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Abstract

In this thesis, I designed and implemented a virtual machine (VM) for a
monomorphic variant of Athena, a type-ω denotational proof language
(DPL). This machine attempts to maintain the minimum state required
to evaluate Athena phrases. This thesis also includes the design and
implementation of a compiler for monomorphic Athena that compiles
to the VM. Finally, it includes details on my implementation of a read-
eval-print loop that glues together the VM core and the compiler to
provide a full, user-accessible interface to monomorphic Athena. The
Athena VM provides the same basis for DPLs that the SECD machine
does for pure, functional programming and the Warren Abstract Ma-
chine does for Prolog.
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Chapter 1

Overview

This thesis describes the specification of a virtual machine (VM) for
a type-ω denotational proof language (DPL) called Athena [Ark01].
The core of the machine, its structure and state transitions, provide
the basis for type-ω DPLs. Hence, this machine could be used for the
implementation for any type-ω DPL, but this thesis will treat Athena
in particular.

Athena, like most type-ω DPLs, is a combination of a natural-
deduction language and a functional programming language, allowing
both for logical inference and for conventional computation. It was
originally developed by Konstantine Arkoudas, and descriptions of the
semantics, theory, and uses of Athena are detailed in [Ark99a] and
[Ark99b]. Type-ω DPLs are specifically discussed in [Ark01]. The syn-
tax and semantics of Athena, as given in Chapter 2, are merely the
kernel of Athena, the essential subset in terms of which the full Athena
language could be defined.

The VM that is presented by this thesis implements a monomorphic
variant of Athena. The full specification of polymorphic Athena is
given in [Ark99b], but the details of monomorphic Athena are spec-
ified in Section 2.3, with the introduction of sorts and symbols. In
general, polymorphism is a powerful tool and can be used to general-
ize and reuse theorems and code; polymorphic sorts and symbols can
be viewed as templates for the creation of monomorphic instances. In
terms of logical completeness, the power of monomorphic Athena is the
same — nothing is lost by removing polymorphism, other than conve-
nience. However, a great deal is simplified in the implementation, as
polymorphism requires and adds considerable complexity if it is to be
handled efficiently. These efficiencies are orthogonal to the design and
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implementation of the virtual machine. For these reasons, this research
does not address polymorphic Athena.

1.1 Goals

The research summarized in this thesis consists of:

• A virtual machine specification, namely, a mathematical defini-
tion of a set of structures for describing the state of an Athena
program, as well as a list of low-level operations with their asso-
ciated transitions to manipulate the machine structures (Chap-
ter 3).

• A compiler that takes as input either a file or a read-evaluate-
print loop and produces an instruction stream for the VM. The
code produced can then be executed by the VM interpreter. Also
of importance is the code for Athena’s primitive functions and
methods (Chapter 4).

• Additional details of my design and implementation of the VM
interpreter and compiler, with emphasis toward that which other
researchers might find interesting (Chapter 5). Also included are
an example deduction and possible future work in implementing
the VM more efficiently.

• Conclusion and summary.

To these ends, Athena must first be described in detail.
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Chapter 2

Athena

Athena is a type-ω DPL for multi-sorted first-order logic [Ark01]. As a
functional programming language, Athena provides higher-order func-
tions and has a lexically scoped environment and call-by-value seman-
tics. Athena is an impure functional language, like Scheme, as state
is available via cells. (Athena does not have unrestricted destructive
assignment, however.) Athena also has powerful data structures and
pattern matching capabilities similar to (but considerably more sophis-
ticated than) those of ML.

Athena is a deductive framework that allows for the creation of uni-
verses of discourse, the concise description of their vocabulary, and the
explicit assertion of their axioms. As a deductive framework, Athena
provides a medium for the formulation, deduction, and proof of theo-
rems with respect to their relevant universe of discourse.

The most distinguishing aspect of Athena is the use of assumption
base semantics. Since Athena is a DPL, every deduction (or expres-
sion, for that matter) is evaluated with respect to an assumption base.
Evaluating a deduction is equivalent to checking the validity of the
deduction. Type-ω DPLs require that deductions be syntactically dis-
tinct from expressions; deductions perform inference, whereas expres-
sions perform unrestricted computation. As a result, Athena can be
used both as a programming language and as a proof checker/theorem
prover with strong soundness guarantees.

Interaction with Athena usually occurs via a read-evaluate-print
loop, also known as a read-eval-print loop or repl. Athena presents a
prompt, the user enters phrases or directives, and Athena replies. This
chapter is devoted to specifying exactly what Athena accepts as input
and returns as output.
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2.1 Values in Athena

In Athena, values are the result of expressions and deductions.
Collectively, expressions and deductions are referred to as phrases. A
given phrase may evaluate to a value. Discounting non-determinism,
there will be at most one value; there will not be a value if the phrase
produces an error or fails to terminate. A deduction, when it produces
a value, returns a proposition that has been proved relative to the as-
sumption base in which the deduction took place. A proved proposition
is also called a theorem. The syntax of expressions and deductions
is shown in Figure 2.1 (page 16), and the semantics is detailed in Sec-
tion 2.2.

2.1.1 Basic Values

The unit value is a special value distinct from all other values. The
unit value is the return value of some basic Athena expressions, most
notably set! and while. The expression () also evaluates to the unit
value, which is displayed by Athena as ().

A character represents an ASCII character in the range 0–127.
When entered directly, they begin with a ‘ character, usually followed
by the ASCII character they represent, e.g. ‘a, ‘B, and ‘‘. One
way to enter a non-printable character is to specify the ASCII number
in decimal with the addition of a backslash, such as ‘\000, although
there are other ways. Strings in Athena are represented merely as lists
of characters.

A list is just that, a list of values. The empty list is both written
and displayed as [ ], and nonempty lists can be created by listing the
values within brackets: [V1 V2 . . . Vn]. Lists can contain other lists,
since lists are values. Lists are of finite size; however, they can be
used to create potentially infinitely sized structures, for example, using
thunks or cells.

A cell is a value that contains another value. It acts as memory
into which other values can be placed. A cell is created by giving it an
initial value. Cells (and only cells) can also be modified by set!. Note
that this is different from other functional languages, such as Scheme,
which allow for unrestricted destructive assignment. A cell can contain
other cells, since cells are values.

A function, or function closure, is an object that takes a number
of other values as arguments, V1, V2, . . . , Vn where n ≥ 0, and returns
a value and a store as the result.1 The store can be though of as an

1Both functions and methods, instead of returning a value, might instead produce
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infinite list of cells, or a mapping of cells to values. Function semantics
is discussed further in Section 2.2.1. Functions are higher-order — they
may take other functions as arguments and may produce functions as
results.

A method, or method closure, is an object that represents a de-
ductive process. It, too, takes other values as arguments, V1, V2, . . . , Vn

where n ≥ 0, however it always returns a proposition as a value, as well
as a store.1 Semantically, both function and method closures also have
as arguments an assumption base and a store; these are discussed
further in Section 2.2.1. Methods can, of course, have other methods
as arguments.

2.1.2 Symbols and Terms

A variable is a type of term, written as (var I), or ?I for short, for a
given identifier I. (What exactly constitutes an identifier is discussed
in Section 2.2.)

A symbol, also known as a function symbol, has an arity n ≥ 0
associated with it. Symbols are used to make terms from other terms.

A term is defined as follows:

• Every variable is a term.

• Every constant symbol is a term. Constant symbols have arity
n = 0, and are also called nullary symbols or nullary function
symbols.

• If f is a symbol of arity n > 0 and t1 . . . tn are terms, then
(f t1 . . . tn) is a term. Terms of this type are also called appli-
cations or function symbol applications.

Mathematically, terms of the above form are referred to as Herbrand
terms. Note that the use of the word “function” in the above definition
has nothing to do with the value-type function; here, “function” refers
to mathematics, not computer science.

Terms are often associated with a sort. Sorts are basically the unit
of currency within the universe of discourse, and are discussed later in
Section 2.3.1. Only terms that are well-sorted are legal in Athena; an
object that is not well-sorted is called ill-sorted. What constitutes a
well-sorted term is discussed in Section 2.3.4.

Athena provides some terms and sorts by default. There are spe-
cial terms of sort Ide called meta-identifiers. These are written as

an error or otherwise fail to terminate. That is, they may fail to return with a value.
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(meta-id I), or ’I for short, and they are nullary symbols (and thus
terms) of sort Ide. Athena also provides the constant terms true and
false of sort Boolean.

Variables, symbols, and (well-sorted) terms are all values in Athena.
Meta-identifiers are values as well, since they are terms.

A substitution is an Athena value that represents a (possibly
empty) mapping of variables to terms. The empty substitution is writ-
ten as {}. Formally, a substitution θ is a function mapping finitely
many variables vi to terms ti, and every other variable to itself:

{v1 7→ t1 = θ(v1), . . . , vn 7→ tn = θ(vn)} (vi 6= ti)

The function θ (called the lift of θ) is defined with respect to θ, mapping
terms to terms. For a given variable v, constant function symbol fc,
and function symbol f , θ is defined as follows:

θ(v) = θ(v)
θ(fc) = fc

θ((f t1 . . . tn)) = (f θ(t1) . . . θ(tn))

In Athena, substitutions can be applied to terms and lists of terms;
effectively, they act as lifts. Substitutions can also be applied to propo-
sitions and lists of propositions; this is discussed in the next section.

2.1.3 Propositions

A proposition is defined as follows:

• Every term is a proposition. Propositions of this form are also
called atoms.

• If P1 and P2 are propositions, then so are (not P1),
(and P1 P2), (or P1 P2), (if P1 P2), and (iff P1 P2).
Propositions of these forms are called, respectively, negations,
conjunctions, disjunctions, conditionals, and bicondition-
als. As a whole, they are called logical propositions.

• If P is a proposition, then so are (forall v P) and
(exists v P), for any variable v. Propositions of these two
forms are called, respectively, universal and existential quan-
tifications. As a whole, they are called quantified proposi-
tions. P is also referred to as the body of the quantified propo-
sition, and v is referred to as the quantified variable.
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The identifiers not, and, or, if, and iff are called propositional
constructors, or prop-cons for short. The identifiers forall and
exists are called quantifiers.

Terms that are atoms must either be of sort Boolean or coercible
to sort Boolean. Thus, it is possible that a proposition in one of the
above forms may be constructed out of a term that is not coercible to
sort Boolean. Or, a proposition might attempt to coerce a variable to
be of more than one sort. Such propositions are ill-sorted; only well-
sorted propositions are legal in Athena. What constitutes a well-sorted
proposition is discussed in Section 2.3.4.

An occurrence of a quantified variable within a quantified propo-
sition is said to be bound. Otherwise, the occurrence is free. The
set of free variables for a proposition P are those variables that have
free occurrences within P ; likewise, the set of bound variables are
those having a bound occurrence within P . Clearly, these sets are
not necessarily disjoint. A given proposition can be freshly renamed
by replacing all bound variables and their occurrences with variables
that have been newly introduced. (Such newly introduced variables are
guaranteed not to be in any other proposition or term, because up until
the renaming they did not exist.)

Propositional constructors, quantifiers, and (well-sorted) proposi-
tions are all values in Athena. Substitutions, when applied to proposi-
tions or a list of propositions, only affect free variables, and all of the
results must also be well-sorted.

2.1.4 Equality Testing of Values

The existence of quantified propositions also introduces a blurring in
the notion of value equality. Are (forall ?x (and ?x true)) and
(forall ?y (and ?y true)) the same value? What is different about
them? Does that change any possible interpretations about these
propositions?

For propositions, there are two notions of equality. A literal equal-
ity test would determine that the two propositions are different. An
alphabetical equivalence test, however, would determine that they
are the same: for a given proposition, all bound variables (?x and ?y in
the example) could be renamed to some canonical variables and the re-
sults could be compared for literal equality. An example of a canonical
representation of the above propositions would be (forall ?v1 (and
?v1 true)). In Athena, propositions are always tested for equality
using an alphabetical equivalence test.

The existence of function and method closures also causes a prob-
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lem. What does it mean to compare two closures for equality? Does it
mean they have the exact same program code, or that they do the same
thing? Computation theory proves that deciding whether two programs
are equivalent is undecidable. Athena simply designates that it is an
error if closures of the same type (both functions or both methods) are
compared for equality.

2.2 Athena Semantics

Athena accepts phrases, performs some computation depending on the
phrase entered, and normally returns a value. Figure 2.1 gives the core
Athena syntax and specifies all phrases F that Athena recognizes. As
per standard regular expression syntax, V ∗ denotes zero or more oc-
currences of V , and V + denotes one or more occurrences of V . An
identifier I is any printable character (ASCII 32–127) that is not a re-
served keyword, whose first character is not one of ?!$’[( , and which
does not contain any of the characters ])"; . Additionally ’I is an ab-
breviation for (meta-id I), ‘I is a character, ?I is an abbreviation for
(var I), and (!E F ∗) is an abbreviation for (apply-method E F ∗).
A string S is normally written as text between quotation marks, such
as "This is a list of characters."

The following sections will describe the semantics of each of the
phrases and patterns that Athena uses. Each phrase is evaluated with
respect to an environment ρ, a store σ, and an assumption base β.
An environment ρ represents the current values of all bound identi-
fiers. A store σ represents the values held by cells. An assumption
base β represents those propositions that hold during the evaluation of
a phrase. The result of evaluating a phrase, assuming termination and
non-determinism, will be a value V and a store σ′. In general, σ = σ′

unless the phrase uses cell or set!.

2.2.1 Expressions

• Unit: The value of the expression () is always the unit value,
regardless of ρ, σ, and β.

• Identifier: The value of the expression I depends only on ρ. If an
identifier I is bound in the current environment ρ to a value V ,
then the value of the identifier is V . It is an error if I is not
bound.
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• String: A string S is merely a list of characters, regardless of ρ,
σ, and β.

• Character: An expression of the form ‘I is a character assuming
I is a legal identifier for a character, regardless of ρ, σ, and β. I
must be of the form:

– \n, where 0 ≤ n ≤ 127.
– \^X, where X is one of A...Z, @, [, ], ^, or , representing

the control characters in ASCII 1–26, 0, 27, 29, 30, and 31,
respectively.

– X, where X is a printable character but not \.

E ::= () | I | S | ‘I | (var I) | (meta-id I) | (cell F) |

(ref E) | (set! E F) | (function (I∗) E) | (E F ∗) |

[F ∗] | (method (I∗) D) | (check (F E)∗) |

(match F (π E)∗) | (let ((I F)∗) E) |

(letrec ((I F)∗) E) | (begin F+) | (while F1 F2) |

(& F+) | (|| F+)

D ::= (apply-method E F ∗) | (assume F D) |

(suppose-absurd F D) | (dcheck (F D)∗) |

(dmatch F (π D)∗) | (dlet ((I F)∗) D) |

(dletrec ((I F)∗) D) | (try D+) | (dbegin F ∗ D) |

(E BY D) | (generalize-over E D) | (pick-any I D) |

(with-witness E F D) | (pick-witness I F D)

F ::= E | D

π ::= | () | I | S | ‘I | [π∗] | (var I) | (meta-id I) |

(val-of I) | (list-of π1 π2) | (π π+) | (bind I π) |

(some-atom I) | (some-function I) | (some-list I) |

(some-method I) | (some-prop I) | (some-prop-con I) |

(some-quant I) | (some-sub I) | (some-symbol I) |

(some-term I) | (some-var I)

Figure 2.1: Syntax of Athena Phrases
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– \\, representing the backslash character.

– \space, representing a space.
or

– \x, where x is one of a, b, t, n, v, f, or r, representing the
standard C escape characters.

• Variable: The value of ?I is the variable ?I, regardless of ρ, σ,
and β. ?I is actually shorthand for (var I).

• Meta-Identifier: The value of ’I is the nullary symbol ’I of
the built-in sort Ide, regardless of ρ, σ, and β. ’I is actually
shorthand for (meta-id I).

• Cell: The value of (cell F) in ρ, σ, and β is a cell that initially
contains the value obtained by evaluating F in ρ, σ, and β. The
store returned by (cell F) is the σ′ obtained by evaluating F
extended to included this new cell.

• Cell References: The value of (ref E) is the contents of the
cell that E evaluates to in ρ, σ, and β. It is an error if E does not
evaluate to a cell. The resulting store is that which was returned
by evaluating E.

• Assignment: The effect of (set! E F) is to replace the con-
tents of the cell that is the result of E (in ρ, σ, and β) with the
result of F (within the store σ′ as returned by E). The value
returned by set! is the unit value, and the resulting store is the
store returned by evaluating F .

• Function: The value of (function (I1 . . . In) E) in ρ, σ, and β
is a function closure. The closure, when applied, accepts n argu-
ment values V1, . . . , Vn and the current store σ′ and assumption
base β′ and returns the value and the store that are obtained by
evaluating E in the environment ρ extended with bindings map-
ping each Ij to each Vj , for 0 ≤ j ≤ n, the store σ′, and the
assumption base β′.

Note that E is evaluated in σ′ and β′ to take into account any
changes that might have occurred in between when the function
closure was declared and when it was applied.

• Application: To evaluate an expression of the form
(E F1 . . . Fn), first evaluate E with respect to ρ, σ, and β to
obtain V and σ′. The evaluation of the entire expression depends
on the type of V .
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– If V is a function closure, then each Fi is evaluated, in order
from 0 ≤ i ≤ n, with respect to ρ, σi−1, and β to obtain
a value Vi and σi. (Note that σ0 = σ′.) The final result
is that of invoking the function closure V with the values
V1, . . . , Vn, the store σn, and assumption base β.

– If V is a function symbol f , then each F1, . . . , Fn is evaluated
in σi−1 and β in order to obtain values V1, . . . , Vn and store
σn. If each Vi is a term ti, then the result of the expression is
the term (f t1 . . . tn) if this term is well-sorted. Otherwise,
the result is an error. Note that if f is a nullary function
symbol, then (f) evaluates to f .

– If V is a propositional constructor con, then each F1, . . . , Fn

is evaluated in σi−1 and β in order to obtain values V1, . . . , Vn

and store σn. If each Vi is a proposition Pi, then the result
of the expression is the proposition (con P1 . . . Pn) if this
proposition is well-sorted and the arity of the prop-con is
equal to n. Otherwise, the result is an error.

– If V is a quantifier q, then each F1, . . . , Fn is evaluated in
σi−1 and β in order to obtain values V1, . . . , Vn and store σn.
If n = 2, V1 is a variable v, and V2 is a proposition P , then
the result is the proposition (q v P), if this proposition is
well-sorted. Otherwise, the result is an error.

– If V is a substitution θ, first verify that n = 1. It is an error
if the substitution has more than one argument. Evaluate
F1 in ρ, σ′, and β to get V1 and σ1.

∗ If V1 is a term t, then the result is the term θ(t) if this
term is well-sorted. It is an error if it is ill-sorted.

∗ If V1 is a list of terms [t1 . . . tn], then the result is the
list of terms [θ(t1) . . . θ(tn)] if each term θ(ti) is well-
sorted. It is an error if some θ(ti) is ill-sorted.

∗ If V1 is a proposition P , then the result is that of apply-
ing the θ to all the atoms of proposition P ′, where P ′ is
a fresh renaming of P , if the proposition that results is
well-sorted. It is an error if it is ill-sorted.

∗ Likewise, if V1 is a list of propositions, then the result
is that of applying θ to a fresh renaming of each propo-
sition if each resulting proposition is well-sorted. It is
an error if some resulting proposition is ill-sorted.

– Otherwise, if V is not any of the above, the result is an error.
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• List: The value of [F1 . . . Fn], n ≥ 0, in environment ρ, store σ,
and assumption base β, is the list of values [V1 . . . Vn] and the
store σn, where each Vi and σi is the result of evaluating Fi with
respect to ρ, σi−1, and β. (Again, σ0 = σ.)

• Method: The value of (method (I1 . . . In) D) in ρ, σ, and β is
a method closure. The closure, when applied as part of a method
application, accepts n argument values V1, . . . , Vn and the current
store σ′ and assumption base β′ and returns the value and the
store that are obtained by evaluating D in the environment ρ
extended with bindings mapping each Ij to each Vj , for 0 ≤ j ≤ n,
store σ′, and assumption base β′.

Note that D is evaluated in σ′ and β′ to take into account any
changes that might have occurred in between when the method
closure was declared and when it was applied.

• Check: A check expression is of the form
(check (F1 E1) . . . (Fn En)). Setting σ0 = σ, start with
i = 1: Fi is evaluated in ρ, σi−1, and β, resulting in a value
Vi and store σi. If Vi is the symbol true, then the result of the
check expression is the value of Ei in ρ and σi. If Vi is not the
symbol true, then increment i and repeat, as long it remains ≤ n.
If Vn is also not the symbol true, then the result of the check
expression is an error.

Fn is allowed to be the reserved keyword else; if this case is
reached, the result of the check expression is En evaluated in ρ,
σn−1, and β. If n = 0, then the result of the check expression is
an error.

• Match: A match expression is of the form
(match F (π1 E1) . . . (πn En)). The semantics of pattern
matching is detailed in Section 2.2.3; however, the semantics for
the match expression itself is straightforward. F is evaluated in
ρ, σ, and β, to get value V and σ′. V is matched against each πi

with respect to ρ in turn. For the first πi that V is successfully
matched against, the result of the match expression is Ei evalu-
ated in σ′, β, and ρ′, where ρ′ is ρ extended with pattern variables
from πi. If no pattern πi matches successfully (or if n = 0), then
the result is an error.

• Let: A let expression is of the form
(let ((I1 F1) . . . (In Fn)) E). With ρ0 = ρ and σ0 = σ,
each Fi is evaluated in ρi−1, σi−1, and β to get a value Vi and
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store σi. In addition, ρi is defined to be ρi−1 extended with the
binding of identifier Ii to the value Vi. The value returned by the
let expression is the result of the evaluation of E in environment
ρn, store σn, and assumption base β.

• Letrec: A letrec expression is of the form
(letrec ((I1 F1) . . . (In Fn)) E). Effectively, this is equiv-
alent to

(let ((I1 (cell ())) ... (In (cell ())))
(begin
(set! I1 F ′

1)
...

(set! In F ′
n)

E′)).

where E′ and F ′
j are the original E and Fj in which free occur-

rences of Ij have been replaced with (ref Ij). Free occurrences
of an identifier are those occurrences that are not under the scope
of another binding phrase, e.g. a closure application.

• Begin: A begin expression is of the form (begin F1 . . . Fn), for
some n > 0. Setting σ0 = σ, each Fi is evaluated in order with
respect ρ, σi−1, and β, resulting in value Vi and σi. The result of
the begin expression is value Vn and store σn.

• While loop: A while expression is of the form (while F1 F2).
Initially, F1 is evaluated in ρ, σ, and β to obtain V1 and σ1. The
expression then enters the while loop. If V1 is the symbol false,
then the result of the while expression is the unit value and the
store σ1. If V1 is the symbol true, then F2 is evaluated in ρ, σ1,
and β, resulting in V2 and σ2; F1 is then re-evaluated, but in ρ,
σ2, and β, and the loop continues by testing the new V1. It is an
error if V1 is neither false nor true.

• Short-circuit, logical And: A logical and is of the form
(& F1 . . . Fn), n > 0. Starting with i = 1, Fi is evaluated in
ρ, σi−1, and β, to get value Vi and σi. If Vi is the symbol false,
the result of the logical and expression is the value false and
the store σi. If Vi is the symbol true, increment i and evaluate
the next phrase; if Vn is true, then the result of the logical and
expression is the value true and the store σn. It is an error if Vi

is neither true nor false.
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• Short-circuit, Logical Or: A logical or is of the form
(|| F1 . . . Fn), n > 0. Starting with i = 1, Fi is evaluated in
ρ, σi−1, and β, to get value Vi and σi. If Vi is the symbol true,
the result of the logical or expression is the value true and the
store σi. If Vi is the symbol false, increment i and evaluate the
next phrase; if Vn is false, then the result of the logical or ex-
pression is the value false and the store σn. It is an error if Vi

is neither true nor false.

2.2.2 Deductions

• Method Application: A method application is of the form
(!E F1 . . . Fn); the use of ! is actually shorthand for
apply-method. First, E is evaluated in environment ρ, store
σ, and assumption base β, resulting in V and σ0. It is an error if
V is not a method closure or an Athena primitive method (Sec-
tion 4.2). Setting β0 = β, each Fi is evaluated in ρ, σi−1, and
βi−1 to yield value Vi, and store σi. If Fi is a deduction, then
the assumption base βi is set to be βi−1 ∪ {Vi}; otherwise, set
βi = βi−1.2 Apply the method V with the arguments V1, . . . , Vn,
store σn and assumption base βn to get the conclusion Vc and
store σc; it is an error if the arity of the method is not equal to
n. The result of the method application is the value Vc and the
store σc.

• Assume: For (assume F D), F is evaluated in environment ρ,
store σ, and assumption base β to yield value VF and store σF .
It is an error if VF is not a proposition. Next, D is evaluated in ρ,
σF , and β ∪ {VF } to yield VD and σD. The result of the assume
deduction is the proposition (if VF VD) and store σD.

• Suppose Absurd: For (suppose-absurd F D), F is evaluated
in environment ρ, store σ, and assumption base β to yield value
VF and store σF . It is an error if VF is not a proposition. Next,
D is evaluated in ρ, σF , and β ∪ {VF } to yield VD and σD. It
is an error if VD is not the proposition false. The result of the

2Technically, this is incorrect. In Athena, each Fi should be evaluated with
respect to ρ, σi−1, and β. Only after each phrase Fi has been evaluated are the
conclusions of any deductions among F1 . . . Fn added to the assumption base for the
method application. As specified here, the ordering of deductions and the existance
of intermediate conclusions may affect the result of the method application. This
inconsistency remains because it was discovered late into the project, but it would
not be difficult to fix.
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suppose-absurd deduction is the proposition (not VF ) and store
σD.

• Dcheck: A dcheck deduction is of the form
(dcheck (F1 D1) . . . (Fn Dn)). Setting σ0 = σ, start with
i = 1: Fi is evaluated in ρ, σi−1, and β, resulting in a value Vi

and store σi. If Vi is the symbol true, then the result of the
dcheck deduction is the value of Di in ρ, σi, and β. If Vi is not
the symbol true, then increment i and repeat, as long it remains
≤ n. If Vn is also not the symbol true, then the result of the
dcheck deduction is an error.

Fn is allowed to be the reserved keyword else; if this case is
reached, the result of the dcheck deduction is Dn evaluated in ρ,
σn−1, and β. If n = 0, then the result of the dcheck deduction is
an error.

• Dmatch: This deduction is of the form
(dmatch F (π1 D1) . . . (πn Dn)). The semantics of pattern
matching is detailed in Section 2.2.3; however, the semantics for
the dmatch deduction itself is straightforward. F is evaluated in
ρ, σ, and β to get value V and store σ′. If F was a deduction
that produced proposition P , then set β′ = β ∪ {P}; otherwise,
let β′ = β. V is matched against each πi with respect to ρ in turn.
For the first πi that V is successfully matched against, the result
of the dmatch deduction is Di evaluated in σ′, β′, and ρ′, where
ρ′ is ρ extended with pattern variables from πi. If no pattern πi

matches successfully (or if n = 0), then the result is an error.

• Dlet: A dlet deduction is of the form
(dlet ((I1 F1) . . . (In Fn)) D). With ρ0 = ρ, σ0 = σ, and
β0 = β, each Fi is evaluated in ρi−1, σi−1, and βi−1 to get a value
Vi and store σi. If Fi was a deduction, then set βi = βi−1 ∪ {Vi};
otherwise, set βi = βi−1. In addition, ρi is defined to be ρi−1 ex-
tended with the binding of identifier Ii to the value Vi. The value
returned by the dlet deduction is the result of the evaluation of
D in environment ρn, store σn, and assumption base βn.

• Dletrec: This deduction is of the form
(dletrec ((I1 F1) . . . (In Fn)) D). Effectively, this is equiv-
alent to

(dlet ((I1 (cell ())) ... (In (cell ())))
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(dbegin
(set! I1 F ′

1)
...

(set! In F ′
n)

D′)).

where D′ and F ′
j are the original D and Fj in which free occur-

rences of Ij have been replaced with (ref Ij). Free occurrences
of an identifier are those occurrences that are not under the scope
of another binding construct, e.g. function, let, or a pattern
variable.

• Try: A try deduction is of the form (try D1 . . . Dn), n > 0.
Setting σ0 = σ and starting with i = 1, Di is evaluated in envi-
ronment ρ, store σi−1, and assumption base β. If Di concludes
with Vi and σi, then that is the result of the try deduction. If,
however, there was an error during the evaluation of Di, then i is
incremented and the next deduction is tried. It is an error if all
n deductions fail.

• Dbegin: A dbegin deduction is of the form
(dbegin F1 . . . Fn D). Setting σ0 = σ and β0 = β, each Fi is
evaluated in order with respect ρ, σi−1, and βi−1, resulting in
value Vi and store σi. If Fi is a deduction, set βi = βi−1 ∪ {Vi};
otherwise, βi = βi−1. The result of the dbegin deduction is result
of evaluating D in ρ, σn, and βn.

• By: A by deduction is of the form (E BY D). E is evaluated
in environment ρ, store σ, and assumption base β to get value
VE and store σE . D is then evaluated in ρ, σE , and β, to yield
VD and σD. If VE and VD are alphabetically equivalent, then the
result of the by deduction is VD and σD. It is an error if the two
values are not equal.

• Generalize Over: This deduction is of the form
(generalize-over E D). E is evaluated in environment ρ,
store σ, and assumption base β, resulting in value VE and σE . It
is an error if VE is not a variable. Also, it is an error if the vari-
able VE is free in the assumption base β — that is, if the variable
is free in any proposition P ∈ β. Next, D is evaluated in ρ, σE ,
and β, resulting in VD and σD. The result of the generalize-over
deduction is (forall VE VD) and σD.
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• Pick Any: This deduction is of the form (pick-any I D). It
is similar to generalize-over, except that it provides the variable
via the identifier I. Define ρ′ to be ρ extended with a binding of
I to a fresh variable v — a variable that has never been before
introduced, and thus does not exist in any proposition. D is then
evaluated with respect to ρ′, σ, and β, resulting in VD and σD.
The result of the pick-any deduction is (forall v VD) and store
σD.

• With Witness: This deduction is of the form
(with-witness E F D). First, E is evaluated in environment
ρ, store σ, and assumption base β to yield VE and σE . It is an
error if VE is not a variable. Also, it is an error if the variable VE

is free in the assumption base β.

Next, evaluate F in ρ, σE , and β to yield VF , σF . If F is a
deduction, set β′ = β∪{VF }; otherwise, set β′ = β. It is an error
if VF is not an existentially qualified proposition, e.g. of the form
(exists x P) for some x and P . Also, it is an error if VF 6∈ β′.

Finally, evaluate D in ρ, σF , and β′ ∪ {P ′}, where P ′ is the
proposition P from VD in which free occurrences of x have been
replaced by VE , to yield VD and σD. The result of the with-
witness deduction is VD and store σD, provided that the variable
VE does not occur free in VD; it is an error if the variable occurs
free.

• Pick Witness: This deduction is of the form
(pick-witness I F D). It is similar to with-witness, except
that it provides the variable via the identifier I. Define ρ′ to be
ρ extended with a binding of I to a fresh variable v. F is then
evaluated with respect to ρ′, σ, and β, resulting in VF and σ′. If
F is a deduction, set β′ = β ∪ {VF }; otherwise, set β′ = β. It is
an error if VF is not an existentially qualified proposition, e.g. of
the form (exists x P) for some x and P . Also, it is an error if
VF 6∈ β′.

Finally, evaluate D in ρ′, σF , and β′ ∪ {P ′}, where P ′ is the
proposition P from VF in which free occurrences of x have been
replaced by v, to yield VD and σD. The result of the pick-witness
deduction is VD and store σD, provided that the variable v does
not occur free in VD; it is an error if the variable occurs free.
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2.2.3 Patterns

A pattern π has three basic forms, all of which are shown in Figure 2.1
(page 16). These are:

1. A bracket pattern, of the form [π1 . . . πn]. Bracket patterns
match lists.

2. A compound pattern, of the form (π1 . . . πn), n > 1. Com-
pound patterns are used to decompose terms and propositions.

3. A simple pattern, which includes all of the rest. Simple patterns
are:

(a) Basic values such as the unit value, individual characters,
variables, and meta-identifiers.

(b) Patterns using the keywords _, val-of, list-of, bind, and
those of the form some-type .

(c) Function symbols, prop-cons, and quantifiers. These are
called pattern constants.

(d) Identifiers that are neither keywords, symbols, prop-cons, or
quantifiers. These are called pattern variables.

In addition, there are these pattern types:3

• A list pattern is a bracket pattern, (list-of π1 π2),
(some-list I), or (bind I π) where π is a list pattern.

• A quantifier pattern is the pattern constant forall, the pat-
tern constant exists, or a pattern of the form (some-quant I).

During the course of pattern matching, a value V , called the dis-
criminant, is compared to a pattern π in the environment ρ with
respect to a mapping µ. The mapping µ holds bindings from pattern
variables earlier in the pattern to values; µ initially starts out empty.
The overall result will either be failure or a mapping µ of all the pattern
variables of π to values. If a given identifier is used multiple times in
a pattern, it adds the constraint that both values are equal — unless
the identifier is rebound later in the pattern via a bind or some-type
pattern. When comparing propositions during the course of pattern
matching, an alphabetical equivalence test is used.

3The full Athena language also provides a split pattern, (split π1 π2), used to
match lists, which this monomorphic Athena variant does not provide.
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Simple Patterns

• If π is _, the match is successful. The pattern _ matches anything.

• If π is the unit value, a character, a variable, or a meta-identifier,
then the match is successful if the discriminant V is the same
value. Otherwise, the match fails.

• If π is of the form (val-of I), then V is compared with the
value that is bound to I in ρ. If the values are equal, the match
succeeds; otherwise, the match fails. It is an error if I is not
bound.

• If π is of the form (list-of π1 π2), the match fails if V is
not a list or if V is the empty list. Setting V to be the list
of values [V1 . . . Vn], n > 0, the match continues by matching
[V1 [V2 . . . Vn]] against the bracket pattern [π1 π2] with re-
spect to ρ and µ.

• If π is of the form (bind I π′), the discriminant V is matched
against π′, with respect to ρ and µ. If this match succeeds with
the mapping µ′, then the result of the bind pattern is the mapping
µ′ extended with the binding of I to V . Otherwise, the match
fails.

• If π is of the form (some-type I), the discriminant V is tested
to be of the specified type. If it is, the match succeeds with the
mapping µ extended with a binding of I to V ; otherwise, the
match fails.

• If π is symbol, prop-con, or quantifier, the match succeeds if V
is exactly that symbol, prop-con, or quantifier. Otherwise, the
match fails.

• Finally, π could be an identifier I. If I has a binding to VI in µ,
then the match is successful if the discriminant V is equal to VI .
If I does not have a binding in µ, then the match succeeds with
the mapping µ extended with the binding of I to V . Otherwise,
the match fails.

Bracket Patterns

• If π is a bracket pattern, the match fails if V is not a list. For π of
the form [π1 . . . πn], and discriminant V of the form [V1 . . . Vn],
the match continues by sequentially matching each πi and Vi; the

26



match fails if they of different length. Setting µ0 = µ, start with
i = 1: attempt to match Vi with πi in environment ρ with respect
to mapping µi−1. If the match succeeds with mapping µi, then
i is incremented and the next value/pattern pair is tried. If πn

succeeds, the bracket pattern succeeds with the mapping µn. The
match fails if any πi fails.

Compound Patterns

• If π is of the form (π1 π2 π3), where π1 is a quantifier pattern
and π2 is a list pattern, then the compound pattern will attempt
to decompose the proposition V . The match fails if V is not a
proposition. First, V is expressed in the form

(q v1 (q v2 . . . (q vj B) . . .))

for some quantifier q, variables v1, . . . , vj , and proposition B not
of the form (q vj+1 B′). Note that all propositions can be ex-
pressed in this form; however, if j = 0 then q is undetermined.
The following are then done in order; if any step fails, the match
fails.

– If j > 0, then quantifier q is matched against the quantifier
pattern π1 with respect to ρ and µ, yielding µ′ if successful.
If j = 0 and π1 is a (some-quant I) pattern, the match
fails.

– Starting with i = j and working down to i = 0, match the
list [v1 . . . vi] against the list pattern π2 with respect to ρ
and µ′. The first successful match yields a mapping µ′′ and
the largest i such that [v1 . . . vi] is the longest variable list
that matches π2. The match fails if all such lists for 0 ≤ i ≤ j
fail.

– Finally, the result of the compound pattern is the proposi-
tion

(q vi+1 . . . (q vj B) . . .)

matched against pattern π3 with respect to ρ and µ′′.

• If π is of the form (π1 π2), where π2 is a list pattern, then the
compound pattern will attempt to decompose the term V . The
match fails if V is not a term of the form (f t1 . . . ti).4 The result

4For nullary function symbols, i = 0. Thus, the term is of the form (f), and the
subsequent pattern is [f [ ]].
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of the compound pattern is the result of matching [f [t1 . . . tn]]
against the bracket pattern [π1 π2] with respect to ρ and µ.

• Otherwise, for π of the form (π1 . . . πn):

– If V is a term (or atom) of the form (f t1 . . . ti), then the
result is that of matching [f t1 . . . ti] against [π1 . . . πn] in
ρ and µ. The match fails if V is a term not of this form.

– If V is logical proposition of the form (con P1 . . . Pi), for
some prop-con con and i = 1 or 2, then the result is that of
matching [con P1 . . . Pi] against [π1 . . . πn] in ρ and µ.

– If V is a quantified proposition of the form (q v P), then
the result is that of matching [q v P] against [π1 . . . πn] in
ρ and µ.

– Finally, if V is neither a term nor a proposition, the com-
pound match fails.

2.3 Athena Directives

In addition to accepting phrases to produce values, Athena also accepts
top-level directives. Directives do not produce a value but instead
affect Athena in fundamental ways. Directives can introduce new func-
tion symbols and sorts, change the assumption base, create new bind-
ings in the top-level environment, and bypass the read-eval-print loop
to instead read directly from a file. The top-level directives recognized
by monomorphic Athena are listed in Figure 2.2.

2.3.1 Introducing New Sorts and Symbols

In Athena, terms have a sort. Sorts are the objects within a uni-
verse of discourse that Athena can operate on. An Athena sort is
either a domain or a structure, and directives are used to intro-
duced new sorts. Athena starts with the predefined domain Ide (used
for meta-identifiers) and the predefined structure Boolean (used for
propositions).

Domains

New domains are introduced via the top-level directive (domain I),
where I specifies the name of the new domain. The namespace for
sorts is distinct from that of symbols and bindings in the top-level
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constructor ::= I | (I I∗)

define-block ::= (I I∗) F

directive ::= (domain I) |

(declare I I) | (declare I (-> (I∗) I)) |

(structure I constructor+) |

(structures (I constructor+)+) |

(use-numerals (I ...) I) |

(define-numeric-operations) |

(define-numeric-operations I) |

(assert F+) |

clear-assumption-base |

(define I F) | (define define-block+) |

(load-file "filename")

Figure 2.2: Syntax of Athena Directives

environment; conceivably, one could declare a function symbol named
Ide without a problem, except perhaps confusion on the part of the
user. It is common to restrict names with a capitalized first letter to
sorts. It is illegal (but harmless) to introduce a sort that already exists.

Declaring New Function Symbols

The declare directive is used to create new function symbols by spec-
ifying what sorts each symbol accepts as arguments and which sort the
symbol returns as a result. The directive (declare In Is) creates a
new constant symbol named In of sort Is, assuming Is is the name of an
existing sort. It is an error to introduce a symbol that already exists.

A directive of the form (declare In (-> (I1 . . . Ik) Is)) is used
to introduce a function symbol of the name In, of arity k, which accepts
terms of the sorts I1 . . . Ik and produces a term of sort Is, assuming
that the sorts I1, . . . , Ik, Is exist. The set of argument sorts and the
return sort are sometimes called the signature of the function symbol.

For example, below are introduced a domain representing integers,
a symbol representing an integer, another symbol representing addition
upon integers, and finally a symbol representing a test of inequality.
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(domain Integer)

(declare six Integer)

(declare + (-> (Integer Integer) Integer))

(declare not-equal (-> (Integer Integer) Boolean))

Function symbols whose return sort is Boolean, such as not-equal
above, are also called relations or predicates.

After these directives, (+ six six) is recognized as a term of sort
Integer, and (not-equal six (+ six six)) would be recognized as a
term of sort Boolean.

Structures

A structure is an inductively generated sort. When a structure is de-
clared, it includes a list of function symbols which can be used to induc-
tively create terms of the structure; these function symbols are called
constructors. The constructor listings are similar to the declare
directive, except that the return sort need not be specified — the
structure directive makes it clear what the return sort is.

For example, the code below includes a structure for Boolean (if it
were not already predefined by Athena) and a possible structure for
the natural numbers.

(structure Boolean
true
false)

(structure Natural
zero
(successor Natural))

Thus the sort Natural has two constructors: one nullary which repre-
sents a single term of sort Natural, and another which takes a Natural
as input and returns a term of sort Natural. Because successor takes
as argument a term of the structure being defined, it is a reflexive
constructor. Constructors that are not reflexive are called irreflexive;
for example, true, false, and zero are irreflexive. Besides requiring
that the names of the constructors be distinct, Athena also requires
that a structure be inductive: at least one of the constructors must be
irreflexive.
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There is also the structures directive which allows for the creation
of mutually recursive structures. For mutually recursive structures, the
notion of inductive is extended: a structure is inductive if and only if
it has an irreflexive constructor or if it has a constructor one of whose
argument sorts is inductive.

For example, the first structure listed below is not inductive, and
would be rejected by Athena. The second structure has a “base case”
for one of its sorts, which is sufficient to show that they are inductive.

(structures
(First
(is-before Second))

(Second
(is-after First)))

(structures
(Foo
(fop Bar Baz))

(Bar
(bop Baz))

(Baz
buzz
(biz Bar)))

2.3.2 Numerals

Athena also supports numerals and mathematical operations, but only
after the user has specifically introduced each. The directive
(use-numerals (Inum ...) Idomain) expects either 0 or 1 and a
domain. After introduction, identifiers of the specified number and
greater are recognized to be terms of the domain. (The full Athena lan-
guage also allows 0.0 and 1.0 to allow real numbers; however, integers
are sufficient for this subset of Athena.) In particular, if use-numerals
is given 1, the identifier 0 is not recognized as a valid term of the do-
main. Attempts to reintroduce numerals are ignored, as are attempts
to introduce numerals with a structure.

The directive define-numeric-operations is used to introduce
Athena’s mathematical, primitive functions after use-numerals has
been successfully invoked. In its nullary form, the identifiers plus,
minus, times, div, exp, mod, less?, and greater? are introduced to
operate on numerals. The primitive minus, however, is partial, in that
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it will not return a number lower than the start number specified in
use-numerals.

The alternative form (define-numeric-operations I) takes an
argument that specifies the inverse operation for numeric terms. The
identifier I must be a unary function symbol with both the argument
sort and the return sort being the numerical domain. This function
symbol can then be used to negate terms of the numerical domain, and
these negated terms can be used and returned by Athena’s mathemat-
ical functions.

2.3.3 Other Directives

The directive assert accepts phrases. Each phrase is evaluated to pro-
duce a value, and if each value is a proposition then that proposition is
added to the assumption base. The directive clear-assumption-base
resets the assumption base to its initial value: the lone proposition
true.

The (define I F) directive creates a new binding in the top-level
environment from the given identifier I to the value of phrase F . The
phrase F is evaluated with respect to an environment similar to letrec
or dletrec, in that the identifier I can be referenced in F , but not used
to obtain a value. Because of the environment, this form of the define
directive can be used to make recursive closures.

The alternative form of the define directive provides syntactic
sugar for the creation of closures, similar to that of other Lisp-like
languages. In a given define block, (I I∗) denotes that the name of
the new closure is I and that the arguments to the closure are I∗. The
type of closure, function or method, is determined by the phrase F : if
F is an expression, a function closure; if F is a deduction, a method
closure. In addition, this form of define permits the declaration of
mutually-recursive closures: each closure can reference the other clo-
sures by the identifier I listed in each define block.

Finally, the directive load-file bypasses the read-eval-print loop
directly and reads Athena input from the specified file. Athena acts
upon the phrases and directives within the file as if they were presented
to the repl itself.

2.3.4 Sort Checking

Athena verifies that all terms and propositions are well-sorted. For
monomorphic Athena, sort checking is quite straightforward. For poly-
morphic Athena, however, sort checking is more sophisticated; the full

32



details are provided as an appendix in [Ark99b]. This section will pro-
vide an algorithm for determining if a term or proposition is well-sorted,
as well as the sorts imposed on its variables.

A context ∆ is a mapping of variables to sorts. For any term or
proposition, each variable will have exactly one sort in the context ∆.
The only exception is if the term is a lone variable, in which case the
variable (and the resulting term) does not have a sort.5 In checking
the well-sortedness of a term, it is verified that each subterm has the
sort required by the signatures of its component function symbols, and
that each variable in the term has at most one sort in the context ∆.

The algorithm accepts a term t and a context ∆ and either returns a
context or fails. The algorithm is called initially with an empty context
and proceeds by structural recursion on the term t:

• If t is a variable, return the context ∆.

• If t is a nullary function symbol, return the context ∆.

• If t is a function symbol application of arity n > 0, of the form
(f t1 . . . tn), the algorithm checks that each subterm ti is of the
sort specified by the signature of f . Denote the signature of f
as S1 × · · · × Sn → S, where each Si is an argument sort and S
is the return sort of the function symbol. Setting ∆0 = ∆, for
i = 1, . . . , n:

– If ti is a variable v, then extend the context ∆i−1 with the
mapping v 7→ Si to obtains the new context ∆i, where Si is
the sort specified by the signature of the function symbol f .
The algorithm fails if there is already a mapping v 7→ Sv

in ∆i−1, where Sv 6= Si.

– Otherwise, the algorithm recurses with arguments ti and
∆i−1 to obtain ∆i. If the recursive call fails, the algorithm
fails.

If no recursive calls failed, then the result of the algorithm is the
context ∆n.

For example, the algorithm applied to term (+ ?x six) (and the
initially empty context) would result in the mapping ?x 7→ Integer,
as specified by the signature of +. However, the algorithm would fail
for (successor six), as six is of sort Integer but successor requires
a Natural.

5In polymorphic Athena, the sort of a lone variable is actually a Sort Variable,
but monomorphic Athena has no Sort Variables, which is why it is specified to have
no sort at all.
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Sort checking for propositions is similar, but with a few additional
details. Well-sorted propositions must have their atoms be of sort
Boolean, and must also deal with quantified variables properly. The
algorithm is extended to check propositions; for a given proposition P
and an (initially empty) context ∆:

• If P is an atom t:
– If t is a variable v, then return the context ∆ extended with

the binding v 7→ Boolean; fail if ∆ has a binding to a
non-Boolean sort.

– If t is a nullary function symbol, fail if it is not of sort
Boolean. Otherwise, return the context ∆.

– If t is a function symbol application, fail if the return sort of
the function symbol is not of sort Boolean. The algorithm
otherwise proceeds by sort checking the term t with respect
to ∆.

• If P is a logical proposition, the algorithm recurses on the first
subproposition P1 with ∆ and (if the logical proposition is binary)
uses the returned context to recurse on the second subproposition
P2. The algorithm fails if either recursive call fails.

• If P is a quantified proposition, the algorithm recurses on the
body of the proposition and the context ∆ with any binding for
the quantified variable removed.

Thus for example, following proposition is legal, even though ?x
apparently has more than one sort:

(and (forall ?x
(not-equal ?x (+ ?x six)))

(or ?x false))

The forall provides a separate scope for ?x in which it is well-sorted,
and the sort that ?x takes within the quantified proposition is lost with
respect to the rest of the proposition. This concludes the discussion of
sort checking in monomorphic Athena.

The next chapter details the layout of the Athena virtual machine
and its operations and transitions. When properly assembled, the vir-
tual machine will be able to execute a large subset of monomorphic
Athena. Features missing include support for the split pattern, the
by-induction-on deduction used for induction upon structures, and
certain automatically generated methods for structures that the full
Athena language provides.
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Chapter 3

The Virtual Machine

The Athena virtual machine is a stack-based machine designed to sup-
port functional and deductive programming, sophisticated
pattern matching, and fast error handling. It can be considered to
be a heavily modified SECD machine [Lan64].

The initial design of the virtual machine was based on Henderson’s
Lispkit Lisp interpreter, which uses an SECD machine with twenty-one
operations. Lispkit is a small, purely functional language discussed
extensively in [Hen80]. Lispkit supports such important features as
higher-order function closures, function application, and letrec. Lisp-
kit lacks features such as a top-level environment, state, and error han-
dling. Most of the operations in Henderson’s SECD machine are still
available in the Athena machine, as are its four stacks: S, E, C, and
D. The Athena VM has also inherited the SECD machine’s non-flat
code list — that is, instead of compiled code being merely a list of op-
erations and operation arguments, it is a list of operations, operation
arguments, and other lists which themselves include compiled code.

Some additional design considerations come from Cardelli’s Func-
tional Abstract Machine [Car83], which is itself a heavily modified
SECD machine. In particular, the Fam uses a stack M as “memory” to
hold state in the machine and provides operations Ref, At, and DestRef
to access M . These have been incorporated into the Athena VM as
REF, AT, and REFASSIGN to provide the functionality of Athena cells.
The Fam also has an explicit operation for generating the unit value,
Triv, which has been borrowed as well by the Athena VM.
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3.1 The Stacks

The Athena virtual machine consists of seven stacks or lists.

S: The evaluation Stack stores intermediate results during the eval-
uation of expressions and deductions. The objects on top of S
are usually the ones manipulated by each state transition.

E: The Environment stack is used to hold the values that are
bound to identifiers. Effectively, it is a list of lists, and each
internal list represents a “layer” of values that have been bound
by a single closure.

C: The Control list contains the machine code that is being exe-
cuted. At the top level, it is a non-flat list of machine operations
and arguments. Most steps of the virtual machine involve tran-
sitions based on what operation is on top of the C stack.

D: The Dump holds machine state in between certain expression-
specific operations. For example, the S, E, and C are dumped
onto this stack before function application and are restored upon
return of the function. Usually, objects are pushed on to the D
stack during the evaluation of expressions.

M: The Memory stack stores the values contained in Athena cells.

A: The Assumption base stack holds all propositions that are
“true,” as well as any intermediate conclusions produced during
the evaluation of a deduction.

B: The Backup stack holds machine state in between certain eval-
uations, such as method applications. During the evaluation of
some phrases, the assumption base stack may need to be saved
and restored. The backup stack is where the assumption base
stack is saved to and restored from.

3.1.1 The Initial Environment Stack

When Athena starts, five of the seven stacks are initially empty. The
first exception is A: the assumption base stack initially contains the
proposition true by convention. The environment stack E contains
the initial top-level environment. Both of these can change as Athena
evaluates phrases and directives: successful deductions will add their
conclusion to the A stack, and successful define directives will update
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the top-level environment E. Each phrase entered is parsed and com-
piled into a code list; the details of this in Chapter 4. The stack C is
set to be the new code list, which the machine proceeds to execute.

The environment stack E at any point is a list of lists. The top-level
environment stack — the one in which all phrases are executed with
respect to — is a list of exactly two lists. As E is a stack, the top
element is referenced by the index 0, and lists that are deeper in the
stack are referenced by 1, 2, and so on. (Thus a reference to a value
in an environment E is a pair of nonnegative integers; the first being
which list in E to look in, and the second being an index into that list
to get the value. This is done by the LD operation.) The top-most list
of the top-level environment stack contains all values that have been
defined by the user; it initially starts out as an empty list. The deeper
list contains all of the Athena primitives. It never changes except for
if and when a define-numeric-operations directive is successfully
issued, at which point it will extend to include the numerical primitive
function closures. The full details of what primitives Athena provides
is discussed starting in Section 4.2.

3.1.2 Sorts and Symbols

There is an additional collection of information that is important in
Athena: the set of defined sorts and the set of declared function sym-
bols, along with their arity and arguments. However, this information
is not directly used by the virtual machine itself. It is the compiler that
needs this information, so that it can generate the proper Athena code.
The machine itself does not worry about whether a given identifier is a
function symbol, because the compiler would have made that distinc-
tion — if it happened to be the name of a function symbol, then the
code list generated by the compiler will reference a function symbol.

In between the time when the machine starts executing a code list
and when (if) the machine completes, no new function symbols or sorts
are created. They are created only by top-level directives in the read-
eval-print loop. After such a directive, then the compiler can make use
of the new sorts and symbols in later phrases. The distinction is made
because the virtual machine does not deal with their creation, only the
fact that they exist. And the fact that they exist is not even noticed by
the machine, it is noted by the compiler which generated the code for
the machine. Thus, the sort and symbol information is not available as
a stack because is not manipulated by the machine, and adding it to
the machine would complicate it needlessly.
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3.2 Operations and Transitions

With each machine step, the machine attempts to match the current
state of its stacks against the transition rules. On finding a match, it
proceeds to manipulate the stacks according to the rule.

In the state transitions below, the letters x and y denote arbitrary
values, whereas t denotes a term, v a variable, f a function symbol, θ
a substitution, and p a proposition. Lists are in brackets, [ ]. Function
and method closures appear as parenthesized lists with the leading tag
function or method. For each transition, each stack is either labeled
as a letter or as parenthesized list of the top elements of the stack, a
dot, and then the remainder of the stack labeled as a letter. Not all
transitions include all seven stacks. Most transitions either have the
four basic expression stacks (SECD) or the six core expression and
deduction stacks (SECDAB); there are only three transitions that use
the M stack. An explicitly empty stack will be denoted by NIL. Finally,
operations are denoted by OPNAME.

The machine halts if the code list C is empty. If C is not empty
and there is no legal transition, the machine halts with an irrecoverable
error. This is distinct from the error pseudo-value, as error has its
own special transitions, as listed in Section 3.2.9.

3.2.1 Value Loading

1. S E (TRIV . C) D

(() . S) E C D

Generate the unit value.

2. (x . S) E (DUP . C) D

(x x . S) E C D

Duplicate the top value on S.

3. NIL E (DUP . C) D

(error) E C D

4. (x y . S) E (SWAP . C) D

(y x . S) E C D

Swap the top two stack elements.
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5. S E (SWAP . C) D

(error) E C D

If S has less than two elements.

6. S E (LD m n . C) D

(x . S) E C D

If m,n is a proper offset into the environment E.

7. S E (LD m n . C) D

(error . S) E C D

If m,n is not a proper offset into the environment E.

8. S E (FRESHVAR . C) D

(vfresh . S) E C D

Produce a variable that has never before been introduced.

9. S E (LDV “v” . C) D

(v . S) E C D

Load a variable by name.

10. S E (LDPRIM x . C) D

(x . S) E C D

Load a primitive value onto the S stack. Normally used for prop-
cons, quantifiers, symbols, and characters.

11. S E (LDTRUE . C) D

(true . S) E C D

Generate the Boolean function symbol true.

12. S E (LDFALSE . C) D

(false . S) E C D

Generate the Boolean function symbol false.

13. S E (LDERROR “string” . C) D

(error“string” . S) E C D

Produce the error pseudo-value containing the user visible string.
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3.2.2 Lists and List Manipulation

14. S E (NIL . C) D

([ ] . S) E C D

Create an empty list.

15. (x [x1 . . . xn] . S) E (PRE . C) D

([x x1 . . . xn] . S) E C D

Prepend a value onto a list

16. (x [x1 . . . xn] . S) E (POST . C) D

([x1 . . . xn x] . S) E C D

Append a value onto a list.

17. ([x0 . . . xn−1] . S) E (ELEM m . C) D

(xm . S) E C D

Get the mth element of a list, if 0 ≤ m < n.

18. ([x0 . . . xn−1] . S) E (ELEM m . C) D

(error . S) E C D

Where m < 0 or m ≥ n.

19. ([x1 . . . xn] . S) E (CDR . C) D

([x2 . . . xn] . S) E C D

Return the list of all but the first element of a list.

20. ([ ] . S) E (CDR . C) D

([ ] . S) E C D

This transition is explicitly here to act like Athena’s tail primi-
tive function. (Section 4.3.)

21. (x . S) E (CDR . C) D

(error . S) E C D

Where x is not a list.
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22. (x . S) E (ASLIST . C) D

([x0 x1 . . . xn] . S) E C D

If x is a (non-variable) term, returns the list of the function sym-
bol x0 and the subterms x1 . . . xn.

If x is a logical proposition, returns the list of the prop-con x0

and propositions x1 . . . xn.

If x is a quantified proposition, returns the list of the quantifier
x0, variable x1, and proposition x2.

23. (x . S) E (ASLIST . C) D

(error . S) E C D

Where x is not a non-variable term or proposition.

3.2.3 Closure Creation

24. S E (CLOSURE n c′ . C) D

((function n c′ E) . S) E C D

Build a function closure expecting n arguments from the code list
c′.

25. S E (DCLOSURE n c′ . C) D

((method n c′ E) . S) E C D

Build a method closure expecting n arguments from the code list
c′.

3.2.4 Application

26. ([x1 . . . xn] (function n c′ e′) . S) E

NIL ([x1 . . . xn] . e′)

(APPLY . C) D

c′ (S E C . D)

Where [x1 . . . xn] is the list of arguments, of arity n, to the func-
tion closure.

Applying a function closure consists of saving the current S, E,
and C stacks to the dump D, loading the environment of the
closure, adding the arguments to the new environment, and then
setting the code list to be the closure code.
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27. ([x1 . . . xm] (function n c′ e′) . S) E (APPLY . C) D

(error . S) E C D)

Where [x1 . . . xm] is a list of arguments of length m 6= n, where n
is the arity of the function closure.

28. ([t1 . . . tn] f . S) E (APPLY . C) D

(t . S) E C D

Where f is a function symbol, and [t1 . . . tn] is a list of terms,
with the arity of the symbol equal to the length of the term list.
Also, the resulting term t is well-sorted.

29. ([t1 . . . tm] f . S) E (APPLY . C) D

(error . S) E C D

Where the arity of f is not equal to m, or if the resulting term
would have been ill-sorted.

30. (x θ . S) E (APPLY . C) D

(θ(x) . S) E C D

Where x is a term, list of terms, proposition, or list of proposi-
tions.

31. (x θ . S) E (APPLY . C) D

(error . S) E C D

Where x is neither a term, a list of terms, a proposition, nor a
list of propositions.

32. ([p1 . . . pn] con . S) E (APPLY . C) D

((con p1 . . . pn) . S) E C D

Where con is a prop-con, where the arity of con equals n.

33. (x con . S) E (APPLY . C) D

(error . S) E C D

Where con is a prop-con, but x is either not a list of propositions
of the correct length or if the resulting proposition would have
been ill-sorted.
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34. ([v p] q . S) E (APPLY . C) D

((q v p) . S) E C D

Where q is a quantifier.

35. (x q . S) E (APPLY . C) D

(error . S) E C D

Where q is a quantifier, but x either is not a list of a variable
and a proposition of if the resulting proposition would have been
ill-sorted.

36. (x . s′) e′ (RTN) (S E C . D)

(x . S) E C D

The return from a closure. Note that the top (presumably, only)
value of s′ is “returned” when the closure ends.

37. NIL e′ (RTN) (S E C . D)

(error . S) E C D

3.2.5 Deductions and Method Application

38. S E (DSTART . C) D A B

S E C D A (A . B)

Keep a copy of the assumption base safe in B.

39. (p . S) E (DEND . C) D a′ (A . B)

(p . S) E C D (p . A) B

Add the proposition p (now a theorem) at the top of the S stack
to the restored assumption base. Note that it is also left on the
top of S.

40. S E (DRESTORE . C) D a′ (A . B)

S E C D A B

Restore the old assumption base unmodified.
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41. ([x1 . . . xn] (method n c′ e′) . S) E

NIL ([x1 . . . xn] . e′)

(DAPPLY . C) D

c′ (S E C . D)

Where the arity of the method closure equals the length of the
value list.

42. (y x . S) E (DAPPLY . C) D

(error . S) E C D

If x is not a method closure or y is not a list, or if x is a method
closure whose arity is not equal to the length of list y.

43. (p . S) E (ASSERT . C) D A B

(p . S) E C D (p . A) B

Add proposition p to the assumption base. Note that the propo-
sition remains on S.

44. (x . S) E (ASSERT . C) D A B

(error . S) E C D A B

If x is not a proposition.

3.2.6 Recursive Closures and Applications

45. S E (DUMMY . C) D

S (pending . E) C D

Add a dummy environment layer to E. It will be replaced by
RAPPLY or RDAPPLY later.

46. ([x1 . . . xn] (function n c′ (pending . e′)) . S)

NIL

(pending . E) (RAPPLY . C) D

(v . e′) c′ (S E C . D)

The effective replacement of pending with the argument list hap-
pens both on top of the E stack, but also within the environments
of any closures in the argument list.
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47. (y x . S) E (RAPPLY . C) D

(error . S) E C D

If x is not a function closure of the proper form, y is not a list, or
if x is a function closure whose arity does not match the length
of list y.

48. ([x1 . . . xn] (method n c′ (pending . e′)) . S)

NIL

(pending . E) (RDAPPLY . C) D

([x1 . . . xn] . e′) c′ (S E C . D)

The effective replacement of pending with the argument list hap-
pens both on top of the E stack, but also within the environments
of any closures in the argument list.

49. (y x . S) E (RDAPPLY . C) D

(error . S) E C D

If x is not a method closure of the proper form, y is not a list, or
if x is a method closure whose arity does not match the length of
list y.

3.2.7 Select

SEL is the most basic and generic switching operation. SEL chooses the
next code list depending on the value on top of S. Each selection code
list “returns” via the JOIN operation.

50. (true . S) E (BOOLNOT . C) D

(false . S) E C D

51. (false . S) E (BOOLNOT . C) D

(true . S) E C D

52. (x . S) E (BOOLNOT . C) D

(error . S) E C D

Where x is neither true nor false.

BOOLNOT is used to make the SEL operation an explicit test for
false.
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53. (true . S) E (SEL ctrue cnot-true . C) D

S E ctrue (C . D)

Where “true” is the boolean function symbol true.

54. (x . S) E (SEL ctrue cnot-true . C) D

S E cnot-true (C . D)

Where x is any value other than true.

For an explicit test for false use BOOLNOT before SEL.

55. S E (JOIN) (C . D)

S E C D

56. (x . S) E (POP . C) D

S E C D

Remove the top-most element from S.

57. NIL E (POP . C) D

(error) E C D

If S is empty, return error.

3.2.8 While

58. S E (WHILE cloop . C) D

S E cloop (cloop C . D)

59. (true . S) E (WHILETEST . C) (cloop ccont . D)

S E C (cloop ccont . D)

60. (false . S) E (WHILETEST . C) (cloop ccont . D)

(() . S) E ccont D

61. (x . S) E (WHILETEST . C) (cloop ccont . D)

(error . S) E C (cloop ccont . D)

Where x is neither true nor false.

62. (x . S) E (WHILELOOP . C) (cloop ccont . D)

S E cloop (cloop ccont . D)
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3.2.9 Try and the Error Transitions

The use of “. . . ” in these transitions denotes a possibly empty list of
stack objects that do not contain the pseudo-value “try-token”. At any
given time, there may be multiple try-tokens on D and B, and these
transitions only deal with respect to the outermost try-token. When
the special pseudo-value error is on top of the S stack, the machine
reverts to these transitions until the error has been dealt with — either
by moving to the next deduction in a try block or reporting the error
to the user. The machine acts similarly for the pseudo-value match-fail,
as discussed in Section 3.3.4.

63. S E (TRY . C) D

S E C (cretry try-token S E . D)

A B

A (try-token A . B)

Where cretry is actually taking C, removing everything up until
RETRY or FAIL. Thus cretry is a code list starting with either
RETRY or FAIL.

64. (error . s′) e′ (RETRY . C)

S E C

(. . . c′retry try-token S E . D) a′ (. . . try-token A . B)

(cretry try-token S E . D) A (try-token A . B)

Where cretry is freshly generated from C.

65. (p . S) E (RETRY . c)

(p . S) E C

(. . . cretry try-token s′ e′ . D) A (. . . try-token a′ . B)

D A B

Success! A should already have p as the conclusion, so just return
D and B to a try-token-less clean state.

Where C is actually c, removing everything up to and including
FAIL.

66. (error . s′) e′ (FAIL . C)

(error“try-failed” . S) E C

(. . . cretry try-token S E . D) a′ (. . . try-token A . B)

D A B

47



67. (p . S) E (FAIL . C)

(p . S) E C

(. . . cretry try-token s′ e′ . D) A (. . . try-token a′ . B)

D A B

68. (error . S) E (x . C)

(error . S) E cretry

(. . . cretry try-token s′ e′) A (. . . try-token A . B)

(. . . cretry try-token s′ e′) A (. . . try-token A . B)

Where x is neither RETRY nor FAIL.

Upon any error, search D until a try-token has been found, and
set C to be the code list right before the try-token.

69. (error . S) E NIL (. . . cretry try-token s′ e′)

(error . S) E cretry (. . . cretry try-token s′ e′)

A (. . . try-token A . B)

A (. . . try-token A . B)

3.2.10 Substitutions

70. S E (NULLSUB . C) D

(θempty . S) E C D

Introduce an empty substitution.

71. (t v θ . S) E (EXTENDSUB . C) D

(θ[v 7→ t] . S) E C D

Extend the given substitution. Note that if v is already mapped
in θ, that mapping is lost.

72. (θ2 θ1 . S) E (COMPOSESUB . C) D

(θ1 ◦ θ2 . S) E C D

Compose two substitutions.
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3.2.11 Propositions

While it is true that propositions can be created using APPLY and
the proper prop-con or quantifier, these are more direct. In particular,
these are used by the primitive methods of Athena.

73. (p . S) E (NOT . C) D

((not p) . S) E C D

74. (x . S) E (NOT . C) D

(error. S) E C D

Where x is not a proposition.

75. (p2 p1 . S) E (AND . C) D

((and p1 p2) . S) E C D

76. (y x . S) E (AND . C) D

(error . S) E C D

Where x or y is not a proposition.

77. (p2 p1 . S) E (OR . C) D

((or p1 p2) . S) E C D

78. (y x . S) E (OR . C) D

(error . S) E C D

Where x or y is not a proposition.

79. (p2 p1 . S) E (IF . C) D

((if p1 p2) . S) E C D

80. (y x . S) E (IF . C) D

(error . S) E C D

Where x or y is not a proposition.

81. (p2 p1 . S) E (IFF . C) D

((iff p1 p2) . S) E C D
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82. (y x . S) E (IFF . C) D

(error . S) E C D

Where x or y is not a proposition.

83. (p v . S) E (EXISTS . C) D

((exists v p) . S) E C D

84. (y x . S) E (EXISTS . C) D

(error . S) E C D

Where x is not a variable or y is not a proposition.

85. (p v . S) E (FORALL . C) D

((forall v p) . S) E C D

86. (y x . S) E (FORALL . C) D

(error . S) E C D

Where x is not a variable or y is not a proposition.

87. (p v t . S) E (REPLACE . C) D

(p′ . S) E C D

Perform the “safe replacement” of variable v with t in proposition
p. This involves the renaming of bound variables in p.

3.2.12 Store Access and Manipulation

88. (x . S) E (REF . C) D M

(celli . S) E C D M [i 7→ x]

Creates a cell containing the value x.

89. (celli . S) E (AT . C) D M

(M [i] . S) E C D M

Retrieve the value in the cell.

90. (x celli . S) E (REFASSIGN . C) D M

S E C D M [i 7→ x]

Replace the value stored in a cell with a new value.
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3.2.13 Assumption Base Access

The use of ae(p) in the following transitions denotes whether a propo-
sition alphabetically equivalent to p is or is not contained within A.

91. (p . S) E (KNOWN . C) D ae(p) ∈ A B

(true . S) E C D A B

92. (p . S) E (KNOWN . C) D ae(p) 6∈ A B

(false . S) E C D A B

Explicitly when p is a proposition yet it is not in the assumption
base.

93. (x . S) E (KNOWN . C) D

(error . S) E C D

Where x is not a proposition.

94. (v . S) E (FREEAB . C) D

(true . S) E C D

If the variable v is free within A.

95. (v . S) E (FREEAB . C) D

(false . S) E C D

If the variable v is not free within A.

96. (v p . S) E (FREEVAR . C) D

(true v p . S) E C D

If the variable v is free within the proposition p.

97. (v p . S) E (FREEVAR . C) D

(false v p . S) E C D

If the variable v is not free within the proposition p.

98. (v p . S) E (FREEVAR . C) D

(error v p . S) E C D

If v is not a variable or p is not a proposition.
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3.2.14 Tests

99. ([ ] . S) E (TESTNIL . C) D

(true [ ] . S) E C D

100. (x . S) E (TESTNIL . C) D

(false x . S) E C D

Where x is not an empty list.

101. ([x1 . . . xn] . S) E (TESTLIST . C) D

(true [x1 . . . xn] . S) E C D

102. (x . S) E (TESTLIST . C) D

(false x . S) E C D

Where x is not a list.

103. (true . S) E (TESTBOOL . C) D

(true . S) E C D

104. (false . S) E (TESTBOOL . C) D

(false . S) E C D

105. (x . S) E (TESTBOOL . C) D

(error x . S) E C D

Where x is neither true nor false.

106. (v . S) E (TESTVAR . C) D

(true . S) E C D

107. (x . S) E (TESTVAR . C) D

(false . S) E C D

Where x is not a variable.

108. (t . S) E (TESTTERM . C) D

(true . S) E C D
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109. (x . S) E (TESTTERM . C) D

(false . S) E C D

Where, x is not a term.

110. ((not p) . S) E (TESTNOT . C) D

(true . S) E C D

111. (x . S) E (TESTNOT . C) D

(false . S) E C D

Where, x is not a proposition of the form (not p).

112. ((and p1 p2) . S) E (TESTAND . C) D

(true . S) E C D

113. (x . S) E (TESTAND . C) D

(false . S) E C D

Where x is not a proposition of the form (and p1 p2).

114. ((if p1 p2) . S) E (TESTIF . C) D

(true . S) E C D

115. (x . S) E (TESTIF . C) D

(false . S) E C D

Where x is not a proposition of the form (if p1 p2).

116. ((iff p1 p2) . S) E (TESTIFF . C) D

(true . S) E C D

117. (x . S) E (TESTIFF . C) D

(false . S) E C D

Where, x is not a proposition of the form (iff p1 p2).

118. ((or p1 p2) . S) E (TESTOR . C) D

(true . S) E C D
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119. (x . S) E (TESTOR . C) D

(false . S) E C D

Where x is not a proposition of the form (or p1 p2).

120. ((forall v p) . S) E (TESTFORALL . C) D

(true . S) E C D

121. (x . S) E (TESTFORALL . C) D

(false . S) E C D

Where x is not a proposition of the form (forall v p).

122. ((exists v p) . S) E (TESTEXISTS . C) D

(true . S) E C D

123. (x . S) E (TESTEXISTS . C) D

(false . S) E C D

Where x is not a proposition of the form (exists v p).

124. (xT . S) E (TESTTYPE T . C) D

(true xT . S) E C D

125. (x . S) E (TESTTYPE T . C) D

(false x . S) E C D

Test that x is an Athena value of type T , where T is one of: A
for atom, F for function, M for method, P for proposition, N for
prop-con, Q for quantifier, S for substitution, Y for symbol, C for
cell, R for char, and U for unit.

Note that lists, terms, and variables have their own testing oper-
ations.

126. (p2 p1 . S) E (ALPHAEQ . C) D

(true . S) E C D

Where p1 and p2 are alphabetically equal propositions.

127. (p2 p1 . S) E (ALPHAEQ . C) D

(false . S) E C D

Where p1 and p2 are not alphabetically equal propositions.
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128. (y x . S) E (ALPHAEQ . C) D

(error . S) E C D

Where either x or y is not a proposition.

129. (x2 x1 . S) E (VALEQ . C) D

(true . S) E C D

Where x1 and x2 are “value equal”. Note that function closure
and method closures cannot be compared for equality.

130. (x2 x1 . S) E (VALEQ . C) D

(false . S) E C D

Where x1 and x2 are not “value equal”.

131. (x2 x1 . S) E (VALEQ . C) D

(error . S) E C D

Where x1 and x2 contain closures that are compared for equal-
ity.

3.3 Pattern Matching Operations and
Transitions

The pattern matching operations are complex in and of themselves.
Just as there are special transitions for handling the pseudo-value
error, there are special transitions for when pattern matching fails.

The discriminant value is denoted dis. Angle brackets 〈〉 denote
a special map-stack object used only in pattern matching. It denotes
both a mapping of identifiers (pattern variables) to values and a stack
of values that are pending because of a bind pattern. A 〈〉 specifically
denotes both an empty map-stack, whereas 〈∗〉 denotes any map-stack.

132. (dis . S) E (MATCH . C) D

(dis 〈〉 . S) E C (dis match-token . D)

133. (match-fail 〈∗〉 . S) E (MATCHNEXT . C)

(dis 〈〉 . S) E C

(. . . dis match-token . D)

(dis match-token . D)
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134.
(x 〈∗〉 . S) E (MATCHEND . C) (. . . dis match-token . D)

(error . S) E C D

The error here is that the matched failed.

135. (〈∗〉 . S) E (MAPCLOSURE n c′ . C)

NIL ([v1 . . . vn] . E) c′

(dis match-token . D)

(S E cclean . D)

Where cclean is the code list C, but with everything up to and
including
MATCHEND removed. Here, a function closure of arity n is cre-
ated and applied with the n values in the map-stack 〈∗〉.

136. (〈∗〉 . S) E (MAPDCLOSURE n c′ . C)

NIL ([v1 . . . vn] . E) c′

(dis match-token . D)

(S E cclean . D)

Where cclean is the code list C, but with everything up to and
including
MATCHEND removed. Here, a method closure of arity n is cre-
ated and applied with the n values in the map-stack 〈∗〉.

3.3.1 Simple Patterns

137. (dis 〈∗〉 . S) E (MATCHANY . C) D

(〈∗〉 . S) E C D

138. (dis 〈∗〉 . S) E (MATCHI i . C) D

(〈∗, i 7→ dis〉 . S) E C D

If 〈∗〉 did not have a mapping for identifier i, then add such a
mapping.

If there is a mapping from identifier i to some value V in the
map-stack 〈∗〉, this transition happens if V is value equal to dis.
If closures are compared as a result of the value equality test,
error is returned.
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139. (dis 〈∗, i 7→ x〉 . S) E (MATCHI i . C) D

(match-fail 〈∗, i 7→ x〉 . S) E C D

Where i is mapped to value x not equal to value dis.

140. (true dis 〈∗〉 . S) E (MATCHSOME i . C) D

(〈∗, i 7→ dis〉 . S) E C D

Map i to dis; lose any previous mapping of i that may have been
in 〈∗〉.

141. (x dis 〈∗〉 . S) E (MATCHSOME i . C) D

(match-fail 〈∗〉 . S) E C D

Where x is not true.

142. (dis 〈∗, stack〉 . S) E (MATCHBIND i . C) D

(〈∗, i.dis.stack〉 . S) E C D

Save the identifier i and the discriminant dis to the stack in the
map-stack 〈∗〉.

143.
(〈∗, i.dis.stack〉 . S) E (MATCHBINDCOMMIT i . C) D

(〈∗, i 7→ dis, stack〉 . S) E C D

Map i to the saved dis; lose any previous mapping of i that may
have been in 〈∗〉.

144. (x dis 〈∗〉 . S) E (MATCHEQUAL . C) D

(〈∗〉 . S) E C D

Where x and dis are equal values. (Alphabetically equivalent, if
x and dis are propositions.)

145. (x dis 〈∗〉 . S) E (MATCHEQUAL . C) D

(match-fail 〈∗〉 . S) E C D

Where x and dis are not equal values.

146. (x dis 〈∗〉 . S) E (MATCHEQUAL . C) D

(error 〈∗〉 . S) E C D

Where x and dis either both function closures or both method
closures.
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147. ([x1] 〈∗〉 . S) E (MATCHLISTOF . C) D

([x1 [ ]] 〈∗〉 . S) E C D

148. ([x1 x2 . . . xn] 〈∗〉 . S) E (MATCHLISTOF . C) D

([x1 [x2 . . . xn]] 〈∗〉 . S) E C D

149. (x 〈∗〉 . S) E (MATCHLISTOF . C) D

(match-fail 〈∗〉 . S) E C D

If x is not a list, or if x is an empty list.

3.3.2 Bracket Patterns

150.
([ ] 〈∗〉 . S) E (MATCHLIST 0 . C) D

(〈∗〉 . S) E C ([ ] match-list-token .D)

151. (list 〈∗〉 . S) E (MATCHLIST n . C)

(list[0] 〈∗〉 . S) E C

D

(list match-list-token .D)

Where n > 0 and is equal to the length of the discriminant list.

152. (dis 〈∗〉 . S) E (MATCHLIST n . C) D

(match-fail 〈∗〉 . S) E C D

Where dis is either not a list, or a list whose length is not equal
to n.

153. (〈∗〉 . S) E (MATCHLISTNEXT m . C)

(list[m] 〈∗〉 . S) E C

(list match-list-token . D)

(list match-list-token . D)

Where 0 ≤ m < the length of list.

154.
(〈∗〉 . S) E (MATCHLISTEND . C) (list match-list-token . D)

(〈∗〉 . S) E C D

Clean up the dump after the list has been matched.
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3.3.3 Compound Patterns

155.
(t 〈∗〉 . S) E (MATCHASLIST nested . C) D

([f [t1 . . . tn]] 〈∗〉 . S) E C D

Where term (or atom) t is not a variable. If t is nullary, then
n = 0 and [t1 . . . tn] is merely the empty list [ ].

156.
(x 〈∗〉 . S) E (MATCHASLIST nested . C) D

(match-fail 〈∗〉 . S) E C D

Fail for any other value.

157.
(t 〈∗〉 . S) E (MATCHASLIST flatten . C) D

([f t1 . . . tn] 〈∗〉 . S) E C D

Where term (or atom) t is not a variable. If t is nullary, then
n = 0 and [f t1 . . . tn] is the list [f ].

158.
(x 〈∗〉 . S) E (MATCHASLIST flatten . C) D

(match-fail 〈∗〉 . S) E C D

Fail for any other value.

159.
(p 〈∗〉 . S) E (MATCHQPROP . C) D

(q 〈∗〉 . S) E C ([v1 . . . vk] q b q-token . D)

The operation MATCHQPROP decomposes the proposition p into
q, the variable list [v1 . . . vk], and the proposition b as noted in Sec-
tion 3. In particular, the value q is either the quantifier forall,
the quantifier exists, or the unit value — indicating that the
quantifier is undetermined.

160.
(x 〈∗〉 . S) E (MATCHQPROP . C) D

(match-fail 〈∗〉 . S) E C (q-token . D)

If x is not a proposition, or if x is the pseudo-value “match-fail”.
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161. (forall 〈∗〉 . S) E (MATCHQ1S i . C) D

(〈∗, i 7→ forall〉 . S) E C D

162. (forall 〈∗, i 7→ x〉 . S) E (MATCHQ1S i . C) D

(match-fail 〈∗, i 7→ x〉 . S) E C D

If identifier i is already bound to x, and x is not forall.

163. (exists 〈∗〉 . S) E (MATCHQ1S i . C) D

(〈∗, i 7→ exists〉 . S) E C D

164. (exists 〈∗, i 7→ x〉 . S) E (MATCHQ1S i . C) D

(match-fail 〈∗, i 7→ x〉 . S) E C D

If identifier i is already bound to x, and x is not exists.

165. (() 〈∗〉 . S) E (MATCHQ1S i . C) D

(match-fail 〈∗〉 . S) E C D

Fail if the expected quantifier to be bound to identifier i is instead
the unit value.

166. (forall 〈∗〉 . S) E (MATCHQ1 forall . C) D

(〈∗〉 . S) E C D

167. (() 〈∗〉 . S) E (MATCHQ1 forall . C) D

(〈∗〉 . S) E C D

168. (exists 〈∗〉 . S) E (MATCHQ1 forall . C) D

(match-fail . S) E C D

169. (exists 〈∗〉 . S) E (MATCHQ1 exists . C) D

(〈∗〉 . S) E C D

170. (() 〈∗〉 . S) E (MATCHQ1 exists . C) D

(〈∗〉 . S) E C D

171. (forall 〈∗〉 . S) E (MATCHQ1 exists . C) D

(match-fail . S) E C D
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172. (〈∗〉 . S) E (MATCHQ2INIT cQ2 . C)

S E cQ2

([v1 . . . vk] q b q-token . D)

(k [v1 . . . vk] 〈∗〉 cQ2 q2-token C q b q-token . D)

Set up the dump D, save the old code list C and current map-
stack 〈∗〉, and load the code list cQ2.

173. S E (MATCHQ2START . C)

([v1 . . . vi] 〈∗〉 . S) E C

(i [v1 . . . vk] 〈∗〉 cQ2 q2-token ccont q b q-token . D)

(i [v1 . . . vk] 〈∗〉 cQ2 q2-token ccont q b q-token . D)

Load the new variable list and saved mapping.

174. (〈∗〉 . S) E (MATCHQ2END . C)

(〈∗〉 . S) E ccont

(i [v1 . . . vk] 〈∗〉saved cQ2 q2-token ccont q b q-token . D)

(i [v1 . . . vk] q b q-token . D)

Clean up the dump D and restore the continue code list.

175. (match-fail 〈∗〉 . S) E (MATCHQ2END . C)

(match-fail 〈∗〉 . S) E ccont

(. . . 0 [v1 . . . vk] 〈∗〉saved cQ2 q2-token ccont q b q-token . D)

(q-token . D)

Where “. . . ” does not contain q2-token. Here, all attempts at
matching the variable list has failed, and so the match-fail gets
propagated outside of the Q2 matching loop.

176. (match-fail 〈∗〉 . S) E (MATCHQ2END . C)

S E cQ2

(. . . i [v1 . . . vk] 〈∗〉saved cQ2 q2-token ccont q b q-token . D)

(i − 1 [v1 . . . vk] 〈∗〉saved cQ2 q2-token ccont q b q-token . D)

Where “. . . ” does not contain q2-token and i > 0. Here, i is
decremented and the Q2 matching loop is re-entered.
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177. (〈∗〉 . S) E (MATCHQ3 . C)

(p 〈∗〉 . S) E C

(i [v1 . . . vk] q b q-token . D)

(q-token . D)

Where proposition p is created by requantifying proposition b
with q over the remaining variables [xi+1 . . . xk], as per
Section 3. Note that if q is the unit value, then it had better
also be the case that i = k = 0.

178. (〈∗〉 . S) E (MATCHQEND . C) (q-token . D)

(〈∗〉 . S) E C D

179.
(match-fail 〈∗〉 . S) E (MATCHQEND . C) (. . . q-token . D)

(match-fail 〈∗〉 . S) E C D

Where “. . . ” does not contain q-token.

3.3.4 Match-Fail Transitions

Transitions for match-fail are special in the same way that transitions
for error are special. When the pseudo-value match-fail is on top of
the S stack, the machine exclusively deals with this transition until an
operation that handles match-fail is found.

180. (match-fail 〈∗〉 . S) E (. . . TERMINATOR . C) D

(match-fail 〈∗〉 . S) E (TERMINATOR . C) D

Where TERMINATOR is one of MATCHNEXT, MATCHEND,
MATCHQPROP, MATCHQ2END, or MATCHQEND, and “. . . ”
does not contain any of these operations. It is the job of each
of these match operations to clean up the dump D if match-fail
is on top of S.

The next chapter discusses how Athena phrases are compiled into
these virtual machine operations and provides code for all of Athena’s
primitive closures.
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Chapter 4

Compilation and Code

The compiler for the Athena virtual machine accepts an abstract syntax
tree (AST) generated by a parser of Athena phrases. The AST has
forms for each of the phrases as listed in the syntax given in Figure 2.1
(page 16). This chapter specifies how each phrase compiles into a code
list of virtual machine operations. It also provides the code lists of all
of the primitive functions and methods of Athena.

For the Lispkit Lisp interpreter, Henderson states one of the key
ideas for implementing a functional programming language on an SECD
machine, what he calls the net-effect property [Hen80]. The idea is
quite simple and powerful: a series of state transitions should have the
net-effect of placing exactly one value on top of the S stack. Simply
loading a value via the LD operation obviously satisfies this property.
However, so should the application of a function closure on a list of
arguments. During the application of the closure, there is certainly
activity on other stacks, but the net-effect after the application has
completed will be the pushing of the return value on top of S. This
notion has been extended for Athena’s virtual machine. All of the
phrases of Athena are compiled with the net-effect property in mind,
including such constructs as while loops, try blocks, pattern matching,
and both function and method closure application.

Both Henderson’s machine and the Athena virtual machine have
the same mechanism for adding new bindings to the environment, and
that is via the application of a closure. For Lispkit, the bindings done
by let and letrec are added by creating a closure and almost imme-
diately applying a closure. This notion has also been borrowed by the
Athena virtual machine for let, letrec, dlet, dletrec, the primitive
deductive forms pick-any and pick-witness, and the binding of the
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pattern variables upon successful matching.

4.1 The Compiler

Compilation of an Athena phrase happens with respect to the names-
pace of an environment. The namespace is structurally similar to the
environmental stack E, except instead of being a list-of-lists of values,
it is a list-of-lists of identifiers. Over the course of compiling a given
phrase, if an identifier is referenced, the namespace is checked in order
to provide the offset into the environment with the identifier’s value.
This offset, a pair of integers, is used by the LD operation to obtain
the value when the code list is executed. The value associated by an
identifier is not known by the compiler; it will only be computed while
the VM is running. However, the compiler knows where in the envi-
ronment the value will be, because the namespace during compilation
structurally mirrors the environment stack during execution.

The compiler detects whether a given identifier is unbound by con-
sulting the namespace. If the identifier is not in the namespace, it
may still be a legal identifier if it is the name of a prop-con, quan-
tifier, the empty substitution, or function symbol. There are various
identifiers that are bound in the namespace (and thus environment)
when Athena starts, and additional identifiers might be later bound
depending on what top-level directives have been issued. The Athena
virtual machine handles both of these by setting the initial namespace
and environment to be a list of two lists. The top-level namespace
contains all of the identifiers in the top-level environment. Just like
the top-level environment, it too is extended upon successful use of the
define-numeric-operations and define directives.

During execution of a code list, the environment stack changes. The
compiler directs how these changes are made by which operations are
generated for the code list. However, the compiler must also keep track
of these changes in its namespace so as to accurately produce code
that can reference identifiers. This is why compilation is with respect
to both a particular phrase being compiled and a namespace — the
namespace reflects the environment that the phrase will be in when it
is evaluated.

For the compilation of each phrase, the namespace must be explic-
itly designated. In general, the compilation will be with respect to the
current namespace. The compilation of a phrase F with respect to the
current namespace is denoted [[F ]]. A phrase might also be compiled
with respect to an extended version of the namespace. These exten-
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sions are always to the front of the namespace — the new identifiers
will be at offset (0, n) and the older ones that were at (m,n) will after-
wards be at (m+1, n). The compilation of a phrase F in an namespace
extended with the list of identifiers (I1 . . . In) is denoted [[F (I1...In)]].

Semantically, there is the distinction between evaluating a deduc-
tion for its conclusion, and that of adding the conclusion to the assump-
tion base. The Athena virtual machine does not have this distinction.
To the machine, in order to return the correct value for a deduction,
that deduction might have to call other deductions, and these further
calls will require that the assumption base be extended to hold their
conclusions; all of this, just to obtain the value of the outer-most con-
clusion. Therefore, the machine does not attempt to determine for
what effect a deduction is being evaluated. The compilation of a de-
duction returns code that always adds the conclusion as a side-effect of
evaluating the deduction. If this were done näıvely, then the semantics
of Athena would be violated.

The compiler determines which deductions are being evaluated
merely for their value and which deductions are being evaluated for
both their value and their addition to the assumption base. Those
deductions being evaluated merely for their value — or more gen-
erally, phrases that might be deductions — are wrapped around a
DSTART/DRESTORE pair, which saves and then restores the assump-
tion base after the phrase has returned a value.

Thus, during the compilation of expressions, a phrase that is being
compiled for its value will be wrapped around a DSTART/DRESTORE
pair, so that only the resulting value remains; effectively, it protects the
assumption base from whatever the phrase might otherwise do to it.
The compilation of deductions, since to the machine they will always
add their conclusion to the assumption base (upon success), will be
wrapped around a DSTART/DEND pair, and it is the DEND that adds
the conclusion to the assumption base. A failed deduction will instead
end with a DRESTORE, load an error, or both.

4.1.1 Expressions

For a given expression E, this list specifies the compilation [[E]]:

()

TRIV

The unit value is generated via the TRIV operation.
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I
• If I is bound in the current namespace,

LD.m.n

• If I is a prop-con, quantifier, or function symbol,
LDPRIM.I

• If I is the empty substitution,
NULLSUB

• Otherwise, a compile-time error is produced.

The namespace is searched, and offset of the first occurrence of
the identifier I is returned. These are taken as arguments to the
LD operation, which will retrieve the value during execution. The
first occurrence is important in order to have the proper semantics
for a lexically-scoped environment.

As mentioned earlier, if the identifier is not in the namespace
the compiler checks if the identifier is a prop-con, quantifier, the
empty substitution, or a function symbol. For the cases, the code
LDPRIM.I is generated instead.

S

A string S is decomposed by the parser into a list of characters;
it does not exist as a distinct object in the AST.

‘I

LDPRIM.c

A character ‘I becomes a LDPRIM of the character that the iden-
tifier represents.

?I

LDV.I

A variable ?I is loaded by name.

’I

LDPRIM.’I

The meta-identifier ’I is just a function symbol.

(cell F)

[[F ]].REF

To create a cell, REF expects the cell’s value to be on top of the S
stack. By having the code for F precede the REF, the net-effect
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property guarantees that the value of F will be on S for the REF
operation.

(ref E)

[[E]].AT

Likewise, to reference a cell, E is evaluated and then the AT oper-
ation is called to obtain the value from whatever cell E happens
to evaluate to.

(set! E F)

[[E]].[[F ]].REFASSIGN.TRIV

The semantics specifies that set! return the unit value, hence
the TRIV in the compilation.

(function (I∗) E)

CLOSURE.n.([[E(I∗)]].RTN)

After checking that each I is unique, a code list is generated for
E in a namespace extended by closure’s n arguments. The RTN
is required to “return” from the closure.

(E F ∗)

[[E]].NIL.
DSTART.[[F1]].DRESTORE.POST.
DSTART.[[F2]].DRESTORE.POST . . .
DSTART.[[Fn]].DRESTORE.POST.APPLY

After generating the value that will applied to, the result of each
argument phrase is computed and then added to the argument
list. Note the use of DSTART/DRESTORE so that each Fi is only
being generated only for its value; if any were deductions, their
results are not added to the assumption base when the value
resulting from E gets applied. Finally, the APPLY starts the
application, as the remaining two elements on the stack are the
argument list and the value being applied.

(method (I∗) D)

DCLOSURE.n.([[D(I∗)]].RTN)

After checking that each I is unique, a code list is generated for
D in a namespace extended by closure’s n arguments. The RTN
is required to “return” from the closure.
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(check (F E)∗)

By induction on the number of phrase-expression pairs:

0.
LDERROR.“check”

1.
DSTART.[[F1]].DRESTORE.SEL.

([[E1]].JOIN).
(LDERROR.“check”.JOIN)

2.
DSTART.[[F1]].DRESTORE.SEL.

([[E1]].JOIN).
(DSTART.[[F2]].DRESTORE.SEL.

([[E2]].JOIN).
(LDERROR.“check”.JOIN).JOIN)

3. . . .

Thus as each phrase Fi is evaluated, the code list will proceed to
either Ei if the result was true or to the next phrase otherwise.
And if all phrases fail, an error with the text string “check” is
returned. The reserved identifier else, which may appear as Fn,
compiles to LDTRUE.

(match F (π E)∗)

The compilation of match expressions is discussed in Section 4.1.3.

(let ((I F)∗) E)

By induction on the number of identifier-phrase pairs:

0.
[[E]]

1.
CLOSURE.1.([[E(I1)]].RTN).
NIL.DSTART.[[F1]].DRESTORE.POST.APPLY

2.
CLOSURE.1.(

CLOSURE.1.([[E(I2)(I1)]].RTN).
NIL.DSTART.[[F (I1)

2 ]].DRESTORE.POST.APPLY.RTN)
NIL.DSTART.[[F1]].DRESTORE.POST.APPLY
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3. . . .

This is basically the generation of a function closure followed by
its application. Note that the compilation of E happens in an en-
vironment extended with each I. This compilation for let is quite
different from Henderson’s SECD machine, because Athena’s se-
mantics are different than those of Lispkit.

(letrec ((I F)∗) E)

DUMMY.CLOSURE.n.([[E(I1...In)]].RTN).NIL.
DSTART.[[F (I1...In)

1 ]].DRESTORE.POST.
DSTART.[[F (I1...In)

2 ]].DRESTORE.POST. . . .
DSTART.[[F (I1...In)

n ]].DRESTORE.POST.RAPPLY

Each phrase and expression is compiled in an environment ex-
tended with all of the identifiers I1 . . . In. The DUMMY generates
a dummy environment during the evaluation of each Fi, and the
RAPPLY replaces the dummy environment with the argument list
at runtime. The DUMMY/RAPPLY pair together “tie the knot”
of the letrec.

(begin F+)

DSTART.[[F1]].DRESTORE.POP. . . .
DSTART.[[Fn−1]].DRESTORE.POP.
DSTART.[[Fn]].DRESTORE

The value of each phrase Fi is computed and then discarded,
except for the last phrase Fn, which is left as the return value for
the begin expression.

(while F1 F2)

WHILE.(DSTART.[[F1]].DRESTORE.WHILETEST.
DSTART.[[F2]].DRESTORE.WHILELOOP)

The WHILE sets up the loop, WHILETEST exits the loop (both
on success, or in case of a non-boolean being returned by F1),
and WHILELOOP reloads the loop code.

(& F+)

By induction on the number of phrases:
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1.
DSTART.[[F1]].DRESTORE.TESTBOOL.SEL.

(LDTRUE.JOIN).
(LDFALSE.JOIN)

2.
DSTART.[[F1]].DRESTORE.TESTBOOL.SEL.

(DSTART.[[F2]].DRESTORE.TESTBOOL.SEL.
(LDTRUE.JOIN).
(LDFALSE.JOIN).JOIN).

(LDFALSE.JOIN)

3. . . .

As long as each phrase results in the value true, then the LDTRUE
operation will be reached and true will be returned as the value
of the logical and expression. If any one phrase has the value
false, then LDFALSE is executed and false is returned. The
TESTBOOL operation will generate an error if a reached phrase
generates a non-Boolean value, as required by the semantics of
logical and.

(|| F+)

By induction on the number of phrases:

1.
DSTART.[[F1]].DRESTORE.TESTBOOL.SEL.

(LDTRUE.JOIN).
(LDFALSE.JOIN)

2.
DSTART.[[F1]].DRESTORE.TESTBOOL.SEL.

(LDTRUE.JOIN).
(DSTART.[[F2]].DRESTORE.TESTBOOL.SEL.

(LDTRUE.JOIN).
(LDFALSE.JOIN).JOIN)

3. . . .

Structurally and semantically, the logical or expression is similar
to the logical and, above. Instead, if any phrase evaluates to
true, then a LDTRUE is reached, and all phrases must evaluate
to false for a LDFALSE to be reached.
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4.1.2 Deductions

For a given deduction D, this list specifies the compilation [[D]]:

(apply-method E F ∗)

DSTART.[[E]].NIL.
[[F1]].POST. . . .
[[Fn]].POST.DAPPLY.DEND

Structurally, this is quite similar to the application of expressions,
but without the DSTART/DRESTORE pairs as there is no need to
protect the assumption base during the evaluation of each phrase
Fi. If any Fi is a deduction, then its conclusion will be added to
the assumption base. The DAPPLY operations enforces that E
be a method closure. Finally, the outer DSTART/DEND pair will
add the result of this deduction to the assumption base.

(assume F D)

DSTART.[[F]].DRESTORE.
DSTART.ASSERT.[[D]].DRESTORE.IF.ASSERT

The result of F , either expression or deduction, is added to the
assumption base explicitly (the ASSERT will fail it if is not a
proposition). Then, D is executed with respect to this extended
assumption base. The IF generates the conclusion to the assume
deduction, which is explicitly added via ASSERT.

(suppose-absurd F D)

DSTART.[[F]].DRESTORE.
DSTART.ASSERT.[[D]].BOOLNOT.SEL.

(NOT.DEND.JOIN).
(POP.LDERROR.“badsupposeabsurd”.DRESTORE.JOIN)

The result of F is explicitly added to the assumption base. D is
evaluated in this extended assumption base. The BOOLNOT.SEL
makes an explicit test for false, in which the negation of F is
returned as a conclusion; otherwise, the error is produced.

(dcheck (F D)∗)

By induction on the number of phrase-deduction pairs:
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0.
LDERROR.“dcheck”

1.
[[F1]].SEL.

([[D1]].JOIN).
(LDERROR.“dcheck”.JOIN)

2.
[[F1]].SEL.

([[D1]].JOIN).
([[F2]].SEL.

([[D2]].JOIN).
(LDERROR.“dcheck”.JOIN).JOIN)

3. . . .

The dcheck deduction is structurally and semantically similar to
the check expression. The reserved identifier else, which may
appear as Fn, compiles to LDTRUE.

(dmatch F (π D)∗)

The compilation of dmatch deductions is discussed in
Section 4.1.3.

(dlet ((I F)∗) D)

By induction on the number of identifier-phrase pairs:

0.
[[D]]

1.
DCLOSURE.1.([[D(I1)]].RTN).
NIL.[[F1]].POST.DAPPLY

2.
DCLOSURE.1.(

DCLOSURE.1.([[D(I2)(I1)]].RTN).
NIL.[[F (I1)

2 ]].POST.DAPPLY.RTN)
NIL.[[F1]].POST.DAPPLY

3. . . .

This is basically the generation of a method closure followed
by its application. Note that is structurally similar to let, ex-
cept that there is no need to protect the assumption base with
DSTART/DRESTORE pairs.
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(dletrec ((I F)∗) D)

DSTART.DUMMY.DCLOSURE.n.([[D(I1...In)]].RTN).NIL.
[[F (I1...In)

1 ]].POST.
[[F (I1...In)

2 ]].POST. . . .
[[F (I1...In)

n ]].POST.RDAPPLY.DEND

Each phrase and deduction is compiled in an environment ex-
tended with all of the identifiers I1 . . . In. The DUMMY generates
a dummy environment during the evaluation of each Fi, and the
RDAPPLY replaced the dummy environment with the argument
list at runtime. The DUMMY/RDAPPLY pair together “tie the
knot” of the dletrec. Compared to letrec, the dletrec is quite
similar, except that there is no need to protect the assumption
base. (In fact, RAPPLY and RDAPPLY are exactly the same, ex-
cept that the former expects a function closure and the latter
expects a method closure.)

(try D+)

TRY.[[D1]].RETRY . . . RETRY.[[Dn−1]].RETRY.[[Dn]].FAIL

Compilation for try blocks is very straightforward. All of the
details of try semantics are built into the operations TRY, RETRY,
and FAIL. It is the job of these operations to move past the FAIL
operation upon successful completion of a deduction, and to reset
the machine for the next deduction if the current one fails by
producing an error.

(dbegin F ∗ D)

DSTART.[[F1]].POP.[[F2]].POP . . . [[D]].DEND

A dbegin deduction is also quite straightforward, each phrase F
is evaluated and its return value discarded, and D is evaluated in
an assumption base extended with any deductions that F ∗ may
have added.

(E BY D)

DSTART.[[E]].DUP.[[D]].ALPHAEQ.SEL.
(DEND.JOIN).
(POP.DRESTORE.LDERROR.“by”.JOIN)

First expression E is generated, and then deduction D. If the
results are the same, then the deduction ends with DEND; other-
wise, an error is generated.
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(generalize-over E D)

DSTART.[[E]].DUP.TESTVAR.SEL.
(DUP.FREEAB.BOOLNOT.SEL.

([[D]].FORALL.DEND.JOIN)
(POP.DRESTORE.LDERROR.“generalize-over”.

JOIN).JOIN)
(POP.DRESTORE.LDERROR.“generalize-overnotvar”.JOIN)

The expression E is evaluated and tested to make sure it is a
variable; if it is not, an error with the text “generalize-over not
var” is returned. The variable is then tested as to whether it is
free in the assumption base; an error with the text “generalize-
over” is generated if the variable is free. Finally, the deduction
D is evaluated to obtain an proposition, the FORALL operations
generates a forall proposition out of the variable obtained from
E and the conclusion of D, and concludes with it via DEND.

(pick-any I D)

DSTART.FRESHVAR.DUP.NIL.SWAP.POST.
DCLOSURE.1.([[D(I)]].RTN).SWAP.DAPPLY.FORALL.DEND

The pick-any deduction is similar to generalize-over, except that
the virtual machine provides the variable (generated by
FRESHVAR) via the binding I. To actually generate the bind-
ing, a closure is created and then applied.

(with-witness E F D)

DSTART.[[E]].DUP.TESTVAR.SEL.
(DUP.DUP.FREEAB.BOOLNOT.SEL.

(DSTART.[[F ]].DUP.TESTEXISTS.SEL.
(DUP.KNOWN.SEL.

(DUP.prop1.SWAP.prop2.REPLACE.
ASSERT.POP.[[D]].

SWAP.FREEVAR.BOOLNOT.SEL.
(POP.DRESTORE.DEND.JOIN)
(POP.POP.DRESTORE.DRESTORE.
LDERROR.“with-witnesswitnessfreeinconclusion”.

JOIN).JOIN)
(POP.POP.POP.DRESTORE.DRESTORE.
LDERROR.“with-witnessphrasenotinab”.

JOIN).JOIN)
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(POP.POP.POP.DRESTORE.DRESTORE.
LDERROR.“with-witnessexpectedexists”.JOIN).JOIN)

(POP.POP.DRESTORE.
LDERROR.“with-witnessvarfreeinab”.JOIN).JOIN)

(POP.DRESTORE.LDERROR.“with-witnessnotvar”.JOIN)

Half of the code for with-witness is merely to generate the proper
error message when and if it fails. Also note that the notation
for “prop1” and “prop2” is borrowed from Section 4.2 — they
amount to ASLIST.ELEM.1 and ASLIST.ELEM.2, respectively.

First E is evaluated. It is verified the result is a variable, and that
the variable is not in the assumption base. (An extra copy of the
variable is left on the stack for use later with REPLACE.) Second,
F is evaluated, tested to be an existential proposition and tested
that it is in the assumption base, via KNOWN. Third, the body
of the existential proposition from F has its quantified variable
replaced with the variable from E, and the resulting proposition
is added to the assumption base via ASSERT.

Finally, the deduction D is evaluated in this newly extended as-
sumption base. Assuming that the variable from E is not free
within the resulting conclusion, then the result of D becomes the
return value and sole extension from the assumption base — the
DRESTORE restores the old assumption base and then the DEND
that follows adds the correct conclusion.

(pick-witness I F D)

DSTART.FRESHVAR.DUP.[[F ]].DUP.TESTEXISTS.SEL.
(DUP.KNOWN.SEL.

(DUP.prop1.SWAP.prop2.REPLACE.ASSERT.POP.
DUP.NIL.SWAP.POST.DCLOSURE.1.([[D(I)]].RTN)
SWAP.DAPPLY.SWAP.FREEVAR.BOOLNOT.SEL.

(POP.DEND.JOIN)
(POP.POP.DRESTORE.
LDERROR.“pick-witnesswitnessfreeinconclusion”.

JOIN).JOIN)
(POP.POP.POP.DRESTORE.
LDERROR.“pick-witnessphrasenotinab”.JOIN).JOIN)

(POP.POP.POP.DRESTORE.
LDERROR.“pick-witnessexpectedexists”.JOIN)

The pick-witness deduction is similar to with-witness, except that
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the virtual machine provides the variable via the binding I; again,
a closure is used to actually making the binding.

4.1.3 Patterns

(match F (π E)∗)

DSTART.[[F ]].DEND.MATCH.
[[π1]].MAPCLOSURE.v1.([[E(I1...Iv1 )]].RTN).

MATCHNEXT . . .
[[πn]].MAPCLOSURE.vn.([[E(I1...Ivn )]].RTN).

MATCHEND

There are n pattern-expression pairs, and vi refers to the number
of pattern variables that are within pattern πi. At compile time,
the compiler can distinguish between which identifiers are sym-
bols, prop-cons, or quantifiers, and which identifiers are actually
pattern variables.

(dmatch F (π D)∗)

[[F ]].MATCH.
[[π1]].MAPDCLOSURE.v1.([[D(I1...Iv1 )]].RTN).

MATCHNEXT . . .
[[πn]].MAPDCLOSURE.vn.([[D(I1...Ivn )]].RTN).

MATCHEND

There are n pattern-deduction pairs, and vi refers to the num-
ber of pattern variables that are within pattern πi. Note that
match and dmatch compilation are almost identical, except for
MAPCLOSURE/MAPDCLOSURE and no need to protect the as-
sumption base for dmatch.

Effectively, the MAPCLOSURE/MAPDCLOSURE operation both
creates and applies a function or method closure with arguments
from the mappings of the map-stack, but making sure to have the
closure return to the code list after the MATCHEND operation. It
is also important that the closure generated expects the identifiers
in the same order that the compiler did — this compiler sorts the
identifiers lexicographically.

It should be noted that the MATCH operation leaves the discrimi-
nant value on top of S, but places a map-stack — holding the mapping
of pattern variables (identifiers) to values — just beneath it on S. Over
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the course of pattern matching, the equivalent of the net-effect prop-
erty is, upon a successful match, to leave the map-stack on top of S;
upon failure, the pseudo-value “match-fail” is left on top of S with the
map-stack underneath it.

For a given pattern π, this list specifies the compilation [[π]]:

Simple Patterns

MATCHANY

Since the pattern _ matches anything, the MATCHANY operation
basically just pops the discriminant off of S, leaving the map-
stack.

()

TRIV.MATCHEQUAL

A unit value is generated, and MATCHEQUAL compares them
for equality. As specified in the transitions, MATCHEQUAL will
leave the map-stack if the values are equal, or generate match-fail
if they are not.

I
• If I is a prop-con, quantifier, or function symbol,

LDPRIM.I.MATCHEQUAL

• Otherwise, I is a pattern variable,
MATCHI.I

In the first case, I is a particular value so MATCHEQUAL is used.
In the second, I is a pattern variable, and so MATCHI attempts
to bind the identifier I to the discriminant in the map-stack; it
may fail if I is bound already to a different value.

‘I

LDPRIM.c.MATCHEQUAL

Load the character designated by I, and compare against the
discriminant for equality.

?I

LDV.I.MATCHEQUAL

Load the variable designated by I, and compare against the dis-
criminant for equality.
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’I

LDPRIM.‘I.MATCHEQUAL

Load the meta-identifier designated and compare for equality.

(val-of I)

[[I]].MATCHEQUAL

Effectively, the identifier’s value will be loaded via a LD and then
compared for equality with the discriminant.

(list-of π1 π2)

MATCHLISTOF.[[ [π1 π2] ]]

A list-of pattern compiles into a single operation and a slightly
more complicated bracket pattern. The MATCHLISTOF enforces
that the discriminant is a non-empty list.

(bind I π)

MATCHBIND.I.[[π]].MATCHBINDCOMMIT.I

The MATCHBIND places the identifier and the discriminant into
the map-stack. Later, after π is matched successfully and the
MATCHBINDCOMMIT is reached, the identifier gets bound, as
per the semantics of the bind pattern.

(some-list I)

TESTLIST.MATCHSOME.I

(some-term I)

DUP.TESTTERM.MATCHSOME.I

(some-var I)

DUP.TESTVAR.MATCHSOME.I

(some-type I) where type is not list, term, or var

TESTTYPE.T .MATCHSOME.I

The some patterns all use the MATCHSOME operation, which
binds I to the discriminant if the type testing was successful.

The character T here is that of the requested type, as listed with
transition 125 for TESTTYPE, Section 3.2.14.
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Bracket Patterns

[π1 . . . πn]

MATCHLIST.n.[[π1]].
MATCHLISTNEXT.1.[[π2]]. . . .
MATCHLISTNEXT.n− 1.[[πn]].

MATCHLISTEND

The compilation of the empty list pattern is MATCHLIST.0.
MATCHLISTEND. Note that the code indexes the discriminant
list starting at zero, but the pattern as listed indexes from one.

Compound Patterns

(forall π2 π3) where π2 is a list pattern

MATCHQPROP.MATCHQ1.forall.MATCHQ2INIT.
(MATCHQ2START.[[π2]].MATCHQ2END).
MATCHQ3.[[π3]].MATCHQEND

(exists π2 π3) where π2 is a list pattern

MATCHQPROP.MATCHQ1.exists.MATCHQ2INIT.
(MATCHQ2START.[[π2]].MATCHQ2END).
MATCHQ3.[[π3]].MATCHQEND

((some-quant I) π2 π3) where π2 is a list pattern

MATCHQPROP.MATCHQ1S.I.MATCHQ2INIT.
(MATCHQ2START.[[π2]].MATCHQ2END).
MATCHQ3.[[π3]].MATCHQEND

These three forms of the same compound pattern use several spe-
cial operations. MATCHQPROP matches only propositions, and
also collapses them into the form specified in Section 3. The re-
sulting quantifier (if any, the quantifier may be undetermined) is
tested with either MATCHQ1 or MATCHQ1S. Most notably, the
match fails if the pattern requested a binding I for the quantifier
and the quantifier is undetermined; this is noted in the transitions
of MATCHQ1S. MATCHQ1 takes as an argument what quantifier
it expects, and succeeds if the discriminant’s quantifier matches
or is undetermined.

MATCHQ2INIT sets up the code list for matching the list of vari-
ables generated by collapsing the proposition against the list pat-
tern π2. If a match-fail occurs during this code list, however, then
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the MATCHQ2START and MATCHQ2END operations will retry
on a smaller list of variables, and the compound match will fail
only after all variable lists have failed, as per Section 3. If the
match is successful when it reaches MATCHQ2END, then it es-
capes to MATCHQ3, which reassembles the proposition out of the
quantifier, the list of unmatched variables, and the base proposi-
tion. This is then matched against π3. MATCHQEND cleans up
the dump stack D.

(π1 π2) where π2 is a list pattern

MATCHASLIST.“nested”.[[ [π1 π2] ]]

(π1...πn) for n ≥ 2

MATCHASLIST.“flatten”.[[ [π1 . . . πn] ]]

For these forms of compound patterns, MATCHASLIST verifies
that the discriminant is a term or proposition, and then lets the
match continue using only bracket patterns.

The transitions of pattern matching have been exactingly and
painstakingly designed to work properly. When a given pattern fails,
the transitions unwind such that the next pattern is attempted. De-
pending on where in a compound pattern a failure occurs, the machine
can determine if it needs to retry or move on to the next pattern. In
particular, the matching of nested lists or of lists of compound pat-
terns works with this scheme because of how the transitions have been
designed and how the operations are assembled by the compiler.

4.2 Primitive Methods

During the code summaries, there are a few macros that are used.
This makes them slightly easier to read. The macros “prop1” and
“prop2” expand to ASLIST.ELEM.1 and ASLIST.ELEM.2, respectively.
They are used to disassemble the proposition on top of the S stack into
their first and second “arguments”; the zeroth argument is the prop-
con or quantifier. The macros “arg1”, “arg2”, up to “argn” expand to
LD.0.n − 1. They are used to load the arguments of the closure onto
S, but are slightly easier to read than the LD operation, because the
macros start counting from one.

claim P

arg1.KNOWN.SEL.
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(arg1.JOIN).
(LDERROR.“claimfailed”.JOIN)

Check that the argument is in the assumption base, via KNOWN.
If so, return it as the conclusion; otherwise, generate an error.

mp (if P Q) P

arg1.TESTIF.SEL.
(arg1.KNOWN.SEL.

(arg2.KNOWN.SEL.
(arg1.prop1.arg2.ALPHAEQ.SEL.

(DSTART.arg1.prop2.DEND.JOIN)
(LDERROR.“mpequalityfailed”.JOIN).JOIN)

(LDERROR.“mp2”.JOIN).JOIN)
(LDERROR.“mp1”.JOIN).JOIN)

(LDERROR.“mpnotif”.JOIN)

modus ponens: Test that (1) the first argument is an if proposi-
tion, (2) it is in the assumption base, (3) the second argument is
in the assumption base, (4) that the first proposition in the first
argument is alphabetically equivalent to the second argument,
at which point conclude with the second proposition of the first
argument.

absurd P (not P)

arg1.KNOWN.SEL.
(arg2.KNOWN.SEL.

(arg2.TESTNOT.SEL.
(arg1.arg2.prop1.ALPHAEQ.SEL.

(DSTART.LDFALSE.DEND.JOIN)
(LDERROR.“absurdfailed”.JOIN).JOIN)

(LDERROR.“absurdnotnegation”.JOIN).JOIN)
(LDERROR.“absurd2”.JOIN).JOIN)

(LDERROR.“absurd1”.JOIN)

Generate the conclusion false when: (1) the first argument is
in the assumption base, (2) the second argument is in the as-
sumption base, (3) the second argument is a negation, and (4)
the interior of the negation is alphabetically equivalent to first
argument.

dn (not (not P))
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arg1.KNOWN.SEL.
(arg1.TESTNOT.SEL.

(arg1.prop1.DUP.TESTNOT.SEL.
(DSTART.prop1.DEND.JOIN)
(POP.LDERROR.“dnnotnegneg”.JOIN).JOIN)

(LDERROR.“dnnotneg”.JOIN).JOIN)
(LDERROR.“dn1”.JOIN)

Double negation elimination: Test that (1) the argument is in
the assumption base, (2) that the argument is a negation, and
(3) that the negation’s interior is also a negation, at which point
conclude the inner proposition.

both P Q

arg1.KNOWN.SEL.
(arg2.KNOWN.SEL.

(DSTART.arg1.arg2.AND.DEND.JOIN)
(LDERROR.“both2”.JOIN).JOIN)

(LDERROR.“both1”.JOIN)

Conclude the conjunction after both arguments are tested to be
in the assumption base.

left-and (and P Q)

arg1.KNOWN.SEL.
(arg1.TESTAND.SEL.

(DSTART.arg1.prop1.DEND.JOIN)
(LDERROR.“left-andnotand”.JOIN).JOIN)

(LDERROR.“left-and1”.JOIN)

Return the left-hand side of an and proposition, if that proposi-
tion is in the assumption base.

right-and (and P Q)

arg1.KNOWN.SEL.
(arg1.TESTAND.SEL.

(DSTART.arg1.prop2.DEND.JOIN)
(LDERROR.“right-andnotand”.JOIN).JOIN)

(LDERROR.“right-and1”.JOIN)

Return the right-hand side of an and proposition, if that propo-
sition is in the assumption base.
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equiv (if P Q) (if Q P)

arg1.KNOWN.SEL.
(arg1.TESTIF.SEL.

(arg2.KNOWN.SEL.
(arg2.TESTIF.SEL.

(arg1.prop1.arg2.prop2.ALPHAEQ.SEL.
(arg1.prop2.arg2.prop1.ALPHAEQ.SEL.

(DSTART.arg1.prop1.arg1.prop2.IFF.
DEND.JOIN)

(LDERROR.“equivnoteq2”.JOIN).JOIN)
(LDERROR.“equivnoteq1”.JOIN).JOIN)

(LDERROR.“equivnotif2”.JOIN).JOIN)
(LDERROR.“equiv2”.JOIN).JOIN)

(LDERROR.“equivnotif1”.JOIN).JOIN)
(LDERROR.“equiv1”.JOIN)

Generate the biconditional if (1) the first argument is in the as-
sumption base, (2) and it is an if proposition, (3) second argu-
ment in assumption base, (4) and it too is an if, (5) the first
part of the first proposition is alphabetically equivalent to the
second part of the second, and (6) the second part of the first is
equivalent to the first part of the second.

left-iff (iff P Q)

arg1.KNOWN.SEL.
(arg1.TESTIFFSEL.

(DSTART.arg1.prop1.arg1.prop2.IF.DEND.JOIN)
(LDERROR“left-iffnotiff” JOIN).JOIN)

(LDERROR“left-iff1”.JOIN)

Generate the left conditional, assuming the argument is in the
assumption base and of the appropriate form.

right-iff (iff P Q)

arg1.KNOWN.SEL.
(arg1.TESTIFF.SEL.

(DSTART.arg1.prop2.arg1.prop1.IF.DEND.JOIN)
(LDERROR.“right-iffnotiff”.JOIN).JOIN)

(LDERROR.“right-iff1”.JOIN)
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Generate the right conditional, assuming the argument is in the
assumption base and of the appropriate form.

either P Q

arg1.KNOWN.SEL.
(DSTART.arg1.arg2.OR.DEND.JOIN)
(arg2.KNOWN.SEL.

(DSTART.arg1.arg2.OR.DEND.JOIN)
(LDERROR.“eitherfailed”.JOIN).JOIN)

If the first argument is in the assumption base, generate the dis-
junction. Otherwise, if the second argument is in the assumption
base, generate the disjunction. Otherwise, generate an error.

cd (or P P’) (if P Q) (if P’ Q)

arg1.KNOWN.SEL.
(arg2.KNOWN.SEL.

(arg3.KNOWN.SEL.
(arg1.TESTOR.SEL.

(arg2.TESTIF.SEL.
(arg3.TESTIF.SEL.

(arg1.prop1.arg2.prop1.ALPHAEQ.SEL.
(arg1.prop2.arg3.prop1.ALPHAEQ.SEL.

(arg2.prop2.arg3.prop2.ALPHAEQ.SEL.
(DSTART.arg2.prop2.DEND.JOIN)
(LDERROR.“cdfail3”.JOIN).JOIN)

(LDERROR.“cdfail2”.JOIN).JOIN)
(LDERROR.“cdfail1”.JOIN).JOIN)

(LDERROR.“cdnotif2”.JOIN).JOIN)
(LDERROR.“cdnotif1”.JOIN).JOIN)

(LDERROR.“cdnotor”.JOIN).JOIN)
(LDERROR.“cd3”.JOIN).JOIN)

(LDERROR.“cd2”.JOIN).JOIN)
(LDERROR.“cd1”.JOIN)

Generate the conclusion Q if: (1) all three arguments are in the
assumption base; (2) they are an or, if, and if, respectively;
(3) the first part of the first argument is alphabetically equiva-
lent with the first part of the second; (4) the second part of the
first argument is alphabetically equivalent with the first part of

84



the third argument; and (5) the second part of the second ar-
gument is alphabetically equivalent with the second part of the
third argument.

uspec (forall ?x P) t

arg1.KNOWN.SEL.
(arg1.TESTFORALL.SEL.

(arg2.TESTTERM.SEL.
(DSTART.arg2.arg1.prop1.arg1.prop2.REPLACE.

DEND.JOIN)
(LDERROR.“uspecnotterm”.JOIN).JOIN)

(LDERROR.“uspecnotforall”.JOIN).JOIN)
(LDERROR.“uspec1”.JOIN)

Universal specialization: If (1) the first argument is in the as-
sumption base and (2) it is a forall proposition, and (3) the
second argument is a term, then specialize the forall by replac-
ing its variable with the term within the body of the forall
proposition.

egen (exists ?x P) t

arg1.TESTEXISTS.SEL.
(arg2.TESTTERM.SEL.

(arg2.arg1.prop1.arg1.prop2.REPLACE.KNOWN.SEL.
(DSTART.arg1.DEND.JOIN)
(LDERROR.“egen1”.JOIN).JOIN)

(LDERROR.“egennotterm”.JOIN).JOIN)
(LDERROR.“egennotexists”.JOIN)

Existential generalization: If (1) the first argument is an exists
proposition, and (2) the second argument is a term, and (3) the
result of replacing the quantified variable of the exists with the
term is in the assumption base, then generalize by concluding
with the first argument.

4.3 Primitive Functions

null? list

arg1.TESTLIST.SEL.
(TESTNIL.SWAP.POP.JOIN).
(POP.LDERROR.“null?notlist”.JOIN)
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Test whether the argument is an empty list.

add value list

arg2.TESTLIST.SEL.
(arg1.PRE.JOIN).
(POP.LDERROR.“addnotlist”.JOIN)

Add a value to the front of an existing list.

head list

arg1.TESTLIST.SEL.
(TESTNIL.BOOLNOT.SEL.

(ELEM.0.JOIN)
(POP.LDERROR.“headlistisnil”.JOIN).JOIN)

(POP.LDERROR.“headnotlist”.JOIN)

Remove the first value of a list.

tail list

arg1.TESTLIST.SEL.
(TESTNIL.SEL.

(JOIN).
(CDR.JOIN).JOIN)

(POP.LDERROR.“tailnotlist”.JOIN)

Return the list with its first value removed.

equal? value1 value2

arg1.arg2.VALEQ

Test if two values are equal.

char? value

arg1.TESTTYPE.R.SWAP.POP

function? value

arg1.TESTTYPE.F.SWAP.POP

list? value
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arg1.TESTLIST.SWAP.POP

method? value

arg1.TESTTYPE.M.SWAP.POP

prop? value

arg1.TESTTYPE.P.SWAP.POP

substitution? value

arg1.TESTTYPE.S.SWAP.POP

symbol? value

arg1.TESTTYPE.Y.SWAP.POP

term? value

arg1.TESTTERM

unit? value

arg1.TESTTYPE.U.SWAP.POP

alpha-equiv prop1 prop2

arg1.arg2.ALPHAEQ

Test if two propositions are alphabetically equivalent.

make-term symbol list-of-terms

arg1.TESTTYPE.Y.SEL.
(arg2.TESTLIST.SEL.

(APPLY.JOIN)
(POP.POP.LDERROR.“make-term2”.JOIN).JOIN).

(POP.LDERROR.“make-term1”.JOIN)

Given a function symbol f and a list of terms [t1 . . . tn], generate
the term (f t1 . . . tn).

fresh-var
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FRESHVAR

Generate a variable that has never existed during the machine’s
existence, one that is therefore guaranteed not to exist in any
term or proposition.

root term-or-prop

arg1.DUP.TESTVAR.SEL.
(JOIN)
(ASLIST.ELEM.0.JOIN)

Return the “root” of a term or proposition — the symbol, prop-
con, or quantifier. A variable is a special case; a variable is its
own root.

children term-or-prop

arg1.DUP.TESTVAR.SEL.
(POP.NIL.JOIN)
(ASLIST.CDR.JOIN)

Return the “children” of a term or proposition — the list of ar-
guments to the symbol, prop-con, or quantifier. A variable is a
special case, the list of its children is an empty list.

extend-sub θ v t

arg1.arg2.arg3.EXTENDSUB

Extend the given substitution θ with the binding of variable v to
term t.

compose-subs θ1 θ2

arg1.arg2.COMPOSESUB

Return the composition substitution θ1 ◦ θ2.
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4.3.1 Math and Internal

There are two operations that were not given in Chapter 3, in that they
are not truly relevant to the core of the machine but are relevant for
implementing Athena efficiently. The first operation is MATH, which
is used to implement all of the mathematical, primitive functions that
are introduced by directive define-numeric-operations. The MATH
operation takes an argument from the code list specifying what opera-
tion to do exactly, reads two arguments from the S stack, and pushes
the answer onto S. Via the MATH operations, the primitive functions
plus, minus, times, div, exp, mod, less?, and greater? are available.

Henderson’s SECD machine also has most of these primitive math
operations, but they are each given their own operation. This could
have been done for the Athena virtual machine, but it would have
merely padded the number of operations and transitions that the ma-
chine can do. And unlike Henderson’s machine, this machine can per-
form a great deal more than just numerical math and higher-order
functions.

The other operation not listed is INTERNAL. This operation exists
for two reasons. First, it provides a means by which the results of cer-
tain primitive functions can efficiently computed. INTERNAL provides
hooks into the implementation of the virtual machine — in this case,
the objects that represent Athena values — and allows them to do the
computation and return the result, rather than slow down the operation
by loading virtual machine code to compute the result. An example
of this would be unify, which attempts to return a substitution that
represents the unification of its two argument terms. Although it would
be quite possible to have a native closure to do this (especially with
the powerful pattern matching capabilities that Athena provides), it
would be slower than having the value objects perform the unification
themselves without the virtual machine’s intervention.

The second reason for INTERNAL is that it provides functionality
that is outside of the bounds of the virtual machine itself. For exam-
ple, the read-file primitive function reads a file from the filesystem
and returns the result as a string. It would be obscene to provide a
VM-specific operation to do this, but it makes sense to ask the in-
ternal, VM interpreter to perform the task. INTERNAL is also used
for special “value morphing” primitive closures, such as id->string,
string->var, symbol->string and so on.

The following primitive functions are defined via the INTERNAL
operation:

var->string Convert a variable argument into an Athena string.
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string->var Convert a list of characters into an Athena variable.

id->string Convert a meta-identifier argument into an Athena
string.

string->id Convert a list of characters into a meta-identifier.

symbol->string Convert a function symbol argument into an Athena
string.

string->symbol Convert a list of characters into a function symbol,
assuming the function symbol exists; otherwise, return an error.

rev Reverse the order of the elements of list. This is much more
efficient internally then using a function closure.

join Concatenate the a variable number of lists into one list. This
primitive is special in that it can take a variable number of argu-
ments. In particular, the transition for APPLY does not perform
the arity check when this primitive function is applied; the prim-
itive has a special, negative arity internally which APPLY knows
to ignore.

supp Return a list of the support of a substitution. The support
consists of those variables that have mappings in the substitution.
Internally, the object that represents substitutions has code to
generate this list.

range-vars Return a list of variables that are in the range of a
substitution, those variables being mapped to in the substitution.

unify Given terms t1 and t2, return a substitution θ such that
θ(t1) = θ(t2), or false if no such substitution exists. Unification
is performed more efficiently internally than would be possible as
native virtual machine code.

occurs Given a variable v and a proposition P , returns true or
false depending on if v occurs in P . The object representing
propositions has code explicitly for this test.

replace-var Given a variable v, term t, and proposition P , replace
free occurrences of v in P with t.

rename Given a proposition, replace all quantified variables with fresh
variables. The old and new propositions are alphabetically equiv-
alent.

90



read-file Given a list of characters representing a filename, return
a string containing the file’s contents; return an error if there was
an error in reading the file.

print Print to the user the argument string.

write Print to the user an Athena value.

This ends the listing of the primitive functions of Athena.

The next and final chapter will provide details into the design and
implementation of the machine, provide a few examples of the machine
working, and discuss possible optimizations.
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Chapter 5

Design and
Implementation

5.1 Design

In the design of the Athena virtual machine, there are many different
issues to deal with. The VM uses Henderson’s SECD machine as a
basis [Hen80], but with many extensions. It seems clear that a structure
is needed to hold the assumption base and that a stack or list would
be sufficient. Cardelli’s Functional Abstract Machine (Fam) is itself an
extension of SECD, but optimized for fast function application [Car83].
The largest offering from the Fam is a memory structure M for mapping
addresses, “the formal characterization of ref cells” [Car83, pp. 4], to
values. Although the Athena VM has no notion of addresses for values
in general, it adopts the notion of addresses for cells and provides a
stack M to act as memory for the address space to reside.

5.1.1 Errors and Error Handling

The Fam has an explicit notion of when operations can fail. In contrast,
Henderson’s machine merely notes that results of certain operations are
undefined if they are used improperly. It is clear that Athena needs
to have errors be available, and that they sometimes need to act like
values in that they are able to be generated and pushed onto stacks.
An alternative would be to have a specialized structure to note when
an error occurred and to direct the machine to handle it; the VM
as implemented has this built into the transitions without additional
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structures. The use of try blocks and the possibility of nested try
blocks suggested that errors during execution act as values. By careful
use of the stacks themselves to keep track of errors and their resolution,
neither the machine nor the compiler has to special-case the nesting of
try blocks.

Errors that occur as the result of Fam operations also contain a
text string, usually the name of the operation that failed. This is also
used by the Athena VM, except that most VM errors will attempt to
clarify what went wrong. In this implementation, an operation will fail
with a verbose message. If ASSERT fails because it was not given a
proposition, it will include the bad value it was given. Likewise, the
primitive method for modus ponens, mp, has four different error mes-
sages depending on how its arguments may have been inappropriate,
and similarly for the rest of the primitive methods.

5.1.2 Closure Application

In Henderson’s SECD machine, the placement of closures and their ar-
gument lists is reversed when compared to that of the Athena virtual
machine. The semantics of Athena requires, in the evaluation of an
expression of the form (E F ∗), that E be computed first. Therefore,
Athena’s APPLY operation expects its arguments in the reverse order,
and this change has to be propagated to the recursive apply opera-
tion RAPPLY as well. Additionally, arity checking has been added to
these operations for Athena; arity checking was not required for Lisp-
kit. Since Athena also provides method closures for the handling of
deductive processes, it has additional, analogous operations for their
creation and application.

5.1.3 Sufficiently Powerful Operations

An effort was made in the design to provide just enough operations
so that all the core Athena functionality is actually available as virtual
machine code, and not just by having several “super operations” that do
all of the work. It is clear that some of what the machine does during
the course of executing Athena code is making full use of the stacks
available and the provided operations. One example is the compilation
of with-witness. Over the course of operation, values are pushed onto
the S stack up to four levels deep for possible use later, and these are
SWAPped in place “just in time” for their use by other operations.

Another good example is the compilation and execution of patterns,
which makes extensive use of the dump stack D to perform the neces-
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sary work. Each piece is compiled into matching primitives operations,
which, when properly compiled, can handle all sorts of seemingly spe-
cial cases: lists that contain other lists, lists of compound matches,
compound matches nested within other compound matches, and so on.
If a match-fail occurs, the flow of the code is directed to an operation
than can deal with it, either by restarting the matching of the variable
list inside a compound pattern or proceeding to the next MATCHNEXT
or MATCHEND. As it proceeds, it passes operations whose transitions
clean up the dump stack D into the form expected by the next pattern.

5.1.4 The Compiler

The Jam compiler makes no attempt at optimization. It does not look-
ahead, it does not rearrange phrases, and it does not analyze when and
if it could remove DSTART/DRESTORE pairs from the code list. On
purpose, it is merely a straightforward translation from Athena phrases
to VM code. Bugs in any attempt to optimize the compiler could in-
troduce potentially difficult-to-find bugs within the code. Discovering,
isolating, and fixing these bugs would be irrelevant to the correctness
of the operations and VM implementation. To avoid wasting time in
debugging the compiler — time that could be better spent elsewhere —
a conscious decision was made for the compiler to be simple. A benev-
olent side-effect of this is that it produces code that is not entirely
difficult to inspect and follow visually during debugging.

5.1.5 The Backup Stack B

When comparing the Lispkit to Athena, it makes sense to add an M
stack for dealing with cells and an A stack for holding the assumption
base. Why is a B stack necessary? There are several answers.

The compiler (as currently written) does not know or notice when a
DRESTORE or DEND will occur. To properly handle these operations,
the machine needs to know where the backed-up assumption base re-
sides, so that it can be restored or extended. The machine could instead
define these operations to dig through the dump stack D (similar to
what the machine does when dealing with an error) to find the correct
assumption base to restore; there would be some slight slowdown for
this search, as well as a slight increase in overhead in performing a
DSTART (such as by leaving a labeling next to the backup assumption
base, similar to TRY). The details for these are slightly messy, but not
much more so than the transitions involved with a try block or pattern
matching.
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However, the most compelling reason is that having a separate stack
is both easy to specify, easy to implement, and much easier to debug
than the above constructions. Working around having a B stack is also
discussed as an optimization in Section 5.4.1. Aesthetically, there is
also something pleasing in having “the S and D stacks for functions”
and the analogous “A and B stacks for methods.”

5.2 Implementation

The virtual machine, compiler, and read-eval-print loop as designated
in this thesis have been implemented in Java, as the Java Athena Ma-
chine (Jam). Jam runs in Sun’s JavaTM 2 Runtime Environment (build
1.3.1 01) with the Java HotSpotTM Client VM and was built with the
1.3 java compiler. The bulk of the code for Jam was developed across
two different Debian GNU/Linux x86 machines. For parsing Athena
code, Jam uses a combination of a lexical analyzer generator for java
called JLex (version 1.2.5) and the Constructor of Useful Parsers (CUP
for short, version 0.10). The combination of JLex and CUP were ex-
tremely useful in incrementally adding all of the features of Athena.

5.2.1 Class Hierarchy

Jam has a hierarchy of classes, representing everything from the stacks
and operations, to Athena values, to structures used internally for sort
checking. The classes fall into these java packages.

Jam.parser contains all the JLex and CUP details and their asso-
ciated debugging machinery. As a whole, it produces a class,
Jam.parser.parser, that accepts syntactically legal Athena code
and produces an abstract syntax tree.

Jam.ast contains classes for all of Athena’s phrases. In particular, it
contains the interface Jam.ast.Phrase, and the two sub-interfaces
Jam.ast.Expression and Jam.ast.Deduction. All of the classes
in Jam.ast implement one of the two sub-interfaces, except the
Namespace class. The Phrase interface requires the existence of
a compile method, which accepts a Namespace to compile with
respect to and a java.util.ArrayList, to which the compiled code
should be prepended.

Jam.ast.pat contains the abstract syntax tree for patterns; there were
sufficiently many of them to warrant their own package. All
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classes in Jam.ast.pat implement the Jam.ast.pat.Pattern inter-
face. There are additional interfaces to classify Patterns as be-
ing quantifier patterns or list patterns. Patterns, although not
Phrases, do have a compile method just like Phrases.

Jam.ast.dir contains the abstract syntax tree for Directives. The Di-
rective class has several subclasses — mainly those directives that
required enough code to warrant it. Instead of a compile method,
Directives have a handle method which accepts a Jam.vm.VM ob-
ject.

Jam.value contains the interfaces for all Athena values.
Jam.value.Value is implemented by all Athena values — except
for lists, which are discussed below. The Value interface requires
two methods: valEquals which takes another Object as argument
and returns a boolean (or throws a exception if closures of the
same type are compared), and athString which returns a String
representing a “nice” version of the value. Also in Jam.value is
the Appliable interface; this designates values that can be han-
dled by the APPLY operation. It also includes classes for those
Athena values that do not belong in Jam.term or Jam.prop.

Jam.term contains the interface Term and classes for function sym-
bols, variables, function symbol applications, and substitutions.
There are separate distinctions for constructors, nullary function
symbols, and nullary constructors — in particular nullary sym-
bols implement Term whereas normal, non-nullary symbols do
not. This makes the hierarchy a little complicated, but makes
coding the VM easier in many ways. Jam.term also holds the
classes Domain and Structure, and code for checking the legality
of terms and sort checking.

Jam.term has three instances of the Factory design pattern: Sort-
Factory, FSymbolFactory, and VarFactory. These keep track of
what sorts, symbols, and variables exist, and maintain that there
is exactly one instance of each. This is done for efficiency: there
is only one instance of any given sort, symbol, or variable, and it
is shared among all terms or propositions that use them. Also,
the existence of a Factory for variables makes it easy to enforce
that fresh variables are indeed fresh.

Jam.prop contains the abstract class Prop for propositions. It also
defines the propositional constructors and the quantifiers, as well
as all the classes for the logical and quantified propositions. The
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class Atom also exists, basically as a wrapper for Term. The Prop
class uses code from Jam.term to perform sort checking and some
legality tests.

Jam.vm contains the all-important VM class, as well as structures
used to represent some stacks efficiently. VM operations are spec-
ified in the Op class. Each Op is statically generated such that
all uses of a given operation are actually references to the same
object. This package also has the pseudocode class, which con-
tains java methods for generating the code of Athena’s primitive
functions and methods.

Jam contains the repl class, which uses and controls the other pack-
ages. Thus the read-eval-print loop for Jam is started via “java
Jam.repl”.

5.2.2 Lists

Lists in the current Jam implementation are instances of java.util.List.
Usually they are instances of java.util.ArrayList unless the value has
been acted upon by PRE, in which case it is a java.util.LinkedList
— prepending to an ArrayList is an O(n) operation whereas it is
O(1) for a LinkedList. Thus, within the VM class, those operations
that can accept either Athena values or Athena lists have to deter-
mine if their arguments are of the instance Jam.value.Value or of the
instance java.util.List. This is slightly complicated by the fact the
Jam.value.Closure class is a subclass of ArrayList. In hindsight, it may
be simpler to provide a wrapper class for java.util.List that implements
Jam.value.Value and use it whenever lists are generated.

5.2.3 Blurring of Types

There is also the issue of the blurring of types in Athena. For example,
the symbol true is a constant function symbol, a term, and a proposi-
tion. A given variable ?v is a term, but it could also be a proposition.
As implemented, true is a Jam.term.NullaryConstructor of Structure
Boolean. NullaryConstructors are instances of Term. However, there
is an explicit conversion process for making a Term (of sort Boolean)
into a Prop. Thus, those operations that explicitly require proposi-
tions have to attempt to convert their arguments into Prop objects,
and those operations that expect terms have to make an explicit check
to see if they were given atomic propositions, and if so grab the inner
Term object from the Atom.
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One solution might be to make Atom an instance of Term — triv-
ially so, in that the methods fall through to the internal Term. However,
then Variables would have to be special-cased, as they can be Atoms if
they are coerced into the Boolean sort, but they are not Atoms by de-
fault. These issues about the class hierarchy for terms and propositions
are complex, and possible future changes should be studied carefully
before implementation is attempted.

5.2.4 Numbers and Meta-Identifiers

Both numbers and meta-identifiers are nullary function symbols, and
therefore of the instance Jam.term.NullaryFSymbol. However, because
of the factory for function symbols, their introduction is slightly tricky
— if the given number or meta-id did not previously exist, it needs to
be dynamically created and added to the FSymbolFactory.

Numbers, after a successful define-numeric-operations, are han-
dled as identifiers that are special cased by the Namespace during com-
pilation. If the number is within the defined range, then the code pro-
duced references a function symbol. If the function symbol doesn’t
exist for that numeral, it is dynamically created with the proper sig-
nature and added to the FSymbolFactory. Meta-identifiers are also
created dynamically, but they are slightly more simple since their sort
is known in advance by the Namespace.

5.2.5 Recursive Closures and
Circular Environments

One particular bit of cleverness in Henderson’s SECD machine is the
creation of the environment for letrec. In [Hen80], the DUM operation
adds to the E stack the value Ω, which is called pending. Later, the
recursive apply operation RAP generates the proper environment for
the closure by using the lisp pseudo-function rplaca. The effect of
rplaca(x, y) is to replace the car of x with y; the value returned is
the resulting x. Thus for letrec in Lispkit, first a DUM will create a
dummy environment, then the list of arguments to the recursive closure
will be created with respect to this environment, and finally RAP will
replace the Ω in the environment with the list of values.

However, the resulting list of values will be circular, in that any
closures defined there will contain an environment which contains the
closures themselves as values. Jam uses the same trick to implement
letrec and dletrec, although the operations are now DUMMY and
RAPPLY/RDAPPLY, the special value Ω is replaced with the string
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“pending”, and there is no underlying lisp medium. The argument
list that is given to RAPPLY/RDAPPLY is an ArrayList, and from it a
circular ArrayList is created in which any environment in any closure of
the argument list has “pending” replaced with the circular ArrayList.

5.3 An Example Deduction

Below is a method that is similar to the primitive method for double
negation elimination, dn, but instead acts on an arbitrary depth of
negated propositions.

(define (dn* P)
(dmatch P
((not (not _)) (!dn* (!dn P)))
(_ (!claim P))))

(define long-negation
(not (not (not (not (not (not ?x)))))))

(assert long-negation)

(!dn* long-negation)

It should be obvious that the result of the deduction
(!dn* long-negation) will be the proposition ?x. What is interesting
is how the semantics of Athena go about concluding this answer, and
what the assumption base looks like during the deduction.

When the deduction starts, there is only one relevant proposition in
the assumption base: long-negation. (There are other propositions
in the assumption base, e.g. true and any others that might have been
concluded or asserted earlier, but they do not matter for this deduc-
tion.) After being matched by the (not (not )) pattern, the primi-
tive method dn is applied to long-negation and, since long-negation
is in the assumption base, dn returns the proposition (not (not (not
(not ?x)))). Since this value is the conclusion of a deduction and
part of a method application (dn* is being applied), it is added to the
assumption base for the scope of the recursive call to dn*.

For the recursion, the relevant propositions in the assumption base
are long-negation and (not (not (not (not ?x)))). Like the pre-
vious call to dn*, there are at least two nots in P, and Athena enters
another application of dn*. Here, dn returns the proposition (not (not
?x)) since (not (not (not (not ?x)))) is in the assumption base.
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Again, the resulting proposition is added to the assumption base for
the recursive call to dn*.

Inside this application of dn*, the assumption base now contains
long-negation, (not (not (not (not ?x)))), and (not (not
?x)). Again, there is a recursive call to dn*, this time with the ar-
gument ?x with respect to an assumption base that has ?x as a propo-
sition. Finally, dn* will produce the conclusion ?x as a result of claim,
since ?x is in the assumption base. The applications of dn* proceed
to unwind. The proposition ?x is the result of each dn* method ap-
plication including the outermost call; as the value propagates to the
outermost call, the assumption base reverts back to containing merely
long-negation. The result of evaluating a apply-method deduction
at the top-level is the adding of its conclusion to the assumption base.
Finally, the value returned is ?x, and this proposition is now in the
assumption base for future deductions to use.

5.4 Future Work

5.4.1 Stack Optimizations

In the current implementation, the assumption base stack A is just a
list of propositions. They are ordered such that more recent propo-
sitions are searched first, to properly harness any spatial or temporal
locality. When a proposition is added to A, there are no checks to
determine whether the proposition (or one alphabetically equivalent to
it) is already there. This waste is especially compounded whenever A
is copied to the backup stack B.

A particularly nice optimization for the virtual machine implemen-
tation would be the replacement of the A and B stacks with a single
structure. One possible replacement is a hashtable that accepted canon-
ically renamed propositions for insertion, and which allowed arbitrary
“rollback,” in that propositions could be removed in the order that
they were last added. Currently, when a proposition is searched for in
the assumption base, e.g. via the KNOWN operation, it is compared
via an alphabetical equivalence test with every proposition in A until
a match is found. With canonical renaming, the proposition would
first be renamed with canonical variables such that the alphabetically
equivalence test would degenerate to a literal equality test. Combined
with hashing, literal equality against propositions in the assumption
base could be done quickly.

In order to properly emulate the B stack, propositions would need
to be able to be removed from the assumption base. There are issues
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associated with this as well. For example, a proposition could be in
the assumption base from multiple, different conclusions, and when
the latest of those conclusions is rolled back, the proposition needs to
remain in the assumption base.

5.4.2 Transition Optimizations

There were no real attempts made to minimize the number of oper-
ations required for the Athena virtual machine. In fact, every effort
was made to reinforce the ease of debugging, sometimes at the cost
of adding more operations. For example, RAPPLY and RDAPPLY are
the same, except that they expect different closure types. However,
the compiler enforces that the closure of the correct type is given to
these operations, as they are both part of the construction of letrec or
dletrec. They could be replaced by a more generic version of the same
operation. Similarly, MAPCLOSURE and MAPDCLOSURE in pattern
matching.

The operations for generating propositions, AND, EXISTS, and so
on, could be condensed into a single operation that takes an argument
specifying what proposition to create. This could also be done for the
TESTAND, TESTEXISTS, etc. operations; the TESTTYPE operation
could be extended to include the other TESTing operations. Finally,
some of the pattern matching operations are always in a known order,
e.g. a MATCHQ2INIT is always followed by a MATCHQ2START, and a
MATCHQ2END is always followed by a MATCHQ3. These operations
could be condensed, at the cost of legibility of the transitions that
would result. The MATCHANY operation, in fact, is basically a POP.
Again, for ease of implementation and ease of debugging, no attempt
was made to condense these operations.

5.4.3 Pattern Matching Optimizations

As mentioned earlier the compiler is not optimized, and it follows that
that compilation of patterns is also not optimized. Some very interest-
ing optimizations for pattern matching in ML are given in [BM85]; they
are potentially useful because Athena’s pattern matching is similar to
ML. However, ML has linear pattern matching, in which a variable can
not occur more than once in a pattern. Athena, however, uses nonlin-
ear pattern matching, in which repeated variables add the constraint
that their values are equal. Also, matching in ML has the freedom to
examine components of the discriminant in any order, whereas Athena
semantics requires the examination to be in order. Thus [BM85], in its
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current form, would only be potentially useful for a subset of Athena
patterns.

Functional pattern matching compilation is also discussed in
[Wad87] for the language Miranda. There may be issues in refitting
the optimizations into Athena — in particular with Athena’s nonlinear
matching and Miranda’s “partial,” curried functions — but it could
prove useful for those wanting to optimize pattern matching for the
Athena VM.

5.4.4 Full Athena Implementation

The difficulty in extending the VM to handle polymorphic Athena
is mainly that sort checking becomes significantly more complicated.
The objects representing terms and propositions would need additional
state, such as flags to note if the object has been previously sort checked
and legal, and perhaps a cache of what the final sort was and the sorts
of object’s variables. The VM would need explicit operations for sort
checking — perhaps even a stack solely for sort checking, although the
dump stack D might be used in practice.

The addition of the split pattern would probably involve adding
several operations and looping constructs similar to those required for
matching compound patterns. It is unclear how much additional work
would be required for by-induction-on and automatically generated
methods for structures. Both would likely require the machine to have
knowledge about what constitutes a structure — information which the
machine currently does not have access to.

5.4.5 Garbage Collection

The current implementation has no implicit garbage collection except
for that inherent to java. Most notably, variables are never garbage col-
lected by java as there are always references to them in the VarFactory,
and cells are never cleaned up as they are present as elements in an
ArrayList that represents the M stack. However, since the entire state
of the machine is encapsulated into the seven stacks (discounting the
state associated with sorts and symbols, which would not be garbage
collected anyway), there could be a separate thread running (perhaps
while waiting at the repl loop) to remove variables and cells that are no
longer reachable. One potential difficulty would be the garbage collec-
tion of objects that are part of circular closures generated by letrec
and dletrec.
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5.4.6 Alternative VM Implementation

There should be a substantial performance increase to be had by imple-
menting the virtual machine in C/C++, or any language that compiles
to the hardware level. For Cardelli’s Fam, “the instructions of the ma-
chine are not supposed to be interpreted, but assembled into machine
code and then executed” [Car83, pp. 1]. The architecture in question
was VAX, however. It is yet to be seen how much work might be in-
volved in compiling Athena to a modern architecture using this VM as
intermediate code, but one could expect significant increases in speed.
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Chapter 6

Conclusion

In designing and implementing a virtual machine, I found that empha-
sizing correctness over efficiency was an extremely important coding
philosophy. Debugging the system was relatively straightforward, and
I avoided dealing with optimized structures that could have introduced
subtle bugs. It makes sense, first and foremost, to make sure that the
machine works correctly before attempting to optimize it. All in all, I
think the machine is rather elegant in its relative simplicity when com-
pared to the power provided by the Athena programming language.
These simple transitions, when properly joined, can perform a number
of useful and nontrivial deductions.

There have not been extensive tests, but initial evidence shows that
the Jam java implementation is slower then the Arkoudas’ canonical
Athena interpreter, which is implemented in SML-NJ. Additional work
in optimizing this architecture should eventually yield a faster imple-
mentation.

Overall, I feel I learned a great deal about Lisp and functional pro-
gramming. In particular, I had to implement the core functionality
required to make a functional language interpreter out of a program-
ming language that does not have Lisp primitives. I also acquired a
great deal of respect for the Athena programming language as I was
working through implementing its semantics. I believe that this work
has reawakened a personal interest in non-imperative programming lan-
guages.

In conclusion, the virtual machine and compiler specified in this
thesis performs not only the computational and functional aspects of
the Athena programming language, but also embodies and handles,
at a very low level, the core deductions that are required of a type-ω
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denotational proof language.
The source for Jam is available at

http://web.mit.edu/tarvizo/Public/jam/.
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