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Abstract
How predictable are human eye movements during search in real world scenes? We recorded 14
observers’ eye movements as they performed a search task (person detection) in 912 outdoor scenes.
Observers were highly consistent in the regions fixated during search, even when the target was
absent from the scene. These eye movements were used to evaluate computational models of search
guidance from three sources: saliency, target features, and scene context. Each of these models
independently outperformed a cross-image control in predicting human fixations. Models that
combined sources of guidance ultimately predicted 94% of human agreement, with the scene context
component providing the most explanatory power. None of the models, however, could reach the
precision and fidelity of an attentional map defined by human fixations. This work puts forth a
benchmark for computational models of search in real world scenes. Further improvements in
modeling should capture mechanisms underlying the selectivity of observer’s fixations during search.
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Daily human activities involve a preponderance of visually-guided actions, requiring observers
to determine the presence and location of particular objects. How predictable are human search
fixations? Can we model the mechanisms that guide visual search? Here, we present a dataset
of 45,144 fixations recorded while observers searched 912 real-world scenes and evaluate the
extent to which search behavior is (1) consistent across individuals and (2) predicted by
computational models of visual search guidance.

Studies of free viewing have found that the regions selected for fixation vary greatly across
observers (Andrews & Coppola, 1999; Einhauser, Rutishauser, Koch, 2008; Parkhurst &
Neibur, 2003; Tatler, Baddeley, Vincent, 2006). However, the effect of behavioral goals on
eye movement control has been known since the classic demonstrations by Buswell (1935)
and Yarbus (1967) showing that observers’ patterns of gaze depended critically on the task.
Likewise, a central result emerging from studies of oculomotor behavior during ecological
tasks (driving, e.g. Land & Lee, 1994; food preparation, e.g. Hayhoe, Shrivastava, Mruczek,
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& Pelz, 2003; sports, e.g. Land & McLeod, 2000) is the functional relation of gaze to one’s
momentary information processing needs (Hayhoe & Ballard, 2005).

In general, specifying a goal can serve as a referent for interpreting internal computations that
occur during task execution. Visual search – locating a given target in the environment – is an
example of a behavioral goal which produces consistent patterns of eye movements across
observers. Figure 1 shows typical fixation patterns of observers searching for pedestrians in
natural images. Different observers often fixate remarkably consistent scene regions,
suggesting that it is possible to identify reliable, strategic mechanisms underlying visual search
and to create computational models that predict human eye fixations.

Various mechanisms have been proposed which may contribute to attention guidance during
visual search. Guidance by statistically unexpected, or salient, regions of a natural image has
been explored in depth in both modeling and behavioral work (e.g., Bruce, & Tsotsos, 2005;
Itti, Koch & Niebur, 1998; Koch & Ullman, 1985; Li, 2002; Rosenholtz, 1999; Torralba,
2003). Numerous studies have shown that regions where the local statistics differ from the
background statistics are more likely to attract an observer’s gaze: distinctive color, motion,
orientation, or size constitute the most common salient attributes, at least in simple displays
(for a review, Wolfe & Horowitz, 2004). Guidance by saliency may also contribute to early
fixations on complex images (Bruce & Tsotsos, 2005; Harel, Koch & Perona, 2006; Itti &
Koch, 2000; Parkhurst, Law & Niebur, 2002; van Zoest, Donk, & Theeuwes, 2004),
particularly when the scene context is not informative (Parkhurst et al., 2002; Peters, Iyer, Itti
& Koch, 2005) or during free viewing. In natural images, it is interesting to note that objects
are typically more salient than their background (Torralba, Oliva, Castelhano, & Henderson,
2006; Elazary & Itti, 2008), so oculomotor guidance processes may use saliency as a heuristic
to fixate objects in the scene rather than the background.

In addition to bottom-up guidance by saliency, there is a top-down component to visual
attention that is modulated by task. During search, observers can selectively attend to the scene
regions most likely to contain the target. In classical search tasks, target features are an
ubiquitous source of guidance (Treisman & Gelade, 1980; Wolfe, Cave & Franzel, 1998;
Wolfe, 1994, 2007; Zelinsky, 2008): for example, when observers search for a red target,
attention is rapidly deployed towards red objects in the scene. Although a natural object, such
as a pedestrian, has no single defining feature, it still has statistically reliable properties (upright
form, round head, straight body) that could be selected by visual attention. In fact, there is
considerable evidence for target-driven attentional guidance in real world search tasks
(Einhauser et al, 2008; Pomplun, 2006; Rao, Zelinsky, Hayhoe, & Ballard, 2002; Rodriguez-
Sanchez, Simine & Tsotsos, 2007; Tsotsos, Culhane, Wai, Lai, Davis & Nuflo, 1995; Zelinsky,
2008).

Another top-down component which applies in ecological search tasks is scene context.
Statistical regularities of natural scenes provide rich cues to target location and appearance
(Eckstein, Drescher & Shimozaki, 2006; Hoiem, Efros, & Hebert, 2006; Torralba & Oliva,
2002; Torralba & Oliva, 2003; Oliva & Torralba, 2007). Within a glance, global information
can provide useful information about spatial layout and scene category (Joubert, Rousselet,
Fize & Fabre-Thorpe, 2007; Greene & Oliva, 2009; Renninger & Malik, 2004; McCotter,
Gosselin, Sowden, & Schyns, 2005; Rousselet, Joubert, & Fabre-Thorpe, 2005; Schyns &
Oliva, 1994). Categorical scene information informs a viewer of which objects are likely to be
in the scene and where (Bar, 2004; Biederman, Mezzanotte, & Rabinowitz, 1982; De Graef,
1990; Friedman, 1979; Henderson, Weeks & Hollingworth, 1999; Loftus & Mackworth,
1978). Furthermore, global features can be extracted quickly enough to influence early search
mechanisms and fixations (Castelhano & Henderson, 2007; Chaumon, Drouet & Tallon-
Baudry, 2008; Neider & Zelinky, 2006; Torralba et al., 2006; Zelinsky & Schmidt, this issue).
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In the present work, we recorded eye movements as observers searched for a target object (a
person) in over 900 natural scenes and evaluated the predictive value of several computational
models of search. The purpose of this modeling effort was to study search guidance, that is,
where observers look while deciding whether a scene contains a target. We modeled three
sources of guidance: bottom-up visual saliency, learned visual features of the target’s
appearance, and a learned relationship between target location and scene context.
Informativeness of these models was assessed by comparing the regions selected by each model
to human search fixations, particularly in target absent scenes (which provide the most
straightforward and rigorous comparison).

The diversity and size of our dataset (14 observers’ fixations on 912 urban scenes)1 provides
a challenge for computational models of attentional guidance in real world scenes. Intelligent
search behavior requires an understanding of scenes, objects and the relationships between
them. Although humans perform this task intuitively and efficiently, modeling visual search
is challenging from a computational viewpoint. The combined model presented here achieves
94% of human agreement on our database, however a comprehensive understanding of human
search guidance will benefit from mutual interest by cognitive and computer vision scientists
alike.

Experimental Method
Participants

14 observers (18–40 years old with normal acuity) were paid for their participation ($15/hour).
They gave informed consent and passed the eyetracking calibration test.

Apparatus
Eye movements were recorded at 240 Hz using an ISCAN RK-464 video-based eyetracker.
Observers sat at 75 cm from the display monitor, 65 cm from the eyetracking camera, with
their head centered and stabilized in a headrest. The position of the right eye was tracked and
viewing conditions were binocular. Stimuli were presented on a 21″ CRT monitor with a
resolution of 1024 by 768 pixels and a refresh rate of 100 Hz. Presentation of the stimuli was
controlled with Matlab and Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). The
following calibration procedure was performed at the beginning of the experiment and repeated
following breaks. Participants sequentially fixated 5 static targets positioned at 0° (center) and
at 10° of eccentricity. Subsequently, the accuracy of the calibration was tested at each of 9
locations evenly distributed across the screen, including the 5 calibrated locations plus 4 targets
at +/− 5.25° horizontally and vertically from center. Estimated fixation position had to be within
0.75° of visual angle for all 9 points, otherwise the experiment halted and the observer was re-
calibrated.

Stimuli
The scenes consisted of 912 color pictures of urban environments, half containing a pedestrian
(target present) and half without (target absent). Images were of resolution 800 by 600 pixels,
subtending 23.5° by 17.7° of visual angle. When present, pedestrians subtended on average
0.9° by 1.8° (corresponding to roughly 31 by 64 pixels). For the target present images, targets
were spatially distributed across the image periphery (target locations ranged from 2.7° to 13°
from the screen center; median eccentricity was 8.6 o), and were located in each quadrant of
the screen with approximately equal frequency 2.

1The complete dataset and analysis tools will be made available at the authors’ website.
2See additional figures on authors’ website for distribution of targets and fixations across all images in the database
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Procedure
Participants were instructed to decide as quickly as possible whether or not a person was present
in the scene. Responses were registered via the keyboard, which terminated the image
presentation. Reaction time and eye movements were recorded. The first block consisted of
the same 48 images for all participants, and was used as a practice block to verify that the eyes
could be tracked accurately. The experiment was composed of 19 blocks of 48 trials each and
50% target prevalence within each block. Eyetracking calibration was checked after each block
to ensure tracking accuracy within 0.75° of each calibration target. Each participant performed
912 experimental trials, resulting in an experiment duration of 1 hour.

Eye movement analysis
Fixations were identified on smoothed eye position data, averaging the raw data over a moving
window of 8 data points (33 ms). Beginning and end positions of saccades were detected using
an algorithm implementing an acceleration criterion (Araujo, Kowler, & Pavel, 2001).
Specifically, the velocity was calculated for two overlapping 17 ms intervals; the onset of the
second interval was 4.17 ms after the first. The acceleration threshold was a velocity change
of 6 °/s between the two intervals. Saccade onset was defined as the time when acceleration
exceeded threshold and the saccade terminated when acceleration dropped below threshold.
Fixations were defined as the periods between successive saccades. Saccades occurring within
50 ms of each other were considered to be continuous.

Human Eye Movements Result
Accuracy and Eye Movement Statistics

On average, participants’ correct responses when the target was present (hits) was 87%. The
false alarm rate (fa) in target absent scenes was 3%. On correct trials, observers’ mean reaction
time was 1050 ms (one standard error of the mean or s.e.m = 18) for target present and 1517
ms (one s.e.m = 14) for target absent. Observers made an average of 3.5 fixations (excluding
the initial central fixation but including fixations on the target) in target present scenes and 5.1
fixations in target absent scenes. The duration of “search fixations” exclusively (i.e. exploratory
fixations excluding initial central fixation and those landing on the target) averaged 147 ms on
target present trials and 225 ms on target absent trials. Observers spent an average of 428 ms
fixating the target-person in the image before indicating a response.

We focused our modeling efforts on predicting locations of the first three fixations in each
scene (but very similar results were obtained when we included all fixations). We introduce
below the measures used to compare search model’s predictions and humans’ fixations.

Agreement among Observers
How much eye movement variability exists when different observers look at the same image
and perform the same task? First, we computed the regularity, or agreement among locations
fixated by separate observers (Mannan, Ruddock, Wooding, 1995; Tatler, Baddeley, Gilchrist,
2005). As in Torralba et al (2006), a measure of inter-observer agreement was obtained for
each image by using the fixations generated by all-except-one observers. The “observer-
defined” image region was created by assigning a value of 1 to each fixated pixel and 0 to all
other pixels, then applying a Gaussian blur (cutoff frequency = 8 cycles per image, about 1°
visual angle). The observer-defined region was then used to predict fixations of the excluded
observer. For each image, this process was iterated for all observers. Thus, this measure
reflected how consistently different observers selected similar regions to. Figure 1 shows
examples of target absent scenes with high and low values of inter-observer agreement.
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Not all of the agreement between observers is driven by the image, however – human fixations
exhibit regularities that distinguish them from randomly-selected image locations. In this issue,
Tatler & Vincent present compelling evidence that robust oculomotor biases constrain fixation
selection independently of visual information or task (see also Tatler 2007). Qualitatively, we
observe in our dataset that the corners of the image, and the top and bottom edges, were less
frequently fixated than regions near the image center. We therefore derived a measure to
quantify the proportion of inter-observer agreement that was independent of the particular
scene’s content (see also Foulsham & Underwood, 2008; Henderson, Brockmole, Castelhano,
Mack, 2007). Our “cross-image control” was obtained using the procedure described above,
with the variation that the observer-defined region for one image was used to predict the
excluded observer’s fixations from a different image selected at random.

The Receiver Operating Characteristic (ROC) curves for inter-observer agreement and the
cross-image control are shown in Figure 2. These curves show the proportion of fixations that
fall within the fixation-defined map (detection rate) in relation to the proportion of the image
area selected by the map (false alarm rate). In the following, we report the area under the curve
(AUC), which corresponds to the probability that the model will rank an actual fixation location
more highly than a non-fixated location, with a value ranging from 0.5 (chance performance)
to 1 (perfect performance) (Harel et al, 2006;Renninger, Verghese & Coughlan 2007;Tatler et
al 2005).

The results in Figure 2 show a high degree of inter-observer agreement, indicating high
consistency in the regions fixated by different observers for both target absent scenes (AUC =
0.93) and target present scenes (AUC = 0.95). Overall, inter-observer agreement was higher
in target present than in target absent scenes (t(805) = 11.6, p<0.0001), most likely because
fixating the target was the primary goal of the search. These human agreement curves represent
the upper bound on performance, against which the computational models will be compared.
Furthermore, the cross-image consistency produced an AUC of 0.68 and 0.62 for target absent
and present scenes respectively (random chance: AUC = 0.5). The cross-image control line
represents the proportion of human agreement due to oculomotor biases and other biases in the
stimuli set, and serves as the lower bound on the performance of the models.

Modeling Methods
Here we used the framework of visual search guidance from Torralba (2003) and Torralba et
al (2006). In this framework, the attentional map (M), which will be used to predict the locations
fixated by human observers, is computed by combining three sources of information: image
saliency at each location (MS), a model of guidance by target features (MT), and a model of
guidance by the scene context (MC).

Equation (1)

The exponents (γ1,γ2, γ3), which will act like weights if we take the logarithm of Equation 1,
are constants which are required when combining distributions with high-dimensional inputs
that were independently trained, to ensure that the combined distribution is not dominated by
one source (the procedure for selecting the exponents is described below). Together, these three
components (MS, MT and MC) make up the combined attentional map (M).

Figure 3 illustrates a scene with its corresponding saliency, target features, and scene context
maps, as well as a combined map integrating the three sources of guidance. Each model makes
different predictions, represented as a surface map, of the regions that are likely to be fixated.
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The best model should capture as many fixations as possible within as finely-constrained a
region as possible. In the following sections, we evaluate the performance of each of the three
models individually, and then combined models.

Guidance by Saliency
Computational models of saliency are generally based on one principle: they use a mixture of
local image features (e.g. color and orientation at various spatial scales) to determine regions
that are local outliers given the statistical distribution of features across a larger region of the
image. The hypothesis underlying these models is that locations whose properties differ from
neighboring regions or the image as a whole are the most informative. Indeed, rare image
features in an image are more likely to be diagnostic of objects (Elazary & Itti, 2008; Torralba
et al., 2006), whereas repetitive image features or large homogenous regions are unlikely to be
object-like (Rosenholtz, Li & Nakano, 2007; Bravo & Farid, 2004).

Computing saliency involves estimating the distribution of local features in the image. Here
we used the statistical saliency model described in Torralba et al (2006), including the use of
an independent validation set to determine an appropriate value for the exponent3. The
independent validation set was composed of 50 target present and 50 target absent scenes
selected randomly from the 912 experimental images and excluded from all other analyses.
Figure 4 shows maps of the best and worst predictions of the saliency model on our stimuli
set.

Guidance by Target Features
To date, the most ubiquitous source of search guidance are target features (for reviews, Wolfe,
2007; Zelinsky, 2008). Identifying the relevant features of an object’s appearance remains a
difficult issue, although recent computer vision approaches have reached excellent
performance for some object classes (i.e. faces, Ullman, Vidal-Naquet, & Sali, 2002; cars,
Papageorgiou & Poggio, 2000; pedestrians, Dalal & Triggs, 2005; cars, bicycles and
pedestrians, Serre, Wolf, Bileschi, Riesenhuber & Poggio, 2007; Torralba, Fergus & Freeman,
2008). Here, we used the person detector developed by Dalal & Triggs (2005) and Dalal, Triggs,
& Schmid (2006) to model target features, as their code is available online4, and gives state of
the art detection performance at a reasonable speed.

Implementation of the DT person detector—The Dalal & Triggs (DT) detector is a
classifier-based detector that uses a scanning window approach to explore the image at all
locations and scales. The classifier extracts a set of features from that window and applies a
linear Support Vector Machine (SVM) to classify the window as belonging to the target or
background classes. The features are a grid of Histograms of Oriented Gradients (HOG)
descriptors. The detector is sensitive to the gross structure of an upright human figure but
relatively tolerant to variation in the pose of the arms and legs. We trained various
implementations of the DT detector with different training set sizes and scanning window sizes,
but here we report the only the results from the implementation which ultimately gave the best
performance on our validation set5. This implementation used a scanning window of 32 × 64
pixels and was trained on 2000 upright, unoccluded pedestrians, along with their left-right
reflections. Pedestrians were cropped from images in the LabelMe database (Russell, Torralba,
Murphy, & Freeman, 2008) and reduced in size to fill three-quarters of the height of the
detection window. Negative training examples consisted of 30 randomly-selected 32 × 64 pixel

3In our validation set, the best exponent for the saliency map was 0.025, which is within the optimal range of 0.01–0.3 found by Torralba
et al (2006).
4See people detector code at http://pascal.inrialpes.fr/soft/olt/
5See the authors’ website for details and results from the other implementations.
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patches from 2000 images of outdoor scenes which did not contain people. None of the
experimental stimuli were used as training images. The training process was as described in
Dalal & Triggs (2005).

The detector was tested on our stimuli set with cropped, resized pedestrians from our target
present scenes serving as positive test examples and 32 × 64 pixel windows from our target
absent scenes serving as negative test examples. Figure 5 shows the detection performance of
our selected DT model implementation6. This implementation gave over 90% correct
detections at a false positive rate of 10%, confirming the reliability of the DT detector on our
database. Although this performance might be considered low given the exceptional
performance of the DT detector on other image sets, the scenes used for our search task were
particularly challenging: targets were small, often occluded, and embedded in high clutter. It
is worth nothing that our goal was not to detect target-people in the dataset, but to use a reliable
object detector as a predictor of human search fixations.

Target features map—To generate target features maps for each image, the detector was
run using a sliding window that moved across the image in steps of 8 pixels. Multiscale
detection was achieved by iteratively reducing the image by 20% and rerunning the sliding
window detector; this process was repeated until the image height was less than the height of
the detector window (see Dalal & Triggs, 2005, for details). This meant that each pixel was
involved in many detection windows, and therefore the detector returned many values for each
pixel. We created the object detector map (MT) by assigning to each pixel the highest detection
score returned for that pixel (from any detection window at any scale). As with the saliency
map, the resulting object detector map was raised to an exponent (0.025, determined by
iteratively varying the exponent to obtain the best performance on the validation set) and then
blurred by applying a Gaussian filter with 50% cut-off frequency at an 8 cycles/image. Figure
6 shows maps of the best and worst predictions of the target features model on our stimuli set.

Guidance by Scene Context Features
The mandatory role of scene context in object detection and search has been acknowledged
for decades (for reviews, Bar, 2004; Chun, 2003; Oliva & Torralba, 2007). However, formal
models of scene context guidance face the same problem as models of object appearance: they
require knowledge about how humans represent visual scenes. Several models of scene
recognition have been proposed in recent years (Bosch, Zisserman, & Muñoz, 2008; Fei-Fei
& Perona, 2005; Grossberg, & Huang, in press; Lazebnik, Schmidt, & Ponce, 2006; Oliva &
Torralba, 2001; Vogel & Schiele, 2007; Renninger & Malik, 2004), with most of the
approaches summarizing an image’s “global” features by pooling responses from low-level
filters at multiple scales and orientations sampled over regions in the image.

Our model of scene context implements a top-down constraint that selects “relevant” image
regions for a search task. Top-down constraints in a people-search task, for example, would
select regions corresponding to sidewalks but not sky or trees. As in Oliva and Torralba
(2001), we adopted a representation of the image using a set of “global features” that provide
a holistic description of the spatial organization of spatial frequencies and orientations in the
image. The implementation was identical to the description in Torralba et al (2006), with the
exception that the scene context model incorporated a finer spatial analysis (i.e. an 8×8 grid
of non-overlapping windows) and was trained on more images (1880 images). From each
training image, we produced 10 random crops of 320×240 pixels to generate a training set with
a uniform distribution of target locations. As in Torralba et al (2006), the model learned the
associations between the global features of an image and the location of the target. The trained

6See the authors’ website for the detection curves of the other model implementations.
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computational context model compared the global scene features of a novel image with learned
global scene features to predict the image region most highly associated with the presence of
a pedestrian. This region is represented by a horizontal line at the height predicted by the model.
Figure 7 shows maps of the best and worst predictions of the scene context model on our stimuli
set.

There are cases where the scene context model failed to predict human fixations simply because
it selected the wrong region (see Figures 7 and 8). In these cases, it would be interesting to see
whether performance could be improved by a “context oracle” which knows the true context
region in each image. It is possible to approximate contextual “ground truth” for an image by
asking observers to indicate the best possible context region in each scene (Droll & Eckstein,
2008). With this information, we can establish an upper bound on the performance of a model
based solely on scene context.

Evaluating the ground truth of Scene Context: a “Context Oracle”—Seven new
participants marked the context region for pedestrians in each scene in the database. The
instructions were to imagine pedestrians in the most plausible places in the scene and to position
a horizontal bar at the height where the heads would be. Participants were encouraged to use
cues such as the horizon, the heights of doorways, and the heights of cars and signs in order to
make the most accurate estimate of human head height. Image presentation was randomized
and self-paced. Each participant’s results served as an individual “context model” which
identified the contextually relevant location for a pedestrian for each scene. The “context
oracle” was created by pooling responses from all observers. Context oracle maps (Figure 8),
were created by applying a Gaussian blur to the horizontal line selected by each observer, and
then summing the maps produced by all participants.

Guidance by a Combined Model of Attention
The three models were combined by multiplying the weighted maps as shown in Equation 1.
The weights (γ1 = 0.1, γ2 = 0.85, γ3 = 0.05) were selected by testing various weights in the
range [0,1] to find the combination which gave the best performance on the validation set.
Examples of combined source model maps are shown in Figure 9.

Modeling Results
The ROC curves for all models are shown in Figure 10 and the performances are given in Table
1. Averaging across target absent and target present scenes, the scene context model predicted
fixated regions with greater accuracy (AUC = 0.845) than models of saliency (0.795) or target
features (0.811) alone. A combination of the three sources of guidance, however, resulted in
greater overall accuracy (0.895) than any single source model, with the overall highest
performance given by a model that integrated saliency and target features with the “context
oracle” model of scene context (0.899). Relative to human agreement, the purely computational
combined model achieved 94% of the AUC for human agreement in both target present and
absent scenes. When the context oracle was substituted for the scene context model, the
combined model achieved on average 96% of the AUC of human agreement.

Saliency and target features models
The saliency model had the lowest overall performance, with an AUC of 0.77 and 0.82 in target
absent and present scenes. This performance is within the range of values given by other
saliency models predicting fixations in free viewing tasks (AUC of 0.727 for Itti et al., 1998;
0.767 for Bruce & Tsotsos, 2006; see also Harel et al., 2005).
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The best example shown in Figure 4 is typical of the type of scene in which the saliency model
performs very well. The saliency model does best in scenes with large homogenous regions
(sky, road), and in which most of the salient features coincide with the region where observers
might reasonably expect to find the target. This illustrates the difficulty in determining how
saliency influences eye movement guidance: in many cases, the salient regions of a real-world
scene are also the most contextually relevant regions. In fact, recent studies suggest that the
correlation between saliency and observer’s fixation selection may be an artifact of correlations
between salience and higher-level information (Einhauser et al, 2008;Foulsham & Underwood,
2008;Henderson et al, 2007;Stirk & Underwood, 2007;Tatler, 2007). The saliency model can
also give very poor predictions of human fixations in some scenes, as shown by the example
in Figure 4. In a search task, saliency alone is a rather unreliable source of guidance because
saliency is often created by an accidental feature (such as a reflection or a differently-colored
gap between two objects) that does not necessarily correspond to an informative region.

In target present scenes, not surprisingly, the target features model (AUC = 0.85) performed
significantly better than the saliency model (t(404) = 4.753, p < .001). In target absent scenes,
however, the target features model (AUC = 0.78) did not perform significantly above the
saliency model (t(405) < 1). Interestingly, both models were significantly correlated with each
other (0.37, p < .001), suggesting that scenes for which the saliency model was able to predict
fixations well tended to be scenes in which the target features model also predicted fixations
well.

Figure 5 shows target absent images for which the target features model gave the best and worst
predictions. Similar to the saliency model, the target model tended to perform best when most
of the objects were concentrated within the contextually relevant region for a pedestrian. Also
like the saliency model, the target features performed poorly when it selected accidental, non-
object features of the image (such as tree branches that happened to overlap in a vaguely human-
like shape). It is important to note that the performance of the target features model is not due
solely to fixations on the target. In the target absent scenes, there was no target to find, yet the
target features model was still able to predict human fixations significantly above the level of
the cross-image control. Even in target present scenes, replacing predictions of the target
features model with the true location of the target (a “target oracle”) did not explain the target
model’s performance on this dataset7.

Context models
Overall, scene context was the most accurate single source of guidance in this search task. The
computational model of scene context predicted fixation locations with an overall accuracy of
0.85 and 0.84 in target absent and present scenes respectively. The scene context model
performed significantly better than the target features model in target absent scenes (t(405) =
11.122, p < .001), although the two models did not significantly differ in target present scenes
(t(404)<1).

In the majority of our scenes, the computational scene context model gave a very good
approximation of the location of search fixations. The first and second images in Figure 7 show
the model’s best and median performance, respectively, for target absent scenes. In fact, the
context model failed to predict fixated regions (i.e., had an AUC below the mean AUC of the
cross-image control) in only 26 target absent scenes and 24 target present scenes. Typical
failures are shown in Figures 7 and 8: in a few scenes, the model incorrectly identifies the
relationship between scene layout and probable target location. In order to get around this
problem and get a sense of the true predictive power of a context-only model of search guidance,

7See the authors’ website for a comparison of the ROC curves of the target features model and the target oracle.
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we used the “context oracle.” The empirically-determined context oracle should be able to
distinguish between cases in which the context model fails because it fails to identify the
appropriate context region, and cases in which it fails because human fixations were largely
outside the context region.

Overall performance of the context oracle was 0.88 and 0.89 for target absent and target present
images respectively. The context oracle performed significantly better than the computational
model of scene context in target absent (t(405) = 8.265, p < .001) and target present (t(404) =
8.861, p < .001) scenes. Unlike any of the computational models, the context oracle performed
above chance on all images of the dataset; at worst, it performed at about the level of the average
AUC for the cross-image control (0.68 for target absent scenes). Examples of these failures
are shown in Figure 11.

Combined source models
A combined source model that integrated saliency, target features, and scene context
outperformed all of the single-source models, with an overall AUC of 0.88 in target absent
scenes and 0.90 in target present scenes (see Table 1). The combined guidance model performed
better than the best single-source model (scene context) in both target absent (t(405) = 10.450,
p < .001) and target present (t(404) = 13.501, p < .001) scenes.

Across the image set, performance of the combined model was strongly correlated with that
of the scene context model (r = 0.80, p < .001 in target absent scenes). The combined model
was also moderately correlated with the saliency model (r = 0.51, p < .001 in target absent
scenes), and the target features model correlated weakly (r = 0.25, p < 0.001 in target absent
scenes). Taken together, this suggests that the success or failure of the combined model
depended largely on the success or failure of its scene context component, and less on the other
two components.

In order to analyze the combined model in greater detail, we also tested partial models that
were missing one of the three sources of guidance (see Table 1). Removing the saliency
component of the combined model produced a small but significant drop in performance in
target absent (t(405) = 6.922, p < .001) and target present (t(404) = 2.668, p < .01) scenes.
Likewise, removing the target features component of the model also produced a small but
significant drop in performance in target absent (t(405) = 5.440, p < .001) and target present
(t(404) = 10.980, p < .001) scenes. The high significance value of these extremely small drops
in performance is somewhat deceptive; the reasons for this are addressed in the general
discussion. Notably, the largest drop in performance resulted when the scene context
component was removed from the combined model (target absent: t(405) = 17.381, p < .001;
target present: t(404) = 6.759, p < .001).

Interestingly, the combined source model performed very similarly to the empirically-defined
context oracle. The difference between these two models was not significant in target absent
(t(405) = −1.233, p = .218) or target present (t(404) = 2.346, p = .019) scenes.

Finally, the high performance of the context oracle motivated us to substitute it for the scene
context component of the combined model, to see whether performance could be boosted even
further. Indeed, substituting the context oracle for computational scene context improved
performance in both target absent (t(405) = 5.565, p < .001) and target present (t(404) = 3.461,
p = .001) scenes. The resulting hybrid model was almost entirely driven by the context oracle,
as suggested by its very high correlation with the context oracle (r = 0.97, p < .001 in target
absent scenes).
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Discussion
We assembled a large dataset of 912 real world scenes and recorded eye movements from
observers performing a visual search task. The scene regions fixated were very consistent
across different observers, regardless of whether the target was present or absent in the scene.
Motivated by the regularity of search behavior, we implemented computational models for
several proposed methods of search guidance and evaluated how well these models predicted
observers’ fixation locations. Over the entire database, the scene context model generated better
predictions on target absent scenes (it was the best single map in 276 out of the 406 scenes)
than saliency (71 scenes) or target features (59 scenes) models. Even in target present scenes,
scene context provided better predictions (191 of 405 scenes) than saliency (72 scenes) but
only slightly more than target features (142 scenes). Ultimately, combining models of
attentional guidance predicted 94% of human agreement, with the scene context component
providing the most explanatory power.

Although the combined model is reasonably accurate at predicting human fixations, there is
still room for improvement. Moving forward, even small improvements in model specificity
will represent a significant achievement. Our data shows that human observers are reasonable
predictors of fixations even as map selectivity increases: 94% and 83% accuracy for selected
region sizes of 20% and 10% respectively. In contrast, the accuracy of all models fell off
drastically as map selectivity increased and a region size of roughly 40% is needed for the
combined source model to achieve the same detection rate as human observers. Figure 12
illustrates this gap between the best computational model and human performance: observers’
fixations are tightly clustered in very specific regions, but the model selects a much more
general region containing many non-fixated objects. In the following, we offer several
approaches that may contribute to an improved representation of search guidance in real-world
scenes.

In our work, a “context region” is operationally defined as an association between certain scene
regions and the presence of a target. Under this definition, a context region can be specified
for any class of target and modeled using many representations. In this study, our model of
scene context generated predictions based on a learned association between a representation
of global image statistics and the location of a person in the scene. Compared to a model of
image saliency or a model of target-like features, we found that a scene context model was
better able to predict the region where people would look, regardless of whether the target was
present in the scene. Moreover, the high overall accuracy of a computational combined source
model was matched by an empirically-derived context oracle, created by an independent set
of participants marking the region which they deemed most likely to contain the target. In target
absent scenes, there was a substantial correlation between the context oracle and human
agreement (r=0.54, p<.001), and also between the context oracle and the combined model
(r=0.50, p<.001). This suggests that examining failures of the context oracle may hint at ways
in which the combined model’s representation fails to match human search patterns.

Figure 11 shows the worst performance of the context oracle for target absent scenes. Why
was contextual guidance insufficient for predicting the fixated regions of these scenes? One
reason may be that our model of the context region did not adequately represent the real context
region in certain complex scenes. We modeled the context region as a single height in the image
plane, which is appropriate for most images (typically pedestrians appear on the ground plane
and nowhere else). However, when the scenes contain multiple surfaces (such as balconies,
ramps, and stairs) at different heights, the simplified model tends to fail. Improving the
implementation of scene context to reflect that observers have expectations associated with
multiple scene regions may reduce the discrepancy between model predictions and where
observers look.
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In addition, observers may be guided by contextual information beyond what is represented
here. It is important to note that scene context can be represented with a number of approaches.
Associations between the target and other objects in the scene, for example, may also contribute
to search guidance (Kumar & Hebert, 2005; Rabinovich, Vedaldi, Galleguillos, Wiewiora &
Belongie, 2007; Torralba, Murphy & Freeman, 2004, 2007). In our search task, for example,
the presence of a person may be more strongly associated with a doorway than a garbage can.
The role of semantic influences in search guidance remains an interesting and open question.
In this issue, Zelinsky & Schmidt explore an intermediate between search of semantically
meaningful scenes and search in which observers lack expectations of target location. They
find evidence that scene segmentation and flexible semantic cues can be used very rapidly to
bias search to regions associated with the target (see also Eckstein et al, 2006; Neider &
Zelinsky, 2006).

Scene context seems to provide the most accurate predictions in this task, which provokes the
question: Is scene context typically the dominant source of guidance in real world search tasks?
Similarly, how well do the findings of this study generalize to search for other object classes?
Our search task may be biased toward context-guided search in the following ways. First,
observers may have been biased to adopt a context-based strategy rather than relying on target
features simply because the target pedestrians were generally very small (less than 1% of image
area) and often occluded, so a search strategy based mainly on target features might have
produced more false alarms than detections. Second, the large database tested here represented
both semantically-consistent associations (pedestrians were supported by surfaces; Biederman
et al, 1982) and location-consistent associations (pedestrians were located on ground surfaces).
As a result, even when the target was absent from the scene, viewers expected to find their
target within the context region, and therefore the scene context model predicted fixations more
effectively than the target-features or saliency models. Searching scenes in which the target
location violated these prior expectations (e.g. person on a cloud or rooftop) might bias the
pattern of fixations such that emphasis on different sources of guidance is different from the
weights on the current model.

A fully generalizeable model of search behavior may need to incorporate flexible weights on
the individual sources of search guidance. Consider the example of searching for a pen in an
office. Looking for a pen from the doorway may induce strategies based on convenient object
relations, such as looking first to a desk, which is both strongly associated with the target and
easy to discriminate from background objects. On the other hand, looking for a pen while
standing in front of the desk may encourage the use of other strategies, such as searching for
pen-like features. It follows that the features of the target may vary in informativeness as an
observer navigates through their environment. A counting task, for example, may enhance the
importance of a target features model (see Kanan, Tong, Zhang, & Cottrell, this issue). The
implications for the combined source model of guidance are that, not only would the model
benefit from an improved representation of target features (e.g. Zelinsky, 2008) or saliency
(see Kanan, Tong, Zhang, & Cottrell, this issue) or context, but the weights themselves may
need to be flexible, depending on constraints not currently modeled.

In short, there is much room for further exploration: we need to investigate a variety of natural
scene search tasks in order to fully understand the sources of guidance that drive attention and
how they interact. It is important to acknowledge that we have chosen to implement only one
of several possible representations of image saliency, target features, or scene context.
Therefore, performance of the individual guidance models discussed in this paper may vary
with different computational approaches. Our aim, nevertheless, is to set a performance
benchmark for how accurately a model representing combined sources of guidance can predict
where human observers will fixate during natural search tasks.
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Concluding remarks
We present a model of search guidance which combines saliency, target-features, and scene
context, and accounts for 94% of the agreement between human observers searching for targets
in over 900 scenes. In this people-search task, the scene context model proves to be the single
most important component driving the high performance of the combined source model. None
of the models, however, fully capture the selectivity of the human-based attentional map. A
comprehensive understanding of search behavior may require that future models capture
mechanisms that underlie the tight clustering of search fixations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Examples of target absent scenes with (a) high and (b) low inter-observer agreement. Dots
represent the first 3 fixations from each observer.
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Figure 2.
Inter-observer agreement and cross-image control for target absent (left) and present (right)
scenes. The false alarm rate, on the x-axis, corresponds to the proportion of the image selected
by the model.
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Figure 3.
Illustration of an image, the computational maps for three sources of guidance, and the overall,
combined attentional map. The flattened maps show the image regions selected when the model
is thresholded at 30% of the image.
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Figure 4.
Saliency maps of the best and worst predictions of the database, and one midrange image, with
their AUC values. The highlighted region corresponds to 20% of the image area. Dots represent
human fixations.
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Figure 5.
The ROC curve of the best implementation of the DT pedestrian detector, tested on our stimuli
set.
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Figure 6.
Target features maps (thresholded at 20% of the image area). Dots represent human fixations.
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Figure 7.
Scene context maps (thresholded at 20% of the image area). Dots represent human fixations.
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Figure 8.
Comparison between (a) the computationally-defined scene context map and (b) the
empirically-defined context oracle map for a single image (maps are thresholded at 20% of the
image area; dots represent fixations).
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Figure 9.
Combined source maps (thresholded at 20% of the image area). Dots represent human fixations.
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Figure 10.
ROC curves for models. The ROC curves for human agreement and cross-image control
correspond respectively to the upper and lower bounds of performance against which models
were compared.
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Figure 11.
Target absent scenes on which the context oracle performed the worst, with their corresponding
AUC values. Maps are thresholded at 20% of the image area; dots represent fixations.
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Figure 12.
Illustration of the discrepancy between regions selected by (a) the combined computational
model and (b) human fixations.
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Table 1

Summary of Performance of Human Observers, Single-Source Models, and Combined Source
of Guidance Models.

Area Under Curve

Performance
at 20%

Threshold

Performance
at 10%

Threshold

Target Absent Scenes

Human Agreement 0.930 0.923 0.775

Cross-image Control 0.683 0.404 0.217

Saliency Model 0.773 0.558 0.342

Target Features Model 0.778 0.539 0.313

Scene Context Model 0.845 0.738 0.448

Context Oracle 0.881 0.842 0.547

Saliency × Target Features 0.814 0.633 0.399

Context × Saliency 0.876 0.801 0.570

Context × Target Features 0.861 0.784 0.493

Combined Source Model 0.877 0.804 0.574

Combined Model, using
Context Oracle

0.893 0.852 0.605

Target Present Scenes

Human Agreement 0.955 0.952 0.880

Cross-image Control 0.622 0.346 0.186

Saliency Model 0.818 0.658 0.454

Target Features Model 0.845 0.697 0.515

Scene Context Model 0.844 0.727 0.451

Context Oracle 0.889 0.867 0.562

Saliency × Target Features 0.872 0.773 0.586

Context × Saliency 0.894 0.840 0.621

Context × Target Features 0.890 0.824 0.606

Combined Source Model 0.896 0.845 0.629

Combined Model, using
Context Oracle

0.906 0.886 0.646
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