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Abstract

We describe an adaptive, mid-level approach to the wireless device
power management problem. Our approach is based on reinforcement
learning, a machine learning framework for autonomous agents. We
describe how our framework can be applied to the power management
problem in both infrastructure and ad hoc wireless networks. From
this thesis we conclude that mid-level power management policies can
outperform low-level policies and are more convenient to implement
than high-level policies. We also conclude that power management
policies need to adapt to the user and network, and that a mid-level
power management framework based on reinforcement learning fulfills
these requirements.
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Chapter 1

Introduction

In the past decade, trends in hardware miniaturization have resulted in
the introduction and widespread acceptance of laptops and, more re-
cently, in a burgeoning market for hand-held computing devices. While
these devices match their desktop counterparts in computational power,
a major drawback is their reliance on battery power. Whereas proces-
sor speeds have improved at an exponential rate for the past three
decades, battery capacity has only increased by a factor of two to four
over the same period. With no reason to expect major advances in
battery technology in the near future, current attempts to solve this
problem have focused on designing portable devices that consume less
energy.

1.1 The Wireless Problem

Most people involved in the hand-held computer industry agree that
the major application of these devices will be as mobile email, text
messaging, and web browsing platforms. Unfortunately, according to
Stemm and Katz [1] the network interface is typically the single largest
consumer of power in a hand-held system. Interest in designing low
power components for hand-held devices has led to the introduction
in the past decade of dynamic voltage scaling (DVS) processors, as
well as the popularization of new fabrication techniques which result in
more efficient chip components. However, attempts to improve the en-
ergy efficiency of wireless network interfaces is constrained by the poor
power consumption characteristics of radio transmitters and receivers.
There is no obvious way of making the radio more power efficient since
there is a direct relationship between transmit power and the range of



the transmitted signal. Consequently, attempts to save power at the
network interface have focused on power management (PM) techniques
for switching the radio off during idle periods.

1.2 Current Solutions

To date most research in this area has focused on doing PM either at
the hardware-level (low-level) or at the application level (high-level).
Hardware-level approaches typically build power management into the
medium access control (MAC) layer [2] of the network protocol. For
example, the IEEE 802.11 Wireless LAN Standard [3] stipulates MAC
layer support for power management in both infrastructure and ad hoc
modes. This support is provided through traffic indication map (TIM)
fields contained in broadcast messages sent by the base station, and a
polling mechanism that allows mobile hosts to request packets buffered
by the base station while they were asleep.

The major drawback of power management schemes that operate
at the MAC layer is that they can only view the data contained within
frames as opaque objects. For example, the network interface is unable
to tell whether a frame it receives contains data corresponding to a
UDP packet or a TCP packet, nor can it differentiate between frames
which contain different types of application-layer packets such as Secure
Shell Protocol (SSH) or Hypertext Transfer Protocol (HT'TP) packets.

Proponents of application level power management strategies are
currently a minority, but their arguments are important to consider.
Kravets and Krishnan [4] describe a transport-level protocol for man-
aging the sleep/active cycle of a mobile host’s wireless interface that
exposes power management to applications. Application programs that
access the network are required to convey their communication needs
to the transport-layer power management policy, which in turn decides
whether it is advisable to transition the network interface to the sleep
or awake mode.

An argument in favor of this strategy is that application programs
necessarily have the most information on which to base predictions
about their communication needs. For example, a web browser that
has just requested a page from a server but that has not yet received
a response can direct the power manager to stay awake. Similarly,
applications that receive streaming data over the wireless network can
tell the power manager to keep the interface in active mode until the
application terminates or the stream is closed.

However, it seems unlikely that the software industry will embrace



a PM technique that places more work on the application programmer,
making it even harder to port applications from desktop to mobile
platforms. Furthermore, it remains to be seen whether adding this
functionality is as trivial an operation as its proponents assert.

1.3 Our Approach: Adaptive Mid—level Power
Management

This thesis proposes a new approach to power management in wireless
network interfaces based on an adaptive power manager with access
to application-layer and transport-layer information. It operates at
a lower level than the technique described by Kravets and Krishnan
[4], since it does not require application programs to pass it informa-
tion, and it operates at a higher level than the MAC layer methods
described earlier. This means that it has access to transport-layer and
application-layer information, which it can use to make more informed
predictions about near term communication needs.

The power manager is based on a machine-learning framework for
autonomous agents called reinforcement learning (RL) [5]. Reinforce-
ment learning models an agent’s sequential decision-making task as a
Markov Decision Process (MDP) [6] with unknown parameters. The
goal of an agent is to learn a policy that maximizes the agent’s per-
formance at the task. The policy that the agent learns is a function
mapping states to actions, and an agent’s performance is quantified by
a reward function. In this case the reward function is inversely related
to the amount of energy consumed by the network interface.

We believe that an adapative mid-level approach to power manage-
ment will be able to outperform PMs built into the MAC layer. In
most cases, the packets that are transmited and received over a mobile
host’s wireless interface are the direct result of the user’s actions, or are
sent in response to the user’s actions. We believe we can build a more
complete model of this cause-and-effect behavior by placing the agent
closer to its source. An accurate model of these high-level processes
and their effect on network activity will allow us to make better predic-
tions about when the network interface’s services will be needed. We
also note that our approach is supported by the widely accepted end-
to-end argument [7], which holds that system functions such as power
management, implemented at a low level, are likely to be of little value
when compared to those same functions implemented at a higher level.

In comparing our mid-level PM scheme to the high-level approaches
of Kravets and Krishnan [4], Ellis [§], and Flinn and Satyanarayanan
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[9], we note that our method does not place any requirements on the
applications. Furthermore, since our method is adaptive it can learn
to support the vast array of software that is already in use on mobile
computers.

1.4 Contributions

The main contribution of this thesis is its illustration of an adaptive
mid-level approach to wireless device power management that avoids
the drawbacks associated with hardware level and application level so-
lutions to the problem.

1.4.1 Thesis Outline

Chapter 2 of this thesis describes wireless networks in general with par-
ticular attention paid to hardware power consumption issues. Chapter
2 also discusses the 802.11 wireless LAN standard. Chapter 3 gives
an overview of reinforcement learning and a detailed description of Q-
learning, and then discusses the mid-level power management strategy
in detail. Finally, chapter 4 concludes with a discussion of related and
future work.
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Chapter 2

Wireless Mobile
Networks

2.1 Overview

A wireless mobile network is a local area network (LAN) where the
individual stations are mobile computers that communicate with the
rest of the network via radio or infrared signals. The stations are
most likely laptop or hand-held computers outfitted with a wireless
radio network interface. Current wireless LAN standards specify data
transfer rates equivalent to those of Ethernet, placing wireless LANs in
the same league as their wired counterparts.

While wireless LANs provide a software interface virtually indistin-
guishable from that provided by wired LANSs, there are many differ-
ences between the two technologies at the link and MAC layers. The
following sections discuss the characteristics that make wireless LANs
different from their wired counterparts.

Before we begin, it is important to point out that 802.11 is a wireless
LAN standard. While it is currently the dominant wireless standard
it does not define wireless LANs, and other standards which would
accomplish the same task in different ways are possible. Consequently,
the first part of this chapters focuses on the characteristics of wireless
LANSs in general, and in the later part we consider the 802.11 standard
in particular.

12



L1 L1 L1
| RF [ |1 psp [ IWMAC[
— IC = — Asic — |ASC —
2 Y S S
5
c
£ Al
S T — | Fah |
— e oo M Rov |
T T T

Figure 2.1: A schematic overview of a Lucent wireless network interface
designed to fit in a mobile computer’s PCMCIA slot.

2.2 Hardware

The basic building block of a wireless LAN is a wireless network in-
terface card. These devices typically come in ISA or PCMCIA form
factors.

Figure 2.1 is a block diagram of a Lucent 802.11 wireless network
interface designed to fit in a mobile computer’s PCMCIA slot. Wire-
less network interfaces built for other standards would likely look the
same. The components shown in the diagram include a radio (RF IC),
intermediate frequency chip (IF IC), a digital signal processor (DSP)
application-specific integrated circuit (ASIC), a wireless medium access
controller (WMAC) ASIC, and RAM and ROM chips.

The modular nature of the device provides manufacturers with two
distinct advantages. First, a manufacturer of wireless network inter-
faces (WNICs) typically purchases the components from third party
manufacturers. Many of these components are not specific to any wire-
less network protocol in particular, so manufacturers can market a gen-
eral purpose chip with multiple applications. Second, the modular con-
struction of the device makes it possible for the network interface to
selectively power down on a component basis. For example, the inter-
face’s logic might want to turn the radio off but maintain the supply
of power to clocks.

Figure 2.2 shows the canonical WNIC state diagram. In the transmit
and receive states the radio is fully powered and the WNIC is actively

13
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Figure 2.2: A state machine showing the wireless network interface
states and the transitions between them. In 802.11 devices the receive,
transmit, idle and sleep states are not individually visible to the
operating system, which views these states collectively as the on state.

transmitting and receiving data. In the idle state the radio is powered,
and the device is listening to the communications medium, but the de-
vice does not pass any of the data it receives while in this mode up to
the software layer. In the sleep state the radio is powered down while
other subsystems, such as hardware clocks, remain powered. Finally,
in the off state the device is completely powered down.

Most of the states illustrated in figure 2.2 are hidden from the
software that controls the WNIC. For example, in 802.11 WNICs the
receive, transmit, idle and sleep states are only visible to the op-
erating system as the on state. Another point to note is that the sleep
state typically has several sub-states. Each substate corresponds to a
different power-saving mode. We discuss these modes in detail in the
next section.

2.2.1 The Radio

The WNIC’s radio deserves special consideration as it is both central to
the device’s purpose and also its single largest consumer of energy. Sev-
eral efforts to measure the power consumption of popular WNICs [1, 10]



Mode | Recovery Time | Current

TX Current (continuous) N/A 488mA
RX Current (continuous N/A 287mA
Average Current w/o PSM N/A 290mA
Average Current w/ PSM N/A 50mA
Power Saving Mode 1 1us 190mA
Power Saving Mode 2 25us 70mA
Power Saving Mode 3 2ms 60mA
Power Saving Mode 4 oms 30mA

Table 2.1: PRISM chipset power consumption by mode.

have resulted in the conclusion that the WNIC, and the radio in partic-
ular, is responsible for a significant portion of the energy requirements
of portable computers. Consequently, the goal of WNIC power man-
agement policies is to keep the WNIC’s radio in a low power mode (or
off) most of the time without adversely affecting the performance of
the WNIC.

To illustrate the different power saving modes available at a device
level we now consider the PRISM radio chipset manufactured by the
Intersil Corporation. The PRISM chipset has been incorporated into
a large number of commodity 802.11 devices, and is just as applicable
to other WNIC designs since it is not protocol specific. The chipset
includes a radio, modem, baseband processor, dual synthesizer, and
MAC module. Andren et al. [11] describe the different device-level
power saving modes supported by the chipset, which are summarized
in table 2.1. Of particular interest are the tradeoffs between power con-
sumption and recovery time. Deeper sleep modes consume less energy
but require more time to transition back to an active state. This is due
to the fact that the deeper sleep modes allow capacitors to discharge,
and considerable time is required to re-charge these analog components.
Similarly, deep sleep modes also shut down oscillators used in the radio,
and when power is reapplied, time is required for them to settle.

2.3 Infrastructure vs. Ad Hoc Networks

Wireless LANs can be divided into two separate categories: infrastruc-
ture networks and ad hoc networks. Infrastructure networks consist
of some number of wireless stations and a wired base station. The
base station (or access point in 802.11 terminology) is responsible for
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mediating communication between individual stations in the wireless
LAN as well as providing an up-link service over the wire to the rest
of the network. In many designs the base station also provides power
management support to the mobile stations by offering to temporarily
buffer packets bound for sleeping stations.

Ad hoc networks are also composed of individual stations, except
that there is no base station. Instead, stations talk directly to each
other without the aid of a base station. Ad hoc networks are a conve-
nient alternative to infrastructure networks in environments where it is
impossible to install fixed base stations.

Infrastructure and ad hoc wireless networks face very different power
management issues, which we discuss in detail in chapter 4.

2.4 Protocols

One of the major differences between wired and wireless networks is
that collision detection in wired networks is easy to implement, while
reliable collision detection (CD) in wireless networks is impossible to
implement. This is a consequence of the fact that situations where
stations A and C are both in range of station B but out of range of
each other are common. Hence, if A and C begin transmitting at the
same time B will be unable to read the data due to a collision which
neither A nor C can detect. Because of this physical limitation, wireless
protocols are based on collision avoidance (CA) rather than collision
detection.

One of the first wireless protocols to use collision avoidance was
the Multiple Access with Collision Avoidance (MACA) protocol. The
802.11 standard is a direct descendant of MACA. Collision avoidance
was implemented by requiring each station to observe a random discrete-
time backoff interval from the time the medium becomes clear until the
station begins transmitting. This, along with the use of an RTS/CTS
(request to send/clear to send) mechanism between the transmitting
station and receiving station eliminates collisions which would other-
wise cause problems.

2.5 The IEEE 802.11 Standard

The 802.11 (WaveLAN)[3] standard was developed by the IEEE 802
LAN/MAN Standards Committee for wireless local area networks (LAN).
The standard describes operation in both ad hoc and infrastructure
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networks with data rates ranging from 1 to 11 Mbits/s. It is currently
the dominant wireless LAN standard.

The 802.11 standard shares many similarities with the 802.3 Eth-
ernet standard including media access control (MAC) of the data link
layer and the physical layer (PHY) provided through a 48 bit address,
and the use of the carrier sense multiple access (CSMA) protocol for
data transmission at the physical layer.

2.5.1 Ad Hoc and Infrastructure Modes

As mentioned earlier, the 802.11 standard specifies operation in ad
hoc and infrastructure modes. In infrastructure mode 802.11 stations
communicate with a fixed 802.11 access point (AP). All data is routed
through the AP, including packets sent between wireless stations. In
many cases the AP provides a gateway between the wireless network
and other 802.x networks (Ethernet, Token Ring, etc). In ad hoc mode
there is no centralized authority. Rather, the task of organizing and
running the network is shared by each of the stations.

2.5.2 Beacon Mechanism

The beacon mechanism is central to the operation of 802.11 networks
in both infrastructure and ad hoc modes. It provides for the periodic
communication of system parameters that are required in order for the
network to function. Each beacon frame includes a timestamp field and
a beacon interval field which can be used by 802.11 stations to compute
when the next beacon frame will arrive.

2.5.3 Power Management

The 802.11 standard defines two different power states: awake state
and doze state. In the awake state the device is fully powered, whereas
in the doze state the device is not able to transmit or receive data and
energy consumption is minimized. WNICs in the doze state are allowed
to transition into the sleep state illustrated figure 2.2, whereas WNICs
in the awake state must remain in the idle, transmit, or receive
states. Wireless devices can conserve energy by switching from active
state to power-save mode. In power-save mode the device spends most
of its time in the doze state, and transitions periodically to the active
mode in order to check for packets.

17



Power Management in Infrastructure Networks

In infrastructure networks, the access point is responsible for buffering
packets that are addressed to dozing stations. A field with an entry for
each station is included in the beacon frames transmitted by the AP.
If the AP has buffered data for a station, the corresponding entry in
this field is set accordingly. Stations in power-save mode are required
to transition from the doze state to the awake state at each beacon
interval. If the beacon indicates that the AP has buffered data for a
station, the station sends a special frame to the AP which causes the
AP to transmit the buffered data. Otherwise, the station transitions
back to the doze state pending the next beacon frame.

Power Management in Ad Hoc Mode

In ad hoc networks there is no AP that can buffer data destined for
a dozing station. Rather, the stations themselves are responsible for
buffering packets that are addressed to dozing stations. While the
802.11 standard does specify how stations can announce that they have
buffered data destined for other stations, it does not describe how sta-
tions should determine the power-saving mode of other stations, and
hence does not explain how a station would decide to buffer data. In
later chapters we discuss some of the algorithms that have been devel-
oped to solve this problem.

18



Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) [5, 12] is a machine-learning framework
for autonomous agents. Agents are trained to accomplish a task through
the application of rewards and punishments. The major difference be-
tween reinforcement learning and other machine learning techniques is
that in reinforcement learning there is no need to specify how the task
is to be accomplished. Instead, the agent learns how perform the task
through experience.

3.1 The Reinforcement Learning Model

In this thesis we limit our discussion to techniques for solving the rein-
forcement learning problem using statistical and dynamic programming
techniques to estimate the value of state-action pairs in the world.

The standard reinforcement-learning model consists of an agent that
interacts with the environment through observations and actions. On
each step of interaction with the environment, the agent receives an
input from the environment that describes the current state of the en-
vironment. This forms the agent’s observation of the environment and
is used by the agent to determine its internal state. After observing
the environment, the agent issues an action as output, which changes
the state of the environment, and receives a scalar-valued reward from
the environment, which indicates the value of the state transition. For-
mally, a reinforcement learning model consists of

e aset S of environment states,

e aset A of agent actions, and

19



e areward function R: S x A — R.

The goal of the agent is to learn a policy 7, mapping states to actions,
such that some measure of the long-term reward collected by the agent
through interactions with the environment is maximized.

3.1.1 Markov Decision Processes

Reinforcement learning systems model the world as Markov Decision
Processes (MDPs) [6]. Formally, an MDP consists of

a set S of states,

a set A of actions,

a reward function R: S x A — R, and

a state transition function 7' : § x A — II(S), where each element
of II(S) is a probability distribution over S.

T(s,a,s') is the probability of ending up in state s’ when taking action
a in state s. Similarly, R(s,a) is the reward for taking action a in state
s.

3.1.2 The Markov Property

A model expressed as an MDP is said to satisfy the Markov property
and to be Markov if the state transition function is independent of
the agent’s history of environment states and actions given the current
state. This is equivalent to saying that the agent has a perfect ability
to observe the state of its environment. If a model satisfies the Markov
property then it is possible to determine the next state and expected
next reward based only on the current state and action. MDP mod-
els which have hidden states are called partially observable Markov
decision processes (POMDPs) [6].

Most of the algorithms used for solving reinforcement learning prob-
lems require the existence of an MDP that models the problem, satisfies
the Markov property, and is fully observable.

3.2 Value Functions

A value function is a function of states, or state-action pairs, that
estimates the utility of an agent being in a particular state, or the
utility of an agent taking a specific action out of a particular state.
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Here “utility” is defined in terms of the future rewards that the agent
can expect to receive. Earlier we explained that a policy 7 is a mapping
from each state-action pair (s,a) € S x A to the probability 7(s,a) of
choosing action @ when in state s. We now define V7 (s), the state-value
function for policy m to be the expected return when starting in state
s and following policy 7 thereafter. We can express V™ (s) formally as

St:S}.

E.{} is used to signify the expected return given that the agent follows
policy 7.

Similarly, we can define Q™ (s, a), the action-value function for policy
m, to be the expected return from starting in state s, taking action a,
and thereafter following policy m. We can express Q™ formally as

V7™(s) = Ex{R¢ | st = s} = Ex {Z'YkrtHchI
k=0

o0
Q" (s,a) = E; {R¢|st = s,ay = a} = E, {Zrt+k+1|st =s,a; = a} )

k=0

We use Q* and V* respectively to symbolize the state-value and action-
value functions for the optimal policy 7*.

3.3 Measures of Reward

We previously stated that the goal of an agent is to maximize over some
period of time a measure of the reward that it collects. Here we describe
two frequently used reward models and explain their differences.

First we consider the receding-horizon reward model that, on every
step causes an agent to think it only has h steps left, and to choose the
action that will result in the largest expected reward over the next h
steps. Formally, we say that on every step the the agent is trying to

maximize the expression
h

E(> ).
t=0
In the receding-horizon model an agent is not concerned about the re-
wards it will collect that are more than h time steps in the future.
Rather, on each step the agent will select what it thinks is the best
action given that it has h steps remaining in which to act and gain re-
wards. The receding-horizon model is most appropriate in cases where
the agent should try to maximize its short term expected reward.
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In contrast, the infinite-horizon reward model causes the agent to
optimize its long-term reward. However, rewards in the future are
geometrically discounted by a constant factor ~:

oo

E(Z yire).

t=0

This causes the agent to emphasize rewards in the near future over
those in the far future, but does not require selection of a hard horizon.

3.4 Q-learning

Q-learning [13] is one of several algorithms available for solving re-
inforcement learning problems. It is a model-free algorithm, mean-
ing that, in contrast to model-based algorithms, there is no need to
know the transition probability function T'(s,a,s’) and reward func-
tion R(s,a) in order to learn a policy. Q-learning derives its name
from the optimal action-value function Q*(s,a). The Q-learning algo-
rithm is guaranteed to converge to optimal Q* values for each state
action pair in S x A.

The Q-learning algorithm is based on the observation that since
V*(s) = max, Q*(s, a), one can express the optimal action—value func-
tion recursively as

Q"(s,0) = R(s,0) +7 3 T(s,a,5) max Q" (s',a').
s'eS ¢

This leads to the Q-learning rule:
Qs,a) < Q(s,a) + a [r + ymax Q(s',a') - Qs,0)

The Q-learning algorithm repeatedly applies the Q-learning rule to
the set of Q values corresponding to the states in the environment.
Starting with a state s, the algorithm chooses an action @ using the
policy derived from @), takes action a and observes the next state s’
and the reward r. The value of Q(s,a) is then updated using the Q-
learning rule, s is set to s, and the process repeats.

Many states will never be visited if the algorithm always selects
an action a corresponding to the maximum () value for a given state.
Clearly, without visiting all of the actions in 4 the algorithm can not
guarantee an optimal result. In order to fix this problem we have the
algorithm use an e-greedy policy for selecting actions. Given a small e

22



such that 0 < € < 1, the algorithm selects an action corresponding to
the maximum () values with a probabily of 1 — €, and selects a random
action with probability e.

The € value determines the balance the algorithm makes between
exploration and exploitation. Low e values cause the algorithm to ne-
glect exploration and select the greedy action most of the time. This
will cause the algorithm to take a longer time to converge to optimal @
values. Similarly, large € values cause the algorithm to spend all of its
time exploring. In this case the policy converges very rapidly to opti-
mal ) values, but the agent fails to follow its own policy and performs
poorly.

23



Chapter 4

A

Reinforcement-Learning
Approach to Power
Management

This chapter describes our framework for casting the wireless device
power management problem as a reinforcement learning task. In sec-
tion 1 we discuss an earlier MDP-based approach to power management
that inspired our work in this area, and explain why we think an RL
approach is superior. In section 2 we introduce a simple RL framework
for considering the power management problem and discuss our results.
In section 3 we discuss a variety of proposed extensions to the simple
model discussed in section 2. Most of these extensions involve extend-
ing the action and state spaces to better reflect the actual dynamics of
the WNIC. Finally, in section 4 we discuss the various ways that these
models could be applied to the WNIC power-management problem in
a realistic setting.

4.1 The MDP Approach to Power Man-
agement

Our interest in a reinforcement-learning approach to wireless device

power management was directly inspired by the work of Simuni¢, Benini,
Qui et al. [14, 15, 16, 17, 18] on the related topic of using stochastic
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processes, and Markov decision processes in particular, to solve the
power management problem.

People using this approach generally model each component with a
separate probability distribution. For example, user behavior is mod-
eled with a request inter-arrival distribution, the behavior of the device
is modeled with a service time distribution, and the time taken by the
device to transition between its power states is modeled with a tran-
sition distribution. Typically these distributions are estimated during
actual user interaction with the system, but in some cases artificial
distributions such as the Pareto distribution are substituted. A linear-
programming algorithm is then used to find an optimal policy based on
the distributions and an MDP modeling the dynamics of the system.
Simuni¢ [18] reports that these methods can be used to realize a factor
of 5 power savings in WNIC operation if the user is willing to accept a
small performance penalty.

While these methods can be used to realize impressive power savings
in a laboratory setting, their wider applicability is questionable when
you stop to consider the assumptions made by these models. Specifi-
cally, these power management models guarantee optimal results only
when the actual usage patterns match those of the distributions that
were used to compute the policy. It is extremely unlikely that a pol-
icy that came with your laptop, designed for the “average” user, will
provide a useful approximation of your usage patterns. Consequently,
we are left with the option of either devising a system that adapts
the policy to the user, or a system that recomputes the policy using
probability distributions obtained by monitoring the user.

Chung, Benini, et al. [16] devised a non-stationary, MDP-based
power management system that uses sliding windows. Each window is
composed of a set number of slots, and records the recent packet arrival
and departure history for the WNIC. This data is used to form a vari-
able that ranges between 0 and 1 and which reflects the average packet
arrival rate over the period of time monitored by the window. This
variable is then used to select a policy from a policy table. However,
while the overall policy that results is non-stationary, it is not really
adaptive in a general sense. To see why, consider that the policies in
the policy table were all computed based on sample distributions which
need to match the actual user patterns in order to yield good results.
Furthermore, even if the distributions used to compute the policies
do match the patterns of the user, the system will still not guarantee
optimal results, since it uses a heuristic algorithm to select policies.

The other MDP-based power-management algorithms provide no
mechanism for fine or even medium-grained adaptability. Rather, to
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construct a useful policy, a power manager would need to collect data
on a user’s usage patterns over the period of a day, a week, or a month,
and then use the resulting distributions to recompute the policy. Note
that the distributions collected one day will generally not match dis-
tributions collected on the next day. Hence, finding an optimal or
near-optimal policy with these methods is very unlikely.

It is precisely these considerations that have motivated us to pursue
a reinforcement-learning approach to the power-management problem.
Reinforcement-learning algorithms have the great advantage of con-
tinuously adapting to the usage patterns exhibited by the user and
network.

4.2 A Simple RL Framework

This section gives a detailed description of our initial attempts at for-
mulating an adaptive reinforcement-learning framework for solving the
wireless-device power-management problem. Our approach is based on
a simple model of the system dynamics of the wireless network inter-
face card (WNIC). We present initial results obtained using this model
and investigate the model’s shortcomings. In the next section, we pro-
pose strategies for constructing more realistic models. We begin with
a discussion of how the agent views and interacts with the WNIC.

4.2.1 The Problem

Our goal is to construct an agent capable of power-managing the WNIC
so that some long-term measure of the WNIC’s energy consumption is
minimized without creating a degradation in network performance that
is unacceptable to the user. The agent is supposed to accomplish this
task by switching the WNIC either on or off. When the WNIC is on
it can receive and transmit packets and communicate with the AP, but
it also consumes power. When the WNIC is off it cannot transmit or
receive traffic and it consumes no power, but users requesting network
service will experience latency or service interruption.

4.2.2 The Agent’s Environment

The agent’s ability to perceive the world is defined by the state space
S, the elements of which are ordered tuples of the form (mode, time).
The mode state variable represents the current state of the WNIC and is
an element from the set {on,off}. In our simple model the transmit,
receive, idle, and sleep states are all lumped into the on state.
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on
off

Figure 4.1: Agent actions and their effect on the mode state variable.

Our model divides time into discrete time intervals, each of which
is a second long. Ideally, the time state variable would represent the
number of time intervals that have elapsed since the last packet was
transmitted or received by the WNIC. However, since the WNIC can
neither transmit nor receive packets while in the off state, this def-
inition becomes impractical. Consequently, we make the assumption
that when the WNIC is in the off state, packets that would have been
received or transmitted had the WNIC been in the on state are time-
stamped with the current time, and either buffered on the AP or on
the WNIC itself. We then use the following rule for setting the time
variable. As long as the WNIC is in the off state, the time vari-
able increments one unit per time interval. If the WNIC transitions
from the off state to the on state, the WNIC checks for time-stamped
packets buffered in its queue or on the AP. If any packets are found,
the time variable is set equal to the difference of the current time and
the most recent time found on the collection of buffered packets. If no
packets are outstanding, then the time variable is simply incremented
by a unit.

The agent’s action space, A, is {on, off}: on each step of interaction
with the WNIC, the agent can either turn the WNIC on or off. If the
card is already in the on state, the on action has no effect on the mode.
Similarly, issuing the off action when the WNIC is in the off state
has no effect on the mode. Figure 4.1 summarizes these transition rules.

4.2.3 The Reward Signal

On each step of interaction with the WNIC, the agent receives a reward
signal. Over the long term, the agent tries to maximize some measure of
the incremental reward signals. Ideally, the WNIC’s hardware interface
would provide a means for measuring the device’s power consumption.
However, since it does not, we base our estimates of power consumption
on data collected by Stemm and Katz [1] and Feeney and Nilsson [10].

If the reward signal reflected only the amount of energy consumed
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by the WNIC, and if the agent wanted to minimize this quantity, the
simple solution would be to stay in the off state all the time. In order
to avoid this trap, we also include a latency parameter in the function
used to calculate the reward signal. Consequently, the reward signal
takes into account the amount of energy consumed in the last time
step, as well as the time that packets spent buffered in the WNIC’s
output queue if the card was in the off state. The introduction of a
scalar variable o with values in the range [0, 1] allows us to express the
reward function as

r = —(a * energy) — ((1 — a) * latency).

The variable a expresses the tradeoff between the importance of con-
serving energy and avoiding latency, and is set by the user. High «
values make the reward function insensitive to latency penalties, and
will result in an agent that spends most of its time asleep. Similarly,
small « values will cause the agent to spend most of its time awake in
an effort to avoid packet latency penalties.

4.2.4 The Learning Algorithm

Our initial attempts at solving the WNIC power-management prob-
lem with reinforcement learning have focused on offline, trace-based
training using the Q-learning algorithm. We used the tcpdump [19]
packet-sniffing utility to collect our live traces, and have supplemented
this collection with a variety of artificially generated traces in an ef-
fort to make program verification easier. Each entry in a raw trace
corresponds to a packet, and indicates whether the packet was trans-
mitted or received, at what time it was handled by the WNIC, the
application-level protocol the packet was associated with, and the size
of the packet. Currently we ignore packet fragmentation, instead cre-
ating only one entry for each fragmented packet. This means that our
packet size records are sometimes incorrect. e plan to fix this error in
the near future.

Each raw trace is filtered by protocol in order to create separate
traces composed of SSH packets, HT'TP packets, etc. The separate
traces are then used to train individual agents with the hope that they
will learn policies tailored to the unique patterns of the protocol. We
plan to eventually integrate the individual agents using an arbitration
mechanism similar to the one illustrated in figure 4.2. At each time step
the protocol-specific agents illustrated in the figure—nwssy, TgrrPe,
etc.—submit an action to the arbitration mechanism. The arbiter will
turn the WNIC off if all of the agents submit off actions. However,
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Figure 4.2: An arbitration mechanism for integrating actions from mul-
tiple, protocol specific power management agents. The three agents
represented as Tggh, Thitp, and Tpyms Were respectively trained to man-
age Secure Shell Protocol, Hypertext Transfer Protocol, and the Mi-
crosoft Media Server Protocol.

the arbiter will turn the WNIC on if any of the agents submits an on
action.

We based our decision to learn a separate policy for each protocol
on several observations. First, we realized that we would have to add
multiple state variables to the simple model in order to get the same
effect, and that this change would make the state space much larger
and cause the agent to take more time to learn an optimal policy. We
also realized that our separate policy approach makes it easier to learn
new policies for new protocols.

4.2.5 Assumptions

The model we have presented above makes three fundamental assump-
tions that are questionable in this domain. We list each of these as-
sumptions below along with an example that illustrates why our model
violates the assumption. All of the assumptions are based on conditions
that must be true in order for the Q-learning algorithm to guarantee
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convergence to optimal results. It is important to note that these con-
ditions are sufficient but not necessary. Hence, while our model does
not satisfy any of these conditions completely, it is not right to con-
clude that this will make it impossible to obtain useful, or even optimal
results using these techniques.

Assumption 1: The environment is Markov

The Q-learning algorithm is guaranteed to eventually converge to op-
timal @ values only if the environment satisfies the Markov property.
Hence, we either need to demonstrate that the environment is Markov,
or that it is close enough to being Markov that its non-Markovianity
will not noticeably affect the results of the Q-learning algorithm.

As explained earlier, the environment is Markov if the probability
of being in state s’ and receiving reward r at time ¢ + 1 is dependent
only on the state the environment was in at time ¢t and the action the
agent took at time ¢. This is expressed formally as

o _ _
Pr{sit1 =s",re41 =1 S¢,ae,7¢, S¢4—1,Q—1, .. -, T1, 50,00} =

Pr{sit1 = s',7e01 =7 | 5¢,0¢}

Unfortunately, we know that this condition does not hold for the system
model described above. To see this, consider what happens when the
WNIC is in state (on,t) and selects action off. If the WNIC transmit-
ted or received a packet in the period between ¢ and ¢+ 1 then the next
state will be (on, 1). However, if the WNIC did not transmit or receive
a packet between ¢ and ¢t + 1, then the next state will be (on, t+1). Our
model does not include a state variable to describe packet transmission,
so from the agent’s perspective this state transition will appear to be
nondeterministic.

In the reinforcement learning framework, each action of the agent
is answered by the environment with a reward signal and a state sig-
nal. The degree to which the state signal accurately and completely
reflects the current state of the environment determines an environ-
ment’s observability. An environment is fully observable if the state
signal uniquely distinguishes the current state from all other states.

In our model, the state signal consists of two state variables: mode
and time. The mode is either on or off. In the previous chapter we ex-
plained that the WNIC at a minimum has 5 states (transmit, receive,
idle, sleep, and off), and in many cases has even more if we include
the different radio power-saving modes. Earlier we mentioned that the
transmit, receive, idle, and sleep states are all lumped into the
on state. We can reduce the set of unobservable states to transmit,
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receive, and idle by disabling the WNIC’s power saving mode. At
this point, our main concern is that our inability to differentiate be-
tween the transmit, receive, and idle states will compromise our
ability to accurately gauge the amount of power consumed per time
unit. However, we argue that we can closely estimate the amount of
time the WNIC spends in transmit and receive modes by observing
the size of the packets that are transmitted and received.

The state signal also fails to account for the state of the network
as a whole. For example, whether or not the WNIC receives a packet
at time ¢ + 1 is dependent on whether another WNIC sent a packet to
it at time ¢. Packets in transit as well as the state of other WNICs on
the network are not included in the state signal since acquiring such
information is impossible. We believe that we can ignore this hidden
state, since mobile computers rarely receive packets that are not in
some way related to an earlier request made by the mobile computer.

Assumption 3: Offline Learning is Legal

Our initial tests have been based on an offline, trace-based approach
to learning. In an experimental setting, this is advantageous since it
allows us to quickly reproduce results as well as to subject our algorithm
to traces modeling a wide range of different user behaviors. However,
there is one major pitfall involved in learning from traces, illustrated
with the following example. If, during an offline training epoch, the
Q-learning algorithm turns the simulated WNIC off at time ¢ and then
on again at time t + n, what happened to the packets that the trace
indicates were transmitted and received by the real WNIC during that
period? In our offline learning setup, we chose to assume that these
packets were buffered either at the AP or within the WNIC, and that
these buffers were cleared and the packets sent during the next time
slice when the WNIC was in the on state.

The problem with this approach is that the behavior documented
by the trace after time ¢ + n was affected by what the trace recorded
happening before time ¢ + n. Consequently, when we let our offline
learning algorithm ignore what actually happened between time ¢ and
t + n, we end up invalidating the rest of the trace. Furthermore, it
seems likely that the errors introduced by each one of these disconnects
between the trace record and simulator are cumulative, such that after
a handful of these episodes the trace is probably useless as a document
describing what is going to happen next.

We defend our actions by noting two points. First, using traces
offline is a better starting point than trying to learn online from real
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State On off
Action Off | On Off | On
1 -1.211 | -1.795 | -0.756 | -1.119
2 -1.216 | -1.819 | -0.567 | -1.189
3 -1.326 | -1.952 | -0.630 | -1.250
4 -1.394 | -2.019 | -0.699 | -1.320
5 -1.471 | -2.097 | -0.777 | -1.402
6 -1.562 | -2.181 | -0.864 | -1.486
7 -1.656 | -2.279 | -0.961 | -1.582
8 -1.765 | -2.381 | -1.069 | -1.682
9 -1.949 | -1.875 | -1.250 | -1.188
10 -1.315 | -1.787 | -1.634 | -1.391
11 -1.213 | -1.797 | -1.570 | -1.483
12 -1.259 | -2.134 | -1.440 | -2.764

Table 4.1: @ values obtained using the simple model.

data. Second, we believe that since the agent’s decision period is quite
large (100 msec to 1sec) in comparison to the amount of time it takes
to transmit a TCP packet (0.5 to lmsec at 11Mbps) our argument that
buffered packets can be cleared within the first on interval is probably
accurate.

4.2.6 Results

In an effort to verify our simple framework we have tested the model
described above and the Q-learning algorithm using artificially gener-
ated trace data. Our artificial trace, composed of 10 records, describes
a situation in which a packet arrives every 10 seconds. Using v = 0.9
and € = 0.1, and reward factor & = 0.7 we have demonstrated reliable
convergence to an optimal policy within 1000 training epochs. The
optimal policy in this case, described by the ) values in table 4.1, is
for the WNIC to enter the on state once every 10 seconds in order to
handle the packet arrival, and then spend the next 9 seconds in the of f
state. With this policy the WNIC minimizes power consumption and
avoids latency penalties.
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4.3 Extensions and Improvements to the
Simple Framework

In this section we discuss several important extensions to the model de-
scribed above that attempt to make it a more realistic representation of
the WNIC’s dynamics. We believe that by applying these modifications
in the future we will be able to realize improved power management
performance from the system.

4.3.1 Extensions to the State and Action Spaces

In our discussion of wireless networking hardware in chapter 2 we ex-
plained that many of the internal WNIC power states are hidden from
the software interface. For example, based on the 802.11 WNIC hard-
ware interface, software is only able to differentiate between the on and
off WNIC states, despite the fact that the device actually has at least
five major modes (transmit, receive, idle, sleep, off) not including
the various reduced-power radio modes. We believe that it is impor-
tant to investigate the consequences of including these hidden states
in our model’s state space, and then determining through simulation
if power management software agents could learn improved policies for
managing the transitions between these states.

4.3.2 Multiple Window Sizes

The state space of the simple model described above makes no attempt
to record or take into account the recent packet transmission and receipt
history of the WNIC. Since the current service load is a good predictor
of future near-term service load we expect to be able to improve the
performance of our power management policies through the introduc-
tion of history state variables similar to those described by Chung et
al [16]. For example, we plan to add state variables that record the
average packet arrival/departure rate over the past 100 milliseconds, 1
second, and 10 seconds.

4.3.3 Better Learning Algorithms

We have based our initial experiments on Watkins’ Q-learning algo-
rithm since its properties are well understood and the algorithm itself
is easy to implement. However, the Q-learning algorithm has several
drawbacks including a sensitivity to models that have hidden states.
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Consequently, we are interested in experimenting with other reinforce-
ment learning algorithms. A natural first step would be to experiment
with the Sarsa algorithm [5], an on-policy temporal-difference learn-
ing algorithm that is less sensitive to partially observable models than
the Q-learning algorithm. Furthermore, modifying our learning algo-
rithm to use the Sarsa algorithm instead of the Q-learning algorithm
is simple since the Sarsa algorithm differs from the Q-learning algo-
rithm by only one line of code. We might also improve our results by
testing the Sarsa(A) algorithm. Finally, if all of these algorithms prove
to be too sensitive to the hidden states in our state model we will try
experimenting with POMDP methods.

4.4 Specific Applications of the RL Power
Management Model

In the preceding sections we have described an abstract model that,
without modification, is not directly applicable to the problem of WNIC
power management. Here we discuss how one would adapt this abstract
framework to the task of power management in infrastructure and ad
hoc networks.

4.4.1 Power Management in Infrastructure Networks

A WNIC operating in an infrastructure LAN can enter low-power
modes and turn its radio off as long as it first notifies the AP. Sub-
sequently, if the AP receives a packet bound for the sleeping WNIC it
will buffer the packet and alert the WNIC in the next beacon frame.
The 802.11 standard defines the beacon period as a variable controlled
by the AP. Despite this fact, the vast majority of access points rely on
a 100 millisecond beacon period. This allows WNICs that are based on
the PRISM chipset described in chapter 2 to enter the lowest power-
saving mode during the inter-beacon periods and still have time to
awaken and receive the next beacon frame. It is important to recognize
that awakening from a low power state requires a significant amount of
energy, since capacitors have to be charged and oscillators stabilized.
Consequently, it is advisable to awaken and listen for a beacon frame
only if the WNIC knows with high probability that there are packets
addressed to it that are buffered on the AP.

Krashinsky [20] notes this problem and proposes an extension to
the hardware-level 802.11 power management algorithm that would
allow WNICs to change their ListenInterval (the period between lis-
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tening for a beacon frame) dynamically. He refers to this mechanism
as “ListenInterval-backoff” as a way of comparing it to the familiar
exponential-backoff contention algorithms that are used at the physical
layer in the Ethernet and 802.11 standards. In Krashinsky’s heuristic
algorithm, the WNIC starts with a ListenInterval equal to the beacon
period, but gradually increases this variable in beacon period incre-
ments as long as the WNIC does not detect packets buffered at the
WNIC.

We believe that we can improve on Krashinsky’s heuristic approach
by using a reinforcement learning agent to control changes in the Lis-
tenInterval variable. Whereas Krashinsky’s algorithm is implemented
at the hardware level and can see only physical layer frame information,
our mid-level RL algorithm would have access to transport-layer and
application-layer packet data, which would allow it to select a Listen-
Interval suited to the needs of the applications running on the WNIC’s
host.

4.4.2 Power Management in Ad Hoc Networks

In chapter 2 we explained that ad hoc wireless LANs do not have a
permanent, wired access point to coordinate traffic and buffer packets
for sleeping WNICs. Instead, in ad hoc LANs the duties of the AP are
shared by the stations participating in the network. The most common
model is for stations to volunteer or be elected to the temporary role
of coordinator. A station operating as the coordinator functions as the
AP for the ad hoc network. It buffers traffic for sleeping nodes and
routes traffic to coordinators in other subnetworks. While the 802.11
standard provides MAC layer support for ad hoc networks, it does not
define a policy for how to choose coordinators.

How to choose coordinators has been a popular topic in the net-
working community for the past several years. Most people believe
that the primary application of ad hoc networks will be for battlefield
communication or as the communication layer in mobile sensor net-
works. Consequently, people have focused their efforts on designing
power-aware algorithms. Span [21] described by Chen et al., and the
Power Aware Multi-Access protocol with Signaling for Ad Hoc Net-
works (PAMAS) [22], described by Singh and Raghavendra, are two of
the better known protocols for organizing ad hoc networks in a power-
aware manner. Readers interested in an overview of power-aware ad
hoc networks should consult Jones et al. [23].

The Span protocol is built on top of the 802.11 standard. In a Span
network, stations volunteer to become coordinators using an algorithm
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that takes into account the station’s battery state. Specifically, at
regular intervals the current coordinator clears a block of time during
which other stations volunteer for coordinator duty. This period is
divided into slots. Each station measures its current battery level and
uses this reading to determine during which slot it will volunteer for
coordinator duty. For example, a station whose batteries are fully
charged will volunteer during an earlier slot, whereas a station whose
batteries are nearly empty will volunteer during one of the later slots.
Each station listens to the channel as its slot approaches. The first
station to volunteer typically has the most fully charged batteries, and
is consequently elected as the next coordinator. Clearly this algorithm
is designed to prolong the life of the network as a whole, as it effectively
prevents stations with relatively little battery power from serving as
coordinators.

We believe it is possible to improve on the Span algorithm using
our RL-based power-management policies. Our motivating example is
the case of a station which is receiving or transmitting streaming data.
Since such a station is going to stay awake anyway, it makes sense that
the station should volunteer to be selected as the coordinator in the
network. We believe our mid-level approach stands a better chance
than Span of being able to predict near and long-term traffic patterns
that affect the selection of coordinators.
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Chapter 5

Conclusions

In this thesis we have presented an adaptive mid-level framework for
wireless device power management based on reinforcement learning.
We have shown some initial results that demonstrate the potential of
this technique. We have described several ways of extending our frame-
work and we have also illustrated specific ways in which this framework
can be applied to the task of power management in infrastructure and
ad hoc wireless networks.

Key Conclusions

e We conclude that a mid-level approach to power management is
superior to low-level techniques implemented at the MAC layer,
and that a mid-level approach is more convenient for program-
mers than adding power management directly to applications.

e We conclude that a power manager needs to adapt to the patterns
of the user and the network in order to guarentee good perfor-
mance and demonstrated that techniques based on reinforcement
learning are capable of adapting on a continuous basis.

e Finally, we conclude that adaptive, reinforcement learning based
power management techniques have applications in ad hoc net-
works as well as in infrastructure networks.

5.1 Future Work

In chapter 5 we gave an extensive description of possible future direc-
tions for this work. We briefly summarize these points below:
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Extend the state space to better reflect the actual internal states
of the WNIC.

Experiment with different reinforcement learning algorithms such
as Sarsa as Sarsa(\) with goal of finding an algorithm that is
insensitive to the WNIC’s hidden states.

Include a history state variable in the model so that the policy
can predict the future based on the past.

Use the ns network simulator to estimate the performance of our
techniques in ad hoc and infrastructure networks.
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