DN to a name.

63

A.1 Enumerating the Event and Command Structures

The event structure is defined in the file /u/desk/src/isdn/event.h. The command structure is defined
in the file /u/desk/src/isdn/CLIENT /pserver.h. The structures shown in Figure 5-1 and 5-2 are

associated with the define variables shown below.

/* for event structure */
#define STATE_LEN 3

#tdefine MAX_CA_LEN 3
#define ISDN_CALL_INFO_LEN 8
#tdefine MAX_DN_LEN 20
#define MAX_NAME_LEN 48
#define LOCAL_DN_LEN 6

/* for command structure */
#define CMD_SIZE 2
#define MAX_CA_LEN 3
#define MAX_SRC_LEN 20
#define MAX_DEST_LEN 20

A.2 Call Appearance States

#define UNKNOWN_STATE -1

#define WILD_STATE -2
#define NUM_STATES 13
#define REG_idle 0x0001
#define REG_held 0x0002
#define REG_active 0x0004

#define REG_incoming 0x0008
#define REG_dialing 0x0010
#define REG_activated 0x0020
#define REG_deactivated 0x0040
#define REG_pending 0x0080

#define REG_local_hold 0x0100

G4

#define REG_remote_hold 0x0200
#define REG_confirmed 0x0400
#define REG_ars 0x0800
#define REG_rejected 0x1000
#define REG_outgoing 0x2000

A.3 Interest Structure

At startup time, the phoneserver initializes an array of pointers, called ca_pt, with each pointer
pointing to an empty linked list (shown in Figure A-1) representing the interest of a client. Since the
CA field in the Supplementary Voice Service protocol is only two bytes, the maximum array size is 99.
The first two fields entity and isdn_channel are used when communicating with nhatt. The next two
fields, current_state and requested_state, hold the state of the call appearance, which is assumed to be

idle2 at startup time. The field to-msg_list is a pointer to a list of all the interest of the client.

struct ca_tolinklist {
int entity;
int isdn_channel:
char current_state[STATE_LEN];
char requested_state[STATE_LEN]:
msgsocklist *toansg list:

struct ca_tolinklist *next:
1
S

Figure A-1: Call Appearance to Interest Structure

Upon receiving a register_interest comnmand from a client. the plhoneserver converts the DN
into a CA and uses the CA as an index to the ca_pt array. It then creates interest structures shown in
Fignre A-2.

Starting with the msgsock_list structure, the msgsock field coutaius the socket number,
identifving the client, that was used to register an interest. The gqi field points to the interest_list
that actually contains the iuterest Of. the client. The msgsock_list field is a pointer to link the list since
more than oue clicnt can register interest in the same CA. Finally, the interest_list contains the
CA. the number of CAs, the interest and a pointer to link the list. The interest value is a masked value
of anuy one or conbination of the call appearance states shown in Figure A.2.

When an eveut occurs, the CA for that event is obtained and used as an index in ca_pt. The

state ot the event 1s extracted and compared to the nterest field 1 the interest_list structurce. It

65

struct msgsock list { struct interestlist {

int msgsock; char get_ca]MAX_CA_LEN];
interest list *ggqi; int quantity;

struct msgsock_ list *next; int interest;

} struct interest list *next;

}

Figure A-2: Interest Structures

there is a match, then the entire event structure is sent to the client identified by the msgsock_list field

in the msgsock_list structure.

66

Appendix B

Configuring the ACME

Before executing ACME. users should set up a configuration file and define an environment variable
called MY_DN to be the DN they wish ACME to manage. It MY_DN is not defined the user may enter it
as a command-line option or else he will be asked to enter it by ACME. MY_DN is also used as an
extension to the file .acme_rules.<DN>, shown in section B.1. in the root directory of the user. If this
file does not exist. ACME will create one with the key word begin at the top but no rules. The
configuration file, shown in section B.2, is used when a user wishes to manage more than one DN from
a single machine. The file maps a DN into a relative port number used by the ACME to commmunicate
with the Phoneditor. If no configuration file exists. the defanlt service name to bind to is
acme_server0. There are three ports that are dedicated to support ACME to Phoneditor
communications - acme_server0, acme_serverl and acme_server2. Using /etc/services on the
machine everest. they are bound to ports 1450, 1451 and 1452 respectively.

ACME can be executed from the /u/desk/bin directory. The line level options are as follows.
The “-u~ option followed by a DN is used to specify the DN of interest. The -1 option will print on
the screen the rule fired by ACME without actually having ACME execute the action. The “-d” option

puts ACME into debug mode.

B.1 Sample Rule Set File

File name: .acme_rules.<DN>

begin
IF the location of me is my_office THEN transfer the call to where I am

after 1 seconds

IF the calling party is not friends THEN transfer the call to voice mail
after 1 seconds

IF the calling party is speech-group THEN transfer the call to 8-8670
after 1 seconds

IF the calling party is anyone and the location of ccwong is Garden

THEN transfer the call to voice mail after 10 seconds

IF the calling party is anyone and the time is before 12:00 THEN transfer
the call to where I am after 1 seconds

IF the calling party is someone I recently called THEN transfer the call
to where I am after 1 seconds

IF the callimng party is anyone THEN transfer the call to voice mail after
1 seconds

IF the time is after 18:00 THEN transfer the call to where I am after O
seconds

IF the location of ccwong is 352 THEN transfer the call to 8-8670 after 1
seconds

IF the status of my phone is active THEN do nothing

B.2 Configuration File

Each line has a DN followed by an ACME port number of 0. 1 or 2.

File name: .acme_config

38026 0O
88670 1

B.3 Alias Files

Alias files reside in the root directory of the user. System wide alias files reside in the path
/n/desk/data. These files are also used by the Phoneditor to include the aliases in the option Dutton
within the dialog box.

ol e ISR 1, 1 L ¢ N . - T .] - Y RA - i 3
1 ue syubax ol L1e al1as 11es 18 as LoloW s, Laciy e west Degin Witk tie toKel ailas. Lue atas

name immediately follows the alias token and than the alias list. Each member of the list must be

delimited by a coma.

File name: .acme_rooms

alias my_office 352

File name: .acme_group_names

alias friends Phil, Bill, Marilyn, Carl, Angela, Stephanie

alias important-person Geek, Marilyn, Phil

B.4 Protocol between ACME and the Phoneditor

The Phoneditor can send three commands to ACME: update. sleep and wake. They are defined
ASCII strings listed below. ACME will either ackuowledge the successful completion of the commands

or if the comunand fails. ACME will send back a negative acknowledgement.

/* Phoneditor to ACME messages */

#define UPDATE "up" /* request ACME to update rule set */
#define WAKE "wa" /* request ACME to wake up */
#define SLEEP "sl" /#* request ACME to go to sleep */

/* ACME to Phoneditor messages */
#define ACK "ack" /* acknowledge the update request */
#define ACK_WAKE '"acw" /* acknowledge the wake request */

#define ACK_SLEEP "acs" /* acknov}ledge the sleep request */

69

Appendix C

Lex and Yacc Description of

Telephony Language

C.1 Lex File — token.l

[0-9:1+ return(TIME);

[0-9-1+ return(DN);

“the person' return(A_PERSON);

"anyone" num_of_anyones++; return(ANYONE);
"and" and_flag = TRUE; return(AND);

"begin' return(BEGIN_TOKEN);

"my calendar' return(CALENDAR);

"pick up the call" return(CALL_PICKUP);

"the calling party is" return(CALLING_PARTY);
"convey the following message" return(CONVEY_MSG);
"drop the call' return(DROP);

"do nothing" return(DO_NOTHING) ;

"hold the call" return(HOLD);

"if" return(IF);

"IF" return(IF);

"is in" return(IS_IN);

"log the call" return(L0G);

"is logged in" vyylval = 1; return(MACHTNE_STATUS):

70

"is logged out" yylval = 0; réturn(MACHINE_STATUS);
"I’m away from my office" return(MY_ACTIVITY);
"not" not_flag = TRUE; return(NOT);

“from off campus" return(OFF_CAMPUS);

"from on campus' return(ON_CAMPUS);

"after" op_var = O_AFTER; return(OPERATOR);
"around" op_var = O_ARQOUND; return(UPERATOR);
O_BEFORE; return(OPERATOR);

"“before” op_var
“or" return(OR);
"page me'" return(PAGE);

“"on hook" return(PHONE_STATUS);

"off hook'" return(PHONE_STATUS);

"someone I recently called" return(RECENTLY_CALLED);

"says that" return(SAYS);

"second" return(SECONDS);

"seconds”.return(SECONDS);

"the status of" return(STATUS);

"the machine'" return(THE_MACHINE);

"my phone is" return(MY_PHONE_IS);

"the time is" return(THE_TIME);

"then" return(THEN);

"\nthen'" return(THEN);

“THEE” yeturn(THEN);

“\nTHEN" return(THEN);

"transfer the call to' return(TRANSFER);

“voice mail" return(VMAIL);

"where I am'" return(WHERE_I_AM);

"notify me by a pop-up window" return(WINDOW_NOTIFICATION);
\n return (’\n’);

quit return 0;

[a-zA-Z-_1+ return(NAME);

[a-z]+ return(MACHINE);

{gstring} return (QSTRING);

b

C.2 Yacc File — parser.y

%token A_PERSON
%token AFTER
Y%token AND

%token ANYONE
Y%token BEGIN_TOKEN
%token CALENDAR
Y%token CALL_PICKUP
Ytoken CALLING_PARTY
%token CONVEY_MSG
%token DN

%token DO_NOTHING
%token DROP

%.token HOLD

%token IF

%token IS_IN

%token LOG

%token MACHINE
%token MACHINE_STATUS
%token MESSAGE
%token MY_ACTIVITY
%token NAME

%token NOT

%token OFF_CAMPUS
%token ON_CAMPUS
%token OPERATOR
%token OR

%token PAGE

%token PHONE_STATUS
%token QUOTATION
%token QSTRING

=1
18]

%token RECENTLY_CALLED
%token SAYS

%token SECONDS

%token STATUS

%token THE_MACHINE
%token MY_PHONE_IS
%token THE_TIME
%token THEN

%token TIME

%token TRANSFER
%token VMAIL

%token WHERE_I_AM
%token WINDOW_NOTIFICATION

lines: /* empty */

| lines line ;

line: ’\n’
| BEGIN_TOKEN

| IF cond THEN actionm ’\n’ ;

cond: cond_elem OR cond
| cond_elem AND cond
| cond_elem NOT cond

| cond_elem ;

cond_elem: CALLING_PARTY NOT calling_party_id
| CALLING_PARTY calling_party_id

| A_PERSON name IS_IN location

| THE_TIME OPERATOR TIME

| STATUS THE_MACHINE NAME MACHINE_STATUS

| STATUS MY_PHONE_IS PHONE_STATUS

| CALENDAR SAYS MY_ACTIVITY ;

calling_party_id: RECENTLY_CALLED
| ANYONE

| DN

[ON_CAMPUS

| OFF_CAMPUS

| NAME ;

action: TRANSFER place delay
| CALL_PICKUP

| DROP

| HOLD

| LOG

| WINDOW_NOTIFICATION

| PAGE

| CONVEY_MSG QSTRING

| DO_NOTHING ;

place: WHERE_I_AM
| DN

| VMAIL

| NAME ;

delay: OPERATOR TIME SECONDS ;

location: TIME

| NAME ;

name: NAME ;

Bibliography

(1]

T Bowen, F Dworack, C Chow, N Griffeth, G Herman. and Y Lin. Feature interaction problem in
telecommunications systems. In Conference on Software Engineering for Telecom Switching

Systems, 1989.

I Bowles, L Brunet, R Eckert, K Emami, R Kamel, and P Momtaham. Px: I11t.egra.t.i11g voice
communications with desktop computing. Journal of the American Voice I/O Society - Desktop

Audio Issue. 9:1-19, 1991.

C' Chow, D Braun. and M Adachi. An example in connecting isdn with the intelligent network

and the local area network. Bellcore internal paper.

D Cox. Portable digital radio communications - an approach to tetherless access. IEEE

Commaunications Magazine, pages 30-40, 1989.

D Cox. Personal communications - a viewpoint. IEEE Commaunications Magazine, pages 8-20, 92,

1990.

J Gilmour and R Gove. Intelligent network/2: - the architecture - the technical challenges - the

opportunities. JEEE Communications Magazine. pages 8-11, 1988.

R Hass and R Humes. Intelligent network/2: A network architecture concept for the 1990s. In ISS

87 A12.1. 1987.

G Herman. M Ordun, and C Riley. Between laboratory and field trial: Experience with a
communications services testbed. In Proceedings of the Human Factors Society - 30th Annual

Mecting, pages 804808, 1986.

G Herman. M Ordun, C Riley. and L Woodbury. The modular integrated commnuications
euviromuent {mice): A system for prototyping and evaluating communications services. In

Proceedings of International Switching Symposium "87. pages 442-447, Phoenix, Arizona. 1987.

[10] G Herman and C Riley. Services for the next generation network: Experience with a network
service testbed. In Proceedings of the First European Conference on Information Technology for

Organisational Systems - EURINFO ’88, pages 1167-1172, 1988.
[11] Forward is an internal Speech Group phoneserver application written by Chris Schmandt.
[12] The Socket Manager is an internal Speech Group tool written by Barry Arons.

[13] QDVM is an internal Speech Group voice mail system written by Barry Arons, Sanjay

Manandhar, Lisa Stifelman, and Chi Wong.

[14] R Kamel, K Emami, and R Eckert. Px: Supporting voice in workstations. IEEE Comyputer,
23:73-80, 1990.

[15] S Manandhar. Activity server: A model for evervday office activities. Master’s thesis,

Massachusetts Institute of Technology, June 1991.

[16] S Manandhar. Activity server: You can run but you can't hide. In to appear in Useniz Summer

1991 Technical Conference, June 1991.

(17] N Matsuo. K Shimohara, H Matsui. and Y Tokunaga. Personal telephone services using ic-cards.

IEEE Communications Magazine. pages 41-48, 1989,

(18] C Riley. Experiences with an integrated voice and text message service. In Proceedings of the

Huyman Factors Society - 31st Annual Meeting. 1987.

[19] R Root and C Koster. Experimental evaluation of a mnemonic syntax for controlling advanced
teleconmunications services. In Proceedings of the Human Factors Society - 30th Annual Meeting.

pages 809-813. 1986.

[20] R Root and C Koster. Experimental evaluation of a mmemonic command syntax for controlling
advanced telecommunications services. In Proceedings of the Human Fuctors Society - 31st Annual

Meeting. 1987.
[21] C Schmandt and B Arons. Desktop audio. Uniz Review, October 1989.

[22] C Schmandt and S Casner. Phonetool: Integrating telephones and workstations. In Proceedings.

GLOBECOM °89. IEEE Commuunications Society, November 1989.
[23] W Stallings. ISDN : an Introduction. Macmillan. New York. 1989.

[24] R Stecle. Deploying personal communicatious networks. IEEE Communications Magazine. pages

12-15. 1990.

25} leleos Communications. luc.. Eatontown. NJ. ASKI00 Access Systems Kit User Manual, 1989.

—

76

(26] S Tufty. Watcher. MIT Bachelor’s Thesis, 1990.

[27] P Zellweger, B Douglas, and D Swinehart. An experimental environment for voice system

development. IEEE Office Knowledge Engineering Newsletter, 1987.

