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Robust Comparative Statics in Large Static Games

Daron Acemoglu and Martin Kaae Jensen

Abstract— We provide general comparative static results
for large finite and infinite-dimensional aggregative games. In
aggregative games, each player’s payoff depends on her own
actions and an aggregate of the actions of all the players
(for example, the average of the actions among the players).
In large games, players take these aggregates as given. We
derive comparative static results for large aggregative games,
showing both how equilibrium aggregates and the behavior
of each player change in response to various different types
of changes in parameters. Our results can also be interpreted
as comparative statics of ε-equilibria in games in which there
is a large but finite number of players, who still take their
impact on aggregates into account in choosing their strategies.
We illustrate how these results can be applied easily using
two examples: (1) large single or multi-dimensional contests;
(2) large beauty contests where each player’s strategy is a
probability distribution.

I. INTRODUCTION

In aggregative games, each player’s payoff depends on her
own actions and some aggregate of all players’ actions. A
well known example of an aggregative game is the Cournot
model of oligopoly, where each firm’s profits depend on
its own quantity and total quantity supplied to the market.
More generally, the aggregate could be any mapping from
the players’ action profile to a real number or a vector.
Several commonly-studied games, including the majority of
the models of competition (Cournot and Bertrand with or
without product differentiation), models of (patent) races,
models of contests, and models of public good provision,
can be cast as aggregative games (see [1] and [2]). A
large aggregative game is one in which each individual has
infinitesimal impact on the aggregates and thus takes their
behavior as given.

In this paper, we provide a simple general framework
for comparative static analysis in large aggregative games.
Comparative statics show how the structure of equilibria
changes when parameters affecting the payoffs change. There
are few general comparative static results in games. [3],
[4] and [5] provide such results for supermodular games
(or games with strategic complements), where each player’s
payoff is supermodular in all other players’ strategies (as well
as her own strategy), meaning that the payoff of a player
increases more in her own strategy when others choose
“greater” strategies. [1] provide general comparative static
results for aggregative games that satisfy various concavity

Daron Acemoglu is with the Department of Economics, Massachusetts
Institute of Technology (e-mail: daron@mit.edu).

Martin Kaae Jensen is with the Department of Economics, University of
Birmingham (e-mail: m.k.jensen@bham.ac.uk).

and local solvability assumptions.1 In particular, define the
backward reply mapping as the correspondence that gives
the (best response) strategies of players that are compatible
with a given value of the aggregate. The key local solvability
assumption in [1] is that this backward reply mapping is
invertible. In this paper, we prove results similar to those
found in [1] without assuming local solvability. We also
generalize the framework by allowing for infinite as well
as finite-dimensional strategy spaces.

More specifically, define a “positive shock” to be a change
in parameters that increases the best response of a player for
a given value of the aggregate (in particular, increasing the
greatest and least selection from the best response correspon-
dence). We show that a positive shock to a subset of players
always increases the value of the equilibrium aggregate. Un-
der additional assumptions, we also show the impact of such
shocks on each player’s equilibrium strategies. Results of this
level of generality are obtained thanks to the assumption that
each player takes the aggregate(s) as given. We also show
that if the number of players is indeed large, taking the
aggregate(s) as given is in fact an ε-equilibrium, and thus
our results can be interpreted as approximate comparative
statics for more general games.

We next provide an example of a large aggregative game,
which we will later use to illustrate how our main compara-
tive static results can be applied. To show that these results
hold with infinite as well as finite-dimensional strategies, we
provide a game in which strategies correspond to probability
distributions.

Example 1 (Beauty Contests): Consider a simplified ver-
sion of the “beauty contest game” first proposed by John
Maynard Keynes in analogy to a stock market, where each
trader would like to guess other traders’ guesses.2 There is a
continuum of players represented by the unit interval [0, 1].
Player i ∈ [0, 1] receives an independently drawn private
signal si ∈ S and makes a prediction xi(si) ∈ S. So a
strategy for player i is a mapping xi : S → S that gives the
public prediction as a function of the private signal. Let us
define the average prediction given a specific realization of
the private signals (si)i∈[0,1] as G (x) =

∫
[0,1]

xi(si)di.
We discuss the exact interpretation of this integral below.

For now, it suffices to say that with the appropriate definition
of the integral, the independence of the private signals
ensures that G (x) is a degenerate random variable or
simply a real number (“the average prediction”). Agents care

1They also provide general comparative static results for aggregative
games with strategic substitutes, where the payoff of a player increases
more in her own strategy when others choose “smaller” strategies.

2This is simpler than a related beauty contest game discussed in [6].
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both about making guesses close to their signal and about
guessing correctly (meaning that they would like to be close
to the average prediction). One specific example would be
the following payoff function for each player i:

Πi(x) = −
∫

[α(xi(si)− si)2 +

(1− α)(xi(si)−G (x))2]dΓi(si)

where we have integrated over the distribution Γi(si) of the
private signal. This corresponds to a weighted quadratic loss
function, with weight α on the gap between the prediction
and private signal, and weight 1 − α on the gap between
the prediction and the average prediction. Note that in this
formulation we are using the fact that G(x) is degenerate/a
real number. Each player maximizes this function choosing
a strategy xi : S → S.

Our paper is related to the small but growing literature
on robust comparative statics and to the study of aggregative
games. [7], [3], [8] and [5] provide a framework for deriving
comparative static results in supermodular games (games
with strategic complements). Our work more directly extends
[9], who provides comparative static results for aggregative
games with strategic substitutes under fairly restrictive condi-
tions, and our previous work [1], which provide more general
comparative static results both for aggregative games with
strategic substitutes and for aggregative games that satisfy
certain smoothness and regularity conditions.

The rest of the paper is organized as follows. Section
II defines aggregative games and proves the existence of
(Nash) equilibria under weak regularity conditions. Section
III contains our main comparative static results, which fo-
cus on games with one-dimensional aggregates. Section IV
studies games with multidimensional aggregates. Section V
illustrates how these results can be applied using two simple
examples. Section VI establishes the relationship between
large games and ε-equilibria of finite games with sufficiently
many players, so that our results can also be interpreted
as comparative statics for “approximate equilibria” of finite
games. Section VII concludes, while the Appendix provides
more details on the interpretation of integrals in this context.

II. LARGE AGGREGATIVE GAMES

We consider large games, i.e., games populated by a non-
atomic measure space of agents, represented by the unit
interval I = [0, 1] with the Lebesgue measure and Borel
algebra. To simplify the exposition, we also assume that there
is a finite number M ∈ N of types of agents, with a set of
agents of type m denoted by Im (though this assumption can
be easily relaxed). Each agent of type m ∈ {1, . . . ,M} has
a strategy set Xm. We assume that each Xm is a compact
metric space. We write Xm(i) when we wish to mention
specifically the index of an agent as well as her type m(i) ∈
{1, . . . ,M}. An element in Xm(i) (a strategy for player i) is
denoted by xi. We also define x−i = (xj)j∈[0,1]\{i}, X−i =∏
j∈[0,1]\{i}Xj , x = (xi)i∈[0,1] (a strategy profile) and X =

∏
i∈[0,1]Xi (the joint strategy set).3 Throughout this paper,

product spaces are equipped with the product topology. The
payoff function of a player of type m is denoted Πm, and
the payoff function of player i correspondingly by Πm(i). We
also allow each agent i to receive a private signal/shock at the
beginning of the game, denoted by si ∈ Sm(i), drawn from
some distribution Γm(i), and assume that all draws across
players are independent.4 Payoffs depend on the full strategy
profile x as well as an exogenous variable tm(i) ∈ Tm(i) ⊂ R
with respect to which we wish to do comparative statics, i.e.,
Πm(i) = Πm(i)(x, tm(i)).

Definition 1: A game is aggregative if there exists a
mapping G : X → RN such that each player’s payoff
function can be written as:

Πm(i)(x, ti) ≡ πm(i)(xi, G(x), tm(i)) (1)
This definition allows for multidimensional aggregates.

For our main results in Section III, we will focus on the case
where G : X → R, so that the aggregate is one-dimensional
(the results in this section apply more generally). For this
case, let us define Ω as the range of G, i.e., Ω ≡ {G(x) :
x ∈ X} ⊆ R. The function πm : Xm × Ω × Tm → R in
the definition of an aggregative game is referred to as the
reduced payoff function. The value of G given strategies x,
Q = g(x) is called the aggregate and the mapping G is
referred to as the aggregator. The notation makes it clear
that we make no distinction between the case where G(x)
is a degenerate random variable taking the value Q with
probability 1, and the case where G(x) is a “true” real-
valued function taking the value Q. The justification for this
will become clear below. We place the following general
assumptions on the aggregator G:

Assumption 1: The aggregator G (x) = H (L (x)), where
L : X → R is a linear and continuous operator and H is a
continuous function.

In what follows, it suffices to focus on the case in which
L : X → R corresponds to an integral. A (joint) strategy x ∈
X is measurable if the mapping i 7→ x(i) is measurable. Let
x be a measurable strategy profile and consider the integral:∫

[0,1]

x(i)di. (2)

When Xi is a subset of the reals, the previous integral has
the usual meaning. In this case, we may take as aggregator
G(x) =

∫
[0,1]

x(i)di or G(x) = H
(∫

[0,1]
x(i)di

)
, where H

is a continuous function. More generally, Xi may be a subset
of RN and if the integral is interpreted coordinatewise, we
can then take a function of the type G(x) = H(

∫
[0,1]

x(i)di)
(with H : RN → R continuous) as an aggregator. In more
complicated cases, such as when each x(i) is a random

3It is sometimes necessary to consider a more restrictive joint strategy set
than the general product space. In particular, it is sometimes necessary to
consider only joint strategies x = (xi)i∈[0,1] that are measurable. In what
follows, with a slight abuse of terminology, we refer to X as the product
space.

4The independence assumption can be relaxed in a variety of settings.
For example, in the Appendix we consider a specific example where draws
are only required to be pairwise independent across players.
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variable as was the case in the “beauty contest” game con-
sidered in the introduction, what (2) means must be defined
with some care. In the Appendix, we consider a specific
way of defining (2) due to [10] and the appropriate law
of large numbers that ensures that (2) will be a degenerate
random variable. We may then identify the integral with
a real number G(x) equal to the degenerate distribution’s
point of unit-mass. This then is one way of constructing an
aggregator G : X → R when strategies are random variables.
But we stress that there are many possible ways to interpret
(2) that agree with our overall assumptions.

Given the assumption that there is a continuum of players,
it is immediate that we have a large game, in the sense
that for all i ∈ I and x−i ∈ X−i, we have G(xi, x−i) =
G(x̃i, x−i) (for all xi, x̃i ∈ Xi), since each player is
“infinitesimal”. Clearly, in such a large game, players will
take the aggregate Q = G(x) as given when choosing their
optimal strategy.5 An immediate implication is that the best-
reply correspondence Rm : Ω × Tm → 2Xm of player of
type m can be expressed as a function of the aggregate Q
and the parameter tm:

Rm(Q, tm) ≡ {xi ∈ Xm) : πm(xi, Q, tm)
≥ πm(x̃i, Q, tm) for all x̃i ∈ Xm(i)}, (3)

where we are using the fact that the best-reply correspon-
dence of all players of a given type will be identical.

We thus define a (Nash) equilibrium in pure strategies for
such large games as follows:

Definition 2 (Equilibrium): A strategy profile x∗ ∈ X is
an equilibrium (in pure strategies) if x∗i ∈ Rm(i)(Q∗, tm(i))
for all i ∈ I and Q∗ = G(x∗).

In this definition, the statement “for all i ∈ I” is a
shorthand “for i ∈ I almost everywhere” since with a
continuum of players, deviations by measure zero subsets
of the set of players is inconsequential. Throughout we use
this shorthand notation to simplify the terminology.

Finally, we also impose:
Assumption 2: For all i ∈ I, the strategy set Xm(i)

is compact, and the payoff function Πm(i) is upper semi-
continuous in the player’s own strategy xi ∈ Xm(i).

Assumption 2 is weaker than the standard in non-
cooperative game theory because payoff functions are not
assumed to be quasi-concave in own strategies. Quasi-
concavity is unnecessary for existence of an equilibrium as
well as our other results due to the well known “convexi-
fying” effect of working with a continuum of agents ([11],
[12]).

Theorem 1 (Existence): Suppose Assumptions 1 and 2
hold. Then any large aggregative game has an equilibrium
(in pure strategies).

Proof: Since Xm is compact, and πm is up-
per semi-continuous in the player’s own strategy, the
best-reply correspondence of any player Ri(Q, ti) =

5The converse of this statement need not be true, in the sense that even
if a game is not large as defined here, one could look for an equilibrium in
which players take the aggregate as given (see [1]).

arg maxxi∈Xi
πm(i)(xi, Q, ti) is non-empty valued, com-

pact valued and upper hemi-continuous. Let G(Q, t) ≡
{G(x) : x is measurable and xi ∈ Ri(Q, ti) for all i ∈ I}.
For fixed t, the correspondence G(·, t) : Ω → 2Ω will be
upper hemi-continuous ([11]), and have non-empty, compact
and convex values ([13]). The existence of an equilibrium
now follows directly from Kakutani’s fixed point theorem.

III. COMPARATIVE STATICS WITH ONE-DIMENSIONAL
AGGREGATES

Our main interest is with comparative static results, which
show how the structure of the equilibrium changes as a
function of exogenous parameters. To study this, we need
to place a partial order on the strategy sets. From now on,
we assume that each Xm, in addition to being a compact
metric space, is a partially ordered space equipped with a
closed partial order �m.6 When Xi ⊆ RN , �i will normally
be taken to be the usual Euclidean order which we denote
by ≥. When Xi is a set of random variables, the first-order
stochastic dominance order is often the best choice (see e.g.
[14]). The product order defined on X is denoted � (in other
words, x̃ � x ⇔ x̃i �i xi for all i ∈ [0, 1]).

For our comparative statics results we also need to assume
that G is an increasing function in the strategies:

Assumption 3: The aggregator G is increasing in the sense
that G(x̃) ≥ G(x) whenever x̃ � x.

Next we define the central notion of a positive shock.
Recall that Rm(i)(Q, tm(i)) denotes the best-reply correspon-
dence of player i where Q is the aggregate and tm(i) the
exogenous variable.

Definition 3 (Positive Shocks): A change in the parameter
from t1m to t2m, t2m > t1m, is a positive shock to players of
type m if for all Q ∈ Ω the following holds: (i) For all xi ∈
Rm(Q, t1m) there exists x̃i ∈ Rm(Q, t2m) with x̃i �m xi, and
(ii) For all x̃i ∈ Rm(Q, t2m) there exists xi ∈ Rm(Q, t1m)
with x̃i �m xi.

When Rm(Q, t) is single-valued, for example when the
payoff function is strictly quasi-concave in the player type’s
own strategy, this definition reduces to: Rm(Q, t2m) �m
Ri(Q, t1m) whenever t2m ≥ t1m. This simply means that
the function Rm(Q, tm) is nondecreasing in tm. If Xm is
a lattice, (i) and (ii) will hold provided that Ri(Q, ·) is
increasing in the strong set set order.7 We briefly consider
this important special case in the following remark.

Remark 1: One way to ensure that (increases) in tm will
be positive shocks is to use Topkis’s Monotonicity Theorem
([7], [4]). Specifically, if Xm is a lattice, and πm(xi, Q, tm)
is supermodular in xi and exhibits increasing differences in
xi and tm, then Rm(Q, ·) will be increasing in the strong set
order (given any Q ∈ Ω). It is straightforward to verify that

6That the order �i is closed means that the relation �m= {(x, y) ∈
X2

m : x �m y} is a closed subset of X2
m (here and throughout, product

sets are equipped with the product topology).
7Given an order �m on a lattice Xm, the strong set order �s is defined

on sublattices A, B of Xm as follows: A �s B ⇔ [a ∨ b ∈ A and
a ∧ b ∈ B for all a ∈ A and b ∈ B] (here ∨ denotes the supremum of a
and b in Xm and ∧ denotes the infimum).
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if Rm(Q, t2m) �s Ri(Q, t1m) then (i) and (ii) of Definition
3 will hold. For a generalization of Topkis’ theorem, see
[15]. For explicit conditions in the case where strategies
are random variables, see [14]. One may also establish that
a shock is positive by using the implicit function theorem
(which does not require Xi to be a lattice, but instead
requires smoothness and convexity assumptions on payoff
functions and strategy sets).

Theorem 1 guarantees the existence of an equilibrium,
though not its uniqueness. Let t = (tm)Mm=1 denote the
exogenous variables for the player types, and for a given t,
denote the set of equilibria (in pure strategies) by E(t) ⊆ X .
For every equilibrium x∗(t) ∈ E(t) we have a well-defined
equilibrium aggregate G(x∗(t)). It is not hard to show that
E(t) will be a compact set, so when G is continuous
(assumption 1), we may define the smallest and largest
equilibrium aggregates:

Q∗(t) ≡ min
x∗(t)∈E(t)

G(x∗(t)) and (4)

Q∗(t) ≡ max
x∗(t)∈E(t)

G(x∗(t)) (5)

Our main comparative statics theorem, following next,
tells us that under the previous assumptions, Q∗(t) and Q∗(t)
are nondecreasing when the change in t constitutes a positive
shock, i.e., a positive shock for each of the types of players
whose tm is changed.

Theorem 2 (Main Comparative Statics Result): Consider
a large aggregative game satisfying Assumptions 1-3. Then
the smallest and largest equilibrium aggregates Q∗(t) and
Q∗(t) are nondecreasing in a positive shock.

Proof: Let G(Q, t) ≡ {G(x) :
xi ∈ Ri(Q, ti) for all i ∈ I}. From the proof of Theorem 1,
G(·, t) : Ω → 2Ω is non-empty, convex and compact valued
and upper hemi-continuous. It is clear that Q∗ = G(x∗)
where x∗ ∈ E(t) if and only if Q∗ ∈ G(Q∗, t). Hence
there is a one-to-one correspondence between fixed
points for the correspondence G(·, t) and equilibria in the
game. Since G is compact valued, the least and greatest
selections of G are well-defined: g(Q, t) ≡ inf G(Q, t) and
g(Q, t) ≡ supG(Q, t). When each Rm is increasing in tm
in the sense of the definition of a positive shock, it can be
shown that g(Q, t) and g(Q, t) will be increasing functions
of t (see [16]). That the least and greatest fixed points of
G (which are precisely the smallest and largest equilibrium
aggregates) will be increasing in t now follows directly
from Corollary 2 in [17].

Corollary 1 (Individual Comparative Statics): Consider a
large aggregative game satisfying Assumptions 1-3. Consider
a player type m ∈ {1, . . . ,M}, and assume that Xm

is a lattice, and πm(xi, Q, tm) is supermodular in xi. If
πm(xi, Q, tm) also exhibits increasing differences in xi and
Q, then the strategies of the players of type m associated
with the smallest and the largest equilibrium aggregates
will be nondecreasing in a positive shock to any subset
of agents (not necessarily the ones of type m). If instead
πm(xi, Q, tm) exhibits decreasing differences in xi and Q,
then the strategies of the players of type m associated

with the smallest and largest equilibrium aggregates will
be nonincreasing in a positive shock to any type of players
different from m.

IV. COMPARATIVE STATICS WITH MULTIDIMENSIONAL
AGGREGATES

It is also possible to derive comparative static results with
multidimensional aggregates, i.e., when G : X → RN
(assuming that each coordinate function Gn : X → R
satisfies the above conditions). Recall that Theorem 1 and our
definition of positive shocks were general enough to cover
multidimensional aggregates. In what follows, we interpret
G(x̃) ≥ G(x) in Assumption 3 to mean that each component
of G(x̃) is greater than or equal to the corresponding com-
ponent of G(x). The following theorem provides an analog
of Theorem 2 in the case of multidimensional aggregates.

Theorem 3 (Supermodular Games Case): Consider a
large aggregative game satisfying Assumptions 1-3. In
addition, assume that for each m ∈ {1, . . . ,M}, Xm

is a lattice, and πm(xi, Q, tm(i)) is supermodular in xi
and exhibits increasing differences in xi and Q. Then
the strategies of all players associated with the smallest
and largest equilibrium aggregates are nondecreasing in a
positive shock (and these equilibrium aggregates are also
nondecreasing in a positive shock).

Proof: The proof follows along the same lines as the
proof of Theorem 2, except that one now uses Theorem 4 in
[17] instead of Corollary 2.

Remark 2: Theorem 3 is not a special case of the well-
known comparative statics results for supermodular games
([4]). In particular, our definition of a positive shock is
weaker than that of Topkis (who requires that best-reply
correspondences are nondecreasing as a function of the
parameter in the strong set order).

The next theorem provides a partial converse to Theorem
3 for the submodular (or strategic substitutes) case. We will
focus on two-dimensional aggregates and on an increasing
shock to the first coordinate of the aggregate defined as a
change in parameter from t1 to t2 such that G1

(
x, t2

)
≥

G1

(
x, t1

)
(and G2

(
x, t2

)
≥ G2

(
x, t1

)
).8 Then we have:

Theorem 4 (Submodular Games Case): Consider a large
aggregative game satisfying Assumptions 1-3, and suppose
that the aggregate is two dimensional (G : X → R2).
In addition, assume that for each m, Xm is a lattice, and
πm(xi, Q, tm) is supermodular in xi and exhibits decreasing
differences in xi and Q. Then the largest and smallest
first coordinate of the aggregate are nondecreasing (and the
corresponding smallest and largest second coordinate of the
aggregate are nonincreasing) in an increasing shock to the
first coordinate of the aggregate.

Proof: G is defined as in the proof of Theorem 1, except
that now it is a correspondence from Ω ⊆ R2 into itself
where Ω is the range of G. Equilibria correspond to fixed
points of G: Q1 ∈ G1(Q1, Q2, t) and Q2 ∈ G2(Q1, Q2, t).

8In the supermodular or the one-dimensional cases, such increasing
shocks to the aggregate can be cast as positive shocks affecting all types of
players and are thus covered by Theorems 2 and 3.
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The least and greatest selections from G1 and G2 (cf. the
proof of Theorem 2) will be nonincreasing functions of Q1

and Q2 under the assumptions of the theorem. Let us next
replace Q2 with −Q̃2, so that an equilibrium is given by
Q1 ∈ G1(Q1,−Q̃2, t) and Q̃2 ∈ −G2(Q1,−Q̃2, t). Then
under the assumptions of the theorem, the least and greatest
selections are increasing in (Q1, Q̃2) and in t. The rest of the
proof now follows the proof of Theorem 3 and is omitted.

V. EXAMPLES

We now briefly discuss two examples to illustrate how
easily the methods developed in this paper can be applied.

A. Generalized Contests

In contests, players exert costly effort in order to win
a prize (race or war). The probability that a given player
wins the prize is an increasing function of her effort and
decreasing function of other players’ efforts. Consider the
following generalization of contests to a large game, with
the set of players represented by the unit interval. A fraction
of the players will win a prize, which is worth V . The cost
of a player i of type m of exerting effort xi is cm (xi) /tm,
where cm is a continuous and strictly increasing cost function
and tm is a parameter scaling the cost function. Moreover,
xi ∈ [0, x̄m], for some x̄m < ∞ (this ensures compactness
of strategy sets). The probability that player i will be one of
the winners of the prize is given by fm(xi)/H(

∫ 1

0
h(xi)di),

where fm’s, hm’s and H are continuous and strictly increas-
ing functions. Therefore, the payoff of player i of type m
is

fm (xi)

H
(∫ 1

0
hm (xi) di

)V − cm (xi)
tm

.

A specific application might be one where x corresponds to
test preparation, affecting test scores and a certain fraction
of the students who score relatively high in this test will get
admitted to a selective school.

It can be easily verified that this game satisfies Assump-
tions 1-3 and that an increase in V satisfies our definition of
a positive shock (for all types). Theorem 2 then implies that
an increase in V will (weakly) increase the aggregate Q =
H
(∫ 1

0
hm (xi) di

)
. In addition, payoff functions exhibit

decreasing differences in own strategies and the aggregate.
Hence from Theorem 2 and Corollary 1, a change in tm will
(weakly) increase H

(∫ 1

0
hm (xi) di

)
and xi for (almost all)

players of type m, and (weakly) decrease xi for (almost all)
players of type m′ 6= m.

These results are interesting in part because in finite
contests the effects of a positive shock to a set of players
is in general indeterminate, and may increase or decrease
the effort of other players (see, for example, [1] for a
characterization).

We can also use a further generalization of contests
to show how our multidimensional aggregate results can
be applied in this case. In particular, suppose that there
are two types of effort, each corresponding to a separate

contest. For example, one contest can again correspond to
some educational competition, while the other represents
competition in another realm, for example, in sports. Thus
the strategy of player i of type m is now

(
x1
i , x

2
i

)
∈[

0, x̄1
m

]
×
[
0, x̄2

m

]
, and the cost function is cm

(
x1
i , x

2
i

)
/tm,

where cm is continuous and strictly increasing in both of its
arguments and supermodular. This latter assumption imposes
the natural property that the marginal cost of exerting a
particular type of effort is increasing in the amount of the
other effort. The probability of winning each type of prize,
worth V1 and V2, is only a function of the distribution of
effort for that specific contest. This implies that the payoff
function is a direct generalization of the one above:

f1
m

(
x1
i

)
H1

(∫ 1

0
h1
m (x1

i ) di
)V1 +

f2
m

(
x2
i

)
H2

(∫ 1

0
h2
m (x2

i ) di
)V2−

cm
(
x1
i , x

2
i

)
tm

,

where again the f , h and H’s are continuous and strictly
increasing functions. Let us define x̃2

i = −x2
i , so that the

payoff function can be written in a way that satisfies the
conditions of Theorem 4. In particular,

f1
m

(
x1
i

)
H1

(∫ 1

0
h1
m (x1

i ) di
)V1 +

f2
m

(
−x̃2

i

)
H2

(∫ 1

0
h2
m (−x̃2

i ) di
)V2−

cm
(
x1
i ,−x̃2

i

)
tm

,

where now the payoff of each player is supermodu-
lar in her strategy vector

(
x1
i , x̃

2
i

)
. We can then fol-

low the steps in the proof of Theorem 4 and define
the two aggregates as Q1 = H1

(∫ 1

0
h1
m

(
x1
i

)
di
)

and

Q̃2 = −H2

(∫ 1

0
h2
m

(
−x̃2

i

)
di
)

. It then follows that an

increase in V 1 will raise H1

(∫ 1

0
h1
m

(
x1
i

)
di
)

and reduce

H2

(∫ 1

0
h2
m

(
−x̃2

i

)
di
)

. This comparative static is intuitive:
an increase in the rewards to exerting effort in sports will
raise the total amount of effort in sports, but crowd out effort
in education. Once again, this type of unambiguous compar-
ative static results would not be valid in finite contests.

B. Beauty Contests

Next consider the example of beauty contests discussed
in the Introduction. Consider a slight generalization where
the payoff function of player i of type m is more generally
given by (again integrating over private signals si)

Πm(xi) =∫
[h1,m(xi(si), si, tm)− h2,m(|xi(si)−G (x)|)]dΓi(si),

where h1,m and h2,m are continuous for each m, and h2,m

is strictly increasing, and the aggregator is

G (x) = H

(∫
[0,1]

xi(si)di

)
,
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where H is a continuous and strictly increasing function.
Clearly the payoff function in the Introduction is a special
case. It can be verified that this is a large aggregative game
that satisfies all of our assumptions. Consider an increase in
tm and suppose that h1,m exhibits increasing differences in
xi (si) and tm (for given si). Then this is a positive shock
to type m. It is then an immediate implication of Theorem
2 and Corollary 1 that both G (x) will increase and the
function xi (·) for (almost) all players of any type will “shift
up”. Intuitively, the increase in tm implies that given their
private signals players of type m would like to choose a
higher xi. As a result, given other players’ strategies, the
aggregate G (x) will increase and because each player would
like to be close to the aggregate prediction, they would also
increase their predictions. An application of this result is that
when a subset of forecasters become more aggressive and all
forecasters dislike deviating too much from the average, all
forecasters will forecast more aggressively.

VI. EPSILON EQUILIBRIA

We next establish the relationship between the equilibria of
large games and ε-equilibria of corresponding finite games.
We then use this relationship to reinterpret our results as
comparative statics for “approximate equilibria” of finite
games.

Consider a game similar to the one defined in Section II
but with only a finite number N ∈ N of each type of players.9

The set of indices of the players of type m is denoted by
IN (m). A strategy profiles is denoted by x = (xi)MN

i=1 . The
strategy set of an agent of type m is as in Section II. The
aggregator G is taken to be the average across the players:

GN (x) =
1

NM

M∑
m=1

∑
i∈I(m)

xi. (6)

Note that since, in general, strategies are random variables,
GN (x) will be a random variable as well. The payoff
function of a player i of type m is defined as

Πm(x) = πm(xi, GN (x)) =

πm(xi,
1

NM
xi +

1
NM

M∑
m=1

∑
j∈Ii(m)

xj),

where Ii(m) = I(m) if i 6∈ I(m) and Ii(m) =
I(m)\{i} if i ∈ I(m) and we have omitted exogenous
variables since they are not relevant for the results in this
section. A (pure strategy Nash) equilibrium for the game
with N players of each type, denoted x∗,N , is a strategy
profile such that x∗,Ni ∈ Rm(i)( 1

NM

∑M
m=1

∑
j∈Ii(m) x

∗
j )

for all i where Rm is the best-reply correspondence of a
player of type m. We also define an ε-equilibrium x∗,N ,
where ε > 0, as a strategy profile such that x∗,Ni ∈
Bε[Rm( 1

NM

∑M
m=1

∑
j∈Ii(m) x

∗,N
j )] for all i, where Bε(Z)

9This assumption is adopted for notational simplicity and all of the results
in this section generalize with minimal modifications if instead there is a
finite number Nm of players of type m.

denotes the closed epsilon ball around the set Z. Note that
best-replies depend on the “average of all other players
strategies” which in general is a random variable. Under the
general assumptions of Section II (all of which are in effect
throughout this section), Rm will be upper hemi-continuous,
in particular Rm( 1

NM

∑M
m=1

∑
j∈Ii(m) xj) will be a closed

set. In addition, let us suppose that all payoff functions
are strictly quasi-concave. This ensures that each Rm is a
continuous function (a single-valued upper hemi-continuous
correspondence is automatically continuous).

Then for any i:

lim
N→∞

GN = lim
N→∞

1
NM

M∑
m=1

∑
j∈Ii(m)

xj , (7)

and if the integral across stochastic variables are defined as
explained in the Appendix, after a trivial reindexing of the
players to lie within the unit interval we have that:10

lim
N→∞

GN =
∫

[0,1]

xidi (8)

From the previous construction one gets the following
result as a direct consequence of the continuity of the best-
reply correspondences:

Theorem 5 (ε-Equilibria): Fix a sequence of finite games
with increasing number of players of each type (and the
same strategy sets and payoff functions), and let {x∗,N}∞N=1

denote any sequence of equilibria of these games and x∗

be an accumulation point of this sequence. Then x∗ will be
an equilibrium in the large (continuum) game of Section II
with strategy sets and payoff functions identical to those of
the finite game. Conversely, let x∗ be any equilibrium in the
corresponding large game. Then for any ε0 there exists an
N ∈ N (where N generally depends on ε) such that x∗ will
be an ε-equilibrium in the finite player game with N players
of each type.

Proof: Omitted to save space.
This theorem establishes, under strict quasi-concavity of

payoff functions, the connection between equilibria large
games and ε-equilibria of finite games with sufficiently
many players. Given this connection, all of our results on
comparative statics in large games can be interpreted as
comparative statics results for ε-equilibria of finite games
with sufficiently many players. Notably, in such finite games
players do not take aggregates as given. Thus in the beauty
contest as well as the generalized contest examples, we
can obtain unambiguous comparative statics results (for ε-
equilibria, where ε may be chosen to be arbitrarily small)
as long as the number of players is sufficiently large. This
is important since as already mentioned in Section V such
unambiguous comparative statics results need not hold in
finite and “small” games (and the same observation clearly
applies to ε-equilibria of “small” games).

10Specifically, this can be done by letting a game with N agents of each
type be indexed by {0, 1

NM
, 2

NM
, . . . , 1} rather than by {1, 2, . . . , NM}

as done above.
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VII. CONCLUSION

This paper studied comparative statics of equilibria in
large finite and infinite-dimensional aggregative games. In
aggregative games, each player’s payoff depends on her own
actions and an aggregate of the actions of all the players (for
example, the average of the actions among the players). In
large games, players take these aggregates as given. We de-
rived comparative static results for large aggregative games.
We then illustrated how they can be applied in a very straight-
forward manner using two examples: (1) large single or
multi-dimensional contests; (2) large beauty contests where
each player’s strategy is a probability distribution. These
examples highlight how the fact that we are dealing with
large games enables much stronger comparative static results
than would be possible in games with a finite number of
players. We also establish conditions under which our results
can be interpreted as comparative statics for “approximate”
equilibria of finite games (which sufficiently many players),
where players do not take these aggregate as given.

APPENDIX: INTERPRETATION OF INTEGRALS

Here we present a concrete way to interpret (2) when the
integral is taken over random variables and show how leads
leads to a suitable definition of an aggregator G : X → R.
Following [10], take:∫

[0,1]

x(i)di ≡ lim
n→∞

n∑
i=1

x(ti)(ti − ti−1) (9)

where the convergence is in L2-norm, and as n → ∞, the
lengths of the subdivision 0 = t1 < t2 < . . . < tn = 1 tends
to zero. Given this interpretation,

∫
[0,1]

x(i)di will itself be a
random variable, but when the x(i)’s satisfy assumptions of
some appropriate law of large numbers as discussed below,
the distribution will be degenerate. We may then identify
the integral with a real number G(x) equal to the degenerate
distribution’s point of unit-mass.11

Next, let us turn to the needed law of large numbers
(LLN). There are many formulations of the LLN in the lit-
erature that will suit our purpose. The following formulation
(due to [18]) is general enough to include all of this paper’s
applications:12

Theorem 6 (Chebyshev [18]): Let x1, x2, x3, . . . be a se-
quence of pairwise independent random variables such that
V ar[xi] ≤ b for some b ≥ 0 and all i ≥ 1. Let:

An ≡
x1 + . . .+ xn

n
, and µn ≡ E[An]

11See [10] for further details of this approach, including a discussion
of its suitability as a description of the limit of an increasing sequence of
games with a finite number of players.

12Chebyshev’s weak law of large numbers can be found in any textbook
on probability theory. When each Xi is bounded (uniformly), the variances
are also uniformly bounded, in particular their expected values exist. So the
weak law of large numbers applies. The convergence notion in Chebyshev’s
weak law of large numbers is convergence in probability which, however, is
equivalent to L2-norm convergence when the random variables are bounded
almost surely.

Then for every ε > 0, limn→∞ Pr{|An−µn| ≥ ε} = 1. In
particular, if the random variables are (uniformly) bounded
almost surely and limn→∞ µn = µ, then,

lim
n→∞

n∑
i=1

1
n
xi

exists in L2-norm and is a degenerate random variable that
takes the value µ with probability one.
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