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INV ITED
P A P E R

Sparse Recovery Using
Sparse Matrices
Significant results in predicting the operation of equipment such as network routers,

or the results of group testing for defective items, can often be obtained

from a few samples.

By Anna Gilbert and Piotr Indyk

ABSTRACT | In this paper, we survey algorithms for sparse

recovery problems that are based on sparse random matrices.

Such matrices has several attractive properties: they support

algorithms with low computational complexity, and make it

easy to perform incremental updates to signals. We discuss

applications to several areas, including compressive sensing,

data stream computing, and group testing.

KEYWORDS | Compressive sensing; expanders; sparse matrices;

sparse recovery; streaming algorithms

I . INTRODUCTION

The past several years have seen a new approach to the

acquisition of compressible signals. Traditional approaches

first capture the entire signal and then process it for
compression, transmission, or storage. In comparison, the

new approach obtains a succinct approximate representation

directly by acquiring a small number of nonadaptive linear

measurements of the signal. For any signal x, of length n, the

representation is equal to Ax, where A is an m� n matrix.

The vector Ax is often referred to as the measurement vector
or sketch of x. Although m is typically much smaller than n,

the sketch Ax contains plenty of useful information about the
signal x. In particular, the sketch of x retains enough

inherent information that we can directly obtain a sparse
approximation or compressed form of the signal.

This approach has been discovered and explored exten-

sively in several different research communities, including

theoretical computer science, applied mathematics, and

digital signal processing. The goal of that research is to obtain

encoding and recovery schemes with good compression rate

(i.e., short sketch lengths) as well as good algorithmic
properties (i.e., low encoding, update and recovery times).

Linear sketches have found numerous uses in several

areas, including compressive sensing, data stream computing,

and combinatorial group testing.

• Compressive sensing. In this area [12], [16], the

signal or image x is acquired using (analog or

digital) hardware, which (approximately) com-

putes a dot product of each row of the matrix A
and the signal at a unit cost. Once we obtain the

measurement vector Ax, we process it digitally to

extract information about the signal, including

significant coefficients in an orthonormal basis

(e.g., wavelet or Fourier), as well as the original

signal. Frequently, the number of measurements

we obtain with compressed sensing hardware is

much less than that of traditional hardware devices.
Nevertheless, we can sample a bandlimited analog

signal at a sub-Nyquist rate and still recover

significant frequencies in the signal or the entire

signal spectrum. For examples of compressive

sensing hardware, see [13], [31], [41], and [42].

• Data stream computing. In this area [7], [24], [33], the

vectors x are often very large, and cannot be

represented explicitly. For example, in network
measurement, xi could denote the total number of

packets with destination i passing through a network

router. Storing such vector x itself is typically

infeasible due to its large size: each destination is

represented by an IP address that is 32-bit long, and

therefore the vector x has dimension n ¼ 232. Thus, it

is preferable to maintain a lower dimensional sketch
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Ax instead and recover an approximation to x from
the sketch. However, it must be possible to maintain

such sketch under incremental updates to x. For

example, if a new packet arrives, the corresponding

coordinate of x is incremented by 1, which should be

reflected in the sketch Ax. Fortunately, this can be

easily done if the sketching procedure is linear.

Specifically, let �i denote the update to the vector x
after seeing a packet with destination i (i.e., �i ¼ 1
and �j ¼ 0 for j 6¼ i). Then, we have Aðxþ�iÞ ¼
Axþ A�i. Since A�i is simply the ith column of A,

updating the sketch can be accomplished by simply

adding that column to the current sketch Ax. See,

e.g., [18] and [30] for more information about using

data stream algorithms for network measurement.

• Combinatorial group testing. In pooling designs or

more generally combinatorial group testing [15], the
vector x represents a universe of n items in total.

Moreover, we know k of the elements are defective.

More specifically, the vector x is the characteristic

vector for the defective set so that x 2 f0; 1gn has

exactly k entries that are 1 and ðn� kÞ zeros. The goal

of combinatorial group testing is to construct a

collection of tests (called a design) to minimize the

number of tests needed to find the defective set for
the worst case input. The tests are represented by a

matrix A that is binary, with the jth column of the ith
rows equal to 1 if and only if the jth item is used by the

ith test. In the simplest (boolean) setting, each test

returns 1 if at least one of the elements used in the test

is defective. In our setting we assume the linear

model, where each test returns the number of defec-

tive elements. Note that each such test corresponds to
taking the dot product of x and a test vector, and

therefore is captured in the linear sketching model.1

See, e.g., [17], [28], and [36] for further discussion

and recent developments in the area.

In each of these applications, it is useful (and often

crucial) that the measurement matrix A be a sparse matrix,

i.e., contain very few nonzero elements per column. In data

stream processing, the time needed to update the sketch Ax
under the update �i is proportional to the number of

nonzero elements in the vector A�i, which is equal to the

number of nonzeros in the ith column of A. In experiment

pooling, the design matrix A is a binary matrix that captures

which compounds are pooled together and the measure-

ments Ax reflect the activity levels of the pooled compounds.

In many chemical and biological applications, the assumption

that compound activity is a linear function of the concentra-
tion holds only when there are not many compounds mixed

together in a single pool; thus, the design matrix A should be

not only binary but also sparse. In other applications, sparsity
can be useful for computational reasons: one can compute

the matrix–vector product Ax very quickly.2

A. Definitions and Classification of the Results
Formally, we define the sparse recovery problem as fol-

lows. Let Errk
q¼Errk

qðxÞ be the smallest possible ‘q ap-

proximation error kx� x0kq, where x0 ranges over all k-sparse

vectors (i.e., that have at most k nonzero entries). Our goal is,

given Ax, to find a vector x̂ such that the ‘p approximation

error3 kx� x̂kp is at most c > 0 times Errk
qðxÞ, i.e.,

kx̂� xkp � c � Errk
qðxÞ: (1)

Note that for any value of p, the error kx� x̂kp is

minimized when x̂ consists of the k largest (in magnitude)

coefficients of x. We refer to such x̂ as the Bhead[ of the

signal x, while x� x̂ will be called the Btail[ of x.
As mentioned earlier, we aim to design sparse recovery

schemes that achieve short sketches, have low algorithmic

complexity, and provide Bgood[ recovery guarantees. In

addition, the schemes described in this survey can be

classified based on other characteristics, such as 1) whether

the schemes are randomized or deterministic, or 2) how

general is the class of signals x supported by the schemes. In

the following, we elaborate on both issues.
• Randomization: we distinguish between two clas-

ses of schemes: for-each and for-all. The latter

describes a scheme in which one matrix A works for

all signals x. In the former case, the matrix A is

chosen at random from some distribution, and for
each signal x, the recovery algorithm works Bwith

high probability[ (at least 1� 1=n).4 Naturally,

schemes with the for-all property are preferable to
those with the for-each guarantee (if all other

parameters are the same).We note that Bfor-all[
does not mean that the matrix is constructed in an

Bexplicit[ or efficient manner. In fact, most of the

constructions presented here use the probabilistic

method. Although it is possible to construct

recovery schemes explicitly [2], [14], [34], such

schemes tend to require more measurements.

1In fact, we can assume an even more general setting, where we allow
a general vector x 2 R

n, and our goal is to identify the top k most
significant coefficients from the set of linear measurements. This is
applicable in a setting where the entries in x represent the activity level of
n compounds, or a genetic response in a biological sample.

2Specifically, the matrix–vector product can be computed in time
OðnsÞ, where s is the column sparsity of A. As we will see in Section III, in
many settings, one can achieve s ¼ Oðlogðn=kÞÞ, which leads to the
running time of Oðn logðn=kÞÞ. This compares favorably to the OðnmÞ time
achievable for random Gaussian matrices, or to the Oðn log nÞ time
achievable for random Fourier-like matrices.

3It is natural to consider p ¼ q. However, as we will see later, other
guarantees are also possible.

4We adopt here the terminology frequently used in computer science.
Note that one could require weaker probability bounds, e.g., 1� oð1Þ.
However, all algorithms presented in this survey naturally achieve the
stronger probability bound without changing the (asymptotic) bound on
the number of measurements.
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• Generality of supported signals: ideally, the recovery
schemes should support arbitrary signals x. In this

survey, we focus on describing such schemes.

However, there has been plenty of work on

algorithms supporting more restrictive classes of

signals. In particular, there have been several

schemes based on sparse matrices that work for

(almost) exactly k-sparse signals [27], [29], [32],

[37]–[39], [43], [44]. Although we do not cover
them in detail, we point out relevant connections

and references whenever possible.

B. Survey Summary
We present an overview of the algorithms for sparse

recovery that utilize sparse measurement matrices. The

description is divided into two sections: for-each algo-

rithms are covered in Section II, while for-all algorithms
are described in Section III. Historically, most of the for-

each schemes have been developed in the data stream

community during 2001–2004. In contrast, most of the

algorithms with for-all guarantees have been discovered

after 2004, during the process of unifying the ideas of

compressive sensing and data stream algorithms. We

present the algorithms in the same chronological order.

Almost all schemes described here offer sketch length
bounds of Oðk log nÞ or less, which matches or is close

to the lower bound of �ðk logðn=kÞÞ shown in [4]. They are

supported by efficient algorithms, with running times

ranging from polynomial in n to near-linear in n.

They offer a variety of approximation guarantees, starting

from aBplain vanilla[ guarantee of (1) with p ¼ q ¼ 1 (the

l1=l1-guarantee) to more complex (but often stronger) ones.

The exact sketch length bounds, approximation guarantees,
and algorithm running times are stated in Theorems 1–10.

Due to lack of space, we focus on describing only those

algorithms that achieve the best known bounds and solve

the sparse recovery problem formulated earlier in this

section. See [19] and [20] for some of the earlier work on

closely related problems, such as recovering good piece-

wise constant approximations from a sketch of a signal.

II . ALGORITHMS WITH
FOR-EACH GUARANTEES

In this section, we describe algorithms that provide for-

each guarantees. The algorithms were discovered and

described in the context of data stream computing. The

descriptions provided here are sometimes simpler than the

original versions, since we ignore various issues specific to
data streams (such as how to generate the random matrix A
using few random bits, how to update the sketch under

incremental changes to x, etc.).

A. Count-Min and Count-Median
The count-min and count-median algorithms [9] utilize

sparse random matrices where each entry is either 0 or 1.

Both algorithms use the same distribution of matrices, and
differ only in the details of the recovery algorithms.

Each matrix A is generated in the following way. Let w
be a parameter, and let h be any function from the set H of

all functions h : f1; . . . ; ng ! f1; . . . ;wg. Each such

function defines a w� n 0–1 matrix AðhÞ, such that

ðAðhÞÞj;i is equal to 1 if j ¼ hðiÞ, and is equal to 0 otherwise.

Note that each column has exactly one 1.

To create the matrix A, we choose d functions
h1; . . . ; hd independently and uniformly at random from

H. Then, we define A to be a vertical concatenation of

matrices Aðh1Þ; . . . ; AðhdÞ. Note that the number of rows in

the matrix A is equal to m ¼ wd.

For intuition about the construction, observe that, for

any signal x, and j ¼ 1; . . . ;w, l ¼ 1; . . . ; d, we have

ðAxÞðl�1Þwþj ¼ AðhlÞxð Þj¼
X

i:hlðiÞ¼j

xi:

That is, the coordinate of the sketch corresponding to the

function hl and value j is simply the sum of all values xi

such that i is mapped to j by hl. For a fixed value of i, the

sums
P

t:hlðtÞ¼hlðiÞ xt contain approximations of xi, contam-

inated by other coordinates mapped together with i. As a

result, Baggregating[ those sums over different hl provides

an approximation of xi. Different aggregation methods will

lead to different algorithms.

Count-Min: The count-min algorithm [9] (see also [18])
works under the assumption that x � 0. In this case,

computing the approximation x� from Ax is particularly

simple: we define

x�i ¼ min
l

AðhlÞxð ÞhlðiÞ¼ min
l

X
i0:hlði0Þ¼hlðiÞ

xi0:

The guarantees for the estimator x� can be derived as

follows. First, observe that xi � x�i , since the entries xi0

contaminating the estimation of xi can only increase the

value of the estimator x�i . Thus, the estimator ðAðhlÞxÞhlðiÞ
with the minimum value provides the smallest approxi-

mation error. Moreover, for any coordinate xi and function

index l, we have

E AðhlÞxð ÞhlðiÞ�xi

h i
¼
X
i 6¼i0

Pr hlðiÞ ¼ hlði0Þ½ �xi0

� 1

w
kxk1:

By Markov inequality

Pr AðhlÞxð ÞhlðiÞ�xi �
2

w
kxk1

� �
� 1=2
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and, therefore

Pr x�i � xi �
2

w
kxk1

� �
� 1=2d:

For d ¼ C log n, we have that the above guarantee

holds for all i ¼ 1; . . . ; n with probability 1� n=2d ¼
1� 1=nC�1. Thus, with the same probability, we have

kx� � xk1 �
2

w
kxk1:

The disadvantage of the above guarantee is that the
error is a function of the norm of the whole vector x, not its

tail. However, the probability that any of the entries in the

head of x contaminate an estimator of a specific xi is at

most k=w. Thus, a slightly more refined analysis5 shows

that, for w ¼ 4=� � k, � 2 ð0; 1Þ, we have

Pr x� � xi � �=k � Errk
1

� �
� 1=2d:

For d ¼ C log n, this implies

kx� � xk1 � �=k � Errk
1

with probability 1� n=2d ¼ 1� 1=nC�1.

Count-Median: The count-min algorithm can be extend-

ed to work for general signals [9]; the extension is often

referred to as the count-median algorithm. The main issue

to take care of is that, for general vectors x, the inequality

x�i � xi no longer holds, since the entries contaminating

the estimator might be negative. As a result, we cannot

aggregate using min. Instead, we replace the estimator
x� by

x�med

� �
i
¼ medianl AðhlÞxð ÞhlðiÞ:

By using the Chernoff bound, we show that, with high

probability, the majority of the estimators ðAðhlÞxÞhlðiÞ (and

therefore their median) have small error. Specifically, we

can show that for any constant C0 > 0, there exists C such
that if we set d ¼ C log n, then

x�med � x
�� ��

1� �=k � Errk
1

with probability 1� 1=nC0 .

Theorem 1: There exists a distribution over m� n
matrices A, m ¼ Oðk=� � log nÞ, such that for any signal x,

given Ax, we can recover x̂ ¼ x�med such that

kx̂� xk1 � �=k � Errk
1

with high probability. The column sparsity of A is Oðlog nÞ,
and the time needed to recover x̂ from Ax is Oðn log nÞ.

We conclude by observing that the approximation

guarantee in the above theorem implies a weaker but
perhaps more intuitive guarantee about the l1 approxima-

tion error. Consider the vector x̂ consisting of the k largest

(in magnitude) elements of x�med. Then, we have

kx� x̂k1 � ð1þ 3�ÞErrk
1:

To show this, let S be the set of the k largest in

magnitude coordinates of x, and let Ŝ be the support of x̂.

Note that kx̂Sk1 � kx̂Ŝk1. We have

kx� x̂k1 �kxk1 � kxŜk1 þ kxŜ � x̂Ŝk1

�kxk1 � kx̂Ŝk1 þ 2�Errk
1

�kxk1 � kx̂Sk1 þ 2�Errk
1

�kxk1 � kxSk1 þ 3�Errk
1

�ð1þ 3�ÞErrk
1:

For more detailed descriptions of the algorithms, see [6],

[9], and [18].

B. Count-Sketch
The next6 algorithm, called count-sketch [6], provides

error guarantees that are a function of Errk
2 as opposed to

Errk
1. This is accomplished by using a distribution over

matrices A very similar to those used by count-min, with

one difference: each nonzero entry is chosen indepen-

dently and uniformly at random from f�1; 1g (instead just

being equal to 1). Formally, let ri;l be independent random

variables with values chosen uniformly at random from

f�1; 1g, and let the functions h1; . . . ; hd be defined as in
the previous section. Then, the matrix A is a vertical

concatenation of matrices Aðh1Þ; . . . ; AðhdÞ, where

ðAðhlÞÞj;i is equal to ri;l if j ¼ hlðiÞ, and is equal to 0

otherwise. To estimate the coordinate xi, one then uses the

median estimator

x�med0 ¼ medianl ri;l AðhlÞxð ÞhlðiÞ:

5The argument is essentially a simplified version of the argument used
in [6]. See [10] or [24, Lecture 4] for the proof.

6Chronologically, the count-sketch algorithm has been invented
before count-min. It is easier, however, to describe the ideas in the reverse
order.
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The analysis of count-sketch relies on the observation
that

Pr ri;lAðhlÞx
� �

hlðiÞ�xi

	2

� C=w � Errk
2

� �
� 1=4

for some absolute constant C > 0. The final guarantee is

captured by the following theorem.

Theorem 2: There exists a distribution over m� n
matrices A, m ¼ Oðk=� log nÞ, such that for any signal x,

given Ax, we can recover x̂ such that

kx̂� xk2
1 � �=k � Errk

2

� �2

with high probability. The column sparsity of A is Oðlog nÞ,
and the time needed to recover x̂ from Ax is Oðn log nÞ.

As before, the approximation guarantee in the theorem

implies a weaker but more intuitive guarantee, this time

about the l2 approximation error. Consider the vector x̂
consisting of the k largest (in magnitude) elements of
x�

med0
. Then, we have [11]

kx� x̂k2
2 � ð1þ 9

ffiffiffiffi
�
p
Þ Errk

2

� �2
:

The proof proceeds as follows. Let E ¼ Errk
2. Let S be

the set of k largest (in magnitude) coordinates of x, and let
Ŝ be the support of x̂. Moreover, for any set P, let �P
denote the complement of P. We have

kx� x̂k2
2 � ðx� x̂ÞŜ

�� ��2

2
þkxS�Ŝk

2
2 þ x�ðS[ŜÞ

��� ���2

2
: (2)

The first term is bounded by k�=k � E2 ¼ �E2. To bound
the second term, we proceed as follows. Consider any

i 2 S� Ŝ and j 2 Ŝ� S. We have

jxij � jxjj � jx̂ij � jx̂jj þ 2
ffiffiffiffiffiffiffiffi
�=k

p
E � 2

ffiffiffiffiffiffiffiffi
�=k

p
E: (3)

Let a ¼ maxi2S�Ŝ jxij and b ¼ minj2Ŝ�S jxjj. From (3), we

have a � bþ 2
ffiffiffiffiffiffiffiffi
�=k

p
E. Thus

kxS�Ŝk
2
2 � a2jS� Ŝj � ðbþ 2

ffiffiffiffiffiffiffiffi
�=k

p
EÞ2jS� Ŝj:

Since kxŜ�Sk
2
2 � b2jŜ� Sj ¼ b2jS� Ŝj, we continue

kxS�Ŝk
2
2 � kxŜ�Sk2

. ffiffiffiffiffiffiffiffiffiffiffiffiffi
jS� Ŝj

q
þ 2

ffiffiffiffiffiffiffiffi
�=k

p
E

� �2

jS� Ŝj

� kxŜ�Sk2 þ 2
ffiffiffiffi
�
p

E
� �2

�kxŜ�Sk
2
2 þ 4kxŜ�Sk2

ffiffiffiffi
�
p

Eþ 4�E2

�kxŜ�Sk
2
2 þ 4

ffiffiffiffi
�
p

E2 þ 4�E2

�kxŜ�Sk
2
2 þ 8

ffiffiffiffi
�
p

E2:

Plugging into (2), we get

kx� x̂k2
2 ��E2 þ kxŜ�Sk

2
2 þ 8

ffiffiffiffi
�
p

E2 þ x�ðS[ŜÞ

��� ���2

2

� 9
ffiffiffiffi
�
p

E2 þ kx�Sk2
2

¼ð1þ 9
ffiffiffiffi
�
p
ÞE2:

C. Sublinear Algorithms
The above algorithms all run in time at least linear in

the signal size as they entail estimating a value for each

coordinate in the signal, even those that are insignificant.

If our goal is to just report k nonzero terms of k-sparse
approximation, then it is sufficient to find (or approxi-

mate) the top k values only to achieve similar error

guarantees. Sublinear algorithms aim to do just that and to

do so in time that scales polynomially with the number of

terms k desired and logarithmically with the length of the

input signal.

We start with the simplest example of a sublinear

algorithm and its associated binary measurement matrix to
find the unique nonzero entry in a signal of length n and

sparsity 1. Let B be the binary matrix with ith column given

by the binary representation of i, beginning with the first

column i ¼ 0. We refer to this matrix as a bit-tester
matrix.7 We add a row of 1’s to the bit-tester matrix (to

estimate the signal value) and refer to this matrix as B1. It

has logðnÞ þ 1 rows and n columns and from the

measurements B1x of a vector x with a single large entry,
we can determine both the value of the entry and its

position in time logðnÞ þ 1. The measurements are simply

the position in binary plus an estimate of the signal value

and the recovery algorithm is trivial. It also can be seen

that a similar approach applies even if the signal x is not

exactly 1-sparse, but contains some Bsmall[ amount of

noise.

For general signals, the approach is to Baugment[ the
algorithms and measurement matrix constructions from

previous sections with the matrix B1. Recall that those

algorithms used simple hash functions which map signal

7Readers familiar with coding theory might recognize B as the parity-
check matrix of the Hamming code.
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coordinates xi to rows j of the measurements. Implicit in the
correctness proofs was the ability of those hash functions to

isolate a few significant signal values from one another.

More precisely, if h is chosen uniformly at random from a

prespecified family H of hash functions, then

Pr hðiÞ ¼ hði0Þ½ � ¼ Oð1Þ
w

for some w; that is, the probability that positions i and i0 are

hashed into the same measurement is low. Using

arguments similar to those above, we can show that if

there are only k large (or nonzero) entries that are hashed

into more than k measurements, then with high probabil-
ity, a large fraction of the significant entries are hashed

into separate measurements. We can view this process as a

random masking of the original signal, leaving a signal

with only one significant entry, to which we can apply the

bit-tester matrix. More precisely, each row of our final

matrix M is the pointwise (Hadamard) product between a

row in A and a row in B1. We say that M is the row tensor

product of B1 and A, M ¼ B1

N
r A. Note that M has

approximately k logðnÞ rows.

Once we have a good estimate of a large fraction of the

significant entries, we can subtract their contribution from

the original measurements (exploiting the linearity of the

measurement process algorithmically, in addition to its

role in the application). We then repeat the process, using

Bfresh[ measurements.

By using the above techniques, we obtain the following
result [21].

Theorem 3: There exists a distribution over m� n
matrices A, m ¼ Oðk log nÞ, such that for any signal x,

given Ax, we can recover x̂ such that kx̂� xk1 � CErrk
1

with high probability. The column sparsity of A is Oðlogc nÞ
for some constant c, and the time needed to recover x̂ from

Ax is polynomial in k and log n.

III . ALGORITHMS WITH FOR-ALL
GUARANTEES

In this section, we describe algorithms that provide for-all

guarantees. The algorithms have been discovered during

the process of unifying the ideas of compressive sensing

with those from data stream algorithms. The key part of

that process has been to identify concrete properties that

1) hold for a random sparse matrix with a nonzero
probability and 2) are sufficient to support efficient and

accurate recovery algorithms.

One such property is based on the notion of graph
expansion [2], [44]. Consider a bipartite graph G ¼ GðAÞ
between two node sets U and V, with jUj ¼ n and jVj ¼ m,

such that an edge ði; jÞ belongs to G if and only if Aj;i ¼ 1.

Informally, such a graph is an expander, if each small

enough set of the nodes in U has many neighbors in V (the
formal definition is provided below).

The notion of expansion has been known to be useful

for some related problems, such as constructing low-

density parity-check codes. In fact, iterative decoding

algorithms for such codes have been used, e.g., in [25],

[27], and [44], to design sparse recovery algorithms.

However, those algorithms were designed and proven to

work only for the case where the signal x is either exactly
k-sparse or Balmost[ k-sparse. In contrast, the algorithms

we present here work for arbitrary input signals x.

Formally, we define unbalanced expander graphs as

follows. Consider a bipartite graph G ¼ ðU; V; EÞ, where

E 	 U � V is the set of edges. We refer to U as the Bleft[
part, and refer to V as the Bright[ part of the graph. A

vertex belonging to the left (right) part is called a left

(right) vertex. In our constructions, the left part will
correspond to the set f1; 2; . . . ; ng of coordinate indexes of

vector x, and the right part will correspond to the set of

row indexes of the measurement matrix. A bipartite graph

is called left-d-regular if every vertex in the left part has

exactly d neighbors in the right part.

Definition: A bipartite, left-d-regular graph G ¼ ðU; V; EÞ
is an ðs; d; �Þ-expander if any set S 	 U of at most s left
vertices has at least ð1� �ÞdjSj neighbors.

The algorithms described in this section use adjacency

matrices A of the expanders graphs G: we simply set

Aj;i ¼ 1 if and only if ði; jÞ 2 E. Note that the resulting

matrices are sparse, with exactly d ones per column.

What are the achievable expansion parameters? Since

expander graphs are meaningful only when jVjGdjUj, some

vertices must share neighbors, and hence the parameter �
cannot be smaller than 1=d. Using the probabilistic method

one can show that there exist ðs; d; �Þ-expanders with

d ¼ Oðlogðn=sÞ=�Þ and m ¼ jVj ¼ Oðs logðn=sÞ=�2Þ. Since

our constructions require s ¼ OðkÞ and � strictly bounded

away from zero, the resulting matrices will have

Oðk logðn=kÞÞ rows.

For many applications, one often needs an explicit
expander, i.e., an expander for which we can efficiently
compute the neighbor set of a given left vertex. No explicit

constructions with the aforementioned parameters are

known. However, it is known [23] how to explicitly construct

expanders with left degree d ¼ Oððlog jUjÞðlog sÞ=�Þ1þ1=�

and right set size ðd2s1þ�Þ, for any fixed � > 0. For

simplicity, in the remainder of this paper, we will assume

expanders with the optimal parameters.

Unlike in the for-each case,8 the algorithms in this
section are known to be resilient to the measurement noise.

That is, we could assume that we are given a noisy sketch

vector b ¼ Axþ �, where � is the Bmeasurement noise[
vector. In that case, the error bounds in the approximation

8It should be noted that, although the for-each algorithms have not
been typically analyzed for the case of noisy sketches, the algorithm
themselves could very well be quite resilient to various forms of noise.
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guarantees would have an additional term depending on
� ¼ k�k1=d. However, for the sake of consistency, we will

focus the description on the noise-free case where b ¼ Ax.

The reader is referred to the original papers for the bounds

for the noise-resilient variants of the algorithms.

A. RIP(1) and ‘1-Minimization
In this section, we give an overview of the Bgeometric[

approach to sparse recovery using sparse matrices,

introduced in [2]. The approach uses the ‘1-minimization

algorithm that has been earlier shown to work for random

dense matrices [12], [16]. In the noiseless case b ¼ Ax, the

algorithm proceeds by finding x̂ such that Ax̂ ¼ b and kx̂k1

is minimized.

To understand when the above algorithm performs an

accurate recovery, we need the following generalized

definition of the restricted isometry property.

Definition 2: An m� n matrix A is said to satisfy

RIPðp; k; �Þ if, for any k-sparse vector x, we have

kxkpð1� �Þ � kAxkp � kxkp:

For the case of p ¼ 2, the notion was introduced9

in [12], which also showed that if a matrix A satisfies this

property, then the ‘1-minimization procedure produces an

accurate solution. Since then there has been a tremendous

amount of study of the properties and construction of

RIPð2; k; �Þ [or RIP(2), for short] matrices. Unfortunately,

sparse matrices cannot satisfy the RIP(2) property, unless

their number of rows is Blarge[ [8]. In particular, sparse
0–1 matrices must have at least �ðk2Þ rows.

However, it was shown [2] that such matrices can
satisfy RIPðpÞ for p equal (or very close) to 1. In particular,

the adjacency matrices of expander graphs do have this

property.10 By earlier arguments, such matrices have

Oðk logðn=kÞÞ rows, which translates into Oðk logðn=kÞÞ
sketch length bound.

Lemma 4: Consider any m� n matrix A that is the

adjacency matrix of an ðk; d; �Þ-unbalanced expander

G ¼ ðU; V; EÞ. Then, the scaled matrix A=d satisfies the

RIPð1; k; �Þ property for � ¼ 2�.
Proof: Let x 2 R

n be a k-sparse vector. Without loss

of generality, we assume that the coordinates of x are

ordered such that jx1j � . . . � jxnj. We order the edges

et ¼ ðit; jtÞ, t ¼ 1; . . . ; dn of G in a lexicographic manner. It
is helpful to imagine that the edges e1; e2; . . . of E are being

added to the (initially empty) graph. An edge et ¼ ðit; jtÞ
causes a collision if there exists an earlier edge es ¼ ðis; jsÞ,
s G t, such that jt ¼ js. We define E0 to be the set of edges

which do not cause collisions, and E00 ¼ E� E0.

Claim 5: We have

X
ði;jÞ2E00

jxij � �dkxk1:

Proof: For each t ¼ 1; . . . ; dn, we use an indicator
variable rt 2 f0; 1g, such that rt ¼ 1 iff et 2 E00. Define a

vector z 2 R
dn such that zt ¼ jxit

j. Observe that

X
ði;jÞ2E00

jxij ¼
X

et¼ðit;jtÞ2E

rt xit
j j ¼ r � z

To upper bound the latter quantity, observe that the

vectors satisfy the following constraints:

• the vector z is nonnegative;

• the coordinates of z are monotonically nonincreas-

ing, and at most kd of them are nonzero;
• for each prefix set Pi ¼ f1; . . . ; dig, i � k, we have

krjPi
k1 � �diVthis follows from the expansion

properties of the graph G;

• rjP1
¼ 0, since the graph is simple.

It follows that for any r; z satisfying the above

constraints, we have r � z � kzk1�. Since kzk1 ¼ dkxk1,

the lemma follows. h
Since

kAxk1 �
X

et¼ðit;jtÞ2E0

xit
j j �

X
et¼ðit;jtÞ2E00

xit
j j

then Claim 5 immediately implies that kAxk1 �
dkxk1ð1� 2�Þ. Since for any x we have kAxk1 � dkxk1, it

follows that A=d satisfies the RIPð1; k; 2�Þ property. h
We now need to show that the RIP(1) property of the

matrix A is sufficient to guarantee that the ‘1-minimization

works. First, we show that any vector from the kernel of an

adjacency matrix A of an expander graph (i.e., such that

Ax ¼ 0) is Bsmooth,[ i.e., the ‘1-norm of the vector cannot
be concentrated on a small subset of its coordinates. An

analogous result for RIP(2) matrices and with respect to

the ‘2-norm has been used before to show guarantees for

LP-based recovery procedures.

Lemma 6: Consider any y 2 R
n such that Ay ¼ 0, and let

S be any set of k coordinates of y. Then, we have

kySk1 � �ð�Þkyk1

where �ð�Þ ¼ ð2�Þ=ð1� 2�Þ.

9The original paper [12] employed a slightly different notation using
Bdouble sided error,[ i.e., requiring that kxk2ð1� �0Þ � kAxk2 �
kxk2ð1þ �0Þ. The two definitions can be seen to be equivalent, by scaling
A and setting ð1þ �Þ ¼ ð1þ �0Þ=ð1� �0Þ.

10In fact, for some range of parameters, the opposite holds, i.e., 0–1
matrices that satisfy RIP(1) are adjacency matrices of expander graphs.
See [2] and [8] for more details.
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The proof proceeds by showing that any vector y whose
‘1-norm is concentrated on a small set S of coordinates

cannot satisfy Ay ¼ 0. This is because [by the RIP(1)

property] the ‘1-norm of the vector AðySÞ is Blarge,[ and

(from the expansion property of the underlying graph) the

contribution of the coordinates in the complement of S is

not sufficient to reduce Ay to 0. See [2] for the formal proof.

The Bsmooth kernel[ property is then used, as in prior

work, to provide recovery guarantees for the ‘1-minimization.
This is achieved by the following lemma, by setting u ¼ x
and v ¼ x̂.

Lemma 7: Consider any two vectors u; v, such that for

y ¼ v� u, we have Ay ¼ 0, and kvk1 � kuk1. Let S be the

set of k largest (in magnitude) coefficients of u, then

kv� uk1 � 2= 1� 2�ð�Þð Þ � ku� uSk1:

The following theorem summarizes the discussion.

Theorem 8: There exists an m� n (expander) matrix A,

m ¼ Oðk logðn=kÞ=�2Þ, such that for any signal x, given Ax,

we can recover x̂ such that

kx� x̂k1 � cð�ÞErrk
1

where cð�Þ ! 2 as �! 0. The column sparsity of A is

OðlogðnÞ=�2Þ, and the recovery involves solving a linear

program with OðnÞ variables and Oðmþ nÞ constraints.

This concludes the overview of the results of [2].

Further studies of ‘1-minimization algorithms for sparse

matrices have been done in [43] and [29], where the

authors obtained tight estimates for the number of

measurements needed to recover signals of given sparsity.
The papers consider somewhat different setups: in [43],

one allows arbitrary sparse signals x and measurements

contaminated by random Gaussian noise; in [29], the

authors consider sparse nonnegative signals.

B. EMP, SMP, and Other Near-Linear
Time Algorithms

In this section, we describe a family of iterative

algorithms for performing sparse recovery. Their key

feature is that they enable performing sparse recovery in

near-linear time while still using Oðk logðn=kÞÞ measure-

ments. The algorithms do not use linear programming;
instead, they exploit various forms of voting mechanisms

to converge to a solution. The specific algorithms covered

are: expander matching pursuit (EMP) [26] and sparse

matching pursuit (SMP) [5].11

To describe the algorithms we need some notation. For
a set S of nodes of a graph G, the ordered set of its

neighbors in G is denoted by �GðSÞ. The subscript G will be

omitted when it is clear from the context, and we write

�ðuÞ as a shorthand for �ðfugÞ.
Both EMP and SMP proceed in a sequence of steps,

where each step is similar to the median estimation

process of the count-median algorithm. A minor technical

difference is that the algorithms are constructed for
general sparse matrices A, as opposed to block-structured

ones used by count-median. Therefore, for a given sketch

vector b ¼ Ax, the median estimation vector EmedðbÞ is

defined as

EmedðbÞi ¼ medianj2�ðiÞbj:

That is, each vertex i selects the entries bj where j is a

neighbor of i in G, and then computes the median of those

entries. One can observe that for the matrices used by

count-median, the new and old estimators are identical.

The basic intuitions behind the choice of the estimator

transfer as well.

There is, however, one important difference: unlike in
the for-each setup, here we cannot guarantee that each
coordinate EmedðbÞi differs from xi by only a small term. In

fact, due to the deterministic nature of the process, it

might be possible that, for some coordinate i, all sketch

coordinates bj, j 2 �ðiÞ, could be highly Bcontaminated[ by

other entries of x. Thus, the algorithms do not provide

guarantees for the l1 error of the recovered approxima-

tion. However, it is nevertheless possible to directly give
guarantees for the l1 approximation error.

1) EMP: The first algorithm that achieved the

Oðk logðn=kÞÞ sketch length bound and recovery time

near-linear in n was the EMP. The algorithm and its

analysis are somewhat complicated, so instead of a detailed

description we provide only an overview.

EMP consists of two phases. In the first phase, the
algorithm identifies a set I of coordinates of x that

1) contains Bmost[ of the k largest (in magnitude) coeffi-

cients of x and 2) for all nodes i 62 I the neighborhood sets

�ðiÞ and �ðIÞ have Bsmall[ intersection. The first constraint

ensures that we can set the coordinates x̂i of the

approximation to zero for all i 62 I. The second constraint

ensures that the values of sketch coordinates b�ðIÞ are not too

contaminated by entries xi for i 62 I. Together, this implies
that we can focus on decoding x̂I from b�ðIÞ. This is

accomplished during the second phase, which proceeds in a

sequence of iterations. In each iteration, the algorithm

identifies coordinates i 2 I such that most of elements of �ðiÞ
do not have any other neighbors in �ðIÞ. The algorithm then

estimates the values x̂i of such coordinates (using the median

estimator), eliminates them from the I, and subtracts their

11There is a very recent variant of SMP called sequential sparse
matching pursuit [3]. We do not cover it in this survey due to lack of
space.

Gilbert and Indyk: Sparse Recovery Using Sparse Matrices

944 Proceedings of the IEEE | Vol. 98, No. 6, June 2010



contribution to the sketch. The process is continued until the
set I becomes empty.

Since each coordinate of the approximation is estimat-

ed only once, and is never revised again, the EMP

algorithm is very efficient: it runs in time proportional to

the number of edges in the graph G, which is

Oðn logðn=kÞÞ. The recovered vector x̂ provides an

approximation in the ‘1-norm, i.e., we have the following.

Theorem 9: There exists an m� n (expander) matrix A,

m ¼ Oðk logðn=kÞ=�2Þ, such that for any signal x, given Ax,

we can recover x̂ such that

kx� x̂k1 � ð1þ �ÞErrk
1:

The column sparsity of A is OðlogðnÞ=�2Þ, and the recovery

algorithm (EMP) has Oðn logðn=kÞ=�2Þ running time.

Although EMP offers excellent asymptotic guarantees,

its empirical performance is not so great. Specifically, the
number of measurements required by the algorithm to

achieve correct recovery is suboptimal. For example, our

recovery experiments on random signed k-sparse signals of

length n, for k ¼ 50 and n ¼ 20 000, show that one

typically needs at least 5000 measurements to recover the

signal correctly using the EMP algorithm. In comparison,

the linear-programming-based recovery algorithm for

sparse matrices described earlier requires only about
450 measurements to perform the same task.12

2) SMP: The SMP borrows some of the ideas present in

EMP, but it has been also influenced by the recent iterative

algorithms for sparse recovery using dense matrices, such

as [35]. The running time of the new algorithm is slightly

higher (by a logarithmic factor) than of EMP. However,

empirically, the algorithm performs successful recovery
from a significantly smaller number of measurements. In

particular, for the instances described above, SMP

typically needs about 2000 measurements. The asymptotic

bound on the number of required measurements is still

Oðk logðn=kÞÞ.
The recovery algorithm is iterative, in the spirit of

matching pursuit [40]. In each iteration, the algorithm

estimates the difference between the current approxima-
tion x̂j and the signal x from the sketch Ax̂j � b. The

estimation, denoted by u�, is obtained by using the median

estimator as in EMP. The approximation x̂j is updated by u,

and the process is repeated.

Let Hl½y� be a Bthresholding operator,[ which zeros out

all but the l largest in magnitude coefficients of the

argument y. Also, let C > 0 be some constant. The details

of the algorithm, together with remarks about the
properties used in the analysis, are depicted in Fig. 1.

The remarks rely on the following trick, borrowed from

[35]: we can decompose the input signal x into the Bhead[

x0 (containing the k most significant components of x) and

the Btail[ x� x0. Then, we can interpret the Bsketch of the
tail[ term Aðx� x0Þ as measurement noise. That is, we can

assume that the sketch b is equal to Ax0 þ �0, where

�0 ¼ Aðx� x0Þ and x0 is k-sparse. Note that the RIP(1)

property of A implies that kAðx� x0Þk1 � dkx� x0k1 ¼
dErrk

1. We define �0 ¼ k�0k1=d � Errk
1.

From the remarks in the algorithm description, we

conclude that for any j ¼ 1; 2; . . . ; T, we have

kx̂j � x0k1 � kx0k1=2j þ Oð�0Þ:

Thus, setting the number of iterations to T ¼ logðkx0k1=�
0Þ

guarantees that

kx̂T � x0k1 ¼ Oð�0Þ ¼ O Errk
1

� �
:

The following theorem summarizes the discussion.

Theorem 10: There exists an m� n (expander) matrix A,

m ¼ Oðk logðn=kÞÞ, such that for any signal x, given Ax, we

can recover x̂ such that

kx� x̂k1 � c Errk
1

for an absolute constant c > 0. The column sparsity of A is

Oðlog nÞ, and the recovery algorithm (SMP) has

Oðn logðn=kÞTÞ running time, for T defined as above.

3) Connections to Message-Passing Algorithms: The SMP

algorithm described above, as well as the aforementioned

algorithms from [25], [27], and [44], can be interpreted in

12For both algorithms, we used randomly generated 0–1 matrices with
column sparsity equal to 20.

Fig. 1. Sparse matching pursuit algorithm: pseudocode

and remarks on the analysis.
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a general framework of message-passing algorithms. Such
algorithms structure their operations based on the

bipartite graph G underlying the matrix A. Specifically,

each node of the graph can be viewed as a separate

processing unit, and the algorithm proceeds by the units

sending messages to each other along the edges of the

graph. Message-passing algorithms have numerous advan-

tages over the Bcentralized[ ones: their computational

complexity is low (if the underlying graph is sparse); they
also can be easily implemented in a parallel or distributed

manner.

There have been several papers on message-passing

algorithms for sparse recovery problems using sparse

random matrices. In [37] and [39], the authors introduced

the belief propagation approach to compressive sensing,

and applied it to the recovery of random signals, modeled

by a two-state mixture of Gaussians. In a more recent paper
[1], the authors used belief propagation on signals modeled

as Gaussian-scale mixtures to obtain algorithms with an

excellent empirical performance.

Message passing framework has been also used to

design randomized algorithms that work in the worst case.

In particular, the paper [32] introduced and analyzed such

algorithms that work for arbitrary k-sparse signals. That

algorithm can be viewed as an iterative generalization of
the count-min algorithms described in earlier sections.

C. HHS and Sublinear Algorithms
As in Section II, there are versions of the above

algorithms with sublinear running times. The main example

is heavy hitters on steroids (HHS) [22]. The output of the

HHS algorithm is x̂ where kx� x̂k2 � CðErr2 þ 1=
ffiffiffi
k
p

Err1Þ
and its running time is k2ðlog nÞOð1Þ. It retains the same
overall architecture as the iterative algorithms: within each

step, it isolates significant entries by hashing, estimates their
values, and then updates the measurements accordingly. It

shares a Bvoting[ procedure for determining significant

signal entries with the EMP and SMP algorithms; however,

these votes are derived from the bit tests rather than from the

signal estimates directly. HHS differs from the simple

sublinear algorithm we sketched in Section II in three major

parts. First, in order to obtain a strong guarantee for all

signals, we must hash k significant entries into OðkÞ
measurements repeatedly, for Oðlog nÞ repetitions. The

adjacency matrix of a ðs; d; �Þ expander with s ¼ OðkÞ is a

way to achieve this. Second, because we use a simple bit

tester B1 to identify the significant entries, we must ensure

that it is applied to a signal that is sufficiently filtered; the

contribution of the insignificant entries must be small

enough not to pollute our estimates of the significant entry

(recall that because the algorithm is iterative, estimation
errors at one stage can accumulate at further iterations).

Furthermore, we must carefully balance the ‘1 and ‘2 errors.

To this end, we employ a second hash matrix that reduces the

noise in each measurement after the first hash. In each

iteration j, we keep a list of signal positions for which we have

at least
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=j log k

p
logðn=jÞ logðnÞ votes. Third, we use a

separate matrix to estimate the values of the identified signal

positions with the desired mixed norm error guarantee.
Finally, in each iteration, we prune the list of signal positions

to retain the top OðkÞ positions. h
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