
@ MIT

massachusetts institute of technology — artificial intelligence laboratory

ADAM: A Decentralized Parallel
Computer Architecture Featuring
Fast Thread and Data Migration and
a Uniform Hardware Abstraction

Andrew "bunnie" Huang

AI Technical Report 2002-006 June 2002

© 2 0 0 2 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

ADAM: A Decentralized Parallel Computer

Architecture Featuring Fast Thread and Data

Migration and a Uniform Hardware Abstraction

by

Andrew “bunnie” Huang

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

c�Massachusetts Institute of Technology 2002. All rights
reserved.

Certified by: Thomas F. Knight, Jr.
Senior Research Scientist

Thesis Supervisor

Accepted by: Arthur C. Smith
Chairman, Department Committee on Graduate Students

ADAM: A Decentralized Parallel Computer Architecture

Featuring Fast Thread and Data Migration and a Uniform

Hardware Abstraction

by

Andrew “bunnie” Huang

Submitted to the Department of Electrical Engineering and Computer
Science on May 24, 2002, in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

Abstract

The furious pace of Moore’s Law is driving computer architecture into a
realm where the the speed of light is the dominant factor in system latencies.
The number of clock cycles to span a chip are increasing, while the num-
ber of bits that can be accessed within a clock cycle is decreasing. Hence,
it is becoming more difficult to hide latency. One alternative solution is to
reduce latency by migrating threads and data, but the overhead of existing
implementations has previously made migration an unserviceable solution so
far.

I present an architecture, implementation, and mechanisms that reduces
the overhead of migration to the point where migration is a viable supplement
to other latency hiding mechanisms, such as multithreading. The architecture
is abstract, and presents programmers with a simple, uniform fine-grained
multithreaded parallel programming model with implicit memory manage-
ment. In other words, the spatial nature and implementation details (such
as the number of processors) of a parallel machine are entirely hidden from
the programmer. Compiler writers are encouraged to devise programming
languages for the machine that guide a programmer to express their ideas in
terms of objects, since objects exhibit an inherent physical locality of data
and code. The machine implementation can then leverage this locality to au-
tomatically distribute data and threads across the physical machine by using
a set of high performance migration mechanisms.

An implementation of this architecture could migrate a null thread in
66 cycles – over a factor of 1000 improvement over previous work. Per-
formance also scales well; the time required to move a typical thread is only
4 to 5 times that of a null thread. Data migration performance is similar, and
scales linearly with data block size. Since the performance of the migration

2

mechanism is on par with that of an L2 cache, the implementation simulated
in my work has no data caches and relies instead on multithreading and the
migration mechanism to hide and reduce access latencies.

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Senior Research Scientist

3

Acknowledgments

I would like to thank my parents for all their love and support over the years,

and for their unwaxing encouragement and faith in my ability to finish the

degree program.

I would also like to thank my wonderful, loving, caring girlfriend Nikki

Justis for all her support, motivation, patience, editing, soldering, discussion

and idea refinement, cooking, cleaning, laundry doing, driving me to campus,

wrist massages, knowing when I need to tool and when I need to take a break,

tolerance of my 7 AM sleep schedule, and for letting me make a mess in her

room and take over her couch with my whole computer setup.

I would like to thank all my friends for their support over the years, and

for making the past decade at MIT–and my first step into the real world–an

exciting, fun and rewarding experience. Let the rush begin...and may it never

end.

This thesis would never happened if it were not for the Aries Research

Group (in order of seniority): Tom Knight, Norm Margolus, Jeremy Brown,

J.P. Grossman, Josie Ammer, Mike Phillips, Peggy Chen, Bobby Woods-

Corwin, Ben Vandiver, Tom Cleary, Dominic Rizzo, and Brian Ginsburg.

Tom Knight, in particular, has been a role model for me since I came to the

lab; he is an endless source of inspiration and knowledge, and has provided in-

valuable guidance, counsel and encouragement. He is brilliant and visionary,

yet humble and very accessible, and always willing to answer my questions,

no matter how silly or stupid. I also really enjoy his laissez-faire policies with

respect to running the group; I truly treasure the intellectual freedom Tom

brought to the group, and his immense faith in all of our abilities to manage

and organize ourselves, and to “go forth and think great thoughts.” Jeremy

Brown and J.P. Grossman were also invaluable for their good ideas, lively

4

conversation, and idea refinement. Jeremy invented the idempotent network

protocol used in this thesis, and his excellent thesis work in novel parallel

programming methods and scalable parallel garbage collection fills in many

crucial gaps in my thesis. J.P. and Jeremy also developed the capability repre-

sentation with SQUIDS that is central to my thesis. I also relied on J.P.’s ex-

cellent work in researching and characterizing various network topologies and

schemes; I used many of his results in my implementation. Bobby Woods-

Corwin, Peggy Chen, Brian Ginsburg and Dominic Rizzo were invaluable in

working out the implementation of the network. Without them, I would have

nothing to show for this thesis except for a pile of Java code. Two genera-

tions of M.Eng theses and two UROPs is a lot of work! Norm Margolus also

helped lay down the foundations of the architecture with his work in spatial

cellular automata machines and embedded DRAM processors. Finally, André

DeHon, although not officially a part of the group, was very much instrumen-

tal to my work in many ways. This work relies very heavily upon his earlier

work at MIT on the METRO network. André also provided invaluable advice

and feedback during his visits from Caltech.

I would also like to give a special thanks to Ben Vandiver. Since the

inception of the ADAM and the Q-Machine, Ben has furnished invaluable

insight and feedback. The thesis would not be complete without his syner-

gism as a compiler writer, programmer, and high-caliber software hacker. I

also thank him for his enthusiasm and faith in the architecture; his positive

energy was essential in keeping me from getting discouraged. He not only

helped hash out the programming model for the machine, he also wrote two

compilers for the machine along the way. He also was instrumental in coding

and debugging the benchmarks used in the results section of my thesis.

Krste Asanović and Larry Rudolph were also very important influences

on this thesis. Krste is a wellspring of knowledge and uncannily sharp insight

5

into the even the finest architectural details. Larry opened my mind to the

field of competitive analysis and on-line algorithms, something I would never

have considered otherwise. I also appreciate the critical review provided by

both Krste and Larry.

I would also like to thank my friends at the Mobilian Corporation–in par-

ticular, Rob Gilmore, MaryJo Nettles, Todd Sutton, and Rob Wentworth–for

their understanding, patience, and support for me finishing my degree.

I thank the Xilinx Corporation for generously donating the many high-

end FPGAs and design tools to the project, which were used to implement

prototype network and processor nodes. I would also like to thank the Intel

Corporation and Silicon Spice for providing fellowships and equipment that

enabled me to finish my work. Sun Corporation and Borland also provided

me Java and JBuilder for free, but the value of these tools cannot be under-

estimated. This work was also funded by the Air Force Research Laboratory,

agreement number F30602-98-1-0172, “Active Database Technology”.

I could go on, but unfortunately there is not enough space to name ev-

eryone who has helped with my thesis. This is to everyone who provided

invaluable input and guidance into my thesis–thank you all. I am indebted to

the world, and I can only hope to someday make a contribution that is worthy.

Finally, all mistakes in this thesis are mine.

6

Contents

1 Introduction 17

1.1 Contributions . 18

1.2 Organization of This Work 19

2 Background 22

2.1 Latency Management Techniques 22

2.1.1 Latency Reduction 23

2.1.2 Latency Hiding . 25

2.2 Migration Mechanisms . 28

2.2.1 Discussion . 30

2.3 Architectural Pedigree . 31

2.3.1 Dataflow . 32

2.3.2 Decoupled-Access/Execute 35

2.3.3 Processor-In-Memory (PIM) and Chip Multi-Processors

(CMP) . 37

2.3.4 Cache Only Memory Architectures 39

3 Aries Decentralized Abstract Machine 40

3.1 Introduction to ADAM by Code Example 41

3.1.1 Basics . 41

7

3.1.2 Calling Convention 42

3.1.3 Memory Allocation and Access 44

3.2 Programming Model . 46

3.2.1 Threads . 47

3.2.2 Queues and Queue Mappings 49

3.2.3 Memory Model . 50

3.2.4 Interacting with Memory 52

4 Migration Mechanism in a Decentralized Computing Environ-

ment 54

4.1 Introduction . 54

4.2 Background . 55

4.2.1 Architectures that Directly Address Migration 56

4.2.2 Soft Migration Mechanisms 58

4.2.3 Programming Environments and On-Line Migration

Algorithms . 62

4.3 Migration Mechanism Implementation 66

4.3.1 Remote Memory Access Mechanism 67

4.3.2 Migration Mechanism 71

4.3.3 Data Migration . 71

4.3.4 Thread Migration 75

4.4 Migration Mechanism Issues and Observations 81

4.4.1 General Observations 81

4.4.2 Performance Issues 84

5 Implementation of the ADAM: Hardware and Simulation 87

5.1 Introduction . 88

5.2 High-Level Organization 89

5.3 Leaf Node . 89

8

5.3.1 Processor Node . 91

5.3.2 Memory Node . 97

5.4 Physical Design . 100

5.4.1 Technology Assumptions 100

5.4.2 Design Description 103

6 Machine and Migration Characterization 107

6.1 Basic Q-Machine Performance Results 107

6.1.1 Memory Performance 109

6.1.2 Basic Network Operations Performance 110

6.2 Migration Performance and Migration Control: Simple Cases 111

6.2.1 Two Threads Benchmark 112

6.2.2 Thread and Memory Benchmark 119

6.3 Application Cases . 124

6.3.1 In-Place Quicksort Application 125

6.3.2 Matrix Multiplication Benchmark 130

6.3.3 N-Body Benchmark 133

7 Conclusions and Future Work 140

7.1 Conclusions . 140

7.2 Future Work . 142

7.2.1 Improved Migration Control Algorithms 142

7.2.2 Languages and Compilers 143

7.2.3 Hardware Implementation 144

7.2.4 Transactions . 145

7.3 Final Remarks . 146

A Acronyms 147

9

B ADAM Details 150

B.1 Data Types . 150

B.2 Instruction Formats . 154

B.3 Capability Format . 157

B.4 Über-Capability and Multitasking 161

B.5 Exception Handling . 162

C Q-Machine Details 164

C.1 Queue File Implementation Details 165

C.1.1 Physical Design . 165

C.1.2 State Machine . 170

C.2 Network Interface . 174

C.3 Network Topology and Implementation 179

D Opcodes 185

D.1 General Notes . 185

D.2 Lazy Instructions . 186

D.3 Instruction Summary . 187

10

List of Figures

1.1 Overview of the abstraction layers in this thesis. Couatl and

People are compilers written by Ben Vandiver. 21

2.1 Reachable chip area in top level metal, where area is mea-

sured in six-transistor SRAM cells. Directly from [AHKB00] 26

2.2 Illustration of the false sharing problem. 32

3.1 Demonstration of the copy/clobber (@) modifier. 42

3.2 Simple code example demonstrating procedure linkage, thread

spawning, memory allocation, and memory access. 43

3.3 Thread states after thread spawn and procedure linkage. . . . 45

3.4 Thread states after memory allocation and access. 47

3.5 Programming model of ADAM 48

3.6 Structure of an ADAM thread 49

3.7 High-level breakdown of the ADAM capability format. De-

tailed bit-level breakdowns of each field can be found in ap-

pendix B. 51

4.1 Format of a remote memory capability’s shadow space in lo-

cal virtual memory space. 69

4.2 System level view of resolving remote memory requests. . . 69

11

4.3 Details of handling remote and local EXCH requests. 70

4.4 Mechanism for temporarily freezing memory requests. . . . 74

4.5 Handling of a migrated EXCH request with temporally bi-

directional pointers. 76

4.6 Transmission line protocol for handling forwarding pointer

updates on thread-mapped communications. 82

4.7 Overview of a demand-driven data propagation scheme. . . . 86

5.1 Pieces of a Q-Machine implementation. Node ID tags are

uniform across the machine, so network-attached custom hard-

ware is addressable like any processor or memory node. . . . 90

5.2 High level block diagram of a leaf node. 92

5.3 Detail of a processor node. 93

5.4 Hybrid scheduler list/I-cache structure. In this diagram, c42

and c10 are runnable and up for forwarding to the work-

queue; as values for c55:q12 and c4:q4 arrive via the NI, they

will be promoted to runnable status. 97

5.5 High level block diagram of a memory node. 98

5.6 Packaging and integration for a two-layer silicon high-performance

chip multiprocessor. 102

5.7 Cartoon of the network layer layout. 104

5.8 Hypothetical layout of a single processor node. 105

5.9 Hypothetical layout of the tile processor chip. 106

6.1 Screenshot of the ASS running a 64-node vector reverse re-

gression test. On the left is the machine overview; to the right

is the thread debugger window. 109

12

6.2 The two threads synthetic benchmark. Communication hap-

pens along the arcs; a data dependency is forced by printing

the incoming data. 112

6.3 Code used for the two thread benchmark. 113

6.4 Measured speedup versus migration distance for the Two Threads

benchmark. 115

6.5 Shape of the curve ���
�

. 118

6.6 Length of message sequence required to amortize various mi-

gration overheads (����). The baseline two messages per it-

eration for the Two Thread benchmark is also marked on the

graph. 120

6.7 The thread and memory synthetic benchmark. Communica-

tion happens along the arcs; a data dependency is forced by

printing the incoming data. 121

6.8 Code used for the thread-memory benchmark. 122

6.9 Migration speedup versus migration decision time and mem-

ory capability size in the thread and memory benchmark. . . 123

6.10 Cycles per iteration for Thread-Memory benchmark. � � �

in both cases. 124

6.11 Object method for the Quicksort benchmark written in People. 126

6.12 Distribution of migration times used in the Quicksort bench-

mark . 127

6.13 Plot of the load metric �� versus time for the Quicksort bench-

mark with and without load balancing 128

6.14 Plot of the load balanced Quicksort benchmark with migra-

tion events overlayed. 130

6.15 Portion of the streaming matrix multiply benchmark written

in People. 132

13

6.16 Plot of the time required per iteration of a 100x100 matrix

multiply over various migration conditions and coding styles. 134

6.17 Plot of the time required per iteration of a 15x15 matrix mul-

tiply over various migration conditions and coding styles. . . 135

6.18 Plot of the first few time steps of the N-Body benchmark output136

6.19 Inner-loop of N-Body benchmark code. 138

6.20 Plot of the time required per timestep of a 12-body N-body

simulation run on a 64-node Q-Machine. 139

B.1 Data formats supported by ADAM 151

B.2 Tag and Flag field details 152

B.3 Format of ADAM opcodes 155

B.4 ADAM capability format 158

B.5 Exception handling overview 163

C.1 A 3-write, 3-read port VQF implementation. pq = �����#

physical registers�. Q-cache details omitted for clarity. . . . 166

C.2 PQF unit cell. 167

C.3 PQF read request response flowchart 171

C.4 PQF write request response flowchart 173

C.5 Details of the network interface. 175

C.6 Idempotence and reliable data delivery protocol in detail for

a single transaction. Lines in gray are “retry” lines that would

not happen in an ideal setting. 178

14

C.7 Details of packet formats. Note that in the destination/source

cID and queue headers, it is very important that the processor

ID be in the MSB and co-located with the address field, since

implementations may push bits between the address and PID

fields to increase the number of routable processor nodes or

to increase the amount of memory per node. 180

D.1 qb format for the PARCEL instruction 278

15

List of Tables

5.1 Extrapolated Technology Parameters for 2010. All values

from [CI00a] unless otherwise noted. 101

A.1 Table of Acronyms . 148

A.2 Table of Acronyms, continued 149

16

Chapter 1

Introduction

You can’t fake memory bandwidth that isn’t there.

—Seymour Cray on why the Cray-1 had no caches

Most data and thread migration mechanisms to date are slow when compared

to other latency management techniques. This thesis introduces an archi-

tecture, ADAM, that enables a simple hardware implementation of data and

thread migration. This implementation reduces the overhead of migration to

the point where it is comparable to other hardware-assisted latency manage-

ment techniques, such as caching.

Data migration is useful to reduce access latencies in situations where the

working set is larger than cache. It is also useful in reducing or redistributing

network traffic in situations where hotspots are caused by contention for mul-

tiple data objects. Data migration can also be used to emulate the function of

caches in systems that feature no data caches.

Thread migration is useful to reduce access latencies in situations where

multiple threads are contending for a single piece of data. Like data migra-

17

tion, it is also useful in situations where hotspots can be alleviated by redis-

tributing the sources and destinations of network traffic. Thread migration is

also useful for load-balancing, particularly in situations where memory con-

tention is low.

Data and thread migration can be used together to help manage access

latencies in situations where many threads are sharing information in an un-

predictable fashion among many pieces of data, as might be the case in an

enterprise database application. Data and thread migration can also be used

to enhance system reliability as well, if faults can be predicted far enough in

advance so that the failing node can be flushed of its contents.

1.1 Contributions

The primary contribution of my thesis is a fast, low-overhead data and

thread migration mechanism. In terms of processor cycles, the mechanism

outlined in my thesis represents greater than a 1000-fold increase in perfor-

mance over previous software-based migration mechanisms. As a result, data

and thread migration overheads are similar to L2 cache fills on a conventional

uni-processor system.

The key architectural features that enable my data and thread migration

mechanisms are a unified thread and data representation using capabil-

ities and interthread communication and memory access through archi-

tecturally explicit queues. Threads and data in my architecture, ADAM,

are accessed using a capability representation with tags that encode base and

bounds information. In other words, every pointer has associated with it the

region of data it can access, and this information trivializes figuring out what

to move during migration. Architecturally explicit queues, on the other hand,

simplify many of the ancillary tasks associated with migrating threads and

18

data, such as the movement of stacks, the migration and placement of com-

munication structures, concurrent access to migrating structures, and pointer

updates after migration.

My thesis also describes an implementation outline of ADAM dubbed

the “Q-Machine”. The implementation technology is presumed to be 35 nm

CMOS silicon, available in volume around 2010, and features no data caches;

instead, it relies on the migration mechanism and multithreading to maintain

good performance and high processor utilization. The proposed implemen-

tation is simulated with the ADAM System Simulator (ASS); it is this sim-

ulator that provides the results upon which the ADAM architecture is evalu-

ated. Note that there is no requirement for advanced technology to implement

the ADAM; one could make an ADAM implementation today, if so desired.

The 2010 technology point was chosen to evaluate the ADAM architecture

because it would match a likely tape-out time frame of the architecture’s im-

plementation.

1.2 Organization of This Work

Chapter 2, “Background”, discusses some of the advantages and disadvan-

tages of a migration scheme over more conventional latency management

schemes. It also reviews, at a high level, some of the problems encountered

in previous migration schemes; a more detailed review of migration mecha-

nisms is presented in Chapter 4. Chapter 2 closes with a differentiation of this

work from its predecessors in a brief discussion of the architectural pedigree

of the ADAM and its Q-Machine implementation.

Chapter 3, “Aries Decentralized Abstract Machine”, describes the ADAM

in detail. This chapter lays the foundation for the programming model of the

ADAM through a simple code example, followed up with a discussion of

19

the architectural details relevant to a migration implementation. A detailed

discussion of other architectural features can be found in Appendix B.

Chapter 4, “Migration Mechanism in a Decentralized Computing Envi-

ronment”, presents the implementation of the migration mechanisms. The

chapter begins with a survey of previous work involving data and thread mi-

gration; this survey includes both mechanisms and migration control algo-

rithms, since their implementation details are intimately associated. I then

describe the migration mechanism in detail.

Chapter 5, “Implementation of the ADAM: Hardware and Simulation”,

describes an implementation of ADAM. This implementation is known as

the Q-Machine. This chapter summarizes the machine organization and im-

plementation technology assumptions of the simulator used to evaluate my

migration mechanisms.

In the next chapter, “Machine and Migration Characterization” (Chap-

ter 6), I characterize the performance of the implementation. The chapter

starts with two simple micro-kernel benchmarks and some formal analysis

of the migration mechanism. Then, I present results for some more compre-

hensive benchmarks, Quicksort, Matrix Multiply and N-Body, with simple

migration control heuristics driving the migration mechanisms.

The thesis concludes in chapter 7 with a discussion of further develop-

ments for the ADAM architecture, areas for improvement and further re-

search, and programming languages for the machine. Note that while a de-

tailed discussion of programming languages for the ADAM is outside the

scope of this thesis, I did not work in a programming language vacuum. A

strong point of using an abstract machine model is that compiler writers can

begin their work on day one, and in fact, that is the case. Benjamin Vandiver,

an M.Eng student in my research group, has developed two languages, Couatl

and People, and compilers for these languages to the ADAM architecture.

20

Couatl is a basic object-oriented language that we used in the early stages of

architecture development to hammer out the abstract machine model and to

determine the unique strengths and weaknesses of a queue based architecture.

The follow-on language, People, is a more sophisticated language supporting

streaming constructs that leverages the availability of architectural queues at

the language level. I refer interested readers to his M.Eng thesis [Van02].

A summary of the abstraction layers employed by this thesis can be found

in figure 1.1. ADAM is a pure abstraction, a boundary between compilers and

hardware. Q-Machine is the implementation of ADAM that realizes the fast

data and thread migration mechanisms made possible by ADAM. The ADAM

System Simulator (ASS) is my software simulation of the Q-Machine, written

in Java. The Q-Machine could also be implemented directly in hardware, but

that is not within the scope of this thesis.

Aries Decentralized Abstract Machine (ADAM)

Couatl People

Q-Machine (Migration
Implementation)

ADAM System
Simulator (ASS)

Java Virtual
Machine

Hardware

End-User Applications

compilers

"hardware"
Direct Hardware
Implementation

thesisstructure.eps

Figure 1.1: Overview of the abstraction layers in this thesis. Couatl and Peo-
ple are compilers written by Ben Vandiver.

I also provide a set of appendices that describe various technical nits of the

architecture, including the bit-level details of the ADAM architecture, phys-

ical queue file (PQF) implementation, the network interface implementation,

network protocols, and opcodes of the ADAM.

21

Chapter 2

Background

TSMC sees no insurmountable challenges in the path to scaling
[silicon CMOS technology] to the 9 nm node. The question is,
will the market be ready for it?

—Calvin Chenming Hu, CTO of TSMC at a talk at MIT

This chapter starts by characterizing the ADAM architecture in terms of its

use of latency management techniques. This chapter then discusses in greater

detail a comparison of various migration techniques. Finally, this chapter

closes with a discussion of ADAM’s architectural pedigree.

2.1 Latency Management Techniques

Numerous latency management techniques are available to computer archi-

tects looking to design large parallel machines. Latency management tech-

niques can be divided into two broad categories, latency reduction, and la-

tency hiding.

22

2.1.1 Latency Reduction

Latency reduction techniques include architectural trade-offs to optimize lo-

cal memory access latency, such as non-uniform memory access (NUMA)

and cache-only memory architecture (COMA). NUMA architectures cope

with the spatial reality of large machines explicitly; thus, local memory refer-

ences are faster than remote memory references. This is in contrast with bus-

based architectures that have uniform memory access times. NUMAs typi-

cally employ spatial interconnection networks that are inherently more scal-

able than bus-based architectures. While NUMAs enable better scalability,

they are confronted with the issue of how to arrange data so that optimal per-

formance is achieved. One popular method of addressing the data placement

issue is to use a directory-based cache coherence mechanism. Examples of

cache-coherent NUMAs (ccNUMAs) include Stanford’s DASH [LLG�92],

and MIT’s Alewife [ABC�95]. COMAs, on the other hand, feature auto-

matic data migration through the use of “attraction memories”. COMAs also

employ spatial interconnection networks that feature non-uniform memory

access times, but in a COMA, memory has no home location. Data migrates

in a cache-coherent fashion throughout the machine to their points of access.

COMAs have the disadvantage of extra hardware complexity, but have an ad-

vantage over NUMA machines when the working set of data is larger than

the NUMA’s cache size. The ADAM architecture is similar to a COMA ar-

chitecture, except that ADAM also features thread migration, and that there

are no caches–in other words, there can be only one valid copy of a piece

data in the machine. Removing cache semantics from memory reduces the

hardware requirements, but causes ADAM to lose the benefit of automatic

data replication. ADAM attempts to compensate for this loss by providing a

hardware-recognized immutable data type that is write-once and can be freely

copied throughout the machine. Thread migration also helps compensate for

23

this loss by allowing threads that contend heavily for a single piece of mem-

ory to migrate toward the contested memory location.

Latency reduction can also be applied at a lower level, through migration,

replication, scheduling, placement and caching. Replication is a property in-

herent in cache-coherent memory systems where memory can be marked as

exclusive or read-only, and several copies can exist throughout the machine

to reduce the perceived access latency at multiple nodes. As mentioned pre-

viously, ADAM provides only limited support for data replication. Schedul-

ing and placement are predictive techniques that attempt to reduce latency

and balance loads by allocating memory and scheduling threads to be near

each other. Scheduling and placement can be either directed explicitly by a

programmer, inferred and statically linked in by a compiler, or directed by

an intelligent runtime system. Scheduling and placement are important la-

tency reduction techniques in any architecture, but are outside the scope of

my thesis. A thorough discussion and comparison of migration techniques is

reserved for later in this chapter and in chapter 4.

Caching is perhaps the most widely used latency reduction mechanism.

Caches reduce memory latency by keeping the most recently accessed val-

ues in a fast memory close to the processor. Caches rely on the statistically

good spatial and temporal locality characteristics of data accesses found in

most programs. Caches also rely on exclusive ownership of data; since a

copy is made of data in main memory, a coherence mechanism is required

for correct program execution in an environment where concurrent modifi-

cation is a possibility. This coherence mechanism can present a challenge

when scaling up to very large multiprocessor machines. In particular, sim-

ple directory-based or snoopy coherence mechanisms show poor scalability.

Snoopy coherence mechanisms are used in bus-based multiprocessors, and

suffer from bandwidth limitations due to excess coherence traffic as systems

24

scale in size. Directory-based protocols are more scalable, but they also have

their limits. With a 64-byte block size, a simple directory-based cache coher-

ence protocol has a memory overhead of over 200% for a 1024-processor sys-

tem [CS99], p.565. Techniques such as limited-pointer schemes [ASHH88],

extended pointer schemes [ALKK91], and sparse directories [GWM90] can

all be used to mitigate the overhead of cache coherence in large parallel sys-

tems, but at the cost of more complex protocols or the need for special mech-

anisms to handle corner cases where the protocol breaks down. The other

problem with caches is that technology scaling is not ideal; buffered wire de-

lays have been rising slightly faster than expected, and the expected capacity

of caches per access time is anticipated to decrease as process technologies

progress [AHKB00] [McF97]. Figure 2.1 illustrates the fallout of non-ideal

wire delay scaling. Since the ADAM architecture already features data mi-

gration for latency reduction and can tolerate more access latency due to its

use of multithreading and decoupling, no data caches are used in the ADAM

implementation outlined in this thesis. The elimination of data caches allevi-

ate the scaling concerns of data caches, and it also helps relieve some of the

access time pressure resulting from technology constraints. The down-sides

of this decision include slower single-threaded code execution and the loss

of automatic data replication inherent in cache coherence schemes. Note that

the ADAM implementation, as previously mentioned, compensates for this

loss of data replication in part by providing an immutable data type, and in

part by migrating threads toward heavily contested memory locations.

2.1.2 Latency Hiding

Latency hiding techniques include prefetching, decoupling, multithreading,

relaxing memory consistency, and producer-initiated communication.

Prefetching is the use of predictive mechanisms, either automatic or ex-

25

250 180 130 100 70 50 35
Technology (nm)

1E+06

1E+07

1E+08

1E+09

Sp
an

 (
R

ea
ch

ab
le

 B
it

s)

f
f
f

16

8

SIA

Figure 2.1: Reachable chip area in top level metal, where area is measured in
six-transistor SRAM cells. Directly from [AHKB00]

plicit, to access data before a computation requires the data. The efficacy

of prefetching is proportional to the accuracy of the predictive mechanism.

When the predictive mechanism is wrong, the system can potentially pay

a high cost, because improperly prefetched data could displace useful data

while consuming bandwidth that could be used for other useful work. Prefetch-

ing can be applied in the ADAM architecture, but its implementation is be-

yond the scope of this thesis.

Decoupling is the use of explicit queues to hide access or compute laten-

cies. Decoupling is featured in decoupled access-execute (DAE) machines,

such as the ZS-1 [SDV�87], the WM architecture [Wul92] and the MT-

DCAE [SKA01]. Decoupled architectures can be thought of as a type of

programmed prefetch architecture, although the decoupling mechanism can

also be used to decouple control flow events as well. In a simple DAE archi-

tecture, processors are divided into access and execute units, coupled by a set

of queues. The access unit is allowed to “slip” ahead of the execute unit, ef-

26

fectively prefetching data for the execute unit. Since the ADAM uses explicit

queues to communicate with threads and to access memory, ADAM shares

many of the benefits and problems of DAE architectures.

Multithreading is the use of multiple thread contexts and a fast context

switching mechanism to hide memory access latencies. When one thread

context stalls on a dependency that requires a lengthy memory access, an-

other thread context is swapped in, thus maintaining a high level of proces-

sor utilization. However, multithreading can only effectively hide memory

latency if there are enough runnable contexts. As latencies increase, more

parallelism is required. The HEP [Smi82a] and TERA [AKK�95] architec-

tures apply multithreading to hide access latencies; the ADAM architecture

uses this technique as well.

Relaxed memory consistency models and producer-initiated communica-

tion are architectural and programmer-level methods for hiding latency. Re-

laxing memory consistency models hides latency by allowing systems greater

flexibility in hiding write latencies [LW95]. The choice of memory consis-

tency model has a great impact on how a machine is programmed (or com-

piled to). The ADAM uses a weak ordering model [DS90] similar to that

employed in the Alpha [CS99]. Of course, each thread is guaranteed that

writes and reads complete in program order on the ADAM as well. Producer-

initiated communication reduces latency by cutting out one half of a round

trip when the producer and consumer relationships are well-defined. Instead

of a consumer sending a message to request data and waiting for the response,

producer-initiated communication pushes data into a consumer’s cache or

queue. In a cache-coherent system, this can lead to higher coherence traf-

fic because all shared copies have to be updated on every write [LW95]. In

ADAM, producer-initiated communication is the only mode of communica-

tion when using mapped queues. There is no coherence overhead for this

27

style of communication in ADAM because the queue namespace is separate

from memory namespace, and all queue mappings are exclusive by definition.

2.2 Migration Mechanisms

Migration mechanisms tend to be tailor-made to a particular architecture, op-

erating system, or application. As a result, the features of migration schemes

are equally diverse. For example, in a network-of-workstations (NOW), mi-

gration mechanisms tend to operate on coarse-grained processes and objects.

Migration on NOWs tend to be under dynamic run-time control, and migra-

tion times are on the order of tens to hundreds of milliseconds. [RC96] On

the other hand, computation migration on Alewife [HWW93] implements

structured activation frame movement throughout the machine using stati-

cally compiled migration directives, yielding migration times on the order of

several hundreds of processor cycles.

At the least common denominator, every migration mechanism must do

the following things: figure out what to move, prepare the receiver, send the

data, and then handle any forwarded requests or pointer updates. Thread or

process migration schemes also have to handle task scheduling issues as well.

Process migration in NOWs is incredibly inefficient and slow because the ab-

straction boundary for processes is too high; for example, moving a process

entails creating a virtual address space and moving file handles. [RC96] intro-

duces a faster, more streamlined version of process migration that removes the

restriction that communication producers be frozen during consumer migra-

tion (i.e., enables concurrent communication during migration), but even then

process migration takes 14 ms. [CM97] also introduces faster techniques for

dealing with pointer updates after migration using explicitly managed pointer

registries. The problem with explicitly managed pointer registries, however,

28

is that incorrect program execution results if the programmer forgets to reg-

ister a pointer. DEMOS/MP [PM83], interestingly, is a multi-processor oper-

ating system introduced over a decade before either [RC96] or [CM97], and

it features automatic pointer updating and concurrent communication during

process migration. DEMOS/MP features explicit OS-managed communica-

tion queues for inter-process communication; this helps enable concurrent

communication during process migration and simplifies pointer updates be-

cause the migration manager does not have to make guesses or conservative

assumptions about the process communication mechanism. Unfortunately,

the DEMOS/MP paper contains little performance information on its process

migration mechanism, so it is more difficult to compare DEMOS/MP against

other works. The ADAM thread migration mechanism implements many fea-

tures of the DEMOS/MP migration mechanism, except at a finer grain and

with hardware support.

On SMP-type machines, migration times are shorter, thanks to the tighter

integration of network interfaces and processors, generally faster intercon-

nection networks, finer granularity of objects, and globally shared system

resources. Page migration in DASH, for example, takes 2 ms (about 66,000

memory cycles) [CDV�94]. This does not include the time spent waiting

for locks in the kernel’s virtual memory system; the paper indicates that the

response time for workloads were not improved because of this overhead.

Even if one could migrate threads in DASH by simply throwing a program

counter over the fence to another processor, the overhead of migrating the

thread’s associated process state–the stack and heap–would be fairly large,

since at least two memory structures have to be moved, perhaps at the page

level of granularity. Thus, the thread scheduler should be aware of a task’s

memory footprint, and use cache affinity scheduling to achieve good perfor-

mance. [CDV�94]

29

Active Threads [WGQH98] introduces user-space thread migration, so

as to bypass the overhead of migrating kernel threads. In addition, Active

Threads uses simple user-space messaging protocols for communication, to

cut the overhead of copying messages and buffers in OS space. User-space

thread migration reduces thread migration latencies down to about 150 �s

(about 16,000 processor cycles). Computation Migration [HWW93] also per-

forms users-space thread migration, but in a more restrictive fashion. In

Computation Migration, static annotations in user code cause a thread to

spawn new procedures on remote nodes; also, [HWW93] makes no indication

that inter-thread communication resources are migrated. A single thread thus

snakes its way through the machine, with a trajectory that tracks the location

of the working set of data. Computation Migration is fast, as it requires only

651 cycles to start a new thread on a remote processor. Even so, a breakdown

of the costs of Computation Migration indicate that a large amount of time is

spent in procedure linkage, thread creation, and marshaling thread state. As a

side note, Computation Migration is not used as the comparative benchmark

for ADAM’s migration mechanism because Computation Migration imple-

ments a restricted version of thread migration that does not accommodate the

level of dynamism or concurrency found in the next fastest migration imple-

mentation, Active Threads. Hence, Active Threads is used as the comparison

point for ADAM’s migration mechanism.

Note that this brief review of migration mechanisms is expanded upon in

the background section of chapter 4.

2.2.1 Discussion

The ADAM architecture structures threads, data, and their communication

mechanisms in such a way as to eliminate or drastically reduce the over-

heads experienced by the migration mechanisms outlined above. For exam-

30

ple, almost all migration mechanisms have to deal with pointer updates and

message forwarding. The issue is that interthread communications almost

always use memory resources, so that any thread migration requires move-

ment of stacks, OS structures, or heap-allocated communication structures.

The ADAM architecture condenses communication structures into explicitly

named resources through the use of explicit queues. As a result, communica-

tion state is stored as part of thread state, and migration of a thread typically

involves a single copy operation. The use of bounded capabilities to rep-

resent a thread’s state in memory, as well as all heap data structures, also

simplifies migration, because the region of memory to be copied during mi-

gration can be directly computed given a pointer to a thread or data object.

The use of bounded capabilities also offers more flexibility in the choice of

migration granularity when compared to schemes that require page-level mi-

gration, such as that used in DASH [CDV�94]. Another benefit of bounded

capabilities is that false data sharing is not possible. For example, in a con-

ventional system two objects can, by random chance, share a cache line or a

page of memory (see figure 2.2). If the two memory objects are concurrently

accessed by threads on different nodes, the cache line or page of memory

will either end up ping-ponging between the nodes, or one thread will have

to suffer unfair access times. On the downside, bounded capabilities does

not help when a programmer writes code that that explicitly shares objects

among many scattered threads. In this case, thread migration should be used

to minimize access latencies.

2.3 Architectural Pedigree

The genesis of the ADAM architecture lies in the Dataflow architectures,

Decoupled-Access/Execute (DAE) architectures, Processor-In-Memory (PIM)

31

object A

object B cache line or memory
page experiencing

"false sharing"

one cache line or
page of memory

falseshare.eps

Figure 2.2: Illustration of the false sharing problem.

and Chip Multi-Processor (CMP) architectures, and Cache Only Memory Ar-

chitectures (COMA).

2.3.1 Dataflow

ADAM is perhaps most closely related to the dataflow family of architectures,

in particular, *T. Hence, a careful examination of the dataflow machines is

important at this time.

Dataflow machines are a direct realization of dataflow graphs into com-

putational hardware. Arcs on a dataflow graph are decomposed into tokens.

Each token is a continuation; it contains a set of instructions and its evalua-

tion context. The length of the instruction run and evaluation context method

encapsulated within a token can characterize the spectrum of dataflow archi-

tectures. In the MIT Tagged-Token Dataflow Architecture (TTDA), each to-

ken represents roughly one instruction and its immediate dependencies and

results, and token storage is managed implicitly. TTDA evolved into the

Monsoon architecture, which has explicit evaluation context management and

single-instruction tokens. With Monsoon, tokens contained a value; point-

ers to an instruction, and pointers to evaluation contexts that are compiler-

32

generated frame allocations in a linearly addressed structure. Monsoon evolved

into the P-RISC and *T architectures, which are machines with tokens that

effectively refer to instruction traces and relatively large ”stack-frame” style

explicitly allocated frames. The tokens in P-RISC and *T carried only an in-

struction pointer and a frame pointer, as opposed to any actual data [AB93]

[NA89]. One could take this one step further and claim that a Simultane-

ous Multithreading (SMT) architecture is a dataflow machine with as many

tokens as there are thread contexts, and that a conventional Von Neumann ar-

chitecture is a single-token dataflow machine. [LH94] provides an excellent

overview of dataflow machines and an analysis of their shortcomings.

Dataflow machines, while elegant, have a few fatal flaws. Their evolu-

tion from the TTDA into near-RISC architectures provides a clue into what

these flaws are. The rather abstract TTDA decomposed dataflow graphs to a

near-atomic instruction level. Thousands of tokens are created in the course

of even a simple program execution, because tokens can be formed and dis-

patched before dependencies are resolved. [AB93] states that “these tokens

represent data local to inactive functions which are awaiting the return of

values undergoing computation in other functions invoked from within their

bodies”. The execution of any token required an associative search across the

space of all tokens for the tokens that held the results that satisfied the current

token’s data dependencies. The multi-thousand element associative structure

required to do this search is not implementable even after twenty years of

process scaling.

Another flaw of the early Dataflow machines is that every token repre-

sents a high-overhead synchronization event. [Ian88] points out that von

Neumann architectures also perform a synchronization event between each

instruction, but the method of synchronization is very light-weight: IP = IP

+ 1 or IP = branch target. This allows von Neumann architectures to grind

33

through straight-line code very quickly. Fortunately for the von Neumann

crowd, most code written to date can be straightened out sufficiently with

either branch prediction or trace scheduling to get good performance out of

such a system. P-RISC and *T leveraged this strength of von Neumann ar-

chitectures somewhat by allowing a token to represent what are essentially an

execution trace and a stack frame. *T actually has a very similar single-node

architecture to the ADAM: it divides a single node into a synchronization co-

processor and a data processor. The synchronization processor is responsible

for scheduling threads and dealing with synchronization issues, while the data

processor’s exclusive job is to execute straight-line code efficiently. However,

the similarity ends there, as the *T architecture focuses primarily on latency

hiding through rapid and efficient thread scheduling, starting, and context

switching. While latency hiding through multithreading is an important part

of the ADAM architecture, it is also very important to reduce latency by pro-

viding mechanisms for the efficient migration of data and threads between

processor nodes. The ADAM’s overall organization reflects this attention

to migration mechanisms. Also, a careful examination of the implementa-

tion strategy outlined in [PBB93] reveals a number of important differences

(and similarities) between the ADAM and *T. One significant difference is

ADAM’s use of a queue-based interface between threads, with implicit syn-

chronization through empty/full bits, similar to the scheme used in the M-

Machine [FKD�95]. *T uses a register-based interface with a microthread

cache to enable efficient context switching, and explicit, program-level han-

dling of messages that could not be injected into the network. The use of

self-synchronizing queues of an opaque depth in ADAM helps cushion net-

work congestion and scheduling hiccoughs.

34

2.3.2 Decoupled-Access/Execute

Decoupled-access/execute (DAE) machines are single-node processors with

separate execute and access engines. These engines are coupled with archi-

tecturally visible queues that are used to hide memory access latencies. Code

for these machines are typically broken down by hand or compiler into an ac-

cess and execute thread; latencies are hidden because the access thread, which

handles memory requests, can ”slip” ahead of the execute thread. Relatively

few machines have been built that explicitly feature DAE. The architecture

was first proposed in [Smi82b] and later implemented as the Astronautics

ZS-1 [SDV�87]. [MSAD90] characterizes the latency-hiding performance

of the ZS-1 in detail, and [MSAD91] compares the performance of the ZS-1

to the IBM RS/6000. A comparison of DAE versus superscalar architectures

can be found at [FNN93], and a comparison of DAE versus VLIW architec-

tures can be found at [LJ90]. Another proposed DAE architecture is the WM

Architecture [Wul92], and a novel twist on DAE architectures where the ac-

cess unit is actually co-located with the memory is proposed in [VG98]. The

architecture described in this work parallels many of the ideas in [VG98].

The basic message contained in all the previously cited papers is that

by judiciously dividing a processor into two spatially distributed processors,

greater than 2x performance gains can be realized. This super-linear speedup

results from latency that was architecturally bypassed by either allowing the

memory subsystem to effectively slip ahead and prefetch data to the execu-

tion unit, or by physically co-locating the access unit with the memory. DAE

ideas can actually be applied generically to any machine with a large amount

of explicit parallelism by simply dividing every program into two threads, an

access thread and an execute thread. The advantage of explicit DAE machines

is that the synchronization between the access and execute threads is very fast

because they are coupled via hardware queues, as opposed to software emu-

35

lated queues. Some conventional out of order execution machines also pro-

vide a certain amount of implicit access/execute decoupling via deep, specu-

lative store and load buffers. However, in general, conventional architectures

that emulate these queues in software pay a high price for synchronization

overhead. Software implementations that use polling to check empty bits pay

the overhead of polling plus any time lost between the actual data availability

event and the poll event. Interrupt-driven implementations are also expensive

because typical interrupt mechanisms require kernel intervention.

Another important message is that queues are like bypass capacitors for

computer architectures. Queues low-pass filter the uneven access patterns of

high-performance code and help decouple the demand side of a computation

from the supply side of a computation. Like bypass capacitors, the time con-

stant of the queue (i.e., the size of the queue) has to be sufficiently large to

filter out the average spike, but not so large as to reduce the available signal

bandwidth and hamper important tasks such as context switching. The over-

head of the queue structure must also be small so that the benefits of queuing

can be realized.

Unfortunately, simple DAE machines as a whole suffer from a few prob-

lems. There are no compilers that generate explicit access and execute code

streams; most benchmarks and simulations in the cited papers were with

hand-coded access and execute loops. Also, the effectiveness of DAE is

questionable on complicated loops and programs with complicated and/or dy-

namic dataflow graphs. Simple DAE is targeted at hiding memory latencies,

and not much else. However, the basic idea of decoupling access and execute

units is a powerful one; especially if the physical access and execute units are

allowed to be assigned dynamically to a single virtual control thread, as is the

case in ADAM. Creating these “virtual” DAE machines allows access and

execute units to migrate throughout the machine and optimize latency on a

36

thread by thread basis. A sufficiently flexible infrastructure would also allow

several execute units to be chained together, thus providing a kind of loop

unrolling and a facility for streaming computations without any modification

to the code. Because this chaining is dynamic, such a machine could be up-

graded to have more processors and a greater performance would be realized

without recompiling the code. This idea of a virtual DAE architecture is an

important part of the ADAM architecture.

2.3.3 Processor-In-Memory (PIM) and Chip Multi-Processors

(CMP)

Recent advances in process technology have made it possible to integrate a

sufficient amount of SRAM on-chip to make a single-chip stand-alone pro-

cessor node. Also, the availability of DRAM embedded on the same die as a

processor opens the door to even higher levels of memory integration [Corb]

[Mac00] [Cora]. This integration of processors and memory on a single die

is referred to as Processor-In-Memory (PIM). The fact that the memory is

included on the same die as the processor implies a power and performance

advantage due to the elimination of chip-chip wiring capacitances and wire

run lengths. It also offers a performance advantage because more wires can be

run between the memory bank and the processor than in a discrete processor-

memory solution. As process technology continues to improve, it will be

possible to put several processor cores plus memory on a single silicon die.

This style of implementation is known as a Chip Multi-Processor (CMP). A

paper that summarizes some of the key arguments for CMP architectures can

be found in [ONH�96]. Some architectures that have been proposed which

take advantage of some combination of embedded memory technology and

chip multiprocessor technology include RAW [LBF�98], I-RAM [KPP�97],

Active Pages [OCS98], Decoupled Access DRAM [VG98], Terasys [GHI94],

37

SPACERAM [Mar00], and Hamal [Gro01].

The level of performance available to users of embedded DRAM is re-

markable. Traditionally, DRAM is thought of as the sluggish tanker of mem-

ory, while SRAM is the speed king. A recent DRAM core introduced by

MoSys (the so-called 1-T SRAM), available on the TSMC process, has proven

that DRAM has a place in high performance architectures [Cora]. The 1-T

SRAM is based on a DRAM technology, but has a refreshless interface like

a SSRAM (synchronous SRAM). The performance of this macro is also suf-

ficiently high – 2-3 cycle access times at 450 MHz in a 0.13 �m process –

to entirely eliminate the need for data caches in the processor design. Note

that the processor frequency targets for ADAM is on par with compiled “soft

core” processor frequency targets, which is typically a factor of 2-4 below the

level of the full-custom processors developed by Intel, AMD, and Compaq.

The ADAM is assumed to be implemented using a portable RTL design flow,

optimized for fast design cycles and portability to the latest process technol-

ogy offered by foundries. The reduced implementation time and the CMP

architecture of the ADAM helps compensate for the performance penalty of

using a compiled design flow. Finally, because the 1-T SRAM has the mem-

ory cell structure of DRAM, the density of these macros is similar to the

embedded DRAM macros offered in other processes (2.09 mm � per Mbit for

a DRAM macro on IBM’s Cu-11 process [Mac00] versus 1.9 mm � per Mbit

for a MoSys macro on a TSMC 0.13 �m logic process [Cora]).

The ADAM architecture leverages both the high level of logic integration

available in future process technology and the availability of off-the-shelf,

fast, dense memories to create a distributed massively parallel architecture

with good single-threaded code performance.

38

2.3.4 Cache Only Memory Architectures

While the architecture proposed in this thesis has no data caches, one could ar-

gue that the speed of the memories used in the processor nodes qualifies them

as program-managed caches. Hence, it is important to look at the class of ma-

chines known as Cache Only Memory Architectures (COMA). The most rel-

evant machine in this class in the Data Diffusion Machine (DDM) [MSW93].

The DDM relies on data migration through the implicit semantics of caches.

Because this work is so closely tied to data migration and its control, a thor-

ough discussion of how ADAM relates to the DDM is deferred until section 4.

39

Chapter 3

Aries Decentralized

Abstract Machine

While Newton is to have said (sarcastically, in truth, but that’s
another story) that he saw farther by standing on the shoulders of
giants, most of us squat on the kneecaps of pygmies. But that is
meant in the nicest possible way.

—Thomas H. Lee, ISSCC 2002 Panelist Statement

The Aries Decentralized Abstract Machine (ADAM) is an abstract parallel

computer architecture optimized for, among other things, fast data and thread

migration. This chapter presents an overview of the architecture, highlight-

ing the salient features that enable the implementation of high performance

migration. A simple code example is presented first, to acquaint readers

with basic ADAM communication and memory abstractions. The example

is followed by a more formal, in-depth discussion of various features of the

ADAM.

40

3.1 Introduction to ADAM by Code Example

ADAM has a fine-grained multithreaded programming model. Inter-thread

communication and memory access is accomplished via explicit queue re-

sources. Also, memory is abstract; pointers are represented as capabilities

with base and bound tags. Programmers cannot create capabilities; they must

request one from the machine via an ALLOCATE opcode.

3.1.1 Basics

A simple program example that illustrates the salient features of the archi-

tecture can be seen in figure 3.2. This code illustrates procedure linkage,

capability allocation, and memory mappings. The basic format of assembly

opcodes is OP qa,qb,qc, where OP is the operation, qa and qb are the

arguments, and qc is the result. Every operation may have zero, one or two

arguments, and one of the arguments may be a constant. There are also some

important opcodes that do not follow this format, such as MAPQC, that will

be discussed soon. Also note that every queue specifier can be modified with

an @ (copy/clobber) modifier. Figure 3.1 demonstrates the operation of the @

modifier. On reads, an @ specifies that the instruction should copy the value

from an argument queue, instead of dequeuing it. On writes, an @ speci-

fies that the instruction should overwrite (“clobber”) the newest value in a

queue, if there is one, instead of enqueuing a value. If the destination queue

is empty, the @ operator has no effect. The @ operator is handy when dealing

with temporaries that are reused frequently; without it, any time a result is

used more than once, the programmer or compiler would have to include a

special instruction to duplicate values.

41

MOVEC 2, q0 ; initialize q0 with the number 2
MOVEC 1, q1
MOVEC 4, q1 ; initialize q1 with the numbers 1 and 4
ADD @q0, q1, q2
; at this point, q2 has 3, q0 has 2, q1 has 4

ADD q0, q1, @q2
; at this point, q0 is empty, q1 is empty, and q2 has 6

Figure 3.1: Demonstration of the copy/clobber (@) modifier.

3.1.2 Calling Convention

In ADAM, the calling convention is that every procedure is a new thread. Ar-

guments and return values are passed via queue mappings. The code in fig-

ure 3.2 demonstrates this calling convention. The caller, main, calls test-

Stub by executing a SPAWNC q2,testStub,q0 instruction. This in-

struction starts a new thread with its program counter set to the label test-

Stub and returns the new thread’s context ID in q0. The argument q2 is the

spawn metric; this lets the programmer control the placement of new threads.

In this case, the spawn metric was initialized to 1, which causes the new

thread to be started on some node one network hop away.

After creating the new thread, the caller maps a queue into the callee’s

queue space to initiate argument passing. Mapping a queue causes values

written into the mapped queue to appear eventually in the map target. The

storage location of data written into a mapped queue is the map target. Also,

communication via queue maps is push-only; one cannot read from a mapped

queue. Hence, once a queue is mapped, it is write-only; a read from a mapped

queue results in undefined behavior. In this example, the new thread expects

all of its arguments in q0, so the caller maps to the new thread using the

instruction MAPQC q1,q0,@q0. Note that the MAPQC instruction has un-

usual semantics. The first two arguments are actually immediate constants; in

42

main:
MOVECC 1, q2 ; set spawn metric to 1
SPAWNC q2,testStub,q0 ; spawn remote thread
MAPQC q1, q0, @q0 ; map to my child
PROCID q1 ; send my procID to child
MOVE q20, q22 ; wait for return val from child
MML q40, q41 ; declare q40, q41 as load queues
MOVE @q22, q40 ; initialize q40 w/capability
MOVECL 0, q40 ; retrieve data from offset 0
PRINTQ q41 ; print (sim specific instruction)
HALT

testStub:
MOVE q0, q100 ; store caller in q100
MAPQC q1, q20, @q100 ; my q1 -> q20 of my caller
MOVECC 0, q2 ; set allocate metric to 0
ALLOCATEC q2, 8, q10 ; allocate 8-word local capability
MMS q30, q31 ; declare q30, q31 as store queues
MOVE @q10, q30 ; init q30 w/capability
MOVECL 0, q30 ; store data 10 at offset 0
MOVECL 10, q31
MSYNC ; ensure that store has committed
MOVE @q10, q1 ; send the capability to my caller
HALT

Figure 3.2: Simple code example demonstrating procedure linkage, thread
spawning, memory allocation, and memory access.

43

other words, they are interpreted as simply queue numbers, and not as sources

for operands. The first value, q1, specifies the local queue to be mapped. The

second value, q0, specifies the queue number of the map target. The final ar-

gument, @q0, specifies the queue from which to read the map target’s context

ID. I chose the first two values to be constant values because programmers

or compilers typically know exactly what the source and destination queue

numbers of a mapping should be.

Now that the caller has mapped the argument queue to the callee, the

caller first passes its context ID to the callee. Upon receiving the caller’s

context ID, the callee maps a return queue back to the caller. In this example,

the caller and callee agree by convention that q20 is the return value queue.

Figure 3.3 illustrates the state of the caller and callee after setting up the

argument and return queues.

3.1.3 Memory Allocation and Access

The next set of instructions in our code example demonstrate memory allo-

cation and access. Memory allocation in ADAM is accomplished with the

ALLOCATE instruction, and memory access is accomplished through queue

mappings.

In this particular example, the instruction ALLOCATEC q2,8,q10 is

used to create a new capability. q2 is an allocation metric similar to the

spawn metric used by the SPAWNC opcode. In this case, q2 is initialized to

0, so this instruction is requesting the allocation of local memory.

The next instruction, MMS q30,q31, declares q30 and q31 to be store

queues. The arguments to MMS are immediate constants, similar to the MAPQC

instruction. Subsequent to the MMS instruction, q30 is a store address queue,

and q31 is a store data queue. Data can be stored to memory using this

pair of queue mappings by enqueuing address and data pairs into their re-

44

main:
 MOVECC 1, q2
 SPAWNC q2, testStub, q0
 MAPQC q1, q0, q0
 PROCID q1
 MOVE q20, q22
 MML q40, q41
 MOVE @q22, q40
 MOVECL 0, q40
 PRINTQ q41
 HALT

testStub:
 MOVE q0, q100
 MAPQC q1, q20, @q100
 MOVECC 0, q2
 ALLOCATEC q2, 8, q10
 MMS q30, q31
 MOVE @q10, q30
 MOVECL 0, q30
 MOVECL 10, q31
 MOVE @q10, q1
 MSYNC
 HALT

PC

main:q0 testStub context ID

main:q2 1

main:q1

main:q20 (empty)

testStub:q0 (empty)

testStub:q100 main context ID

testStub:q1

context:queue # queue contents

testStub:q2 0

context:queue # queue contents

(unallocated) (empty)

(unallocated) (empty)

(unallocated) (empty)

(unallocated) (empty)

(unallocated) (empty)

PC

(stalled on empty q20)

simplecode1.eps

"argument" mapping

"return" mapping

Figure 3.3: Thread states after thread spawn and procedure linkage.

45

spective queues. Before storing data using these queues, the store address

queue must be initialized with a store capability. This is accomplished by the

MOVE @q10,q30 instruction; it copies the allocated capability in q10 into

the store address queue q30. Subsequent writes into the store address queue

should be constant offsets to the initial capability; the memory subsystem is

responsible for adding this offset and checking for bounds violations. Writing

another capability into the store address queue causes the store address queue

to be re-initialized with the new capability.

In our code example, a single value, 10, is stored at offset 0. The thread

testStub then performs an MSYNC to ensure that the store has commit-

ted, and sends the memory capability to the calling thread and halts. The

caller, main, then establishes load address and load data queues using the

MML q40,q41 instruction. main then accesses the returned data capability

by sending a copy of the capability into the load address queue, q40. main

then prints the return value from memory and halts. The PRINTQ instruction

is a convenience instruction only used in the simulator implementation for

debugging purposes. The final state of our machine at the end of our code

example run is illustrated in figure 3.4.

3.2 Programming Model

This section fleshes out some of the basic architectural features of ADAM

presented in the simple code example. For a discussion of architectural fea-

tures and implementation details not directly relevant to migration, please see

appendix B. Things discussed in appendix B include the instruction formats,

detailed breakdowns of the capability format bitfields, exception handling,

and kernel/OS interactions. For a comprehensive review of the opcodes pro-

vided in ADAM, please refer to appendix D.

46

main:
 MOVECC 1, q2
 SPAWNC q2, testStub, q0
 MAPQC q1, q0, q0
 PROCID q1
 MOVE q20, q22
 MML q40, q41
 MOVE @q22, q40
 MOVECL 0, q40
 PRINTQ q41
 HALT

testStub:
 MOVE q0, q100
 MAPQC q1, q20, @q100
 MOVECC 0, q2
 ALLOCATEC q2, 8, q10
 MMS q30, q31
 MOVE @q10, q30
 MOVECL 0, q30
 MOVECL 10, q31
 MOVE @q10, q1
 MSYNC
 HALTPC

main:q0 testStub context ID

main:q2 1

main:q1

main:q20 capability to mem

testStub:q0 (empty)

testStub:q100 main context ID

testStub:q1

context:queue # queue contents

testStub:q2 0

context:queue # queue contents

main:q40

testStub:q10 capability to mem

main:q41

testStub:q30

testStub:q31

PC

simplecode2.eps

10

Memory
System

store address

store data

load address

load data

alloc'd
capability

Figure 3.4: Thread states after memory allocation and access.

3.2.1 Threads

The fundamental unit of computation in ADAM is a thread. Threads are very

lightweight under ADAM, and they are opaque, monolithic memory struc-

tures. They could almost be called continuations except that they carry an

activation frame’s worth of data in addition to a program counter and an envi-

ronment pointer. Every thread’s state has a one-to-one mapping with a region

of memory, as seen before in the named state register file [ND91]. The ad-

dress and bounds of this region of memory is identified by a capability; this

capability is referred to as a thread’s context ID. Thus, any thread can be

globally uniquely identified by its context ID, because the context ID is just

a pointer into memory. Also, the number of threads per processor is limited

only by the amount of memory available. The correlation of every thread state

to a region of memory allows thread and data migration implementations to

share the same basic mechanism. A summary of the state associated with a

single ADAM thread can be seen in figure 3.5.

47

...
q2

q126

q127

head data
full

tail data
empty

(depth not specified)

80-bit entries

context ID (capability)

map

Individual Queue Details:

Queue
File

status (read-only)

80 bits

kernel capability

exception capability

PC

32 bits

signature hash

64 bits

q1

q0

forwarding capability

created

resident

m
apdrop

m
apped map target + VQN

TAGS

ancestor capability

mode (write-only)

exception temporariesexception temporariesexception temporariesexception temps & args (4)

machine-managed
thread state

user-managed
thread state threadcontextstate.eps

Figure 3.5: Programming model of ADAM

In place of registers in a typical machine, ADAM supplies queues of an

unspecified depth. The output of any queue can be remapped onto the input

of another queue in another thread context for inter-thread communications.

This technique is referred to as queue mapping.

Arguments and return values are passed between threads via queue map-

pings; there is no stack in ADAM. Also, communication to memory is imple-

mented using queue mappings. Hence, all visibility into and out of a thread

occurs via a set of queue mappings. This idea is illustrated in figure 3.6. The

use of queue mappings simplifies an implementation of thread migration first

by isolating all thread state, including communication state, within a single

contiguous region of memory, and second by enabling simple mechanisms

for managing the forwarding of communications concurrently with migra-

tion. These migration mechanisms will be described in chapter 4.

48

constants

rest
of

machine

processor state
backing store

mappings and heap
pointers

capability (also thread ID) front pad & OS info

only path of visibilty
into thread

threadoverview.eps

Figure 3.6: Structure of an ADAM thread

3.2.2 Queues and Queue Mappings

To a first approximation, the queues supplied by ADAM are of infinite depth.

However, in a realistic implementation, the performance of the queues di-

minishes as more data is shoveled into them. Hence, while the programming

abstraction allows programmers to store large amounts of data in queues, this

should be avoided for performance reasons. If a programmer obeys this re-

striction, the queues should perform comparably to a register in a standard

RISC machine (see appendix C for implementation details). Also, when the

queues are used as a communication element between streaming threads, flow

control is accomplished by applying back-pressure (i.e. enqueue stalling) pro-

portional to their fullness. This allows programmers to chain together stream-

ing threads that compute at different rates without having to deal with flow

control explicitly.

Queue mapping is the recommended method for inter-thread communica-

tion. Data from any given source is guaranteed to arrive in-order in the desti-

nation context’s queue; however, when more than one sender is mapped to a

single receiver, there is no guarantee as to the ordering of the received values

between the two senders. A node can request that the source ID of incoming

49

data be enqueued in a secondary queue in lock-step with the primary desti-

nation queue, so that ambiguity created by such a situation can be resolved

by user code. While a programmer can communicate data between threads

by passing around heap-allocated data structures, it is not recommended be-

cause ADAM’s memory model uses weak ordering [LW95], and makes no

guarantees on the relative ordering of memory requests between threads. Us-

ing heap-allocated data structures for inter-thread communication can also

be less efficient than direct queue mappings in the presence of thread migra-

tion, because heap-allocated communication structures do not automatically

migrate with threads.

ADAM queues can assume register semantics when necessary via a copy/

clobber modifier, as described in the code example at the beginning of this

chapter.

3.2.3 Memory Model

The ADAM uses a virtually addressed capability-based memory model. As

mentioned previously, the capability format used in ADAM also encodes base

and bound information in the pointer tags. This technique has been seen be-

fore in [CKD94], and is refined by [BGKH00]. Capabilities are tagged point-

ers that the hardware recognizes and treats differently from regular data. In

particular, regular users cannot create capabilities on their own; they must

request capabilities from the operating system or some other trusted super-

visory mechanism. This feature helps make a system more secure against

malicious or broken code. In the case of ADAM, the capability format is

augmented with tag bits. These tag bits encode information about the ca-

pability, such as the read/write permissions and the base/bound information.

The base and bound tag information is particularly important toward enabling

the implementation of fast migration mechanisms. Given an ADAM capabil-

50

ity, one can deduce the exact region of data to copy from the base and bound

tags; note that the base address given to a user in a capability is allowed to be

different from the absolute beginning address of the capability. In addition,

the tags include an “increment-only” bit. When this bit is set, users can only

reference offsets to the capability base that are positive integers, including

zero. This allows the system to hide information at the top of each capabil-

ity from users, between the absolute capability beginning and the user base

address. This feature is used in my migration implementation to associate a

remote data locater pointer with each capability. The function of the remote

data locater pointer is described in detail in chapter 4. For more information

about the implementation of base and bounds encoding in ADAM, readers

are referred to appendix B.

Memory is striped across the machine using an explicit node ID as part of

the address. The node ID field and address field can steal bits from each other

depending upon the implementation parameters. This kind of node location

coding within the address has been seen before in the Cray T3E [Sco96].

The actual translation of the virtual addresses and paging mechanisms are

transparent to the specification and implementation-specific. A summary of

the capability format can be seen in figure 3.7.

tags: access rights, base/bounds addressprocessor ID

capability tag

capabilityformatsimple.eps

Figure 3.7: High-level breakdown of the ADAM capability format. Detailed
bit-level breakdowns of each field can be found in appendix B.

51

3.2.4 Interacting with Memory

As mentioned previously, there are no load or store instructions in the ADAM

specification; memory is an opaque object accessed only through queue map-

pings. The MML and MMS opcodes are used to define load and store queue

pairs, respectively. MML takes an outgoing address queue and a return data

queue as arguments; MMS takes an outgoing address queue and an outgo-

ing data queue as arguments. The ordering of data in any single given load

or store queue mapping within a thread is guaranteed to be preserved, since

address and data values are sent to the memory subsystem in lock-step. How-

ever, the ordering between multiple sets of mappings is not guaranteed be-

tween MSYNC instructions. Hence, accessing a single piece of memory through

multiple queue maps is not recommended as it can result in nondeterministic

behavior.

Locks and semaphores in memory can be implemented using the EXCH

opcode. The EXCH opcode declares a set of three queues as an exchange tu-

ple. One queue is used to specify the exchange address, another queue is used

as the source of outgoing exchange data, and the final queue is used to spec-

ify the return point for the exchanged data. This exchange is guaranteed by

hardware in the memory subsystem to be atomic. The timing of the exchange

is not deterministic: the actual exchange on the memory location happens

whenever the exchange request arrives at the destination memory location.

When initializing a memory queue mapping, the first piece of data written

into an address queue must be a capability or a memory access exception is

thrown. Subsequent accesses to an address queue may pass more capabilities

or any integer data type. When an integer data type is put into a memory

queue, it is assumed to be an offset of the most recent capability passed into

the address queue. Putting a packed integer into an address queue causes

data to be returned for each of the packed sub-values, starting with the least

52

significant value and ending with the most significant value.

A feature of the memory queue access form is that architects and imple-

menters can extend the ADAM specification by adding intelligence to the

memory system. Capabilities and offsets are thrown into a memory queue,

and the memory system is free to do what it likes before returning some data.

Thus, the memory system can be augmented to be more than just a table of

stored values; it could be configured to perform computations or to automat-

ically traverse data structures as well.

53

Chapter 4

Migration Mechanism in a

Decentralized Computing

Environment

Memory is like an orgasm. It’s a lot better if you don’t have to
fake it.

—Seymour Cray on virtual memory

4.1 Introduction

The idea of moving code and data around so that they are physically closer

to each other is appealing in any computer system where communication la-

tencies are high. Unfortunately, migration introduces a large number of new

problems. First and foremost, migration consumes computing resources, and

system architects must contend with the fact that any movement of data must

54

be eventually amortized by the resulting reduction in communication latency.

The overhead of a migration mechanism includes not only the time to copy

the data, but also the time required to negotiate with the migration destina-

tion; the potential stalling of access to the data during the migration interval;

the time required to update any pointers into the migrated memory; and any

collateral impact on network and CPU utilization. This litany of performance

pitfalls makes it very difficult to wedge an effective migration mechanism

into an existing architecture that was designed without any thought toward

the problem. Thus, even though data and thread migration seem to be good

ideas in principle, their implementation can be a difficult task.

The ADAM architecture and its corresponding implementation drastically

reduce the overhead required for data and thread migration when compared to

traditional architectures. ADAM’s data and thread migration mechanisms are

basically identical because of its programming model and implementation:

threads are just data structures that have a special meaning to the thread sched-

uler. Inter-thread and memory communication is explicitly managed so im-

plementing forwarding pointers and pointer updates can be done through an

efficient and straightforward scheme called “temporally bidirectional point-

ers”. Finally, the use of a capability-based memory system with tag-encoded

explicit base and bounds on memory regions simplifies the bookkeeping on

which pieces of memory to move. It now becomes reasonable to discuss a

whole new set of issues related to the on-line scheduling of data and thread

migration because of this low-overhead migration mechanism.

4.2 Background

This background section surveys the mechanisms and algorithms of previous

work in the area of data and thread migration. This section is divided into

55

architecture, mechanisms, and algorithms sections.

4.2.1 Architectures that Directly Address Migration

There are a few architectures that directly address data or thread migration.

A class of architectures known as COMA (Cache Only Memory Architec-

ture) must grapple head-on with the issue of data migration as a cache line

placement problem. NUMA (Non-Uniform Memory Access) machines also

introduce the idea of spatial awareness to an architecture, but the issue of data

migration is typically encapsulated by the cache coherence protocol. Thread

migration mechanisms, on the other hand, typically do not manifest them-

selves as architectural features, but as run-time or compile-time supported

features of otherwise conventional parallel architectures. Therefore, in the lit-

erature, thread migration mechanisms typically fall under the genre of work-

stealing and load-balancing mechanisms and are treated that way in the next

section.

There are relatively few COMAs in the literature. The most notable CO-

MAs are Bristol’s Data Diffusion Machine (DDM) [MSW93], the Kendall

Square Research KSR-1 [ea92], and the UIUC Illinois Aggressive COMA

(I-ACOMA) [TP96]. All three COMAs listed here rely upon a directory-

based cache coherence scheme. The KSR-1 and later revisions of the DDM

employ a scalable hierarchical directory scheme, whereas the published liter-

ature on the I-ACOMA does not specify the details of the directory scheme;

in fact, the I-ACOMA literature does not focus much on the data migration

aspects of a COMA, but more on latency hiding schemes through the use of

simultaneous multithreading and its implementation using embedded mem-

ory process technology. As mentioned previously, COMAs deal directly with

the data migration issue as a cache line placement issue. In the DDM, a clus-

ter of processors share an “attraction memory” (AM) where requested data

56

is stored; frequently requested data naturally migrates and clusters around

the processors that require the data. The location of data is tracked using a

hierarchical directory lookup based on point-to-point wiring, as opposed to

the KSR-1 which uses a series of interlocking rings to resolve the location

of data. While the point-to-point hierarchical lookup addresses some of the

scalability issues of the KSR-1 interlocking rings, it still relies on a directory

lookup architecture. This means that either large cache lines or a high mem-

ory overhead must be paid for storing the presence bit vectors in the cache

memories. While there are mechanisms such as sparse directories [GWM90]

or limited pointers [ASHH88] that can reduce this overhead, these mecha-

nisms introduce more complexity into the system. The ADAM architecture,

on the other hand, presents programmers with a virtual shared memory space

and no caches. Coherence in ADAM is trivial, as there is only one loca-

tion for any mutable piece of memory; hence no complexity or performance

is lost to a directory cache scheme. The performance loss of not caching

memory locally is gained back through three methods. The first is a simple

network protocol and architecture that enables low latency remote memory

requests. The second is aggressive multithreading to hide fetch latencies, in

the style of HEP. [Smi82a] The third is the use of both data and thread mi-

gration mechanisms that supplant the locality of data nominally provided by

directory caching schemes.

NUMA architectures make the reality of non uniform memory access

an explicit architectural assumption, and typically provide automatic mech-

anisms to hide the latency of remote memory accesses. In the case of the

Stanford DASH [CDV�94] and the SGI Origin 2000, a directory-based cache

coherence protocol is employed to help enhance data locality and re-use. The

amount of data that can be “migrated” locally in a ccNUMA architecture

is limited by the size of the cache. Unlike the DDM COMA, the alloca-

57

tion, placement, and coarse migration of data is explicitly managed mostly by

software; still, fine-grained data migration is provided by the caching mech-

anism. Because of the large overheads incurred by software page migration

management, these ccNUMA machines fall into the class of coarse-grained

data migration machines. On these machines, it is impractical to consider a

migration system where data is dynamically and frequently moved around to

reduce latency and balance loads. For example, the SGI Origin 2000 provides

hardware-supported page migration through two mechanisms: per-page ref-

erence counters for profiling, and a direct memory access (DMA) style block

transfer mechanism to accelerate page copying. The time required to copy a

page of memory is under 30 �s; however, the time required to invalidate and

update the TLBs is 100 �s or more. [LL97] While a technique called “direc-

tory poisoning” is provided that allows the TLB update to overlap with the

page copy process, the performance of page copying is still less than desired.

4.2.2 Soft Migration Mechanisms

A number of innovative, high performance mechanisms have been proposed

for the efficient migration of threads for load balancing within more conven-

tional architectures.

TAM [CSS�91] (also referred to as Active Threads in [WGQH98]) and

its follow-on, Active Messages [vCGS92], proposes an efficient mechanism

for interprocessor communication using continuations. It significantly dif-

ferentiates itself from the J-Machine [NWD93], Monsoon and *T [PBB93],

all message-driven machines, by the fact that Active Messages is a purely

software-approach to achieving high performance. [vCGS92] claims that

pure message-driven hardware implementations are crippled by the limited

number of registers available per hardware context, whereas a software em-

ulated implementation could leverage the rich architecture of a conventional

58

processor. It also differentiates itself from other message passing systems

by operating entirely in user space, so as to cut out kernel overheads, and

by allowing concurrent message transmission and computation through non-

blocking operations. Active Messages demonstrated a performance of 11 �s

(21 instructions) to send a message and 15 �s (34 instructions) to receive

a message on an nCUBE/2. On a CM-5, performance is 1.6 �s to send a

single-packet (address + 16 message bytes) and 1.7 �s for receiver dispatch.

Significantly, Active Messages is not a thread migration mechanism; rather,

it is a method for compile-time integration of fast message passing mecha-

nisms, similar in nature to Remote Procedure Calls (RPCs). Thus, Active

Messages does not address how to deal with spatially nonuniform memory

or situations where it is difficult to statically analyze the optimal pattern of

thread creation and messaging.

Computation Migration is a term coined by [HWW93]. Computation mi-

gration is similar to thread migration, but lighter in weight (but not as light

weight as TAM threads). This paper goes into depth about the difference be-

tween RPC, data migration and computation migration. A prototype system

based on PROTEUS (an object oriented language) with explicit programmer

annotation for migration opportunity points was used to evaluate the viability

of computation migration. The implementation was tested on a counting net-

work and a b-tree benchmark. The performance of hardware supported Com-

putation Migration is favorable when compared to hardware shared memory

and hardware supported RPC. Computation Migration is particularly good

under high contention situations. Perhaps the most interesting contribution

of [HWW93] with respect to this work is a detailed breakdown of where time

is spent in the migration protocol. Of the 651 cycles required to migrate

computation, 74% is consumed by “message overhead”, i.e., moving mem-

ory around, scheduling, marshaling data, creating threads, and dealing with

59

procedure linkages; only 3% is consumed in network transit and the remain-

ing 23% is consumed by what appears to be user code annotations. User

code annotations are required under this scheme as migration is explicitly

managed by the user. Note that Active Threads [WGQH98], a slower migra-

tion scheme, is used as the comparison point for my work over Computation

Migration because these static annotations restrict the utility and concurrency

benefits of Computation Migration. Even so, my thread migration mechanism

performs about an order of magnitude faster, cycle-for-cycle, than the Com-

putation Migration scheme. [Hsi95] describes an extension to the work where

dynamic migration is implemented using a system called MCRL. Migration

decisions are based on a pair of simple heuristics based on the frequency of

reads and writes. Benchmarks run on the MIT Alewife system [ABC�95]

indicate that computation migration can be used in combination with data

migration in situations where shared memory writes are common to improve

performance. ADAM expands upon this work by creating a hardware mecha-

nism for lowering the overhead of thread and data migration and thus enabling

efficient fine-grained migration.

Active Threads [WGQH98] is a paper that describes a thread migration

mechanism that employs a user-space threading scheme similar in spirit to

Cilk [Joe96], Filaments [LFA96], and Multipol [WCD�95]. Active Threads

stripe processor node addresses across a large virtual memory space to avoid

having to update thread pointers upon thread migration. Without special hard-

ware support, Active Threads achieves a 17 �s one-way latency for a 5 word

message. A bulk transfer of 1 kbyte takes 560 �s, constrained by the host I/O

bandwidth. A thread with a null stack can be migrated in 150 �s; on a Sparc

v8 architecture processor using gcc 2.7.1, a null thread stack is 112 bytes. A

2 kbyte stack takes 1.1 ms to migrate. These tests were run on a cluster of 50

MHz Sparcstation 10s with Myrinet. The paper compares this thread migra-

60

tion mechanism against schemes such as Ariadne, Millipede, and PM�; these

other schemes have a performance on the order of 10 ms for basic migration

operations. Finally, super-linear speedup is demonstrated for locality-guided

migration on a simple multithreaded grep application searching across a

distributed disk array. Average thread lifetimes in this benchmark are on the

order of 5-10 ms. The ADAM architecture adopts Active Thread’s use of

a node-striped address space but also enhances performance by providing a

hardware mechanism to accelerate migration and by providing temporal bi-

directional pointers to perform lazy pointer updates.

DEMOS/MP [PM83] is an operating system that implements an efficient

thread migration mechanism. The thread migration mechanism described in

DEMOS/MP is very similar to that used in ADAM, but implemented en-

tirely in software. DEMOS/MP processes consist of program state, link ta-

bles, message queues and “other state” (presumably heap state). Inter-process

communication occurs through OS allocated and administered links that are

recorded in the link tables. This use of explicitly managed inter-process com-

munication links enables DEMOS/MP’s efficient process migration mecha-

nism. When a process wishes to migrate, it is halted, space is allocated on

the remote node, and the process is moved. Messages accumulated during

migration are forwarded on to the new process location, and there is a mech-

anism for updating sender link tables to reflect the new process location.

There is little mention of performance and a dearth of comparison bench-

marks in [PM83], but the paper does mention that a null thread–one with no

program or data information–has a size of 850 bytes total. The paper also

mentions that in non-trivial processes, the size of the data and program infor-

mation regions are much larger than the size of a null thread. Thus, one might

safely assume that the overhead of migration is fairly high in DEMOS/MP,

as its processes are roughly equivalent in structure to those found on modern

61

UNIX systems. The ADAM architecture improves on the DEMOS/MP mi-

gration mechanism by using a lightweight thread representation that is faster

to move, and by providing an architecture that enables hardware support for

interprocess communication mechanisms. Thread migration under ADAM

also does not require the movement of the heap state or traversing OS-based

memory allocation tables. ADAM’s architecture and migration mechanism

also enables data migration in addition to thread migration.

4.2.3 Programming Environments and On-Line Migration

Algorithms

A hardware mechanism’s design is incomplete without thought for the pro-

gramming environment or algorithms required to harness the power of the

mechanism.

Emerald [JLHB88] is the seminal work in object migration systems. The

only other works cited by this work are the distributed Smalltalk implementa-

tion, Argus, and Eden; one might also count Hydra and Clouds (object-based

operating systems) as previous work. Emerald is a system design, and em-

bodies a language and an implementation. The language has a type system

that allows the programmer to give hints to the compiler. It also provides

for migration, allocation, and affinity hints in the language. Emerald is also

garbage collected. The language uses a global unique name space. Objects

may have processes attached to them, or they may be direct data; the deci-

sion to attach a process to an object is made by the compiler. Emerald has a

strong focus on maintaining good local-invocation performance despite pro-

viding the ability to migrate objects. Forwarding pointers with timestamps

are used as the method for migrating objects quickly without having to drag

the universe along with a moving object. The decision of what parts of an

object to move is made by the runtime and compiler; small pieces of data get

62

moved at migration time; larger pieces require more thought. Emerald also

provides a global object lookup facility. One problem with Emerald is the

handling of processor registers: an incoherency can result in processor regis-

ter state due to the way activation records are moved. In the paper, Emerald

was demonstrated to have good performance over a non-migrating implemen-

tation of a distributed mail-handling application. Finally, the paper provides

a good summary of the benefits of migration: load sharing, communications

performance, availability, reconfiguration, and the easy utilization of special

capabilities.

Ciupke, Kottman, and Walter [CKW96] proposes a framework for en-

abling programmer-guided object migration in their paper titled “Object Mi-

gration in Non-Monolithic Distributed Applications”. The paper posits that

an object-oriented model is a natural match for a migratory framework, since

objects naturally define a locality of data and the methods that can modify it.

The paper suggests that the basic linguistic primitives required to guide mi-

gration are fixing operations, movement operations, and attachment notations.

The paper also assumes that all high-level migration decisions are coded by

“reasonable users”. The language primitives are tested within an abstracted

simulation environment that makes assumptions such as a fully-connected

network. The simulations indicate that dumb migration (basic user-coded

migration) yield roughly the same performance increase as profile-based mi-

gration. The results also indicates that migration can be detrimental in situa-

tions where migration policies are coded with only one component in mind.

In particular, performance is degraded in the hot-spot case, and in the case

that the work set of objects are tightly associated but migrated as individual

entities.

“Profiling Based Task Migration” by Baxter and Patel [BP92] focuses on

migration for load-balancing only, and has a very specific, limited data set.

63

However, it demonstrates that for this particular example, a migration algo-

rithm acting on local knowledge only can achieve within 5% the performance

of a global knowledge solution.

Kalogeraki, Melliar-Smith, and Moser [KMSM01] discusses dynamic al-

gorithms for distributed object migration in their paper titled “Dynamic Mi-

gration Algorithms for Distributed Object Systems”. This work considers

systems with only 8 nodes and about 5 objects per node. Object state transfer-

rance is hindered by the movement of OS/kernel state under the ORB [Inc01]

distributed object architecture; object scheduling happens in milliseconds,

profiling over seconds, and migration over tens of seconds. The test system

is 167 MHz ULTRA Sparc using VisiBroker ORB 3.3, and the interconnect

is 100 MBit/s ethernet. The focus of the paper is the use of migration to sat-

isfy real-time system constraints, so the results demonstrate that “laxity” can

be preserved through migration. Thus, the relevant section of this paper to

this thesis are its dynamic migration algorithms. The paper presents “cool-

ing” (load balancing) and “hot spot” (latency reduction) algorithms, evalu-

ated independently. The algorithms correspond to the intuition brought by

their names, and the paper demonstrates that these algorithms can be used to

successfully balance a task within a distributed system.

The Object Request Broker (ORB) [Inc01] system used by [KMSM01]

is described in a 1000+ page document. ORB is an open architecture and

specification for defining objects that can be shared, interoperated, and in-

voked under one huge common umbrella. As noted previously, the overhead

incurred by the ORB system places it in a different league of migration sys-

tems when compared to this thesis; however, the standard itself addresses a

number of interesting programming issues that are beyond the scope of this

thesis.

In the context of real time distributed object systems, [HS94b] uses Bayesian

64

analysis and queuing theory to determine if a task should be migrated to a des-

tination node given a set of real-time constraints and some estimates about the

task’s execution time and laxity. The article references a prior work [HS94a]

which describes how to estimate the load state of a remote node given out-

dated information. This article focuses primarily on ensuring that decisions

to transfer work to another node are done in such a manner that future task

arrivals are also considered. This prevents the situation of everyone sending

their tasks to the one unloaded node in the network just because the outdated

load information looked good at the time of migration initiation. This article

also introduced the idea of “buddies” that are physically co-located for re-

stricting the range of broadcast state information and attempts to reduce the

amount of communication required to maintain other-node state.

This article is a good example of a formal analysis of data migration in

a complex system using statistical analysis. Other methods for analyzing

the system could be through control systems theory (feedback systems) or

through on-line competitive analysis. A significant difference of this article

from the work I am concerned with is that this work investigates real-time

systems, whereas my work is simply interested in optimal performance (min-

imum execution time as opposed to guaranteed time of execution).

Hall, et al. [HHK�01] presents a theoretical paper on data migration in

the context of load balancing and optimizing a storage system. A fully con-

nected, bidirectional network is assumed, with objects all of the same size.

Even with these assumptions, the problem of determining an optimal plan

for data migration is declared to be NP-complete. The problem is also NP-

complete for just two nodes directly connected with objects of variable size,

given that only one object can move at any time and that space is very lim-

ited on each node. The paper claim that this problem is equivalent to edge-

coloring for the unconstrained space problem, and very similar in solutions

65

bounds to the edge coloring problem for constrained space problems. The

good news is that heuristics and poly-time algorithms are available that can

solve the problem to near-optimality. [BEY98] is a survey work on competi-

tive analysis and on-line algorithms that describes some of the algorithms that

can be applied to data migration and load balancing problems. I base much

of the formal analysis in my thesis on the contents of [BEY98].

4.3 Migration Mechanism Implementation

The Q-Machine is an implementation of the ADAM abstract architecture.

The Q-Machine leverages ADAM’s architectural features to enable fast, low-

overhead migration mechanisms. This mechanism reduces the latency and

bandwidth cost of migrating lightweight data and threads to that of an L2

cache fill on a Pentium 4 processor in a RAMBUS based system. The es-

timated system latency of an L2 cache fill is about 175 ns (which is 140

800 MHz Direct-RAMBUS cycles) [CJDM01], and the size of an L2 cache

line is 128 bytes [HSU�01]. Note that the Pentium 4 processor’s L2 cache

is sectored into 64-byte halves, but according to [HSU�01], L2 cache fills

“typically” fetch data for both sectors. More information on the performance

of the migration mechanism can be found in section 6.

The ancillary details of the Q-Machine implementation are presented in

chapter 5; for now, I will focus solely on the implementation details relevant

to data and thread migration. Also, when reading this section, it is assumed

that the reader is familiar with the ADAM architecture specification (chapter 3

and appendix B).

The heart of the migration mechanism is the tagged capability architec-

ture of the ADAM, and the use of queue maps for inter-process communica-

tion. These two hardware enforced disciplines drastically reduce the amount

66

of bookkeeping and special-purpose hardware required to implement an ef-

ficient migration mechanism. Capabilities encode their base and bound in-

formation within their tags, so the boundaries of migrated data are explicit.

In addition, capabilities in this architecture feature an “increment-only” bit

that allow portions of the beginning of the capability to be safely reserved for

overhead functions such as forwarding pointers and statistics bookkeeping.

Also, thread state has a one-to-one mapping with a capability (the thread’s

context ID) in memory due to the named-state queue file implementation (see

appendix C for queue file implementation details). This feature allows thread

migration to share almost all of the mechanisms of data migration; the pri-

mary difference is that thread migration requires additional locking and syn-

chronization with the physical queue file. The use of queue maps for inter-

process communication is important because it enables simple mechanisms

for synchronizing, redirecting and updating inter-thread communications re-

quests during and after a thread migration event.

4.3.1 Remote Memory Access Mechanism

I will now introduce the remote memory access mechanism used in the Q-

Machine implementation. The remote memory access mechanism is an im-

portant component of the migration mechanism. Recall that the address space

of ADAM is structured so that the processor node ID is the highest address

bits; also, by convention, processor nodes occupy the even route addresses,

and memory nodes occupy the odd route addresses. This allows processors

and memory to be paired off into “preferred” pairs by the existence of a re-

liable, in-order delivery cut-through network path between preferred pairs.

A local memory access is thus defined as a memory access where the node

ID of the access capability is equal to the node ID of the preferred memory

node. Local memory accesses are always serviced by the preferred mem-

67

ory node, and local memory allocation requests allocate data in the preferred

memory node. The performance of accessing data in the preferred memory

node is similar to that of an L3 cache access time on a contemporary proces-

sor; please see section 6 for specific numbers.

Semantically, a preferred memory node is the target of all MML, MMS and

EXCH queue mappings, regardless of the access capability used to initialize

the mapping. Thus, all remote requests are also routed from a processor node

to the preferred memory node. When a remote request is initialized, the local

virtual memory handler allocates local “shadow” pages for the remote capa-

bility. Shadow pages serve two functions: first, they provide a method for

storing the remote memory’s data locater pointer; second, they provide the

infrastructure for caching immutable data. Shadow pages should never dis-

place local memory pages when local memory is scarce. Hence, most of the

shadow pages are not swapped into core or initialized when they are first al-

located. The only exception is the first page. The first memory location of

the first shadow page is the data locater pointer. This data locater pointer is

initialized with the remote access capability. Note that the rest of the first

shadow page’s space is marked as all invalid and all non-primary. Figure 4.1

illustrates the format of a remote capability in shadow space.

Figure 4.2 overviews the system level view of resolving a remote memory

request. Remote requests are easily detected when a memory-mapped queue

is initialized with its access capability: if the node ID of the access capability

is not equal to the memory node’s ID, it must be a remote request. This

remote request status is noted in the memory node’s access table tags (for

more information on the memory node access table, please see section 5.3.2).

All requests from a processor node to a preferred memory node use the

format of a transport packet without the physical layer route header and check-

sums. More information on the transport protocol used in the Q-Machine can

68

data locater pointer

remote
capability
user base

remote
capability

user
segment

first VM page is marked
as "invalid" and "non-primary"

nonresident,
unitialized pages

datamigformat.eps

remote capability
system base

Figure 4.1: Format of a remote memory capability’s shadow space in local
virtual memory space.

processor 2 preferred
data memory space

(handled by memory node 3)

1

3

5

7

9

shadow
memory regions

processor 8 preferred
data memory space

(handled by memory node 9)

1

3

5

7

9

1. request
issued to

memory via
queue map

2. resolve
data locater

pointer

3. send request
to remote node

all locations
non-resident, marked as
non-primary on page-in

4. return data to
requester via memory node,

cache immutable data

processor 2
environment memory

(thread space)

all forwarding
is resolved here

local
memory regions

2

remoteflow.eps

Figure 4.2: System level view of resolving remote memory requests.

69

be found in appendix C.2. These transport packets contain all the state re-

quired to resolve the return address of the requester; thus, when forwarding a

memory request, the memory node simply encapsulates the processor’s orig-

inal request packet in forwarding headers and sends the encapsulated packet

on to the remote memory node. Please see figure 4.3 for a more detailed il-

lustration of how local and remote exchange (EXCH) mappings are handled.

The EXCH operation was chosen for illustrative purposes because it combines

both a load and a store operation. A load operation uses exactly the load-half

of the EXCH protocol, and a store operation uses the store-half of the EXCH

protocol, plus a store-acknowledge packet so that writes can be guaranteed to

complete in program order.

P M

A

Dout

Din

cut-through interface

invalid locater pointer

EXCH, local memory
case

P M

A

Dout

Din

valid locater pointer

EXCH, remote non-
migrated memory case

M'

immutable memory
cached locally

address/data bundled
into single network packet

exchsimplecase.eps

EXCH queue
mappings

Figure 4.3: Details of handling remote and local EXCH requests.

Note that for compatibility with the migration mechanism to be outlined

in the next section, all memory accesses, even stores, must check the valid

and primary tag bits. If the existing value is invalid and the non-primary bit

is set (as is the case when data has been migrated out), then the access table

must be updated to forward future requests, and the current request must also

be forwarded to the remote request queue. The overhead of tag checks on all

requests, including stores, can be mitigated if dedicated hardware is provided

in the memory implementation.

70

4.3.2 Migration Mechanism

The remote memory access primitives described in the previous section en-

able the streamlined implementation of migration mechanisms. The migra-

tion mechanism recognizes only two commands, migrate data (���������� ���	
��

and migrate thread (�� �������� ���	
��). The arguments to these commands

are the source capability of the data or thread to migrate, and the destination

processor ID. Other commands that could be implemented include partial mi-

gration commands and copy immutable data commands.

4.3.3 Data Migration

The data migration mechanism implemented in the Q-Machine relies on the

following assumptions and invariants.

Invariant: The user only sees one global unique name for each capabil-

ity, and this name never changes. This is enforced by the basic data locater

pointer at the top of every capability. This data locater allows the actual data

to move freely without having to concurrently modify thread state.

Assumption: There is at most one outgoing migration process per mem-

ory node at any given time. This assumption simplifies the hardware require-

ments for freezing and synchronizing access requests to a piece of data in

flight.

Invariant: The relative order of requests to any given capability is pre-

served before, during, and after migration. This is important in maintaining

consistency in the memory model.

Assumption: The relative order of requests between the migrating and

the non-migrating capabilities is not important. This is a general assumption

of the architecture, but it is restated here for clarity. It is the requestor’s

responsibility to ensure, for example, that stores to one location complete

71

before loads to the same location. In the Q-Machine implementation, only

one pending request is allowed per thread per unique memory location; a

higher-performance solution may use store buffers with associative lookup to

alleviate this bottleneck, so long as it does not cause problems with the next

assumption.

Assumption: There is only one pending memory request per thread per

unique memory location in the network at any given time. This rather re-

strictive assumption is required because requests to a migrating capability are

delayed for the duration of a migration event; in fact, in the case that data

is migrating across a routing bottleneck, requests issued after migration will

arrive before any pending requests issued before migration. It is possible to

relax this assumption with extra bookkeeping in the migration mechanism

and pointer update protocol, but this kind of performance optimization com-

plexity is eschewed in my research prototype. Note that local requests have

less restrictive requirements because the cut-through interface has stronger

request ordering guarantees than the external network interface.

Invariant: There is at most one primary copy of a capability within the

system at any time. The primary copy of a capability is the copy that is al-

lowed to respond to load requests for mutable data or any store or exchange

request. A capability is primary when the primary tag bits are set on all the

data within the capability’s segment.

Invariant: When there are zero primary copies of a capability within the

system, no requests to the capability are serviced. In other words, data in

flight cannot be modified or read.

Assumption: A capability to be migrated starts out local. A memory

node cannot manage the migration of capabilities that are not local; if this

must happen, the local memory node should send a message to the remote

memory node to request a migration.

72

Performance Tip: It is helpful to have a hardware mechanism for clear-

ing or setting the primary bits on large blocks of memory. This is a frequent

operation performed by the migration mechanism that scales poorly with the

size of the capability segment. One implementation approach could be to in-

terleave the primary-bit clearing operation with the readout of the data during

the copy phase of migration.

This is the procedure for migrating a capability.

� A migration request is issued of the format ���������� ���	
��

� A request to allocate a capability �
	���	 of suitable size is issued to the

receiving memory node.

� Requests to ������ are serviced until �
	���	 is returned to the source

node.

� All incoming network requests to ������ are frozen using the mechanism

diagrammed in figure 4.4. Note that outgoing data may continue to be

sent and resent by the idempotent sequenced transport protocol outlined

in section C.2.

� ������ is copied to �
	���	

� The contents of ������ are marked as invalid and non-primary, except for

immutable data.

� The data locater entry of ������ is changed from invalid to �
	���	.

� Outgoing data in-flight prior to the freezing of� ����� must all be acknowl-

edged in accordance with the sequenced idempotent network protocol be-

fore continuing to the next step.

� Requests to������ are unfrozen and re-scheduled. These requests are now

handled by the existing remote memory access infrastructure.

� Eventually, after all pointers to ������ have been updated, the garbage

collection mechanism de-allocates ������.

73

Memory Request Arbiter

Memory

local remote network

from cut-through from network interface

== == ==

to cut-through
to network
interface

frozen capability

request
queue

frozen
queue

memfreezemech.eps

Figure 4.4: Mechanism for temporarily freezing memory requests.

In addition to the migration mechanism, a mechanism is required to up-

date incoming data locater pointers, or else every memory request will even-

tually have to traverse a chain of data locater pointers. One method for per-

forming pointer updates is to sweep through memory and resolve all data

locater pointers to their primary locations. This method is prohibitively ex-

pensive and slow. A better solution is to employ bi-directional data locater

pointers, and to send update messages along the reverse paths every time a

piece of data is migrated. However, bi-directional pointers have the draw-

back of needing to maintain an arbitrarily large list of reverse pointers. The

reverse pointer update also jams the outgoing network ports of the memory

node if the reverse pointer list is large. In order to counter these faults, I use

a mechanism I call temporally bi-directional pointers.

Temporally bi-directional pointers can be thought of as lazily evaluated

bi-directional pointers. Whenever a request is issued to a migrated capabil-

ity, the response is a pointer update message. This pointer update message

74

contains the body of the original request so that the requester does not need

to keep track of outstanding request state. Please refer to figure 4.5. While

the temporally bi-directional pointers mechanism wastes one trip across the

network per update when compared to eagerly updated bi-directional point-

ers, temporally bidirectional pointers have many advantages: they require

constant space to implement; reverse pointers that are inactive consume no

resources; update requests are spread out over time so the effective latency

is lower due to less queuing of requests; and, if a data block was migrated

across a bottleneck, the bottleneck is not aggravated by a deluge of update

messages.

4.3.4 Thread Migration

The thread migration mechanism implemented in the Q-Machine relies on the

following assumptions and invariants.

Invariant: The user only sees one global unique name for each thread,

and this name never changes. This is enforced by the data locater pointer at

the top of every capability, including thread capabilities. This data locater

allows the actual data to move freely without having to concurrently modify

thread state.

Invariant: All inter-thread operations are write-only. This comes for free

with ADAM’s “push” model of inter-thread communications. In other words,

only outgoing queue maps are allowed; a local queue cannot request “read”

data out of a remote queue.

Assumption: There is at most one outgoing migration process per pro-

cessor node at any given time. This assumption simplifies the hardware re-

quirements for freezing and synchronizing requests to a thread in flight.

Invariant: The relative order of requests to any given thread is preserved

before, during, and after migration. This is important for maintaining consis-

75

P M

A

Dout

Din

M'

M''

t = 1, request issued

P M

A

Dout

Din

M'

M''

t = 2, pointer update

returned address/data
packet + update pointer

A

Dout

Din

M''

t = 3, re-issue request
directly to forwarded

memory

pointer
trajectories

P M M'

exchupdatecase.eps

Figure 4.5: Handling of a migrated EXCH request with temporally bi-
directional pointers.

76

tent data ordering in mapped queues.

Assumption: The relative order of requests between migrating and non-

migrating threads is not important. This is a general assumption of the archi-

tecture, but it is restated here for clarity.

Invariant: There is at most one primary copy of a thread within the sys-

tem at any time. The primary copy of a thread is the copy that is schedulable

and is a valid target for incoming data from mapped queues. A thread is pri-

mary when the primary bit is set on the context ID. Recall that the context ID

is also the capability for the backing store of the thread.

Invariant: When there are zero active copies of a thread within the sys-

tem, no requests to the thread are serviced. In other words, a thread in flight

cannot be modified or read.

Assumption: The thread to be migrated starts out local. A processor

node cannot manage the migration of threads that are not local; if this must

happen, the local processor node should send a migrate request message to

the remote processor node.

Performance Tip: The hardware should keep track of queues that have

been created, in addition to exactly which queues have memory maps, source

maps, and drop maps applied to them. With this information, queues that have

not been created (i.e., never referenced or otherwise empty) can consume zero

overhead during migration. The named state queue file implementation of the

Q-Machine provides all of this bookkeeping information for free.

The Q-Machine implements two procedures for migrating threads. One

is used when the thread is determined to be “lightweight”, i.e., it has few

memory mappings, few created queues, and little other state associated with

it. The other is used when a thread is determined to have a large amount of

state and may cause loading problems on the network and the receiver; this

is referred to as a “heavyweight” thread. The primary difference between the

77

protocols is the timing of the remote thread allocation versus the arrival of

the thread state. A heavyweight thread migration issues an allocate request

before sending the thread data; this allows migration preparations to occur

in parallel with the servicing of the allocation request. A lightweight thread

migration piggy-backs the thread state along with the remote thread allocation

request; this optimization reduces the time required for a lightweight thread

to migrate.

The following is the procedure for migrating a lightweight thread; the

responsibility for handling this migration is split between the sender and the

receiver.

Sender’s Procedure for a Lightweight Thread Migration:

� A migration request is issued in the format �� �������� ���	
��

� Thread ������ is removed from the local pool of threads. This includes

the processor node work queue and any internal state maintained by the

thread scheduler.

� All incoming requests to ������ are frozen using a mechanism similar to

that in figure 4.4.

� All of ������’s state is flushed from the physical queue file into environ-

ment memory.

� All pending memory requests for � ����� must complete or at least be ac-

knowledged before executing the next step.

� All pending outgoing requests of � ����� in the transport layer must be

acknowledged before continuing on to the next step.

� ������’s thread state is migrated to node ���	
�.

� ������ is set to non-primary.

� Once a “migration successful” message has been received from ���	
�,

the pending requests to ������ can be unfrozen and re-scheduled. The

pointer update mechanism, discussed later, handles these requests.

78

� Eventually, after all pointers to ������ have been updated, the garbage

collection mechanism de-allocates ������.

Receiver’s Procedure for a Lightweight Thread Migration:

� An incoming migration packet is received containing� �����’s thread state.

� ��	
� is allocated, and ������’s thread state is copied into ��	
�.

� ������’s memory mapped queues are reconstructed for � �	
� to the re-

ceiver’s preferred memory node.

� ��	
� is immediately placed into the receiver’s runnable thread pool.

� A “migration successful” token is sent to the sender.

The following is the procedure for migrating a heavyweight thread. Again,

the burden of the protocol is shared between the sender and the receiver.

Sender’s Procedure for a Heavyweight Thread Migration:

� A migration request is issued in the format �� �������� ���	
��

� A request to allocate a capability �
	���	 of suitable size is issued to the

receiving processor node (node ���	
�).

� Thread ������ is removed from the local pool of threads. This includes

the processor node work queue and any internal state maintained by the

thread scheduler.

� All incoming requests to ������ are frozen using a mechanism similar to

that in figure 4.4.

� All of ������’s state is flushed from the physical queue file into environ-

ment memory.

� All pending memory requests for � ����� must complete or at least be ac-

knowledged before executing the next step.

� All pending outgoing requests for � ����� in the transport layer must be

acknowledged before continuing on to the next step.

� �
	���	 must be received before continuing on to the next step.

79

� ������’s thread state is migrated node ���	
�.

� ������ is set to non-primary.

� Once a “migration successful” token has been received from node �� �	
�,

the pending requests to ������ can be unfrozen and re-scheduled. The

pointer update mechanism, discussed later, handles these requests.

� Eventually, after all pointers to ������ have been updated, the garbage

collection mechanism de-allocates ������.

Receiver’s Procedure for a Lightweight Thread Migration:

� An incoming allocate thread request is received; space is allocated and

�
	���	 is returned to the sender.

� ������’s thread state is received and copied into �
	���	.

� ������’s memory mapped queues are reconstructed for � �	
� to the re-

ceiver’s preferred memory node.

� ��	
� is placed into the runnable thread pool.

� A “migration successful” token is sent to the sender.

Queue mapping pointer updates are handled in a slightly different man-

ner than the data locater pointer updates for data migrations, because multiple

requests are allowed to be outstanding to a single queue during thread migra-

tion. A “transmission line” protocol is used in this case. The name was cho-

sen to reflect the similarity of this situation to the propagation and reflection

of waves in a series-terminated transmission line. Please see figure 4.6. This

protocol relies on one additional assumption.

Assumption: All messages between a sending and receiving thread are

guaranteed to be delivered and processed in-order with respect to the mes-

sage sequence generated by the sending thread. This assumption is enforced

by the idempotent sequenced transport protocol used in the Q-Machine im-

plementation.

80

This is the transmission line protocol:

� A thread is frozen due to a migration in progress

� Incoming requests to the frozen thread are blocked, and a “forwarding

pointer update” packet containing the blocked incoming requests is re-

turned to the sender as soon as the thread has been migrated.

� Once the sender receives the “forwarding pointer update” packet, it is-

sues a “forwarding acknowledge” message and ceases to issue any fur-

ther requests to the migrated thread; meanwhile, the sender re-issues any

returned requests to the new thread location

� Once the old location receives the “forwarding acknowledge” packet, it

sends an “okay to unblock” packet to the sender.

� Once the sender receives the “okay to unblock” packet, the sender may

issue new requests to the migrated thread.

4.4 Migration Mechanism Issues and Observa-

tions

A detailed review of the performance of the migration mechanism can be

found in section 6. This section reflects on some of my general observa-

tions about the migration mechanism and its design and implementation chal-

lenges.

4.4.1 General Observations

The basic protocol for migration in a capability-based architecture with na-

tive support for forwarding pointers is simple: lock the capability, move the

data, then unlock the capability. Of course, the devil is in the details. It is the

difficult details that lead to the dichotomy of memory and thread capabilities.

81

migrate out

original
requests

original
requests

data of interest
blocked during

migration

forwarding
pointer update +
returned original

requests

forward ack

returned requests

requests blocked

original
requests

forwarded

okay to
unblock

requests blocked

original
requests

forwarded

node A

node B

node C

last original
request

new
requests

transmissionprotocol.eps

Figure 4.6: Transmission line protocol for handling forwarding pointer up-
dates on thread-mapped communications.

82

In other words, while it has been pointed out that perhaps a single mecha-

nism could be used for both threads and data, it seems that the nature of how

memory and threads are used by programmers leads to a natural segregation

of these structures in the machine architecture.

One basic trade-off enabled by treating data and threads separately is a

simplification of the memory migration protocol. Since memory has no aux-

iliary state – no queue file, no scheduler entries, only one pending request

per thread per location – movement of memory is much lower overhead than

movement of a thread. On the other hand, because threads use strictly uni-

directional communication, pointer updates can be managed across multiple

outstanding operations. Multiple concurrent memory operations are more

complicated because order has to be maintained between all possible store,

load and exchange queues that may be dynamically mapped to a single mem-

ory location. Thus, by dividing the machine into distinct memory and pro-

cessor nodes, the respective migration protocols can cull out any unnecessary

assumptions or conditions specific to each situation.

In addition, a thread-only programming model may be advantageous in

situations where performance hinges on having available multiple concurrent

requests to memory. In a thread-only programming model, the programmer

sees no memory nodes or memory mapped queues; instead, dedicated server

threads handle memory requests in an abstract fashion. The ADAM can be

specialized into a thread-only programming model using compiler tricks with

some OS support. The compiler takes care of inserting the code necessary

to spawn abstract dedicated memory servers, and the OS is responsible for

coordinating the migration of the server threads along with their associated

data.

83

4.4.2 Performance Issues

I designed the migration mechanism to be a high performance solution with

latencies and bandwidth requirements comparable to L2 cache fills in a con-

temporary conventional processor. Results presented in section 6 show that I

achieve this goal for lightweight threads and data. Of course, there are still

optimizations that could be applied to the migration mechanism.

For example, partial migration of thread state could accelerate the time

between a migration decision and the first arrival of a thread at its destina-

tion. My scheme locks down a thread and moves its entire contents before

re-scheduling the thread. A more sophisticated scheme would keep track of

the most recently and most commonly used set of data in the thread, and just

send that data over in a small packet for immediate scheduling; as the receiv-

ing node initializes and schedules this thread for execution, the environment

memory could be concurrently filled with the remaining thread data. Partial

migration is feasible only because of the flexibility in the named-state queue

file implementation used by the Q-Machine.

A partial migration scheme can also be applied to large data sets. If an ex-

tremely large capability is allocated, the capability could be sectored off into

sub-blocks by representing the actual capability as a set of smaller capabilities

within the large capability. The smaller sub-blocks would contain pointers to

the parent capability, and vice versa; the pointer implementation would be

similar to that of the data locater pointer scheme used by my remote memory

access mechanism. These sub-blocks would be freely migrated around the

system independently of the parent capability.

Another method for partial migration is demand-based copying of data. In

this scheme, a set of reverse pointers are also required in addition to the data

locater pointers. The “primary” capability is still responsible for handling all

operations on the capability, but data for a load or exchange is propagated

84

to the primary capability only when requested. This scheme is illustrated in

figure 4.7. This method could be useful if very sparse, large data structures

are frequently migrated throughout the machine.

85

node A

capability A

data 0
data 1
data 2
data 3
data 4*

capability B

1
1
1
1
X

node A node B

0

1

capability A

data 0
data 1
data 2
data 3
data 4*

()
1
1
1
1
X

1

0

capability B

()
()
()
()
()

()
0
0
0
0
0

1

0
0

0
0

capability A

data 0
()

data 2
data 3
data 4*

capability B

1
0
1
1
X

node A node B

0

1

capability B

()
data 1

()
()

data 4*

()
0
1
0
0
X

1

00
0

capability A

()
()

data 2
()

data 4*

capability B

0
0
1
0
X

node A node B

0

1

capability B

()
data 1

()
data 3
data 4*

()
0
1
0
1
X

0

00
capability C0

node C

capability C

data 0
()
()
()

data 4*

()
1
0
0
0
X

1

0
0

allocate B

m
igrate data

1 &
 4

m
igrate data0,

allocate C
, m

igrate
data0,4, partial
m

igrate data3

0 "primary" bit in capability

0 "primary" bit in data

data 0 mutable data

data 4* immutable data

() invalid data/capability

()
()

()

()
()

()
()

migrationOverview.eps

Figure 4.7: Overview of a demand-driven data propagation scheme.

86

Chapter 5

Implementation of the

ADAM: Hardware and

Simulation

From Gordon Moore’s “Cramming More Components onto Integrated
Circuits”, April 1965

This section outlines the details of an implementation for a physical machine,

called the Q-Machine, optimized to run ADAM code. A top-down approach

is taken in describing the implementation. All key architectural features are

87

validated by a brief feasibility study in order to keep the design rooted in

reality and to attempt to convince the reader that this is an implementable ar-

chitecture. This section also outlines how the proposed hardware parameters

are reflected in the design and implementation of a software simulator of the

Q-Machine. The software simulation is bandwidth and latency-accurate, and

almost cycle accurate. The first goal of the simulation is to demonstrate the

feasibility of the queue-based programming model used by the ADAM and to

demonstrate integration with the Couatl and People languages and toolchains.

The second goal of the simulation is to demonstrate the performance of thread

and data migration mechanisms described in section 4, and to provide a plat-

form for testing various migration algorithms.

5.1 Introduction

The Q-Machine is organized as a fine-grained MIMD parallel processor tile

array featuring embedded memories. A preponderance of proposed tile pro-

cessor or chip-multiprocessor (CMP) architectures, many with embedded RAM

of some form, have cropped up recently due to their attractive simplicity and

seductive “guaranteed not to exceed” performance promises. Some of these

recently proposed architectures include RAW [LBF�98], Hydra [HHS�00],

IRAM [KPP�97], Sun Microsystem’s MAJC, the IBM Power4, Active Pages

[OCS98], Decoupled Access DRAM [VG98], Terasys [GHI94], SPACERAM

[Mar00], Smart Memories [MPJ�00], and Hamal [Gro01]. A succinct article

by Kunle Olukotun summarizes the essential advantages of CMPs. [ONH�96]

88

5.2 High-Level Organization

The address space of the Q-Machine is divided into three parts: code, en-

vironment, and data. The code space is write-once, read many and data is

striped across all nodes; interaction between code space and user space is

possible only through the LDCODE opcode. Environment and data spaces are

read-many, write-many and their address spaces are local to each node. Envi-

ronment space is where thread contexts are stored; thus, all interaction with

environment space is implicit. Environments are “allocated” by the SPAWN

set of opcodes, and threads are “garbage collected” as they HALT or are ob-

served to no longer reference or be referenced by anything else in the system.

Data space is accessed only through queue mappings in the execution unit. A

memory management coprocessor is required to handle memory requests in

memory space. An ALLOCATE opcode is provided in the instruction set as a

facility to create memory, and a garbage collection mechanism is required to

reclaim memory. The interaction of the ALLOCATE opcode with the memory

management coprocessor is implementation-dependent. Figure 5.1 illustrates

the high level situation that leads to this division of address spaces. Note

the implementation specific options such as I/O devices and custom hardware

blocks in figure 5.1. These devices can be accessed either through queue

mappings set up by OS traps, or through opcodes added to the stock ADAM

specifications that behave similarly to the ALLOCATE and SPAWN instruc-

tions.

5.3 Leaf Node

The basic leaf node contains two fundamental nodes: a processor node and

a memory node. Each of these nodes appear identical to the primary net-

work in terms of routing and addressing. However, a low latency cut-through

89

network

processor + NI

code
memory

environment
memory

memory
manager

data
memory

I/O
custom

streaming
hardware

FPGA application-
specific options

machineblocks.eps

basic Q-Machine
nodes

Figure 5.1: Pieces of a Q-Machine implementation. Node ID tags are uniform
across the machine, so network-attached custom hardware is addressable like
any processor or memory node.

90

path is provided between each processor-memory node pair. This path estab-

lishes the bonded memory node as the preferred location of data on which

the processor node wishes to operate. The cut-through path is guaranteed to

always deliver data reliably between the leaf node pair; thus, the latency asso-

ciated with adding packet headers, block checksums and other bookkeeping

incurred by a reliable-delivery transport protocol can be avoided. There must

be sufficient bandwidth and ports available to make the probability of either

the processor or memory node becoming saturated by cut-through traffic neg-

ligible. A simple way to guarantee this assumption is to partition the design

so that there is a dedicated port for cut-through traffic, separate from ports

for dealing with inter-node traffic. Partitioning in this manner runs the risk

of dedicating excess resources to an underutilized cut-through port; however

the job of the migration manager and scheduler is to try and structure the

distribution of data and computation so that as much locality is exploited as

possible. A block diagram of the unit leaf node implementation can be found

at figure 5.2.

5.3.1 Processor Node

The processor node consists of five major sub-components: an execution unit,

a scheduler, a network interface, an environment cache, and an instruction

cache. An overview of the processor node organization can be found in fig-

ure 5.3.

The scheduler and the execution unit interact via a work-window path and

a retired thread path. The work-window is a small buffer of scheduled threads

to run. Each scheduled thread is bundled with an instruction cache line that

is pre-fetched as the thread waits in the work-window. The ADAM System

Simulator implements a work-window that is eight threads deep. The execu-

tion unit maintains a pointer that rotates through the work-window whenever

91

execution
unit

scheduler, profiler,
and migration engine

network interface

instruction cache

environment
cacheissue

retire blocked threads

network

work window

environment
cache

low latency
cut-throughnetwork interface

data memory

request manager and
software managed cache

Memory Node
Processor

Node
leafnode.eps

Figure 5.2: High level block diagram of a leaf node.

a thread blocks. The execution unit also maintains a run-length count of each

item in the work window and forces an item to swap out when the maximum

run length is reached, so as to prevent the starvation of other threads. The

maximum run count is programmable at run-time.

When a thread blocks, it may be removed from the work window and

sent back to the scheduler with a tag indicating on which piece of data the

thread blocked. The method for determining when a blocked thread should

be retired is not hard-wired.

Processor Core

The processor core itself looks similar to a classic RISC architecture.

Operands are fetched from a physical queue file (PQF) and sent directly to

an arithmetic unit (EXEC); results are written back, for the most part, into the

PQF. The PQF is implemented in a manner similar to a named-state register

file (NSRF) [ND95]. Thus, the PQF can be thought of as a cache for thread

state. The PQF is fully associative: any line in the PQF can be mapped to any

92

pr
e

 f

et
ch

instruction cache

PQF

exec

code
memory

environment
cache

overflowissue

retire blocked threads

m
ap

pe
d

qu
eu

es

work
window

to NI

to sched

vi
rt

ua
l

m
ap

pi
ng

to NI cut-
through

m
ap

lookup

xbar

enqueue data

from NI/sched

procnodedetail.eps

Figure 5.3: Detail of a processor node.

queue in any thread context. A contiguous region of the data memory space

is dedicated to “environment memory” so that lines in the PQF have a simple

one-to-one mapping with addresses in memory. This environment memory is

guaranteed to be node-local via a contract with the migration manager (see

Section 4 for more details). One distinguishing feature of the PQF is that it

has an auto-spill feature, such that when the PQF exceeds a certain threshold

of fullness, lines are retired only when there is available bandwidth to the

environment cache. The ADAM System Simulator implements a PQF with

128 lines and an auto-spill threshold of 124 lines. Please see Appendix C for

more notes on the implementation of the PQF.

Inter-thread communication occurs via the “push” model only. A push

model means that a thread can only generate inter-thread traffic that targets

another node; it cannot “pull” data from another node by placing an inter-

thread mapping on a read port. By forcing thread communication to happen

93

only on data writes, the queue mapping lookup can occur in parallel with

the result computation. Thus, critical path overhead is kept to a minimum

for inter-thread communication. Data that is destined for a thread context

located on the local processor node is immediately looped back into the local

scheduler which performs some bookkeeping and then quickly forwards the

data directly into the PQF.

An important observation is that when the working set of contexts have a

footprint that fits within the PQF, and there is little inter-thread communica-

tion, the execution core datapath looks almost exactly like that of a standard

RISC processor. This simplicity of the critical path enables the implementer

to more easily achieve high clock rates in the execution core and in turn yield

high performance on single-threaded code. Also note that the execution core

can be easily extended to a super-scalar out-of-order issue implementation:

the queue structure of the register file gives some amount of register renam-

ing for free, and the empty bits on the PQF simplify the implementation of

out-of-order dispatch.

Scheduler

The use of fine-grained multithreading to hide latency has been seen be-

fore in the Tera/MTA [AKK�95], HEP [Smi82a], M-Machine [FKD�95] and

*T [PBB93], among others. The scheduling algorithm implemented in the

simulator for this work is a derivative of that used in [NWD93], and takes

after the general scheduling algorithm described in the introduction to this

section. Threads are divided into two pools, a runnable pool and a stalled

pool. The runnable pool is executed in a round-robin fashion with a thread

pre-emption timeout to guarantee some fairness. Threads that block on a data

availability stall are retired to the stalled pool; threads that block on a struc-

tural stall (such as a named-state queue file miss) are rotated to the bottom of

the runnable pool. A thread is promoted from the stalled pool to the runnable

94

pool when the thread’s data arrives via the network interface. All incoming

data must go through the network interface because the only mechanism for

data to be delivered to a thread is via queue mappings, and all queue mappings

are routed through the network interface.

A dedicated scheduler and profiling co-processor is provided in the Q-

Machine to remove the overhead of figuring out which threads to run and

when to migrate objects from the execution core. The scheduler works only

on locally available information and runs out of a small bank of local mem-

ory, so its implementation is much lighter-weight than the execution core.

In other words, the scheduler does not require the queue-based inter-thread

communication mechanisms implemented in the execution core, so it can

use a simpler register file and direct load/store memory access mechanisms.

Thus, the scheduler is implemented as a slightly enhanced 16- or 32-bit RISC

processor that runs entirely out of a few megabits of local memory. In an im-

plementation taped out in 2010 – more on this in section 5.4 – a memory of

5 Megabits is presumed to be very easily implemented in fast SRAM technol-

ogy; if DRAM technology is used, the capacity could be 10 or 20 times that

amount. A programmable scheduler co-processor is chosen over dedicated

hardware because the scheduling and migration problem is very complex and

difficult to implement directly in hardware. Also, an ambitious user or a com-

piler may wish to tune the scheduler code if very regular or predictable thread

running patterns are expected.

The scheduler co-processor’s primary hardware enhancement is a direct

interface to the empty-full bits of threads pending scheduling; incoming data

from inter-thread traffic must go through the scheduler before being written

into the PQF (or to the environment cache if the PQF is full), so that the

scheduler knows which threads have become un-blocked as a result of the

arrival of pending data. The other hardware enhancement of the scheduler

95

is a fast direct interface to the scheduler list. The scheduler list is intimately

tied the instruction cache. Each scheduler list entry contains an I-cache line,

a finger into the line that reflects the exact program counter value, a context

ID, and a pointer field that, if valid, contains a pointer to the next scheduler

list entry. Scheduler list entries that are unused can be treated as generic

I-cache lines and vice-versa. An example of the hybrid scheduler/I-cache

structure is illustrated in figure 5.4. In order to keep I-cache speeds high, a

smaller cache-buffer may be employed that is dedicated only to I-caching,

or perhaps the implementor can separate the tag and context ID fields for

both functions and use a less associative but faster comparison for lines that

are marked as tagged. The scheduler only performs index-based lookups for

scheduler items, so it does not require an associative comparator, but rather

requires a longer tag field, since multiple threads will often run through the

same piece of code. Note that the I-cache and scheduler functions can be

made mutually exclusive while sharing the same physical space without too

much of an impact on the critical I-cache indexing and lookup path: the cache

comparison lines can have the “match” output of the comparator gated by the

“sched” mode bit; thus lines devoted to scheduler functionality look just like

invalid lines to the caching function.

It is anticipated that the instruction cache will have a capacity of several

thousand lines, so in order for the node to enter scheduler-lock, there must

be around several thousand threads to run. If the capacity of the scheduler

structure is deemed to be too small to fit in hardware, an extra bit can be

provided in the “next runnable” field that causes the scheduler co-processor

to take a trap when requesting the next runnable line and to instead check an

explicitly managed main memory-based linked list.

The hybrid scheduler/list structure prefers to have at least two write and

two read ports, one each for the scheduler function and for the I-cache func-

96

next runfingercached instructions

0

6

3

2

context ID or tag

tag

tag

tag

c4

tag

c10

c55

c42

valid

t

t

t

t

t

t

t

t

sched

t

t

t

t

canonical I-cache fields

blockerblocked

q4t

q12t

schedlist.eps

Figure 5.4: Hybrid scheduler list/I-cache structure. In this diagram, c42 and
c10 are runnable and up for forwarding to the work-queue; as values for
c55:q12 and c4:q4 arrive via the NI, they will be promoted to runnable status.

tion; however, an implementation can get away with single read/write ports

if short stalls are tolerable. Although at first glance scheduler traffic may

seem to be very small compared to that of cache line traffic, the scheduler

co-processor is also responsible for modifying the order of the linked list

of runnable items depending on the item’s priority and status. It is also re-

sponsible for inserting and deleting scheduled items as threads are spawned,

garbage-collected, or migrated in and out of the node.

Network Interface

A discussion of the network interface used in the Q-Machine is deferred

to appendix C.

5.3.2 Memory Node

The memory node is implemented as a network interface to a large bank of

DRAM plus a small co-processor that helps coordinate concurrent and atomic

operations. It also can help manage a local data only cache to improve access

times and to increase the average number of requests responded per network

97

cycle. The network interface used by the memory node is identical to that

used by the processor node.

The method of accessing memory in the ADAM model is to first send an

initial access capability to a memory node, and subsequently send only offsets

to that capability. If another capability is seen coming in from an already

initialized context ID/queue pair, it is interpreted as a re-initialization of the

access capability for that pair. Note that context ID/queue pairs are unique

throughout the entire machine by design. As threads are garbage collected or

memory mappings explicitly destroyed, access capabilities are removed from

the access table.

network

src context ID VQN

hash

way0
tag

contextIDs
way1

tag
contextIDs

n-way associative

packet
header

network interfaceto cutthrough
CID cache

base/bounds check

offset

payload

DRAM
page-out
to external
memory

DRAM manager
co-processor

(connected to all
components)

memorynodedetails.eps

TLB/page table and
locking

Figure 5.5: High level block diagram of a memory node.

98

The access table is implemented exactly like a cache; see figure 5.5. The

index and tag into the access table is determined by hashing the requesting

context ID and queue number pair. The requester identification information

is embedded into every network packet (including packets that come over the

cut-through interface). The implementor is free to optimize the cache size and

associativity, along with the hash function, to optimize the hit rate. In the case

of a cache collision, the replaced data cannot be thrown away, as in a cache;

instead, the data has to be retired to storage that the memory co-processor

manages.

The memory co-processor is also responsible for managing atomic trans-

actions. When a thread executes an EXCH instruction, a packet is sent to the

memory node that marks the access capability as atomic. The next time the

thread attempts to access a queue that maps to the EXCH queue, the thread

(actually, the processor node that the thread is running on) negotiates a lock

on the capability and performs the atomic exchange. It is one of the memory

co-processor’s duties to coordinate this locking feature.

The address space allocated to each memory node is much larger than

the implemented memory at the memory node; thus, it is assumed that every

memory node has access to a slower but very large backing storage, be it a

disk drive, or conventional DRAM backed by a disk drive. Paging is done

in a conventional manner, and the memory co-processor is responsible for

managing paging as well.

The ADAM System Simulator implements a memory node as an array

with uniform lumped average access latency.

99

5.4 Physical Design

I describe here what a physical implementation of the Q-Machine might look

like. This exercise is an important step in grounding the simulator parameters

in some semblance of reality; readers are invited to skip this section if they

have little interest in physical design.

5.4.1 Technology Assumptions

Before delving into the details of the Q-Machine physical implementation, I

will summarize my key technology assumptions. I assume that the final im-

plementation of the Q-Machine will be a medium to large machine consisting

of an array of tile processor chips. The number of nodes represented by the

entire array is expected to be in the range of 1,000 for a desktop machine to

1,000,000 for a room-sized supercomputer. I also assume the availability of

wall outlet power and perhaps a liquid cooling scheme employing microchan-

nels [Tuc84] to give a maximum thermal budget of at least 1000 watts per

chip (actual consumption is assumed to be much less than this). I also pre-

sume that the implementation will tape out around 2010, give or take a couple

of years. One of the more significant aspects of ADAM is that it can leverage

the upcoming higher level of integration while coping with the wire delays,

complexity and yield issues commonly anticipated to be problems with 2010-

level process technology, while maintaining a backward compatible path with

ADAM implementations built today. Table 5.1 summarizes the technology

that might be available in 2010.

Note that the [AHKB00] data is based on the Semiconductor Industry As-

sociation (SIA) 1999 roadmap which presumes a chip area of about 800 mm �

at the 50 nm node, whereas all of the other data is pulled from the updated SIA

2000 roadmap. The availability of a 3-D CMOS process is not addressed by

100

Parameter Value

Lithography 50 nm
Gate Length �30 nm
Layers of metal 10 minimum
Short wire pitch 100 nm [CI00b]
Short wire maximum run 300 �m [CI00b]
Chip size (production) 400 mm�

Chip size (maximum) 572 mm�

Logic density, auto-layout ASIC 400-800 Mtransistors/cm �

SRAM density, high-performance 1423 Mtransistors/cm� or 237
Mbits/cm�

Maximum SRAM cache size @0.3ns
access time

�4 KB [AHKB00]

Maximum SRAM cache size @0.5ns
access time

�100 KB [AHKB00]

Maximum SRAM cache size @1.0ns
access time

�1000 KB [AHKB00]

Anticipated memory to logic ratio 9:1 [CI00c]
DRAM cell size, optimized 0.0064 �m�, or 15.6 Gbits/cm�

Clock rate, ASIC (cross-chip) 1.5 GHz
Clock rate, local 10 GHz
Clock rate, 16FO4 delays per clock 3.5 GHz [AHKB00]
Reachable chip area in 1ns (16FO4
delays)

about 10% [AHKB00]

Signal I/O pads available 2700
Chip-board signaling rate 3.1 GHz
ASIC defects D�, D/m� (65% yield) 787
Cost, at introduction, using high-
performance (large on-chip memory)
CPU model

3.8 �cents/transistor

Number of silicon layers At least 2
Interconnect pitch between layers Equivalent to top-level metal

Table 5.1: Extrapolated Technology Parameters for 2010. All values
from [CI00a] unless otherwise noted.

101

the SIA roadmap, but a number of companies and research labs have shown

promising results, such as Matrix Semiconductor and MIT Lincoln Labs. Ma-

trix Semiconductor has demonstrated multilevel silicon devices that were fab-

ricated on a TSMC process. Their basic approach is to deposit thin films of

amorphous silicon on planarized dielectric layers, and then to anneal the sil-

icon into crystals large enough to form transistors. Their approach does not

necessarily yield high-performance logic, but it does provide hopes for a high-

density memory. [Sem] MIT Lincoln Labs’ approach, on the other hand, can

yield at least two layers of high-performance logic. Their approach bonds two

SOI CMOS wafers or chips together face-to-face using hydrophilic room tem-

perature bonding. To create more layers of logic, one or both of the bonded

wafers can be thinned using an etch and/or Chemical Mechanical Polishing

(CMP) process, relying on the SiO� layer as an etch-stop. Another layer of

logic can be hydrophilically bonded and the process repeated. [LBCF�00]

hydrophilic
bonding

masking, back-etch/
thinning & balling

compute & memory
known good silicon die

active interconnect
&

switching known
good silicon die

microchannel
cooling

high-density
C4 bumps

flipdieprocessing.eps

Figure 5.6: Packaging and integration for a two-layer silicon high-
performance chip multiprocessor.

This admittedly fuzzy look into the cloudy crystal-ball of the future forms

the basis for some of the constants associated with the Q-Machine implemen-

tation. It is important to reiterate that the ADAM does not rely on any of this

technology coming to pass; one could implement ADAM in today’s technol-

ogy.

102

5.4.2 Design Description

The Q-Machine physical design uses a high-performance two-layer silicon

process, as illustrated in figure 5.6. One layer is dedicated to the proces-

sor nodes, and the other layer is dedicated to the active switching network.

Each layer can be independently tested before integration via built-in-self-

test(BIST) and wafer probing to help boost system yields.

There are several advantages to this partitioning of the design into net-

work and processor layers. By giving an entire layer to the active switching

network, the interconnect can use fatter, wider-spaced differential wires and

buffer placement is less constrained. In addition, the interconnect layer con-

tains all of the routers and switches. Finally, the interconnect layer is entirely

generic: the user is free to re-use the interconnect layer across several de-

signs and incorporate custom nodes on the processor layer. An architecture

that leverages this kind of reconfigurability is described by [CCH�00]. The

obvious advantage for the processor layer is that it is free of the overhead of

network wiring and buffering, and thus it has fewer constraints on the size,

layout and placement of the nodes. A schematic of what the network layer

may look like is presented in figure 5.7. A discussion of the topology of the

network chosen for this implementation can be found in section C.3.

The processor layer for this implementation is chosen to be a simple tile

format. Each unit tile consists of a memory node and a processor node (an

architectural block diagram of the processor node can be found at figure 5.2

with a description in section 5.3). The memory node and the processor node

are laid out as tori around the network interface (NI). This toroidal arrange-

ment around the network interface helps minimize the worst-case distance of

any of the slower wires used on the processor layer to the faster interconnect

on the network layer. An overview of what the fully-tiled node might look

like can be found in figure 5.9.

103

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5Mb

buf

NI +
1.5Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

1.8 cm

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5Mb

buf

NI +
1.5 Mb

buf

NI +
1.5 Mb

buf

NI +
1.5 Mb

buf

NI +
1.5 Mb

buf

1.8 cm

M-P local cut-through

L0 routing

L1 routing

L2 routing -> pads

Local mesh cut-htroughs

Interconnect to logic layer

250 ps radius
(top layer metal)

fattreephysical.eps

Figure 5.7: Cartoon of the network layer layout.

104

5 M
b

sm
em

sched, 8
GHz

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM

3mm

1 Mgates,
synthesized

1 GHz

procnodephysical.eps

Figure 5.8: Hypothetical layout of a single processor node.

The anticipated clock rate of a single processor node is 1 GHz. This num-

ber is derived by looking at the radius of communication over a 1000 ps inter-

val and the estimated clock period for logic built using a design rule of 64 FO4

inverter levels at the 35 nm process node. [AHKB00] The relatively relaxed

64 FO4 inverter levels criteria was chosen in order to allow the processor

design to be accomplished with fewer pipeline stages and a primarily syn-

thesized verilog design methodology with a few well-chosen hand-optimized

blocks (such as the multipliers, adders and barrel shifters). Simply stated, the

assumptions about the physical implementation of this architecture my thesis

are kept very conservative, to help compensate for their extremely speculative

nature. Also, the actual performance of the migration mechanism in my the-

sis is always quoted in terms of network cycles, and compared against other

implementations by normalizing cited times to clock cycles. Normalizing to

105

clock cycles helps to factor out technology assumptions. Finally, since the

performance of the migration mechanism in this architecture is dominated by

the performance of the network, the actual clock rate of the processor could

be much higher and have little impact on the results of this thesis. The de-

tailed assumptions about the network interface are given in appendix C. The

short summary is that the network interface should be able to send, in the

worst case, one flit every 500 ps to 1 ns.

5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH
exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM

5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM

5 M
b

sm
em

SCH
exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM

1.8 cm

1.8 cm

250 ps radius
(top layer metal)

5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM

5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM

5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM 5 M
b

sm
em

SCH

exec

Q$
4Mb

NI +
1.5Mb

buf

L2 I$
4M

b

PQF

work

NI +
1.5 Mb

buf

256 Mb DRAM

tilenodephysical.eps

Figure 5.9: Hypothetical layout of the tile processor chip.

106

Chapter 6

Machine and Migration

Characterization

42.7% of all statistics are made up on the spot.

—The Hon. W. Richard Walton, Sr.

The last section described a fast, low-overhead mechanism for moving data

and threads around within the Q-Machine implementation of ADAM. This

section summarizes the basic performance characteristics of the Q-Machine

and present the results and analysis of several benchmarks.

6.1 Basic Q-Machine Performance Results

This section presents some basic performance characteristics of the Q-Machine

and its network as implemented by Adam System Simulator. All instructions

are assumed to complete at a rate of one per cycle, as long as its dependencies

107

are satisfied. An instruction that has been scheduled, but is missing a depen-

dency, causes a single-cycle bubble to be inserted into the execution stream.

Future implementations could design the PQF to interact with the scheduler

in such a manner that this bubble is eliminated, however this generation sim-

ulator was written to maximally simplify processor node implementation. As

mentioned previously, future implementations could also enhance the proces-

sor node’s performance by adding out of order, superscalar issue, or SMT

to the core. The latter two features are eschewed because they would would

require more queue file ports; the former would require an associative lookup

within the pending out of order issue window in a thread whenever a piece of

data arrived from the network interface.

The Adam System Simulator (ASS) used to derive all the results for my

thesis implements the full idempotent source-responsible network protocol

described in section C.2, and simulates the network in a cycle-accurate fash-

ion. The network topology is a radix-4 dilation-2 randomly wired fat tree

with �

�
bandwidth scaling per tree level; all wiring is unidirectional point-to-

point. Each processor or memory node has four ports into the network: two

in, and two out. The simulated processor nodes also take into account the

swapping mechanisms required for the named-state queue file (as described

in appendix C). The simulator also takes into account stalls due to memory

bandwidth limitations. The latency of the network interface in all modes of

routing (cut-through, loopback, and off-node routing) is also accounted for by

the simulator. The simulator was written in Java and achieves a peak simula-

tion rate of around 20 kcycles/s aggregate on a dual Athlon XP 1900+ system.

A screenshot of ASS can be seen in figure 6.1.

108

Figure 6.1: Screenshot of the ASS running a 64-node vector reverse regres-
sion test. On the left is the machine overview; to the right is the thread de-
bugger window.

6.1.1 Memory Performance

These results summarize the essential processor node to preferred memory

node access times. All of the following results are for an unloaded machine

running only the test code.

� Allocation Latency: 10 cycles from execution of the ALLOCATE in-

struction to issue of its dependent instruction. The allocation algorithm

in the simulator is simple; it just increments an allocation pointer and

returns a capability of the desired size.

� Load from local memory: 7 cycles from the execution of the MOVE

instruction that sends the load address to the issue of an instruction de-

pendent upon the load result. The breakdown of the load timing is 1

cycle from processor core � NI; 1 cycle from NI cut-through port �

preferred memory node; 2 cycles to perform memory access; 1 cycle

109

memory � memory node NI; 1 cycle from memory node NI � pro-

cessor; 1 cycle to re-schedule and re-issue the dependent instruction.

� Store to local memory: 6 cycles from the execution of the MOVE

instruction that satisfies the atomic address and data tuple to the issue of

the dependent instruction. The latency breakdown of a store is similar

to that of a load, except that only 1 cycle is spent in memory because

the store acknowledge return can be overlapped with the store.

These numbers are conservative for the target process technology; one

cycle is budgeted each way for wire delays due to the anticipated spacing of

the memory from the processor.

6.1.2 Basic Network Operations Performance

The general formula for the latency of a thread-to-thread communication

packet (�) is:

	� � � � ��
�� 	 � � �
���	 �
	 �	����	� �
� (6.1)

where

��
�� is the processor node network interface overhead of 2 cycles

�
���	 is the time required to traverse a router, which is 3 cycles

 is the route depth, equal to the number of levels up the tree a packet

must travel

	����	� is the length of the data packet, which is 4 for a short data packet

The following tests were run on an unloaded 16-processor simulation; these

tests confirm the validity of equation 6.1.

� Loopback latency: Loopback latency is the time required for a thread

to communicate with another thread on the same processor node. This

110

time is 4 cycles from producer’s execution to the issue of the consuming

instruction under minimum scheduler loading. The breakdown of the

4 cycles is: 1 cycle from the processor core � NI; 1 cycle to identify

and process the loopback; 1 cycle from the NI � PQF write port; 1

cycle to re-schedule and re-issue the dependent instruction. Latencies

under real workloads will typically include some amount of time spent

servicing other threads in the work queue.

� Thread to thread time: The latency of sending one piece of data to

a node that is one up-route away is 14 cycles, not counting issue and

execution times of the producer and consumer threads. Hence, there is

a roughly 14 cycle one-way latency to the nearest neighbor. The latency

breakdown is as follows (obtained through measurements):

� 2 cycles after producer execution to push packet to NI

� 7 cycles through the network (first contact to network to first con-

tact at destination latency) = 3 cycles/router + 1 wire cycle between

routers

� 2 cycles for the tail of the packet to “catch up”

� 3 cycles to collate and issue the consumer instruction

� Remote Load Access Latency, Full Diameter on a 16-node Ma-

chine: 55 cycles round-trip latency

6.2 Migration Performance and Migration Con-

trol: Simple Cases

This section presents the results of applying the migration mechanisms to two

simple cases: two threads communicating exclusively with each other, and

111

a thread and memory communicating exclusively with each other. A brief

formal analysis is also performed to determine the optimal omniscient and

optimal on-line algorithms for controlling migration in these cases.

6.2.1 Two Threads Benchmark

This benchmark is used to determine the thread migration overhead. A tight

loop of dependent operations between two threads is constructed; the differ-

ence in the time per message loop during thread migration and during normal

operation is the migration overhead. Specifically, two threads communicate

exclusively with each other. Each thread is initialized with a unique token;

the tokens are swapped between the threads and incremented over 32 itera-

tions. On the fifth iteration, a manual MIGRATE instruction is issued which

forces one thread to migrate toward its partner. The use of a manually invoked

migration allows greater control over the benchmarking process. There is no

reduction of processor overhead by manually controlling migration since this

task is typically handled by the scheduling and profiling coprocessor. A dia-

gram of the communication pattern can be found in figure 6.2, and the code

for this synthetic benchmark can be found in figure 6.3.

Thread 1
(T1)

Thread 2
(T2)

print incoming
send to T2
loop

print incoming
send to T1
loop

simplethread.eps

Figure 6.2: The two threads synthetic benchmark. Communication happens
along the arcs; a data dependency is forced by printing the incoming data.

Two-Thread Benchmark Results

112

main:
MOVECC 0, q100 ; spawn one thread local
MOVECC 4, q101 ; spawn one thread distance 4 away
SPAWNC q100, thread1, q0
SPAWNC q101, thread2, q1
MAPQC q10, q0, @q0
MAPQC q11, q0, @q1
MOVE @q0, q11 ; thread 1, meet thread 2
MOVE @q1, q10 ; thread 2, meet thread 1
HALT ; my work is done

thread1:
MOVECL 0, q10
MAPQC q20, q1, @q0

loop1:
MOVE @q10, q20
PRINTQX q1
SEQC @q10, 0x20, q30
SEQC @q10, 0x5, q40 ; this segment used to control when
ADDC q10, 1, q10 ; migration occurs during testing
BRZ q40, byp1
PROCID q41
MOVECL 2, q42
MIGRATE q41, @q0

byp1:
BRZ q30, loop1
CYCLES ; CYCLES prints out current cycle count
HALT ; available only in the sim environment

thread2:
MOVECL 0x100, q10
MAPQC q20, q1, @q0

loop2:
MOVE @q10, q20
PRINTQX q1
SEQC @q10, 0x120, q30
ADDC q10, 1, q10
BRZ q30, loop2
CYCLES
HALT

Figure 6.3: Code used for the two thread benchmark.

113

The two threads benchmark with migration was run over five cases that

varied the starting position of the threads. These trials were compared to

the two threads benchmark run without migration over the same five starting

positions. The benchmark yielded the following results:

� The measured time overhead of a lightweight migration over a distance

of two up-routes is 66 cycles. Time overheads are computed as the time

added to a single iteration result when compared to the non-migrated case.

� The measured time overhead of a heavyweight migration over a distance

of two up-routes is 78 cycles; a heavyweight migration was forced by

tweaking the internal simulator heavy/light decision threshold.

� Benchmark speedup scales linearly with migration distance (figure 6.4).

Speedups are bigger in a real system implementation because the simu-

lation environment assumes that wire delays between tree levels are con-

stant, regardless of the size of the tree. In other words, a real implementa-

tion will have more wire delay, especially in a large implementation, and

the impact of migration will be greater.

� The zero-distance case in figure 6.4 shows lower than unity performance

because there is a slight 14-cycle overhead for executing a migrate com-

mand manually, even if it does not move the thread.

The estimated system latency of an L2 cache fill on a Pentium 4 is about

175 ns (which is 140 800 MHz Direct-RAMBUS cycles) [CJDM01]. Thread

migration times in my architecture thus compare favorably to an L2 cache fill

on a conventional contemporary processor.

Analysis

I will now derive an on-line algorithm for guiding migration decisions in

the two-thread scenario, and also determine how many loop iterations must

happen in order to amortize the cost of a migration. Formally speaking, the

114

0.5

0.7

0.9

1.1

1.3

1.5

1.7

0 1 2 3 4 5

distance

sp
ee

d
u

p

simplethreadgraph.eps

Figure 6.4: Measured speedup versus migration distance for the Two Threads
benchmark.

115

threads communicate using a message sequence, �. For any given �, I will

derive a migration algorithm, ALGTT, and evaluate its competitiveness with

respect to the optimal algorithm, OPTTT.

In the case of the Two Threads microbenchmark, a sequence consists of

� messages,
, that each contribute a partial cost as a function of the routing

distance �:

��� �
�����
����� � � �
���� (6.2)

Let us denote the cost of an algorithm – the time it takes to execute given

� – as ALG���. If the cost of moving a thread is ����, then our algorithms

are defined for � � ��:

� OPTTT: If �OPTTT����� 	 ��� � �����OPTTT���� �
, then migrate

thread 1 from � to �� before the first iteration.

� ALGTT: If at iteration �,
��

����
����� �
��

����
���
��� 	��� � ���,

migrate thread 1 from � to ��.

The competitiveness of ALGTT and OPTTT is now derived.

Theorem. ALGTT is at worst 2-competitive with OPTTT.

PROOF.

By inspection, OPTTT����� = ALGTT����� for OPTTT������	������� �

OPTTT�����. Let us define the value of � where OPTTT ceases to be equal to

ALGTT as the equivalence point �. In cases where � � �, ALGTT’s competi-

tive ratio against OPTTT is

�	

����
����� 	���� ��� 	
��

��	���
���
���

��

����
������ 	���� ���
(6.3)

Clearly, the worst case would be if � � �, because ALGTT would pay for

���� ��� and never amortize its cost. At this point, the competitive ratio is

just

116

� 	���� ���

�
(6.4)

where � �
�	

����
���
��� 	���� ��� �

�	

����
�����.

Thus, as ����
���
����
, ALGTT� ��� OPTTT. �

Theorem. ALGTT is an optimal on-line algorithm for the Two Thread mi-

crobenchmark.

PROOF.

There are two cases to consider for ALGTT when comparing against an-

other algorithm, ALG:

MIGRATE EARLIER. In the case that ALG were to migrate earlier than AL-

GTT, the worst case performance for ALG would be a sequence that ended

right at ALG’s decision threshold. The competitive ratio in this case would be

��

����
����� 	���� ���
��

����
�����
(6.5)

One can see that this function is monotonically increasing for decreasing val-

ues of
��

����
����� (figure 6.5); hence, it is not possible for ALG to have a

lower competitive ratio than ALGTT.

MIGRATE LATER. In the case that ALG were to migrate later than ALGTT,

the worst case performance for ALG would again be a sequence that ended

right at ALG’s decision threshold. In this case, the competitive ratio would be

� 	
��

��	���
����� 	���� ���

� 	
��

��	���
������ 	���� ���
(6.6)

where � �
�	

����
�����, and � is the equivalence point as previously de-

fined. As the decision point of ALG increases beyond �, the numerator of

equation 6.3 grows slower than the numerator of equation 6.6 since
 ���� �

117

5 10 15 20

2

4

6

8

10

Figure 6.5: Shape of the curve ���
�

.

���
��. Because the denominators are the same, there is no way that ALG

can be less than ALGTT. �

I will now determine the curve for the equivalence point, �, versus various

migration overheads. The point, �, represents where the cost of migrating a

thread is amortized by the savings in thread communication time. In order

to determine this, I will derive an expression for the message delivery time,

����. The general formula for routing delay in the Q-Machine implementa-

tion is

���� � 	� � � (6.7)

where 	� is the latency contribution of routers for one tree level and � is the

routing distance, i.e., the number of tree levels spanned by the route. In the

Q-Machine, 	� � �.

Recall that the equivalence point, �, is defined as

118

� �

	�

���

���
�� 	���� ��� �

	�

���

���� (6.8)

Rewriting yields

� �

	�

���

�����

	�

���

���
�� � ���� ��� (6.9)

Substituting in 6.7,

� �
���� ���

	� � ��� ���
(6.10)

Given equation 6.10, we can create a set of curves indicating how many iter-

ations are required to amortize the cost of a migration for various migration

costs (figure 6.6). The cost of migrating a thread,����, is assumed to be con-

stant for � in each of these curves, which is a reasonable assumption because a

heavyweight thread migration mechanism is assumed for these graphs. Upon

inspection of the curves, it is apparent that the cost of a migration is quickly

amortized, even for networks of modest size with constant wire delay be-

tween tree levels. Migration looks even more attractive in a realistic scenario

where wire delays grow at best as the square root or cube root of the number

of nodes in the machine.

6.2.2 Thread and Memory Benchmark

The thread and memory benchmark is used to determine the data migration

overhead, in a manner similar to the two threads benchmark. In the thread and

memory benchmark, a single thread communicates exclusively with a single

16-word or 128-word piece of memory through an exchange mapping. A

single location in memory is incremented 32 times by the remote thread using

the exchange mechanism; on the fifth iteration, the data is forced to migrate

119

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

diameter differential

u
n

id
ir

ec
ti

o
n

al
 m

es
sa

g
es

M(d)=300

M(d)=110

M(d)=66

one iteration

simplethreadcurves.eps

Figure 6.6: Length of message sequence required to amortize various migra-
tion overheads (����). The baseline two messages per iteration for the Two
Thread benchmark is also marked on the graph.

120

toward the thread. This scenario is similar to the Two Threads case, except

that an extra level of indirection is introduced for non-local memory due to

the data locater pointer mechanism. The code for this synthetic benchmark

can be found in figure 6.8, and a diagram of the communication pattern can

be found in figure 6.7.

Thread
(T)

Memory
(M)

send address
send data
print exchanged

simplemem.eps

address

data

exchanged

Figure 6.7: The thread and memory synthetic benchmark. Communication
happens along the arcs; a data dependency is forced by printing the incoming
data.

Thread and Memory Benchmark Results

The Thread-Memory benchmark with migration was run over five cases

that varied the starting position of the memory. These trials were compared

to the thread-memory benchmark run without migration over the same five

starting positions. The benchmark results are summarized in figure 6.9 and

figure 6.10.

Figure 6.10 shows the amount of time per iteration versus iteration count,

for migration forced on the fifth cycle for the 16-word and 128-word cases.

Key data points are labeled with the migration status at that iteration. The

amount of migration overhead that is actually experienced by the system is

dependent upon the relative timing of the migration request and the incom-

ing memory requests. In the 16-word case, the timing is such that there is

virtually no overhead due to memory request freezing and contention during

121

main:
MOVECC 2, q100 ; spawn one thread distance 2 away
MOVECC 0, q101 ; allocate memory
SPAWNC q100, thread1, q0
ALLOCATEC q101, 16, q1
MAPQC q10, q0, @q0
MOVE @q1, q10 ; thread, meet your memory
PROCID q5
MOVE q5, q10 ; thread, meet me
MIGRATE @q1, q20
; CONSUME q20 ; substitute for migrate
PRINTS "migrating" ; to disable mig.
HALT ; my work is done

thread1:
EXCH q20, q21, q22 ; declare exchange queues
MOVECL 0, q10
MOVE q0, q1 ; store our capability in q1
MOVE @q1, q20 ; initialize the exchange tuple
MAPQC q6, q20, q0 ; map back to our caller...

loop1:
MOVECL 0, q20 ; always use addr 0 for this test
MOVE @q10, q21
PRINTQX q22
SEQC @q10, 0x20, q30
SEQC @q10, 0x5, q40 ; this is used to control when
ADDC q10, 1, q10 ; migration occurs during testing
BRZ q40, byp1
PROCID q5
MOVE q5, q6 ; send a packet to our caller...

byp1:
BRZ q30, loop1
CYCLES ; CYCLES prints out current cycle count
HALT ; available only in the sim environment

Figure 6.8: Code used for the thread-memory benchmark.

122

the migration process; since this is the only step that leads to a slowdown

relative to the non-migratory case, the migration of small memory objects is

almost free. However, migration overhead scales linearly with the size of the

data that is being moved, and eventually the process of freezing and moving

the capability adds a non-negligible overhead, as can be seen in the case of

moving a 128-word capability.

The overheads and message request characteristics for the Thread-Memory

case are similar to the Two Thread case; memory migration can be thought of

as thread migration, but faster. Hence, the algorithms and analysis from the

previous section apply here.

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

initial distance

sp
ee

d
u

p

bs=16,Tm=5

bs=16,Tm=1

bs=128,Tm=5

bs=128,Tm=1

Figure 6.9: Migration speedup versus migration decision time and memory
capability size in the thread and memory benchmark.

123

0

20

40

60

80

100

1 4 7

10 13 16 19 22 25 28 31

iteration

cy
cl

es
 p

er
 it

er
at

io
n

0

20

40

60

80

100

120

140

160

180

200

220

240

1 4 7

10 13 16 19 22 25 28 31

iteration

cy
cl

es
 p

er
 it

er
at

io
n

block size = 128 words block size = 16 words

request

remote request
frozen during migration

forwarding
pointer update

allocate

local access

forwarding
pointer update

remote request
frozen during migration

allocate

request

local access

simplememtime.eps

Figure 6.10: Cycles per iteration for Thread-Memory benchmark. � � � in
both cases.

6.3 Application Cases

I will now demonstrate the Q-Machine running some application kernels

coded in the People language. These applications are in-place Quicksort,

streaming Matrix Multiply, and a simple N-Body gravity simulator. The in-

place Quicksort application is used to demonstrate the load balancing abilities

of the implementation. The streaming Matrix multiply is used to demonstrate

latency-driven data migration, and the N-Body gravity simulation is used to

demonstrate latency-driven thread migration. In order to demonstrate my ar-

chitecture on these kernels, some simple load-balancing and migration algo-

rithms were implemented. For each application, I will briefly provide some

background on the load balancing or migration techniques employed, and

then present the results of the application benchmark with and without the

benefit of dynamic migration control.

124

6.3.1 In-Place Quicksort Application

A simple in-place Quicksort was written in the People language for this bench-

mark. Ben Vandiver, the creator of People, wrote the benchmark code. The

Quicksort implementation looks very similar to a typical recursive implemen-

tation written in C or Java. Figure 6.11 gives a flavor for the Quicksort ker-

nel. Note that in a language like C or Java, this recursive implementation

would have little parallelism, as each recursive call to qsort() is called

in sequence; however, in People, each recursive call actually spawns a new

thread. This thread-spawning calling convention introduces latent parallelism

in the code that can be uncovered by a load-balancing mechanism.

The load-balancing scheme implemented for this benchmark uses two

mechanisms: work-stealing and thread-pushing. Work stealing has been seen

before in systems such as Cilk [BL94] and [RSAU91]; thread-pushing is the

dynamic work scheduling problem. An overview of dynamic work schedul-

ing algorithms and techniques can be found in [SHK95] and in [XL97].

The metric used to determine a processor’s load for load balancing pur-

poses is the time, ��, that the currently running thread spent waiting in the

runnable pool. �� is a direct measure of wasted time because the scheduler

only promotes threads to the runnable pool that have its data dependencies re-

solved. If �� is the expected time required to migrate a thread, work stealing

is beneficial if �� � ��.

In order to implement work stealing, I had to determine �� and I had

to implement a load discovery mechanism. �� was determined to be �

by profiling; the detailed results of the migration profiling can be seen in

figure 6.12. A noteworthy observation is that migration times take on a bi-

modal distribution in the presence of a heavily loaded network. This bimodal

distribution is a result of packet collisions in the network. In other words,

�� � �

 is the expected time given that the migration data packet succeeds

125

int qsort(array[int] arr, int low, int high) {
if (high == low) {

return high-low;
} else {

int pivot, index, temp;
int i,j;
boolean notdone;

// choose pivot
index = low + rand(high-low);
pivot = arr[index];
arr[index] = arr[low];
arr[low] = pivot;

// partition
i = low - 1;
j = high + 1;
notdone = true;

while (notdone) {
while (notdone) {

j = j - 1;
notdone = arr[j] > pivot;

}
notdone = true;
while (notdone) {

i = i + 1;
notdone = arr[i] < pivot;

}
if (i < j) {

temp = arr[i]; arr[i] = arr[j]; arr[j] = temp;
notdone = true;

} else {
notdone = false;
index = j;

}
}

membar();

// recurse
i = qsort(arr,low,index);
j = qsort(arr,index+1,high);
return i + j;

}
}

Figure 6.11: Object method for the Quicksort benchmark written in People.

126

on the first try. In the case that a migration packet does not succeed on its

first try, one could cut the overhead losses and immediately abandon migrat-

ing that thread. This would require adjustments to the migration protocol to

prevent two copies of the thread from running, though, in the case that the

acknowledgment of the migration packet failed to be delivered. This fail-fast

migration scheme was not implemented for these simulations, but left as an

exercise for future work.

Mean 192
Median 170
Mode 125
Standard Deviation 72
Minimum 58
Maximum 497
Count 177

migrationtimes.eps

Migration Time Distribution

0
5

10

15

20

25
30

35

40
45

80 14
0

20
0

26
0

32
0

38
0

44
0

50
0

Cycles

F
re

q
u

en
cy

Figure 6.12: Distribution of migration times used in the Quicksort benchmark

I implemented the load discovery mechanism using periodic discovery

queries. The period between queries increases exponentially with the dis-

tance between nodes, since the number of queries required grows exponen-

tially with network radius. The base period for discovery queries between

neighboring nodes is set to ��
 cycles. This period was chosen to be slightly

larger than �� in an attempt to provide a sampling period balanced against

the expected rate of change in �� as a result of migration. The response to

a discovery query is the processor’s time-averaged �� over the past twenty

thread-running events.

127

Given �� � �

, I set the nominal steal threshold at �� � �

 for near-

est neighbors. The steal threshold increases linearly with node distance, in

order to compensate for the extra routing overhead of reaching farther nodes.

The optimal rate of steal threshold increase with distance is probably not lin-

ear, but will not affect this benchmark since there is only enough work for

two nodes.

0

50

100

150

200

250

300

350

400

450

500

13000 23000 33000 43000 53000 63000 73000

runtime (cycles)

lo
ad

 m
et

ri
c

(c
yc

le
s)

Tw, load balanced

Tw, not load balanced

avg. Tw, not load
balanced

avg. Tw, load
balanced

Figure 6.13: Plot of the load metric �� versus time for the Quicksort bench-
mark with and without load balancing

The results of the load balancing mechanism on the Quicksort benchmark

can be seen in figure 6.13. This figure shows �� versus time for a Quicksort of

200 elements with and without load balancing using nominal steal metrics. A

speedup of 12.3% was observed using the nominal steal threshold; lowering

the steal threshold slightly and decreasing the work stealing interval brings

the speedup to over 15%. I believe that these more aggressive steal thresholds

are not generally a good idea, however; more frequent work discovery packets

congests the network and would have a negative impact on performance in

128

applications with more internode communication.

Thread pushing was also implemented to investigate potential benefits of

this mechanism. Thread pushing only happens when a new thread is being

created. This kind of thread pushing is trivial to implement on the Q-Machine;

it is simply a SPAWN instruction targeted at a neighboring node. The danger

of thread pushing is that the decision to push is based on stale information; a

cluster of nodes can overload a single nearby unloaded node if all the loaded

nodes decided to push work onto the unloaded node simultaneously. Even

though the danger of overload is small because there is only one source node

for threads in this Quicksort benchmark, thread pushing was implemented

conservatively. A push only occurs when a neighbor’s load metric is observed

to be near zero, and the local load metric is observed to be very high, above

400 cycles. In the end, thread pushing was used rarely and accounted for a 1

to 2% speedup in the Quicksort benchmark.

Figure 6.14 illustrates in greater detail the relationship between migration

events and ��. One can see from this figure how �� is reduced with every

migration event. Also shown in this figure is the load incurred on the migra-

tion target. Note that this load is kept fairly low throughout the benchmark

run.

The Quicksort benchmark demonstrates that the Q-Machine migration

implementation is efficient enough to speed up even simple code written with

little thought for parallelism. In addition, the migration mechanism is fast

enough to provide a speedup on a benchmark that runs for just a few tens

of thousands of cycles. In contrast, most other migration mechanisms would

take at best a few thousand cycles to complete a single null-thread migration.

129

0

50

100

150

200

250

300

350

400

450

500

13000 23000 33000 43000 53000 63000

runtime (cycles)

lo
ad

 m
et

ri
c

(c
yc

le
s)

0

200

400

600

800

1000

1200

m
ig

ra
tio

n
tim

e
(c

yc
le

s)

processor 0 load
metric (Tw)

processor 2 load
metric (Tw)

work stealing events
(height is migration time)

thread push events
(see text)

work stealing
load threshold

Figure 6.14: Plot of the load balanced Quicksort benchmark with migration
events overlayed.

6.3.2 Matrix Multiplication Benchmark

A pair of matrix multiply kernels were written by Ben Vandiver in the Peo-

ple language for this benchmark. The first kernel uses a single nested iterative

loop to access the matrix elements and multiply them. The second kernel uses

streams to multiply the matrices. Streams are a unique feature of the People

language; they are essentially a way of explicitly revealing the underlying

queue structures of the architecture to the programmer. The streaming ma-

trix multiply kernel builds two streams that source the matrix multiply data,

and a streaming operator that computes and stores the multiply result. These

streams allow index computation and array access to happen in parallel with

the actual multiply operation. Part of the streaming matrix multiply code is

shown in figure 6.15. A stream is called a module in People, and its inputs

are sources and its outputs are sinks. The operations nq() and dq() are

130

used to enqueue and dequeue data on a stream, respectively.

The standard matrix multiply kernel is used as the reference point in this

benchmark; it is a purely single-threaded piece of code. The streaming matrix

multiply kernel, on the other hand, instantiates three threads, one each for

the matrix sources and one for the multiply operation. Hence, there is an

opportunity for data migration to reduce access latencies.

I used a very simple data migration control algorithm in this benchmark.

Every 200 cycles, the most popular data element is migrated to the node of

the most frequent accesser. The most popular data element is determined by

keeping a sorted, rolling list of all accesses over a window of 4000 cycles.

The result of applying this simple migration algorithm is shown in fig-

ure 6.16 for a 100x100 matrix multiply, and in figure 6.17 for a 15x15 matrix

multiply. One can see that for the 100x100 matrix multiply, the time per iter-

ation drops after the first iteration from around 7,000 cycles to around 1,650

cycles per iteration–about a factor of 4.2 speedup. Note that in figure 6.16,

the first iteration time includes the migration overhead for moving two 10,000

element matrices.

On a 15x15 matrix multiply, the migration occurs later, and the time per

iteration goes from 1,100 cycles to around 350 cycles. The migration oc-

curs later because the most popular accessors–in this case the matrix multi-

ply stream sources–have to build up “popularity” over the thread that initial-

ized the matrix through a 4000 cycle profiling window. This translates to a

speedup of 3.2.

It is also interesting to note that the streaming implementations outper-

form the single-threaded matrix multiply implementation by about a factor of

two in each benchmark case. This is a positive indicator of the performance

benefits of the streaming features in the People language. In this specific

case, the speedup is a result of parallelizing (decoupling, for those fond of

131

module leftMat has sink[int], source[array[int]], source[int]
as "vals for left side", "array to use", "size"
internally source[int] vals, sink[array[int]] arr, sink[int] s {

int i,j,k;
array[int] mat = dq(arr);
int size = dq(s);
i=0;
while (i < size) {

int offset = i*size;
j=0;
while (j < size) {

k=1;
nq(vals,mat[offset]);
while (k < size) {

nq(vals,mat[k+offset]);
k = k + 1;

}
j = j + 1;

}
i = i + 1;

}
}

void matmult(int size, array[int] mat1, array[int] mat2, array[int] mat3) {
sink[int] lhs,rhs;
source[array[int]] arr1,arr2;
source[int] s1,s2;

construct leftMat with lhs, arr1, s1;
construct rightMat with rhs, arr2, s2;
nq(arr1,mat1);
nq(s1,size);
nq(arr2,mat2);
nq(s2,size);

int i,j,k;
i=0;
while (i < size) {

j=0;
while (j < size) {

k=0;
int sum = 0;
while (k < size) {

sum = sum + dq(lhs)*dq(rhs);
k = k + 1;

}
mat3[j+i*size] = sum;
print(sum);
j = j + 1;

}
i = i + 1;

}
}

Figure 6.15: Portion of the streaming matrix multiply benchmark written in
People.

132

DAE architectures) the memory accesses and the multiply operation.

The per-iteration speedups in the streaming benchmarks are due entirely

to the reduction in latency brought about by data migration; load balancing

has no impact on the results as the benchmark uses only three threads. One

can see in the benchmark results that the multi-threaded streaming imple-

mentations without data migration actually perform worse than the single-

threaded implementation. This is because People does not account for mem-

ory placement with respect to streaming threads, therefore, good performance

relies on the availability of a specialized migration mechanism that reduces

latency. In this specific instance, the benchmark was run on a 16-node ma-

chine, and the source data for each of the streams was migrated across a

distance of two router hops each. This move reduces the best-case access

latency from 55 cycles down to 7 cycles. Note that another approach to fix-

ing this access latency problem is to use better latency hiding techniques in

the code, and to not have the source threads wait for each load to come back

from the memory node before forwarding the data onto the streaming multi-

plier. However, this is a compiler issue, and one of the major points of this

benchmark is to demonstrate that data migration can be successfully applied

to a user program.

6.3.3 N-Body Benchmark

For this benchmark, I wrote an N-Body gravitational simulator in People.

The algorithm used is the basic particle-particle method, where every body

computes the net contribution of every other body’s force each time step. The

second order Runge-Kutta method was used to solve the differential force

equation at the heart of the particle-particle method. The numerical core of

this code comes from [Che], [Sch] and [Har00]. A graphical representation of

the output of the N-Body gravitational simulation can be seen in figure 6.18.

133

0

5000

10000

15000

20000

25000

30000

1 11 21 31 41 51 61 71 81

iterations

cy
cl

es
/it

er
at

io
n

streams, no mig, no lb

no streams

streams, data mig, no lb

Figure 6.16: Plot of the time required per iteration of a 100x100 matrix mul-
tiply over various migration conditions and coding styles.

134

0

200

400

600

800

1000

1200

1400

1600

1 21 41 61 81 101 121 141 161 181 201 221

iterations

cy
cl

es
 /

it
er

at
io

n

streams, no lb, no mig

no streams

streams, lb and mig

streams, mig only

Figure 6.17: Plot of the time required per iteration of a 15x15 matrix multiply
over various migration conditions and coding styles.

135

This figure shows the first few timesteps of a 12-body simulation being run

on a 64-node Q-Machine.

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

"sun" in the middle
"planet"

trajectories

Figure 6.18: Plot of the first few time steps of the N-Body benchmark output

My initial N-Body implementation created a thread per planet and used a

binary tree of object-based semaphores to determine the completion of each

iteration; Ben Vandiver optimized this to use a tree composed of streams to

signal the completion of each iteration. Ben’s streaming optimizations plus

a few other tweaks reduced the per-iteration time of the N-Body benchmark

by about a factor of 4 on its own. Ben’s optimizations included static data

placement and re-use optimizations, so there is little to gain through dynamic

data migration; the only thing that matters is that the initial data be distributed

roughly evenly across all the nodes of the machine. Careful initial data place-

136

ment is important because the actual gravitational force computation is done

by an object method invoked by the combining tree, and object methods in-

vocations always spawn near the object’s instance variables.

Despite the optimizations, a speedup of 36% was achieved by applying

program-guided latency-driven migration to the N-Body benchmark. This re-

sult can be seen in the cycles per iteration times plotted in figure 6.20. In order

to understand how latency-driven thread migration was used to speed up the

N-Body benchmark, one must first understand the structure of the benchmark

code.

The inner-loop of the N-Body benchmark consists of a loop that visits

each of the planets and computes their partial force contribution on the lo-

cal planet. Please see figure 6.19. Before entering the inner-loop, all of the

instance variables of the local planet object are pulled into temporaries that

the compiler holds in queues. These instance variables are written back to the

planet object upon exiting the inner-loop. At the beginning of each loop itera-

tion, a remote planet is chosen by the statement Body body = planets[jj];.

The inner-loop then computes the remote planet’s force contribution; during

this computation, the loop repeatedly references the remote planet’s instance

variables. Since the remote planet is typically located on another node, these

memory references are fairly slow without any mechanism for reducing ac-

cess latency. Hence, on the line immediately following the body initialization,

I call the migrate(Body) system function. This function causes the local

thread to immediately deschedule itself and migrate itself to the home node

of the argument. This migrate() call decreases the inner-loop computation

time by 36%. This speedup is due entirely to the reduction in access latency

to the remote planet’s instance variables. Hence, the speedup is proportional

to the number of remote instance variable references within the inner loop.

For example, simplifying the N-Body differential equation solver to use a

137

float ax=this.ax; // load up the local planet vars in queues
float ay=this.ay;
// etc...

int jj = 0;
while(jj < size) {

if((myIndex != jj)) {
Body body = planets[jj]; // access a remote planet
migrate(body); // migrate ‘‘this’’ to planet’s node

rad = (x-body.x)*(x-body.x) + (y-body.y)*(y-body.y);

// Runge-Kutta kernel omitted for clarity...

ax = (ax1 + ax2) / 2.0;
ay = (ay1 + ay2) / 2.0;

}
jj = jj + 1;

}

this.ax = ax; // write back the local planet variables
this.ay = ay;
// etc...

Figure 6.19: Inner-loop of N-Body benchmark code.

less accurate but faster Euler method causes thread migration to be ineffec-

tive because only three or four instance variable accesses are required in the

Euler method. In contrast, the second-order Runge-Kutta method used to de-

rive these results require nineteen instance variable accesses. Note that data

migration is never an effective method for speeding up the N-Body applica-

tion as written because at any given time, multiple threads located on multiple

nodes are accessing an object’s instance variables.

138

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9 11 13 15 17 19 21 23 25

timestep

cy
cl

es
/t

im
es

te
p

with migration

without
migration

nbodyiters.eps

Figure 6.20: Plot of the time required per timestep of a 12-body N-body
simulation run on a 64-node Q-Machine.

139

Chapter 7

Conclusions and Future

Work

...but I like big wrenches. Who cares if there’s no bolt big enough
for this wrench? Someone will make one someday.

—Dominic Rizzo

7.1 Conclusions

This thesis described and demonstrated an abstract machine architecture, the

ADAM, that enables high-performance migration mechanisms in hardware.

ADAM’s architecture features ubiquitous queues that serve as a flexible, uni-

form hardware abstraction for thread and memory communication. These

queues also serve to decouple thread and memory timings. The ADAM ar-

chitecture also features a capability-based memory system, which enables

the fast resolution of data bounds and the enforcement of bounds checks in

140

hardware. Finally, the architecture features a massively multithreaded pro-

gramming model where threads are simply special cases of data capabilities,

so that a mechanism similar to that used to migrate data can be applied to

threads as well. The massively multithreaded nature of the architecture also

serves to hide latency by context switching on thread stall events.

The features of the ADAM architecture conspire to enable an efficient and

fast migration mechanism for data and threads. This migration mechanism

relies on two protocols implemented in hardware: remote data lookup via

data locater pointers, and temporally bidirectional pointers for pointer updates

after migration events. The migration mechanism itself is fairly simple; in

essence, the algorithm is “freeze, copy, and forward”.

My migration mechanism’s performance was demonstrated in several bench-

marks. These benchmarks were run on a predominantly cycle-accurate ma-

chine simulator written in Java. The benchmarks were chosen to feature both

the load-balancing and the latency-reduction abilities of the implementation.

An in-place Quicksort benchmark showed a 12.3% performance increase

with simple work-stealing and thread-pushing load balancing algorithms. A

streaming matrix multiply benchmark showed a performance increase of 4

times when latency-driven data migration was applied. Finally, an N-Body

gravity simulation benchmark demonstrated a speedup of 36% when latency-

driven thread migration was applied.

My migration mechanism performs orders of magnitude faster than pre-

vious work. Active Messages [WGQH98], a high performance software im-

plementation of thread migration, can push-migrate 6000 null threads per

second; this translates to about 300 �s per migration event, or about 16,000

processor cycles at the paper’s 50 MHz processor clock speed. My archi-

tecture can push-migrate null threads in around 70 cycles, which translates

to about 70 ns per migration event in the proposed hardware implementa-

141

tion. This translates to about a factor of 5000 speedup. My migration mech-

anism performance is fast enough that it is attractive even when compared

against traditional latency hiding mechanisms such as caches: a Pentium 4

L2 cache fill takes about 175 ns, or 140 RAMBUS clock cycles [CJDM01].

The performance of my thesis’ migration scheme hopefully makes it an op-

tion for latency management in future high-performance parallel computer

implementations.

7.2 Future Work

There are many interesting avenues to explore for future work. The most

important issue to address will be algorithms for effectively controlling the

migration mechanism. Other issues requiring attention will be programming

languages and development environments for the architecture. Finally, the

architecture needs to be reduced to practice with a real hardware implemen-

tation.

7.2.1 Improved Migration Control Algorithms

My work describes some simple metrics and algorithms for controlling the

migration mechanism. While these algorithms performed well enough to

show a healthy performance increase on several benchmarks, they are far

from optimal or complete. My experience with my simple migration control

algorithms indicate that these issues will be important during the implemen-

tation and testing of future control algorithms:

� Metrics. Metrics are required to summarize communication latency and

processor load to a control algorithm. Understanding these metrics and

choosing the right data to report is a prerequisite to making intelligent

control decisions. A good metric should also be implementation-independent

142

and scalable with technology.

� Flexibility. While a control algorithm can be shown to be optimal under

a set of restricted operating conditions, a useful control algorithm must

have bounded performance over a wide range of operating conditions.

� Robustness. Hardware failures are inevitable in any large system. A

good control algorithm should be robust in the face of hardware failures;

it would be preferred if the algorithm were smart enough to move data out

of failing nodes.

� Retries. In the Q-Machine implementation, blocked messages are re-

sent; each delivery attempt increases the effective latency of the message

by an amount proportional to the resend backoff time. An intelligent

migration control algorithm should recognize these situations and abort

the migration process if the additional latency of resending the migration

packet will hurt overall performance.

7.2.2 Languages and Compilers

ADAM was developed in parallel with languages that could leverage its unique

features; in fact, over the course of development, two languages, Couatl and

People, were developed by Ben Vandiver [Van02].

Couatl is the first language developed for the ADAM platform; it is a

simple object-oriented language that employs a technique known as persis-

tent methods to perform object dispatch. Persistent methods are started once

for every instance of an object, and never terminate. Every object has associ-

ated with it a persistent method which acts as a server for method invocations.

The persistent server method waits on a client to enqueue a method invocation

request into a designated request queue. Upon receipt of a request, the server

method performs a method lookup and spawns a new thread of execution for

143

that method. Couatl was primarily developed to prove that the ADAM pro-

gramming model is viable and that reasonable compiler analyses can generate

code that makes use of the queues without deadlocking. It also proved that

the thread-per-method model is a viable programming model. The primary

problems with Couatl include no programmer-level visibility of the queue

structures, and no inherent support for spatial awareness. Code generated

with Couatl would place all methods and new objects onto a single node, and

relied on the load balancing mechanism to improve performance.

People (from PPL, Parallel Programming Language) is the successor to

Couatl. People also sports an object-oriented programming model. Its most

significant addition is support for streaming constructs that expose the queues

within the core of the machine to the programmer. Streams represent a way

for a programmer to explicitly schedule static communication patterns. These

streaming constructs were used in the Matrix Multiply benchmark, for exam-

ple, to set up a static array-access/multiply pipeline. They were also used

in the N-Body benchmark to create a static combining tree for determining

when all threads were finished computing their result during each time step.

Future languages for the ADAM architecture should also include primi-

tives to stripe, split and scatter arrays and vectors. A parallel-map operator

would also be useful, as well as mechanisms to simplify the building of fan-in

and fan-out trees. Also required is run-time support for garbage collection.

For an efficient implementation of parallel garbage collection, please refer

to Jeremy Brown’s thesis on Sparsely Faceted Arrays (SFAs) and scalable

parallel garbage collection. [Bro02]

7.2.3 Hardware Implementation

An important step in any architecture’s evolution is its hardware implemen-

tation. Fortunately, the very nature of an abstract machine architecture lends

144

itself to incremental implementation. In addition, Q-Machine implementa-

tion’s dilation-2 fat-tree network has fault tolerance built in; [DeH93] de-

scribes in detail how the network implementation can withstand a single fail-

ure in any component or link without any loss of logical connectivity. Finally,

the ADAM architecture and the Q-Machine implementation were designed

with the practical issues of manufacturing yield and obsolescence resistance

in mind. Manufacturing yield on a Q-Machine chip-multiprocessor die can

be near 100%. Thanks to the hardware abstraction of the ADAM, chips with

multiple bad processors are still salable; the runtime system just needs a map

of the bad locations so that no data or threads are migrated into the broken

nodes. The hardware abstraction of the ADAM also helps extend the oper-

ational life of the architecture; as nodes malfunction, they can be replaced

with new nodes implemented in the latest process technology without a need

to recompile. Combined with a migration control system that can move data

and threads out of a failing node, a system could run for years while being

constantly upgraded – without ever being shut down.

7.2.4 Transactions

Hardware support for transactions is very useful in large, parallel architec-

tures. Transactional rollback enables greater levels of speculative parallelism,

and transactional checkpointing enables a greater level of dynamic fault tol-

erance. The ADAM architecture has some unique features that enable future

implementations of transactions in hardware.

The first observation is that a queue can be turned into a transactional log

if the “dequeue” operation is reversible. In other words, a dequeue operator

should merely advance a dequeue pointer, without throwing away any data.

Given this transformation, the computational state of an ADAM thread can be

saved by simply remembering all of the enqueue and dequeue pointer offsets.

145

In order to reclaim memory, computation can be committed after the nec-

essary conditions have passed by throwing away some data. Memory state

can also be preserved with this scheme by using only exchange operators on

memory, and reversing the exchanges during rollback.

The second observation is that an ADAM thread’s state is entirely repre-

sented within the thread capability. Hence, checkpointing can be done at a

coarser grain than the previously suggested pointer-rollback method by just

making copies of thread state. This coarse-grained transaction mechanism is

easier to implement, and requires less hardware modification.

Of course, the devil is in the details. Many issues, such as how to deal with

migration and non-deterministic message ordering between threads, need to

be resolved before either scheme can be declared a success.

7.3 Final Remarks

As the Future Work section indicates, the ADAM architecture and the Q-

Machine implementation are full of low-hanging fruit. In addition, the ADAM

architecture has implications for high performance parallel computers beyond

just enabling a high performance data and thread migration scheme. I hope to

explore these possibilities in the near future. I also encourage anyone who has

taken the time out to read my thesis to investigate and to implement aspects

of the architecture, and to please feel free to send me an email if they have

any questions. My email address for life is bunnie@alum.mit.edu. I

look forward to hearing from you.

146

Appendix A

Acronyms

Q: What do you think will be the biggest problem in computing
in the 90’s? A: There are only 17,000 three-letter acronyms.

—Paul Boutin from The New Hacker’s Dictionary

This chapter lists, for the reader’s convenience, the acronyms and abbrevia-

tions used in this thesis.

147

$ Shorthand for cache
ACK Shorthand for Acknowledge
ADAM Aries Decentralized Abstract Machine
AM Attraction Memory
AMD Advanced Micro Devices
ASIC Application Specific Integrated Circuit
ASS ADAM System Simulator
BIST Built In Self Test
ccNUMA Cache-Coherent Non Uniform Memory Access
CM Connection Machine
CMOS Complementary Metal Oxide Semiconductor
CMP Chip Multi-Processor or Chemical-Mechanical Polishing
COMA Cache Only Memory Architecture
Couatl Java-derivative object-oriented proto-language for ADAM
CPU Central Processing Unit
CTO Chief Technology Officer
DAE Decoupled Access Execute
DDM Data Diffusion Machine
DMA Direct Memory Access
DMEM Data Memory
DRAM Dynamic Random Access Memory
ECC Error-Correcting Code
EMEM Environment Cache
EXEC Execution Unit of the Q-Machine core
FO
 Fan Out of

I$ Instruction Cache, often abused to refer to a hybrid work-

window scheduler queue
IBM International Business Machine
ID Shorthand for Identifier
IP Instruction Pointer or Intellectual Property
IPC Instructions Per Clock
ISA Instruction Set Architecture
KSR Kendall Square Research
LSB Least Significant Bit
MIMD Multiple Instruction Multiple Data
MIT Massachusetts Institute of Technology
MSB Most Significant Bit

Table A.1: Table of Acronyms

148

NI Network Interface
NOW Network of Workstations
NSRF Named State Register File
NUMA Non-Uniform Memory Access
ORB Object Request Broker
OSI-7 Open Systems Interconnection 7-layer model
PC Program Counter or Personal Computer
People Second-generation language for ADAM, supporting

streaming constructs
PHY Physical and Data Link Layers (from OSI-7 model)
PIM Processor In Memory
PPL Parallel Programming Language (a.k.a. People)
PQF Physical Queue File
Q$ or QC Queue Cache
RPC Remote Procedure Call
RISC Reduced Instruction Set Computer
SCHED Scheduler Co-processor
SFA Sparsely Faceted Array
SGI Silicon Graphics Incorporated
SIA Semiconductor Industry Association
SMEM Scheduler Co-processor Memory
SMT Simultaneous Multithreading or Surface Mount Technol-

ogy
SOI Silicon on Insulator
SRAM Static Random Access Memory
SSRAM Synchronous SRAM
src abbreviation for Source
TAM Threaded Abstract Machine
TSMC Taiwan Semiconductor Manufacturing Corporation
TTDA Tagged-Token Dataflow Architecture
VLIW Very Long Instruction Word
VQF Virtual Queue File
VQN Virtual Queue Number
XPRT Network and Transport Layers (from OSI-7 model)

Table A.2: Table of Acronyms, continued

149

Appendix B

ADAM Details

My two favorite languages are still assembly and solder.

—bunnie

This appendix provides many of the details omitted from chapter 3 in the

interest of restricting the body text of the thesis to only features and issues

relevant to migration. Note that this appendix does not justify all the design

decisions as rigorously as the main chapters of the thesis; in fact, some of the

implementation decisions, such as the use of a simplified floating point for-

mat, are mostly a result of my own prejudices. On the other hand, the choice

of floating point format has little to do with the meat of the architecture, and

I present such material here just because I can.

B.1 Data Types

All ADAM data types are 80 bits wide; they consist of a 64 bit data field and

a 16 bit tag field. Four integer data types are supported: signed long (referred

150

to as “word”), packed signed integer, packed signed short, and packed uni-

code characters. Only one floating point data type is supported, similar to the

IEEE-754 double format. See figure B.1 for detailed bit-level formatting of

the data types.

64 bit signed integerword data

32 bit signed integer (a)
packed
integer

data
32 bit signed integer (b)

packed
short data

16 bit signed
integer (d)

packed
char data

16 bit unicode
character (d)

16 bit signed
integer (c)

16 bit signed
integer (b)

16 bit signed
integer (a)

16 bit unicode
character (c)

16 bit unicode
character (b)

16 bit unicode
character (a)

floating
point data

52 bit mantissa ("f")
11 bit

exponent
("e")

sign
("s")

capability tag, 0 = capability, 1 = data

15 bits
tag and flags

15 bits
tag and flags

15 bits
tag and flags

15 bits
tag and flags

15 bits
tag and flags

23 bit mantissa
8 bit
exp-
onent

fp constant
(stored in
opcodes

only)

32 bit signed integer

int constant
(stored in
opcodes

only)

dataformats.eps

Figure B.1: Data formats supported by ADAM

Packed data is operated on in vector form; most arithmetic operations are

supported on packed data. Any arithmetic operation involving a capability,

however, is only valid with a word. Any integer type is supported for memory

queue offsets, however. Please see section 3.2.3 for more information on the

ADAM memory model.

151

All data types are fully tagged to identify their type, as well as any flags

associated with their status. See figure B.2 for details. Errors on arithmetic

operations can be forced to be trapping and non-trapping. Trapping errors

cause the thread to halt and an exception to be thrown; non-trapping errors

allow execution to proceed normally (which may or may not imply halting)

and the error condition to simply be noted in the result’s tag and flags field.

This error condition will propagate through data operations; in other words,

adding a NaN-tagged float with a valid float will result in a NaN-tagged float.

An immutable bit is included in the tags to indicate static data that can-

not be altered. Identifying data as static allows management routines to copy

immutable data freely, thus enabling cheap automatic mechanisms for dis-

tributing frequently referenced constants. Writing to data that is declared as

immutable has no effect on the data, may throw an exception, and always sets

a bit in the status register to indicate that an illegal write occurred.

6-bit type field +
9-bit type-dependent

flags field

w
ord

pint

pshort

pchar
float

O
S

valid

overflow
.a

valid

overflow

N
aN

/
+

/- infinity

underflow

valid reserved

MSB LSB

LSB

LSB

overflow
.b

overflow
.c

overflow
.d

used only for packed types

m
utable

resvd

m
utable

resvd

m
utable

prim
ary

prim
ary

prim
ary

00 = number
01 = NaN
10 = +infinity
11 = -infinity

typeformat.eps

Figure B.2: Tag and Flag field details

A primary bit is also included in each tag that is used by the data mi-

152

gration manager to indicate if this is the primary copy of the data. This is

particularly useful for the scenario of partial migration, where the primary

capability containing some data has migrated but the data itself has yet to

move. See chapter 4 for more details on migration mechanisms and imple-

mentation.

A subset of the IEEE 754-1985 floating point standard is required by

ADAM architecture. The differences between the IEEE 754-1985 standard

and the ADAM format are chosen to simplify implementation and enhance

performance with a small reduction in precision. These differences are:

� ADAM does not support single-precision floats and its associated opera-

tions and conversions, with the exception of constant fields in opcodes

� NaN and 	
 are specified in the tag field, so exponent = 2047 is now

valid, and the exponent bias is now +1024

� ADAM has no denorms (accuracy versus IEEE 754-1985 reclaimed by

indicating special number types in the tag field, as described immediately

above)

� one rounding mode: von Neumann style rounding

To summarize, the value of the floating point number is � � ��
�
�	������
���

unless � �
 and � �
, in which case the value is � � ��
�

 (signed zero).

Aside from these differences, the ADAM floating point format defers to

the IEEE 754-1985 standard [Ste85]. In particular, the handling of NaNs,

Infinity, and Signed Zero in the context of Exceptions, Traps, Comparisons

and Conversions are identical.

The ADAM instruction format allows for 32-bit constants to be stored

in a standard opcode. Floating point instructions can thus store a single-

precision format float in the constant field, but this is immediately converted

to a double-precision number upon use. The single precision floats likewise

do away with the denorm representation; hence, NaNs and 	
 are not rep-

153

resentable in the single-precision floating point constant field. The value of a

single precision floating point number is � � ��
�
�	�����
��� unless � �

and � �
, in which case the value is � � ��
�

 (signed zero).

von Neumann style rounding is implemented by adding a Least Signifi-

cant Bit (LSB) of precision to floats as the floats enter the arithmetic pipeline,

and carrying this LSB of precision throughout the pipe. This extra LSB is set

to a binary “1” as numbers enter the pipe, and rounding is done by simple

truncation at the end of the pipe. This results in an expected value of the extra

LSB to be �

�
at the end of the day.

An implementation may choose use to full IEEE 754-1985 style rounding

to gain the extra precision, but there is no provision in the stock architecture

specification to choose which rounding mode to use; the default and only

rounding mode should thus be “round to nearest” per IEEE 754-1985.

B.2 Instruction Formats

ADAM has a sequestered code space, like that in a Harvard Architecture.

The code space, unlike the data and environment spaces, is global and shared

among all nodes; this is feasible because the code space is mostly read-only.

The management coprocessor takes care of handling any page faults or the

loading and unloading of code in code space. ADAM can dynamically re-

quest new object classes to be loaded into code space with the LDCODE in-

struction.

The code space is mostly read-only because some instructions contain

hint fields to the instruction prefetcher. The actual values contained in the

hint fields are implementation-dependent and any ADAM implementation

must execute code correctly regardless of the hint field’s contents; however, a

compiler is free to warm up the hint fields with bit patterns that may improve

154

start-up performance for a specific implementation. Instruction caches can re-

place lines that have not been written back due to a lack of instruction memory

bandwidth without any impact on correctness of execution. Likewise, write

values do not have to propagate throughout the system even though the code

is globally shared among all nodes. However, in the case that values do make

their way back to their original file on disk, the next time code is loaded, it

may run faster.

8 bits
opcode

7 bits
VQA

7 bits
VQB

7 bits
VQC

32 bits signed constantstandard OP

8 bits
opcode

7 bits
VQC

7 bits
VQA

32 bits signed rel. offsetbranch OP

link
(opt)

cond
(opt)

8 bits
opcode

7 bits
VQA

48 bits unsigned dest storage hintjump OP

dest

8 bits
history

hint

copy/replace tag, 1 = copy/replace, 0 = dequeue/enqueue

8 bits
opcode

48 bits hint datahint OP
8 bits
hint
type

unused

opcodeformats.eps

Figure B.3: Format of ADAM opcodes

Instructions are 64 bits long and have four basic formats: standard, branch,

jump, and hint (see B.3). Every instruction has an 8-bit opcode field. Every

queue specifier in every instruction is modified by a copy/clobber bit. Setting

the copy/clobber tag enables the compiler to treat the queue with semantics

similar to that of a register. A copy operation extracts a value from a queue

without changing any of the values in the queue; a clobber operation tests to

see if a queue is empty, and if it is, waits until a value is written to it, and then

155

replaces the value. The clobber operation is invalid on a remapped queue and

attempting to perform such an operation triggers an exception.

The standard instruction has three virtual queue specifiers, each 7 bits

long. The first two (VQA and VQB) specify read queues; the final (VQC)

specifies the write queue. The standard instruction also contains a 32-bit

signed constant field, thus allowing the standard instruction to specify up to

three data sources and one data destination, although most instructions do not

take advantage of this possibility.

Certain instructions, known as special-format instructions, may interpret

the VQA, VQB, or VQC fields as constants instead of as a queue to reference

to extract or store data to the queue file. These instructions typically deal

with the creation, maintenance and destruction of queue maps. The compiler

and/or assembly language programmer typically knows at all times the ex-

act queue number that a mapping is applied to, so it does not make sense

for most queue map maintenance instructions to accept arbitrary dynamically

generated queue values. Hence, the VQA, VQB, and VQC fields can be used

to immediately refer to a queue number for these instructions.

Branch instructions have a condition field, a link field, a branch history

hint field, and a 32-bit signed branch offset. Either the condition or the link

field may be omitted from an instruction, but not both. An 8-bit history hint

field is also provided so that a branch history can be stored with the branch

instruction. Note that the format of the hint field is implementation-specific,

and that any ADAM implementation must function correctly regardless of the

hint field contents.

Jump instructions have a destination field and a 32 bit unsigned jump des-

tination hint. Only the lower 32 bits of the value in the queue specified by the

jump destination field is loaded into the program counter. The jump destina-

tion hint field is provided so that an implementation can memoize the most

156

recent jump address. Note that the format of the hint field is implementation-

specific, and that any ADAM implementation must function correctly regard-

less of the hint field contents.

Hint instructions are no-ops that provide hints to the runtime system. The

hint may or may not be platform dependent; this information is encoded

within the hint type field. Examples of hints are data placement directives,

prefetch directives, and thread yield directives. Hints that are not recognized

by the run-time are ignored.

Please consult appendix D for detailed listing of the instructions sup-

ported by ADAM and their descriptions.

B.3 Capability Format

The capability format used by ADAM [BGKH00] allows for exact base and

bounds determination from an arbitrary capability with the use of front-padding

to eliminate a small amount of rounding overhead. The total padding penalty

incurred by the capability format is bounded to be less than 11.2% [BGKH00].

The method for extracting the base and bounds from a front-padded ca-

pability is fairly simple, and can be implemented directly in hardware. As

seen in figure B.4, a capability includes block size, length, finger and address

fields. A combination of block size and length can be used to determine the

end of a capability; the finger field is used to deduce the location of the be-

ginning of the capability given a pointer into the middle of the capability. A

block size of all 1’s (63 in this case, because the block size field is 6 bits

long) is a special case where the length field is directly equal to the number

of words in the capability. This unique structure was chosen to simplify the

hardware implementation, as described in [BGKH00].

The method for extracting the base and bounds from a front-padded ca-

157

9 bits
tag

34 bit address, word aligned16 bit proc ID
15 bits base/

bounds

1 bit capability
tag

capability

environment / data
valid
primary
marked
read
write
uncopyable
owner
increment-only

6 bits block
size

exponent

4 bits
length

5 bits
finger

5 bit
SQUID

capabilityformat.eps

Figure B.4: ADAM capability format

pability is as follows, written is pseudocode:

� = block size field value

� = length field value

� = finger field value

� = address field value

if(� �� ��) �

// �, � are immutable

// � and � are updated by capability arithmetic ops,

// with check made to ensure that � � �

capability.beginning = �� �;

capability.length = �� �;

capability.end = capability.beginning + capability.length;

if(� � �) �

throw capability bounds exception

�

desired data = *�;

�

else �

// & is the bitwise AND operator

capability.beginning = � & (� ���� ��� ���� �� � �� � ���;

capability.length = ��� �� � ��� ��;

capability.end = capability.beginning + capability.length;

desired data = *�;

158

�

The only valid operations on a capability are addition and subtraction. The

new address that results from an arithmetic operation is simple to calculate:

� = signed integer offset to be added

�� = new address

�� = old address

�� = �� + �

The method for recalculating the finger field of a capability that has had an

arithmetic operation on it is as follows, written in pseudo-code with verilog

bitfield syntax:

�� = original finger field

�� = new finger field

� = signed integer offset to be added

� = value of the block length field

if(� �� ��) �

�� = �� 	

��
;

� else �

�� = �� � 	

��
 � � � & (� ��� � ��� ��� � �� � ��� ����� � �;

�

The value of the new finger field should be less than the value of the length

field but greater than zero; if not, an error should be flagged. An efficient

hardware implementation of the above calculation is also given in [BGKH00].

Note that capabilities cannot be dynamically resized. This implies that the

length and block size fields should never change after an arithmetic operation.

In order to grow a capability, a new one must be created and the contents of

the old one copied into the new one.

The ADAM capability format contains an explicit processor node ID em-

bedded within the address field of the capability. The size of the node ID field

allows for up to 65,536 processors to be present in the system, but the actual

allocation of capabilities on these nodes is left up to the operating system.

159

All ADAM applications can run on implementations with anywhere between

one and 65,536 nodes, with no requirement on the distribution of node IDs,

because capabilities are opaque to the programmer and the allocation process

is implementation-specific. Valid node IDs can even change dynamically, so

long as the OS is careful to ensure that a node is empty before deactivating its

ID. Dynamic ID reassignment can be useful in situations where environmen-

tal monitors detect an impending failure, or where users wish to hot-swap

nodes to perform upgrades or service. Note that the amount of available

memory for applications to run does vary with the number of nodes in the

system, but the address space is fairly large so users should rarely encounter

this situation.

The capability format also includes a number of bits for memory manage-

ment and security purposes. These bits are:

� environment/data: indicates if the capability is for environment space or

for data space. Normally this bit should not be modified after capability

creation.

� increment-only: indicates that only positive offsets from the capability

base can be accessed

� valid: indicates if a capability is valid. An attempt to dereference an

invalid capability results in a protection fault.

� marked: used for garbage collection

� read: indicates that data can be read from the capability.

� write: indicates that data can be written to the capability.

� uncopyable: indicates that only dequeue operations are allowed on the

capability; an attempt to copy the capability will result in an exception

being raised.

� owner: when the owner bit is set, the read, write, and uncopyable bits can

be overridden.

160

� primary: indicates that this capability is the primary working copy. For

capabilities in data space, it marks the endpoint of a migration list. For

capabilities in environment space, it also marks a thread with this bit set

as the only runnable copy.

� SQUID: Short Quasi-Unique ID. A short tag field that contains a ran-

domly generated ID number assigned at the time of capability allocation;

when a capability is migrated, this field is directly copied. Use of this

field reduces the cost of capability inequality comparisons. [GBHK00]

B.4 Über-Capability and Multitasking

The über-capability is a capability that has access to the entire memory space

of the machine. This über-capability is used by kernel threads for system

management functions, since ADAM provides no supervisor mode or explicit

kernel permissions in the style of Java. On power-up, each physical node

starts code execution at location 0 in code space, and an über-capability is

initially placed in q0. The über-capability is set to be the size of the entire

virtual memory available for that node, and the owner bit is set. Through this

mechanism, kernel code loaded at location 0 in code space can have access

to the entire machine. This kernel code is also typically the default exception

handler for the node.

Since ADAM is a virtual machine, multitasking on a single large ma-

chine is accomplished by dividing the machine into smaller groups of phys-

ical nodes and starting an ADAM per task, and each ADAM runs only one

task. Load balance of the machine can be set in part by controlling the num-

ber of nodes that an ADAM can access. This restriction of access can be

accomplished in part by limiting the size of the über-capability.

161

B.5 Exception Handling

Exceptions on ADAM are inherently imprecise. ADAM is a distributed ma-

chine that runs many parallel threads; there is no clear definition of “simul-

taneity” in this scenario. ADAM’s take on exceptions is two-pronged: first,

the result of every exception-causing event is tagged; second, as much lo-

cal state relevant to the exception is preserved at the instant an exception is

detected.

An exception capability is included as part of every thread’s state. This

exception capability is initialized on thread creation to point to a default

exception handling object (usually an OS-defined object), and can be over-

ridden by the user at any time. The default handler is invoked in the case that

the user-defined exception handler is invalid. Users can use this mechanism

to build chains of exception handlers, as illustrated in figure B.5.

Exceptions are handled on a per-processor node basis. When a thread en-

counters an exception, the exception handler is immediately scheduled to run

on that node, and is locked in as the only runnable thread until the exception

is resolved. The exception handler inspects the processor status register and

the Exceptioned Context ID register to determine the source of the exception.

Then, an OS-defined protocol is employed for communicating with the ex-

ceptioned thread, if necessary. Usually, this protocol involves the exception

handler forcing a flush of the exceptioned context from the queue file and

digging through and modifying the exceptioned context’s environment space.

This process can take thousands of cycles. Exceptions are intended to be rare

events, and users should avoid using the exception mechanism for anything

other than exception handling. In other words, they should be avoided in gen-

eral as a mechanism for implementing APIs or hardware interfaces. Users

are instead encouraged to use queue mappings and opcode extensions of a

162

form similar to ALLOCATE or SPAWN instructions. Opcode extensions can

be implemented using the illegal opcode handler mechanism described below.

some object

exception ptr

hardware default
exception ptr.

OS exception
handler

if no overriding
exception

pointer defined superclasses'
exception object +
durasive methods

exception ptr

local exception object +
durasive methods

super

etc...

may be initialized
to user-space handler

as well

exceptionscheme.eps

Figure B.5: Exception handling overview

Illegal opcode exceptions are handled in a special manner, similar to the

Alpha architecture’s PALcode. An illegal opcode dispatches into a look-up

table in memory that has a hard-wired address, and control flow is transferred

to an implementation-specific microcode processor that has access to all local

state. The microcode processor could be as simple as a dedicated context ID

on the ADAM plus instruction set extensions. The code that the microcode

processor executes is stored in a reserved location in kernel memory; this

allows for instructions implemented in future versions of the architecture to

be emulated via software patches set up by the OS. During emulation mode,

the processor behaves as if it had stalled, and errors during emulation mode

lead to undefined behavior. I recommended that the default behavior for an

illegal opcode be an emulated THROW instruction.

163

Appendix C

Q-Machine Details

A novice was trying to fix a broken Lisp machine by turning the
power off and on.

Knight, seeing what the student was doing, spoke sternly: ”You
cannot fix a machine by just power-cycling it with no understand-
ing of what is going wrong.”

Knight turned the machine off and on.

The machine worked.

—Traditional AI Koan

This appendix provides many of the details omitted from chapter 5 in the

interest of restricting the body text of the thesis to only features and issues

relevant to migration. In particular, this section discusses the details of the

PQF implementation, the network interface and transport protocol implemen-

tation, and the network topology used in the Q-Machine implementation and

the ADAM System Simulator.

164

C.1 Queue File Implementation Details

This section discusses some of the important details of the PQF implementa-

tion used by the ADAM system simulator. This piece of hardware is perhaps

the most difficult single component to implement in the Q-Machine imple-

mentation, so it warrants some exploration within the context of this thesis.

C.1.1 Physical Design

At the heart of the VQF is the physical queue file (PQF), which directly imple-

ments an architecturally unspecified number of queues. A high-level sketch

of a PQF can be seen in figure C.1. The PQF is attached directly to the com-

putational units. The size of the PQF should be set by the details of the target

implementation process; however, for good single-threaded performance, the

PQF should embody at least the 128 queues available to a single context.

The PQF has a structure similar to a multi-ported register file, and it is ca-

pable of swapping an entire queue into and out of a Queue-Cache (QC) in

a single cycle. Empty queues are not swapped into the QC; rather, they are

simply marked as empty and they consume no further bandwidth or space.

The memory subsystem contains special hardware to accelerate the marking

and swapping of empty queues. A good compiler will arrange for threads to

have all empty queues when execution stops, so that dead threads consume a

minimal amount of space until they are garbage collected.

The QC has a structure similar to a memory cache; when it overflows,

cache lines are strategically written out to main memory. The fact that every

queue in the system has some location in memory reserved for its storage is

a feature that is used by the GC mechanism to clean up after dead threads or

to migrate objects.

The physical queue file actually does not take up significantly more space

165

wr rd

CAM
64-to-6,

64 entries

CAM
64-to-6,

64 entries

CAM
55-to-6,

2^pq entries

CAM
64-to-6,

64 entries

CAM
64-to-6,

64 entries

CAM
55-to-6,

2^pq entries

Q$ write port

Q$ read port

2^pq *
65

65 6565656565

65 65 65 65

pq

65 65 65

context ID + reg # context ID + reg #
write data +

full bit

read data +
empty bit

spill to memory

underflow from memory

qdepth
* 65

qdepth
* 65

q depth

pq

pq

pq

pq

pq

pqfblock.eps

Figure C.1: A 3-write, 3-read port VQF implementation. pq = ��� ��# physical
registers�. Q-cache details omitted for clarity.

than a regular multiported register file. The reason for this is the fact that a

register file is wire-dominated; the active transistor area underneath a register

file cell is a small fraction of the area allocated for wires.

Figure C.2 illustrates the unit cell for a 3 read-, 3 write-port PQF with

sufficient Q-cache wires to manage a 4-deep queue.

The wiring pitch is based on numbers taken from the TSMC 0.18 �m

process guide [Corb]. The wiring requirements for the unit cell of the PQF

would consume 4851 �� alone, using minimum-pitch M5/M6 wires. For

comparison, the area of a 6-T SRAM cell in the TSMC 0.18 �m process is

574 ��, allowing eight such cells to be placed underneath a PQF unit cell.

For better performance, fatter wires with wider spacing may be employed,

thus increasing the area underneath the unit cell for the implementation of the

actual Q structure storage and control logic.

166

EXWDn

NAWDn

NBWDn

QCDAn

QCDBn

QCDCn

QCDDn

XARDn

XBRDn

NTRDn

EXWCq

NAWCq

NBWCq

QWCq

QRCq

XARCq

XBRCq

NTRCq

7 lamda

signal contact area

pwr/gnd on m3/m4,
signals on m5/m6
local on m1/m2

buried pwr/gnd
contacts

77 lamda

63 lamda

unit cell is 4851 lamda square
39.3 micron square in 0.18 u

TSMC 0.18u puts 6T
SRAM cell at 4.65 micron
square or 8 such cells in

this area

pqfunitcell.eps

Figure C.2: PQF unit cell.

167

Hence, a PQF implementation which has relatively shallow queues (4 to

8-deep) could be implemented within a factor of two of the amount of space

as a regular register file with a similar number of ports. As process technol-

ogy progresses, even greater depth queues will be enabled, at the expense

of either more or faster wires required for swapping to the Q-cache. A suit-

able, high-performance asynchronous FIFO design is described in [MJC�99]

and [MJCL97]. These depth-17 FIFOs operated reliably at a throughput of

1.7 Giga data items per second in a 0.6 �m CMOS process. Variants on this

design have been explored by the author but are not presented here in the

interest of brevity.

A similar idea to the VQF implementation outlined here is the Named-

State Register File (NSRF). [ND91] [ND95] The NSRF is a register file with

an automated mechanism for spilling and filling thread contexts. It utilizes

context ID numbers to uniquely identify the threads, and a CAM memory to

match the individual register file entries to their proper contexts. Unlike the

VQF, the NSRF dumps its state directly into the processor data cache. The

Q-Machine does not do this because there is no data cache on the Q-Machine,

and even if there were, the combination of having to add an extra read/write

port to the D-Cache and cache pollution issues would present a strong case

for having a separate Q-cache. While the VQF is introduced primarily to

support a disassociated physical-to-logical mapping of processors to threads,

it is interesting to note that the NSRF did provide small (9% to 17%) speedups

to parallel and sequential program execution. Also of note is that cache-

style register files such as the NSRF and VQF provide higher overall register

file utilization: the NSRF was demonstrated to have 30% to 200% better

utilization than a conventional register file. [ND95]

The MAP block is responsible for determining if a queue is mapped to

another context. The MAP block is issued a request to discover a queue

168

mapping at the time the instruction is issued, giving it the whole pipeline

latency of the machine to do this work. The MAP operation is potentially

complex and could be a cause of many stalls if the machine is not designed

correctly.

The reason the MAP block only needs to be decoded for write targets is

because the only legal queue mappings allowed on the Q-Machine are for-

ward mappings. In other words, it is impossible to create a mapping that

”pulls” data out of another context; instead, one can only inject data into a

target context. As apparent from the diagram, the MAP function is thus in-

voked for both incoming writes from the NI and for local results from the

ALU/MEM unit. This keeps the read latency from the VQF low, while giving

the MAP function time to do its translation for writes.

Recall that the context ID for a thread is in fact a capability that points to

the storage region for the thread’s backing storage and local data storage. This

capability has permissions set such that a user process cannot dereference this

capability and use it as a memory pointer, but the OS and MAP function have

access at all times to this information. Refer to 3.2.3 for a review of the

capability address format of the Q-Machine. Given this, the basic algorithm

for the MAP block is as follows:

� If the Proc ID field of the context ID does not equal to the Proc ID of the

local processor, send the write to the NI

� Otherwise, consult an internal cache that records the presence of a map-

ping on the specified queue for the specified context. If there is no map

present, pass the write on to the VQF. If there is a map present, consult

the map table to discover the proper mapping and ship the data off to the

NI for routing (even if it is a map-to-self). Mark the queue as full and

block the thread until the NI reports successful delivery of data

The map presence cache is used to help accelerate the typical case where

169

there is no mapping. A larger map presence cache can be held in memory

than a cache with presence bits and the actual mappings. In the case that

the mapping table overflows, a lookup into a backup table must occur and

the machine thrashes. Also, in the case that a mapping does exist, it is okay

to take a few extra cycles to retrieve the mapping from memory. Perhaps a

small cache of mappings will also be maintained if the mapping lookups are

determined to be a severe bottleneck.

C.1.2 State Machine

Fill requests from the PQF are generated in response to both missed read and

write requests by issued instructions. For read requests, a placeholder line is

marked in the PQF and the fill request is issued to the environment memory.

For write requests, it is more complicated. If the queue was never created

before in the context, an empty line in the PQF is simply converted to a full-

fledged read/write line with the dirty bit marked. If there is an existing read

placeholder, that line is converted into a write-only line with the write data,

pending a merge fill with the already issued fill request. Otherwise, if there is

space in the PQF, a write-only line is created and the merge read fill request

is issued. If there is no space in the PQF for the write request, a request for

an empty line is made, and once that is satisfied, a write-only line is created

with a merge fill request.

Flush requests from the PQF are generated in response to the following

events: PQF overflow, scheduler overflow, and migration. In the case of a

PQF overflow, the LRU line is chose and booted out of the queue file. The

following two cases are not documented in figures C.3 and C.4. In the case

of scheduler overflow, the scheduler can no longer track all the ancillary data

associated with a context and it wishes to retire the entire thing to environ-

ment memory. In the case of a migration request, the entire thread state must

170

flush
LRU

queue

eMem
access

return
data

!mapped,
hit, r/w,

data avail

stall

!mapped,
hit, r/w
empty

exception

mapped,
hit

context
swap

miss context
swap

!mapped, hit,
write-only,

lines avail.

cache
full

exception

mapped

return
data

!mapped,
data avail

stall

!mapped,
empty

ReadReq

PC change event
(increment or exception)

scheduler event

initial request

intermediate state

should be
in progress because

of previously issued write

multicycle operation

Figure C.3: PQF read request response flowchart

171

once again be retired to memory, but in addition some data may be forwarded

via the network interface before the retirement is finished. In order to get

write-only lines with merge-fills and dirty lines to be handled correctly on the

destination of the migration, a migrated line must move with its tags and in-

serted into the destination queue along with any pending requests associated

with the tag type. Eventually, the fill mechanism will work its way to get

the data from the original context via forwarding pointers, but in the mean-

time, computation can resume. Any fills in progress to remedy placeholder or

write-only lines locally are allowed to complete, but the returned data is dis-

carded. This is acceptable because write-only lines are retired to environment

memory with a merge request (and as previously noted, write-only lines di-

rectly sent to the destination are inserted with merge requests). Placeholders,

of course, can simply be discarded.

The following state is also stored in a PQF line or must be synchronized

with the environment memory backing storage upon retirement, in addition

to the raw queue data:

� Created bits

� Resident bits

� Mapped bits

� Map destination context

� Map destination VQN

� Map source queue flag (also impacts network interface)

� Map source queue sister (also impacts network interface)

The map source queue flag and map source queue sister values must be

reported to the network interface whenever a queue is swapped in or out of the

PQF. This is because the originating thread data is stripped from an incoming

network packet by the transport layer implementation. Thus, when the map

source queue flag bit is set, the transport layer must preserve the originating

172

flush
LRU

queue

flush
LRU

queue

eMem
access

eMem
access

continue

hit,
space avail.

context
swap

hit,
backpressure

space avail.

context
swap

early
commit /
queue is
write-only

miss,
cache has

space,
!clobber

miss,
cache is full,

!clobber

continue

forward
data

merge /
queue is

r/w

mapped

!mapped

WriteReq

PC change event
(increment or exception)

scheduler event

initial request

intermediate state

context
swap

miss,
clobber

cache has
space

cache is
full

mapped

exceptionmerge /
queue is

r/w

continue

multicycle access

Figure C.4: PQF write request response flowchart

173

thread context from the network packet and generate a write request into the

PQF for both the arriving data and the context ID of the originator of that

data.

C.2 Network Interface

The network interface implements, in hardware, features analogous to the

physical, data link, network, and transport layers from the OSI 7-layer net-

work stack. In this implementation, the physical and data link layers are

combined and referred to as PHY, and the network and transport layers are

combined and referred to as XPORT. This reduction of abstraction was cho-

sen because first, the network protocol for the ADAM implementation is very

simple, and second, there is a strong motivation to reduce latency by cut-

ting out unnecessary buffering and packet encapsulation. That being said, the

network interface provides the following services:

� an abstract and modular interface from the processor core to the physical

network layer

� reliable delivery of data

� generation of stalls to the processor core when the network is congested

� idempotent delivery of data

� a cut-through path to memory nodes that bypasses XPORT- and PHY-

layer latencies

� in-order delivery of data

� a loopback path for inter-thread data on the same processor node

The network interface assumes that the PHY has no responsibility for

packet delivery and no packet buffering. Hence, the XPORT layer must im-

plement reliable delivery and attempt to always guarantee space for arriving

packets. A discussion of how the topology and routing in the PHY layer is

174

implemented can be found in section C.3. Readers are recommended to con-

sult that section if they are unfamiliar with circuit-switched worm-hole routed

networks, and unreliable (but fast) routing.

An overview of the network interface implementation can be found in fig-

ure C.5. Data coming from the processor core first has its source and destina-

tion headers appended, and then routed by cut-through and loopback routers.

The datapath at this point routes source, destination and data information in

parallel to reduce latency.

loopback / cut-through
routerPQF write queue

strip headers,
handle source
queue maps

packet buffer

PQF

build migration
packet

Environment
Cache

control from
scheduler

co-processor

pending req merge

add source/dest
headers

packet data

add PHY routing
header

checksum & ECC

select unused/merge

transport buffer

PHY coding and
modulation

select oldest of
any unique destination

seq

dest

PHY decode/demod

packet data

seq

src

packet data

seq

src

PHY code/mod

generate
forget

parity check / syndrome
generation

92 bits, diff. pair, NRZ
(80 bit data + 10 bit
parity + 2 bits sync)

checksum
 &

 E
C

C

checksum
 &

 E
C

C

initiated
transactions are

guaranteed space;
when out

of space, a stall is
sent upstream

data that passes this
line is guaranteed

to be delivered

data that passes this
line is NOT guaranteed

to be delivered

data that
passes this

line is
guaranteed
to be written

generate
ack

seq
&

cID

check seq no. &
store new seq

ack?data or admin?

forward to sched
co-processor

data

adm
in

save

packet sort

forget?

seq generator

T
x P

ath

R
x P

ath

network interface

processor node

networkinterfacedetails.eps

cut-through
path to local

memory node

Figure C.5: Details of the network interface.

175

The cut-through and loopback router simply recognizes addresses des-

tined for the local processor node or memory, and passes that data directly

to its destination without going through the XPORT or PHY layers. Data

through the cut-through and loopback paths is always guaranteed to be single-

word length. If the cut-through or loopback destination is unable to accept

data, it must send a stall signal to the sender, and there must be sufficient

buffering in the cut-through and loopback router to compensate for the time-

of-flight of the stall signal. All data not destined for the cut-through or loop-

back paths is sent on to an outgoing packet buffer.

The outgoing packet buffer is responsible for regulating the flow of data

from the processor node and migration manager going into the XPORT layer.

It must be fairly large: big enough to hold a few maximum length packets.

It also must be fairly flexible, since most packets are either going to be a

couple words in size, or a couple hundred words in size. Finally, the packet

buffer must implement the following contract with the migration manager

and the processor node: once data of a given length has been accepted for

transfer into the buffer, it must be able to accept all of that data. If it cannot,

it must refuse any data from the sender, and it is the sender’s responsibility to

retry sending the data. In the case of the processor node, the stall will cause

the sending thread to retire to the scheduler list and a retry occurs when the

scheduler tries running the stalled thread again. In the case of the migration

manager, the scheduler co-processor is responsible for implementing some

kind of back-off and retry scheme in software. The packet buffer may also

optionally implement packet merging for data going to the same destination.

It must always preserve the temporal order of data after a merge, and it cannot

merge atomic EXCH operations.

Data accepted into the packet buffer is then forwarded to the XPORT

layer, but only when there is space available in the XPORT buffer. The

176

XPORT layer adds the requisite checksum, ECC and PHY-layer routing head-

ers before storing the data inside the transport buffer. A processor-node

unique sequence number is also added to the message while being stored into

the transport buffer in order to implement reliable, idempotent, and in-order

delivery.

The protocol used for reliable idempotent delivery relies on unique se-

quence numbers and acknowledge/forget tokens. It is the protocol developed

by Jeremy Brown and J.P. Grossman of the MIT AI Lab with an additional

level of numbering to guarantee the in-order delivery of messages. [GB02]

Figure C.6 illustrates the simplified protocol without in-order delivery. Every

message in the sender is assigned a unique sequence number. This number

may be guaranteed to be unique by simply using a very large (64-bit) counter

and incrementing it once for each data packet. The sender remembers the

data packet and the sequence number, even after the packet is sent. Once the

receiver gets the packet, it remembers the sequence number and the sender’s

context ID, and passes the data portion on to the destination within the node.

The receiver then returns an ACK packet to the sender as soon as possible

with the sequence number as the payload; when the sender sees the ACK

packet, it knows it can safely forget about the buffered packet; reliable de-

livery has occurred. If, however, after some timeout period an ACK is not

received, the sender must resend its data packet. If it is the case that the ACK

was not received because the ACK path was blocked or corrupted, then a risk

of a double-write of data occurs. This is averted, though, because the receiver

keeps track of the the sender’s sequence number; any incoming packet with a

non-unique sequence number from a particular processor node is discarded,

and another ACK generated. The FORGET packet is required by the receiver

so it knows when it can retire sequence numbers and stop sending ACK pack-

ets. Thus, whenever a sender receives an ACK packet, it immediately turns

177

around a FORGET packet to the source of the ACK packet with the sequence

number of the ACK packet as the payload.

source destination
D1 | SEQ3

destination
ACK1 | SEQ3

source

source destination

data to send (D1)

SEQ3, D1

destination
D1 | SEQ3

sourceSEQ3, D1
resend @ timeout
until ACK received

generate node-unique
sequence number SEQ

SEQ3

SEQ3SEQ3, D1

remove send record when
ACK received

hypothetical network blockage or
disruption

SEQ3, D1

source destination

FORGET1 | SEQ3
destinationsource SEQ3

ACK1 | SEQ3
SEQ3

SEQ3

source destination
FORGET1 | SEQ3

SEQ3

ACK1 | SEQ3

Source's Network
Records

Destination's Network
Records

resend ACK @ timeout for
remembered SEQ number
until FORGET recieved

remove receive SEQ when
FORGET received

incoming ACKs for unknown
SEQ numbers generate a

FORGET | SEQ

only SEQ numbers
remembered

Source Actions Destination Actions

tim
e

idempotence.eps

Rx data ready to use

Figure C.6: Idempotence and reliable data delivery protocol in detail for a
single transaction. Lines in gray are “retry” lines that would not happen in an
ideal setting.

The basic protocol outlined above does not guarantee the in-order deliv-

ery of packets to a destination. Packets can be re-ordered by the fact that any

packet in a sequence of packets could fail to be delivered on the first try. My

tweak on the protocol is to include an additional queue ordering number in

each packet. The queue ordering number starts at zero and is incremented

each time a packet is sent for a given sequence number. The receiver’s job

is to recreate the original ordering of the packets using the queue ordering

numbers. An additional message, FORGET CONNECTION, is required to

signal when a sequence number can be forgotten. Sequence numbers can only

be forgotten after sufficient time has passed to guarantee that the last packet

sent in the protocol has either succeeded or failed. This is easy to deter-

mine because the network is circuit switched and delivery times are inherently

bounded. A packet’s delivery is assumed to have failed if no acknowledgment

178

is received after a period of time has passed equal to the round trip time plus

acknowledgment overhead time.

The network interface is structured to have one dedicated data packet

transmit port, one dedicated ACK and FORGET packet transmit port, and

two receive ports. This structure helps regulate the flow of data onto the net-

work, and ensure that ACK and FORGET packets (which are smaller than

data packets and thus able to be sent at a higher rate) have a greater chance

of getting into the network. This structure also helps alleviate port contention

at the receivers by limiting the peak rate of message injection to be strictly

lower than the peak rate of message acceptance. Refer to section C.3 for more

details on how the routing headers are structured and the number and types

of wires used to interface to the network.

The format of the network packets is documented in figure C.7. The most

important information to glean from this diagram is that ACK and FORGET

packets are the shortest packets, and that an abbreviated “short data packet” is

available for the very common special case that the packet contains a payload

of one word. The short data packet is 20% shorter than a long data packet of

length one because it combines the ECC field and the sequence number into

the same word, and removes the length field entirely. The ECC/checksum

field can be shorter for these packets because there is less data over which to

checksum and correct.

C.3 Network Topology and Implementation

The network topology and its specific implementation parameters are free

to vary depending upon the user’s end requirements. The XPORT protocol

discussed in section C.2 assumes that the network is circuit switched, i.e. it

has no buffering or reordering, and that it is quite unreliable; contention for

179

destination cID & q

source cID & q

sequence + length

word 0

word 1

...

word N

destination cID & q

source cID & q

datum

destination cID & q

source cID & q

admin/misc header 0

word 0

word 1

...

word N

...

admin/misc header M

sequence + length

destination cID & q

sequence

checksum/ECC

checksum/ECC

sequence + ECC

checksum/ECC

physical and
transport layer

processor
layer

80 bits

Acknowledge and
Forget Packets

Short Data
Packet

Long Data
Packet

Administrative/Misc.
Packet

34 bit address, word aligned16 bit proc ID
15 bits base/

bounds

5 bits
S

Q
U

ID

7 bits
V

Q
N

3 tag bits

80 bits

destination/source cID & q format

64-bit sequence number16 bits length

sequence + length format

001 = ack
010 = forget 000 = normal

111 = exchange 011

100

packetdetails.eps

Figure C.7: Details of packet formats. Note that in the destination/source
cID and queue headers, it is very important that the processor ID be in the
MSB and co-located with the address field, since implementations may push
bits between the address and PID fields to increase the number of routable
processor nodes or to increase the amount of memory per node.

180

ports and routing resources is indistinguishable from hardware failures from

the sender’s standpoint. This unreliability is not as bad as it sounds; under

light loading conditions, connections are rapidly and reliably established, and

connection performance degrades gradually as congestion increases. With a

properly designed transport protocol, however, this phenomenon can be used

as feedback to throttle the message insertion rate. The network is also quite

robust in the face of hardware failures, since it is designed from the ground-

up to cope with such scenarios. The ADAM System Simulator implements a

network topology based upon the METRO network, described in great detail

by [DeH93] and by [WC01].

The principal advantage of circuit-switched networks over packet-routed

networks is latency performance and simplicity of implementation. No buffers

are required at the routers to handle port contention: the message is simply

dropped, and the sender is responsible for re-sending the message. This is be-

cause the network does not have to guarantee message delivery. Also, with the

correct choice of network topology, routing can happen at wave-propagation

speeds, such that the wire delay, even over short runs, is the dominant latency

component of the network.

One of the disadvantages of circuit-switched networks is that the network

is very bandwidth-inefficient if the minimum time required to establish a con-

nection is long compared to the time required to deliver the message data.

This kind of scenario may happen in a room-sized computer where the ve-

locity of electromagnetic waves in a copper waveguide forces the minimum

time to establish a connection to be several tens or hundreds of processor

clock periods long. This is particularly painful in the case that a connection is

blocked by router contention near the destination, because routing resources

were consumed and locked-down throughout the body of the network for

the length of the connection. The worst-case scenario occurs when several

181

senders are trying to communicate with a single remote hot-spot on a deep

circuit-switched network, causing multiple messages to route easily through

the body of the network, consuming resources, only to get dropped near the

destination. André DeHon of Caltech suggested that a hybrid buffered packet

and circuit-switched network may be a good solution under these conditions:

one may insert packet buffer stations that store a limited number of packets

(and may freely drop excess packets) at intermediate “checkpoints” along the

network. In the hot-spot scenario, messages route easily through most of the

network and are stored at the checkpoint nearest the hot-spot, and only the

segment of network between the hot-spot and the nearest checkpoint suffers

degenerative congestion. The distance between checkpoints and the depth of

the checkpoint buffers are parameters that depend heavily upon the imple-

mentation technology, and in particular, the ratio of the information propaga-

tion time to the temporal length of the average message.

Another technique for reducing the cost of circuit-switching, suggested

by J.P. Grossman of the MIT AI Lab, is to use worm-hole routing. One can

build a worm-hole routed network using the same fast router structures and

protocols as a circuit switched network, but instead of holding the circuit up

until the receiver tears it down with an acknowledge, the connection is torn

up as the tail of the message is routed. This method of routing requires that

separate ACK and FORGET routes have to be re-established, but this price is

relatively small. The reliable delivery and idempotence protocol outlined in

section C.2 can handle blocked ACK and FORGET packets. Also, the data

payload is delivered on the first packet to arrive at the destination, so even if

the ACK and FORGET packets take a while to work their way through the

system, the effective delivery latency is still just the price of a one-way trip.

The recommended network topology for ADAM implementations is a

hybrid topology similar to that suggested in [DeH90]. The topology of an

182

on-chip or local network should be a radix-4 dilation-2 bidelta network as de-

scribed by [DeH93]. For off-chip or longer-distance networks in larger sys-

tems, some bandwidth thinning is required for scalability. The basic router

components designed for the on-chip networks can be re-used to implement

a more scalable fat-tree topology as described in [DeH90] and in [WC01].

The parameters assumed by the year 2010 implementation described in sec-

tion C.2 implies that the off-chip network could run at speeds of 2-4 GHz,

double-edge clocked. Assuming that 92 bits are required to represent one

flit, 46 differential pairs could transmit a full 80-bit word plus ECC, sync

and clock every processor cycle. There will probably be enough pins on a

package in the year 2010 to implement dozens of these high speed links per

chip.

Finally, it is recommended that the implementation use a single frequency

reference and a mesochronous (phase-insensitive) timing scheme for the en-

tire machine. This single reference may have redundancy built into it, or aux-

iliary resonators distributed throughout the machine, to prevent a meltdown

or power grid failure due to inductive kickback as a result of clock failure.

The implementation would require an initial self-calibration phase where re-

ceivers determine the optimal sampling phase, and perhaps even require peri-

odic (on the order of minutes or hours) re-calibrations where the machine is

paused for a microsecond or two to compensate for material property changes

over time and temperature. The principle advantage of using a mesochronous

single frequency source scheme is that one can remove the metastability res-

olution time from the network timing budget, and the secondary advantage is

that it simplifies the implementation of the physical layer, as plesiochronous

implementations require some complexity to handle the case when the inte-

grated frequency error causes a cycle to be lost between nodes. The impact of

metastability resolution and synchronization on the latency of a router node

183

should not be underestimated, especially if the router is operating at near

wave-propagation speeds. In the SGI SPIDER router chip used by the Origin

2000 supercomputers [Gal96], 17.5 ns out of a total 40 ns pin to pin latency

is burned in the synchronizer. The problem with metastability is that there is

nothing one can do about it except wait for the values to settle, and the settling

time is an inverse exponential to the magnitude of the difference between the

initial voltage and the fixed-point metastable voltage. A mesochronous sys-

tem side-steps this issue by calibrating the sample time at clock boundaries

to give the biggest margin versus the metastable voltage.

184

Appendix D

Opcodes

Implementing someone else’s specification is the moral equiv-
alent of translating fifty VCR user’s manuals from English to
Japanese.

—bunnie

D.1 General Notes

RTL descriptions of opcode operations are given in blocking form; i.e., the

following lines of code

PC � PC + 1
qc � PC
PC � PC + offset

stores the value of the initial PC + 1 into qc, and the value of the initial PC

+ 1 + offset into PC.

185

Also, note that if no PC operation is specified, a default operation of PC

� PC + 1 is implied, and that an exception can be thrown as a result of the

PC increment if the PC enters into a protected or invalid code region.

D.2 Lazy Instructions

The following instructions may require multiple cycles to complete execution

and do not stall the program counter (some instructions will require multiple

cycles, but stall the PC until they are complete). The most important thing to

note is that these instructions in fact do not guarantee how long it will take to

complete. Two instructions started in an overlapping manner may complete

out of order. For example, the code

SPAWNC qn, label1, q0
SPAWNC qn, label2, q0

May result with the capability for the label1 thread returned after the ca-

pability for the label2 thread. If the order of the return values matters, it

is recommended that a blocking intermediate queue move operation be em-

ployed:

SPAWNC qn, label1, q0
MOVE q0, q1
SPAWNC qn, label2, q0
MOVE q0, q1

Execution will block each time on the MOVE q0, q1 instruction until q0

has a value.

This behavior of a multicycle instruction is referred to as “lazy”. The follow-

ing instructions are lazy:

SPAWN
SPAWNC
ALLOCATE
ALLOCATEC

186

D.3 Instruction Summary

Integer Arithmetic Instructions:
ADD qa, qb, qc
SUB qa, qb, qc
MUL qa, qb, qc
DIV qa, qb, qc
ADDC qa, n, qc
SUBC qa, n, qc
MULC qa, n, qc
DIVC qa, n, qc

Logical Operator Instructions:
AND qa, qb, qc
OR qa, qb, qc
XOR qa, qb, qc
NOT qa, qc
ANDC qa, n, qc
ORC qa, n, qc
XORC qa, n, qc
SHL qa, qb, qc
SHR qa, qb, qc
SRA qa, qb, qc
SHLC qa, n, qc
SHRC qa, n, qc
SRAC qa, n, qc

Integer Comparison Instructions:
SEQ qa, qb, qc
SNE qa, qb, qc
SLT qa, qb, qc
SGT qa, qb, qc
SLE qa, qb, qc
SGE qa, qb, qc
SIC qa, qc
SEQC qa, n, qc
SNEC qa, n, qc
SLTC qa, n, qc
SGTC qa, n, qc
SLEC qa, n, qc
SGEC qa, n, qc

Floating point to Integer Conversions:
TOINT qa, qc

187

TOREAL qa, qc
Floating Point Arithmetic Instructions:

FADD qa, qb, qc
FSUB qa, qb, qc
FMUL qa, qb, qc
FDIV qa, qb, qc
FADDC qa, n, qc
FSUBC qa, n, qc
FMULC qa, n, qc
FDIVC qa, n, qc

Floating Point Comparison Instructions:
FSEQ qa, qb, qc
FSNE qa, qb, qc
FSLT qa, qb, qc
FSGT qa, qb, qc
FSLE qa, qb, qc
FSGE qa, qb, qc
FSEQC qa, n, qc
FSNEC qa, n, qc
FSLTC qa, n, qc
FSGTC qa, n, qc
FSLEC qa, n, qc
FSGEC qa, n, qc

Branch and Jump Instructions:
BR label
BRL label, qc
BRZ qa, label
BRNZ qa, label
BRNE qa, label
BREL qa
JMP qa

Internal Data Manipulation Instructions:
MOVE qa, qc
MOVECF n, qc
MOVECL n, qc
MOVECI n, qc
MOVECS n, qc
MOVECC n, qc
PACKN qa, qb, qc, n
PACKH qa, qb, qc
PACKL qa, qb, qc
PACKI qa, qb, qc

188

UNPACK qa, qb, qc
UNPACKC qa, n, qc
EXTAG qa, qc
SETTAG qa, qb, qc

Queue Management Instructions:
FLUSHQ qc
SPAWN qa, qb, qc
SPAWNC qa, label, qc
SPAWNL qa, qb, qc
MAPQ qa, qb, qc
MAPQC qa, qb, qc
MAPSQ qa, qb
MAPDROP n
UNMAPQ n
CONSUME qa
SEMPTY qa, qc
EEQ qc

Thread and Context Management Instructions:
PROCID qc
LDCODE qa, qc
OSIZE n

Memory Instructions:
PTRSIZE qa, qc
ALLOCATE qa, qb, qc
ALLOCATEC qa, n, qc
MML qa, qb
MMS qa, qb
EXCH qa, qb, qc
PARCEL qa, qb, qc
MSYNC

Mode and Exception Handling Instructions:
GETSTAT qc
SETSTAT qa
GETEX qc
SETEX qa
THROW

Miscellaneous Instructions:
RANDOM qc
HINT t,hint

189

���

ADD qa, qb, qc

Description:

ADD (addition) takes the sum of qa and qb and returns the result in qc. qa

and qb must be of the same integer type (word, packed int, packed short, or

packed char), in which case the result in qc will have the same type as its

predecessors. Also, qa may be a capability and qb may be a word, in which

case the result will be a capability. If qa or qb have incompatible types, qc

will be tagged as invalid and a type exception raised. If qa is a capability

and the add operation with word in qb is not permitted or results in an invalid

capability, an operation exception is raised and the result in qc is an invalid

capability.

If qa is non-copyable capability, then a successful ADD operation dequeues

qa even if the copy/clobber modifier for qa is set to copy and an exception

is thrown.

The ADD operation is only executed if both qa and qb operands are available

and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == word)

qc � qa + qb

elif(type(qa,qb) == packed int)

qc.a � qa.a + qb.a

qc.b � qa.b + qb.b

elif(type(qa,qb) == (packed char or packed short))

qc.a � qa.a + qb.a

qc.b � qa.b + qb.b

qc.c � qa.c + qb.c

qc.d � qa.d + qb.d

elif((type(qa) == capability) && (type(qb) == word))

temp � qa + SEXT(qb & ADDRMASK)

if(temp is valid)

qc � temp

if(qa == non-copyable)

forceDequeue(qa) // flag error if copy bit is set on qa

else

190

throw operation exception

qc � invalid

else

throw type exception

Exceptions:
Type exception, operation exception, and overflow exception.

Qualifiers:

None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

191

����

ADDC qa, n, qc

Description:
ADDC (addition with constant) takes the sum of qa and n and returns the

result in qc. qa can be of an integer type (word, packed int, packed short,

or packed char), in which case the result in qc will have the same type as its

predecessors. In the case of packed types, the same constant is added to each

sub-integer. Also, qa may be a capability, in which case the result will be a

capability. If qa is a capability and the add operation with word in qb is not

permitted or results in an invalid capability, an operation exception is raised

and the result in qc is an invalid capability.

If qa is non-copyable capability, then a successful ADDC operation dequeues

qa even if the copy/clobber modifier for qa is set to copy and an exception

is thrown.

The ADDC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

qc � qa + SEXT(n)

elif(type(qa) == packed int)
qc.a � qa.a + n

qc.b � qa.b + n

elif(type(qa) == (packed char or packed short))
qc.a � qa.a + n

qc.b � qa.b + n
qc.c � qa.c + n

qc.d � qa.d + n

elif(type(qa) == capability)

temp � qa + SEXT(n & ADDRMASK)

if(temp is valid)

qc � temp

if(qa == non-copyable)

forceDequeue(qa) // flag error if copy bit is set on qa

else
throw operation exception

qc � invalid

else
throw type exception

192

Exceptions:

Type exception, operation exception, and overflow exception.

Qualifiers:

None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

193

���

SUB qa, qb, qc

Description:
SUB (subtraction) takes the difference of qa and qb and returns the result in

qc. qa and qb must be of the same integer type (word, packed int, packed

short, or packed char), in which case the result in qc will have the same type

as its predecessors. Also, qa may be a capability and qb may be a word,

in which case the result will be a capability. If qa or qb have incompatible

types, qc will be tagged as invalid and a type exception raised. If qa is a

capability and the add operation with word in qb is not permitted or results

in an invalid capability, an operation exception is raised and the result in qc

is an invalid capability.

If qa is non-copyable capability, then a successful SUB operation dequeues

qa even if the copy/clobber modifier for qa is set to copy, and an exception

is thrown.

The SUB operation is only executed if both qa and qb operands are available

and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == word)

qc � qa - qb

elif(type(qa,qb) == packed int)

qc.a � qa.a - qb.a

qc.b � qa.b - qb.b

elif(type(qa,qb) == (packed char or packed short))

qc.a � qa.a - qb.a

qc.b � qa.b - qb.b

qc.c � qa.c - qb.c

qc.d � qa.d - qb.d

elif((type(qa) == capability) && (type(qb) == word))

temp � qa - SEXT(qb & ADDRMASK)

if(temp is valid)

qc � temp

if(qa == non-copyable)

forceDequeue(qa)

else

194

throw operation exception

qc � invalid

else

throw type exception

Exceptions:
Type exception, operation exception, and overflow exception.

Qualifiers:

None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

195

����

SUBC qa, n, qc

Description:
SUBC (subtraction with constant) takes the difference of qa and n and returns

the result in qc. qa can be of an integer type (word, packed int, packed short,

or packed char), in which case the result in qc will have the same type as

its predecessors. In the case of packed types, the same constant is subtracted

from each sub-integer. Also, qa may be a capability, in which case the result

will be a capability. If qa is a capability and the add operation with word in

qb is not permitted or results in an invalid capability, an operation exception

is raised and the result in qc is an invalid capability.

If qa is non-copyable capability, then a successful SUBC operation dequeues

qa even if the copy/clobber modifier for qa is set to copy and an exception

is thrown.

The SUBC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

qc � qa - SEXT(n)

elif(type(qa) == packed int)
qc.a � qa.a - n

qc.b � qa.b - n

elif(type(qa) == (packed char or packed short))
qc.a � qa.a - n

qc.b � qa.b - n
qc.c � qa.c - n

qc.d � qa.d - n

elif(type(qa) == capability)

temp � qa - SEXT(n & ADDRMASK)

if(temp is valid)

qc � temp

if(qa == non-copyable)

forceDequeue(qa) // flag error if copy bit is set on qa

else
throw operation exception

qc � invalid

else
throw type exception

196

Exceptions:

Type exception, operation exception, and overflow exception.

Qualifiers:

None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

197

���

MUL qa, qb, qc

Description:
MUL (multiplication) takes the product of qa and qb and returns the lowest

bits of the result in qc. qa and qb must be of the same integer type (word,

packed int, packed short, or packed char), in which case the result in qc will

have the same type as its predecessors. If qa or qb have incompatible types,

qc will be tagged as invalid and a type exception raised.

The MUL operation is only executed if both qa and qb operands are available

and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == word)

qc � (qa * qb) & 0xFFFFFFFFFFFFFFFF

elif(type(qa,qb) == packed int)

qc.a � (qa.a * qb.a) & 0xFFFFFFFF

qc.b � (qa.b * qb.b) & 0xFFFFFFFF

elif(type(qa,qb) == (packed char or packed short))

qc.a � (qa.a * qb.a) & 0xFFFF

qc.b � (qa.b * qb.b) & 0xFFFF

qc.c � (qa.c * qb.c) & 0xFFFF

qc.d � (qa.d * qb.d) & 0xFFFF

else

throw type exception

Exceptions:
Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit in qc’s type field.

198

����

MULC qa, n, qc

Description:
MULC (multiplication with constant) takes the product of qa and n and returns

the lowest bits of the result in qc. qa can be of an integer type (word, packed

int, packed short, or packed char), in which case the result in qc will have the

same type as its predecessors. In the case of packed types, the same constant

is multiplied to each sub-integer.

The MULC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == word)

qc � (qa * n) & 0xFFFFFFFFFFFFFFFF

elif(type(qa) == packed int)

qc.a � (qa.a * n) & 0xFFFFFFFF

qc.b � (qa.b * n) & 0xFFFFFFFF

elif(type(qa) == (packed char or packed short))

qc.a � (qa.a * n) & 0xFFFF

qc.b � (qa.b * n) & 0xFFFF

qc.c � (qa.c * n) & 0xFFFF

qc.d � (qa.d * n) & 0xFFFF

else

throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:
None.

Notes:

Overflowed results also set the respective overflow bit in qc’s type field.

199

�	

DIV qa, qb, qc

Description:
DIV (integer divide) takes the division of qa and qb and returns the result

in qc. Non-integer results are truncated. qa and qb must be of the same

integer type (word, packed int, packed short, or packed char), in which case

the result in qc will have the same type as its predecessors. If qa or qb

have incompatible types, qc will be tagged as invalid and a type exception

raised. If the divisor qb is zero, a divide by zero exception is thrown and

qc is marked as invalid, with the specific packed component of qc that is

erroneous marked as overflowed.

The DIV operation is only executed if both qa and qb operands are available

and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == word)

if(qb == 0)

throw divide-by-zero exception

type(qc) � invalid, overflow.a

else

qc � qa / qb

elif(type(qa,qb) == packed int)

if(qb.a == 0)

throw divide-by-zero exception

type(qc.a) � invalid, overflow.a

else

qc.a � qa.a / qb.a

if(qb.b == 0)

throw divide-by-zero exception

type(qc.b) � invalid, overflow.b

else

qc.b � qa.b / qb.b

elif(type(qa,qb) == (packed char or packed short))

if(qb.a == 0)

throw divide-by-zero exception

type(qc.a) � invalid, overflow.a

else

qc.a � qa.a / qb.a

if(qb.b == 0)

200

throw divide-by-zero exception

type(qc.b) � invalid, overflow.b

else

qc.b � qa.b / qb.b

if(qb.c == 0)

throw divide-by-zero exception

type(qc.c) � invalid, overflow.c

else

qc.c � qa.c / qb.c

if(qb.d == 0)

throw divide-by-zero exception

type(qc.d) � invalid, overflow.d

else

qc.d � qa.d / qb.d

else

throw type exception

Exceptions:
Type exception, and divide-by-zero exception.

Qualifiers:

None.

Notes:

None.

201

�	
�

DIVC qa, n, qc

Description:
DIVC (division with constant) takes the division of qa and n and returns the

result in qc. qa can be of an integer type (word, packed int, packed short,

or packed char), in which case the result in qc will have the same type as its

predecessors. In the case of packed types, the same constant is multiplied to

each sub-integer. If the divisor n is zero, a divide by zero exception is thrown

and qc is marked as invalid, with the specific packed component of qc that

is erroneous marked as overflowed.

The DIVC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

if(n == 0)

throw divide-by-zero exception

type(qc) � invalid, overflow.a

else

qc � qa / SEXT(n)

elif(type(qa) == packed int)

if(n == 0)

throw divide-by-zero exception

type(qc.a) � invalid, overflow.a

type(qc.b) � invalid, overflow.b

else

qc.a � qa.a / n

qc.b � qa.b / n

elif(type(qa) == (packed char or packed short))

if(n == 0)

throw divide-by-zero exception

type(qc.a) � invalid, overflow.a

type(qc.b) � invalid, overflow.b

type(qc.c) � invalid, overflow.c

type(qc.d) � invalid, overflow.d

else

qc.a � qa.a / n

qc.b � qa.b / n

qc.c � qa.c / n

202

qc.d � qa.d / n

else

throw type exception

Exceptions:
Type exception, divide-by-zero exception and overflow exception.

Qualifiers:

None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

203

����
���
�

AND,OR,XOR qa, qb, qc

Description:
AND, OR, and XOR perform bitwise operations on qa and qb and returns the

result in qc. qa and qb must be of the same integer type (word, packed int,

packed short, or packed char), in which case the result in qc will have the

same type as its predecessors. If qa or qb have incompatible types, qc will

be tagged as invalid and a type exception raised.

The AND,OR,XOR operation is only executed if both qa and qb operands

are available and there is no backpressure on qc. Otherwise, the instruction

stalls.

Operation:

OP is one of bitwise AND, OR, XOR

if(type(qa,qb) == word)

qc � qa OP qb

elif(type(qa,qb) == packed int)

qc.a � qa.a OP qb.a

qc.b � qa.b OP qb.b

elif(type(qa,qb) == (packed char or packed short))

qc.a � qa.a OP qb.a

qc.b � qa.b OP qb.b

qc.c � qa.c OP qb.c

qc.d � qa.d OP qb.d

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

204

�
�

NOT qa, qc

Description:
NOT performs a bitwise inversion on qa and returns the result in qc. qa

must be of an integer type (word, packed int, packed short, or packed char), in

which case the result in qc will have the same type as its predecessors. If qa

has an incompatible type, qc will be tagged as invalid and a type exception

raised.

The NOT operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)
qc � �qa

elif(type(qa) == packed int)
qc.a � �qa.a

qc.b � �qa.b

elif(type(qa,qb) == (packed char or packed short))
qc.a � �a.a

qc.b � �qa.b
qc.c � �qa.c

qc.d � �qa.d

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

205

�����
����
��

ANDC,ORC,XORC qa, n, qc

Description:
ANDC, ORC, and XORC perform a bitwise operation on qa and a sign-extended

n and returns the result in qc. qa can be of an integer type (word, packed

int, packed short, or packed char), in which case the result in qc will have the

same type as its predecessors. In the case of packed types, the same constant

is operated on each sub-integer.

The ANDC,ORC,XORC operation is only executed if qa is available and there

is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

OP is one of bitwise AND, OR, XOR

if(type(qa) == word)

qc � qa OP SEXT(n)

elif(type(qa) == packed int)

qc.a � qa.a OP n

qc.b � qa.b OP n

elif(type(qa) == (packed char or packed short))

qc.a � qa.a OP n

qc.b � qa.b OP n

qc.c � qa.c OP n

qc.d � qa.d OP n

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

206

���

SHL qa, qb, qc

Description:
SHL (shift-left) performs a logical left-shift on the contents of qa by the

number of digits specified in qb, and returns the result in qc. Bits shifted off

the left are thrown away, and zeroes are shifted in from the right. qa and qb

must be of the same integer type (word, packed int, packed short, or packed

char), in which case the result in qcwill have the same type as its predecessor.

If qa or qb have incompatible types, qc will be tagged as invalid and a type

exception raised.

The SHL operation is only executed if both qa and qb operands are available

and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == word)

qc � qa � (qb & 0x3F)

elif(type(qa,qb) == packed int)

qc.a � qa.a � (qb.a & 0x1F)

qc.b � qa.b � (qb.b & 0x1F)

elif(type(qa,qb) == (packed char or packed short))

qc.a � qa.a � (qb.a & 0xF)

qc.b � qa.b � (qb.b & 0xF)

qc.c � qa.c � (qb.c & 0xF)

qc.d � qa.d � (qb.d & 0xF)

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

207

����

SHLC qa, n, qc

Description:
SHLC (shift left by constant) performs a logical left-shift on the contents of

qa by the number of digits specified in n, and returns the result in qc. Bits

shifted off the left are thrown away, and zeroes are shifted in from the right.

qa must be of an integer type (word, packed int, packed short, or packed

char), in which case the result in qcwill have the same type as its predecessor.

In the case that qa is a packed type, each subword will be shifted left by the

same amount. If qa has an incompatible type, qc will be tagged as invalid

and a type exception raised.

The SHLC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == word)

qc � qa � (n & 0x3F)

elif(type(qa) == packed int)

qc.a � qa.a � (n & 0x1F)

qc.b � qa.b � (n & 0x1F)

elif(type(qa) == (packed char or packed short))

qc.a � qa.a � (n & 0xF)

qc.b � qa.b � (n & 0xF)

qc.c � qa.c � (n & 0xF)

qc.d � qa.d � (n & 0xF)

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:

None.

208

���

SHR qa, qb, qc

Description:
SHR (logical shift right)performs a logical right-shift on the contents of qa

by the number of digits specified in qb, and returns the result in qc. Bits

shifted off the right are thrown away, and zeroes are shifted in from the left.

qa and qb must be of the same integer type (word, packed int, packed short,

or packed char), in which case the result in qc will have the same type as

its predecessor. If qa or qb have incompatible types, qc will be tagged as

invalid and a type exception raised.

The SHR operation is only executed if both qa and qb operands are available

and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == word)

qc � qa � (qb & 0x3F)

elif(type(qa,qb) == packed int)

qc.a � qa.a � (qb.a & 0x1F)

qc.b � qa.b � (qb.b & 0x1F)

elif(type(qa,qb) == (packed char or packed short))

qc.a � qa.a � (qb.a & 0xF)

qc.b � qa.b � (qb.b & 0xF)

qc.c � qa.c � (qb.c & 0xF)

qc.d � qa.d � (qb.d & 0xF)

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

209

����

SHRC qa, n, qc

Description:
SHRC (logical shift right by constant) performs a logical right-shift on the

contents of qa by the number of digits specified in n, and returns the result

in qc. Bits shifted off the right are thrown away, and zeroes are shifted in

from the left. qa must be of an integer type (word, packed int, packed short,

or packed char), in which case the result in qc will have the same type as

its predecessor. In the case that qa is a packed type, each subword will be

shifted left by the same amount. If qa has an incompatible type, qc will be

tagged as invalid and a type exception raised.

The SHRC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == word)

qc � qa � (n & 0x3F)

elif(type(qa) == packed int)

qc.a � qa.a � (n & 0x1F)

qc.b � qa.b � (n & 0x1F)

elif(type(qa) == (packed char or packed short))

qc.a � qa.a � (n & 0xF)

qc.b � qa.b � (n & 0xF)

qc.c � qa.c � (n & 0xF)

qc.d � qa.d � (n & 0xF)

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:

None.

210

���

SRA qa, qb, qc

Description:
SRA (arithmetic shift right) performs an arithmetic (sign-preserving) right-

shift on the contents of qa by the number of digits specified in qb, and returns

the result in qc. Bits shifted off the right are thrown away, and the value of the

sign bit is shifted in from the left (zero if the number being shifted is positive,

one if the number being shifted is negative). qa and qb must be of the same

integer type (word, packed int, packed short, or packed char), in which case

the result in qc will have the same type as its predecessor. If qa or qb have

incompatible types, qc will be tagged as invalid and a type exception raised.

The SRA operation is only executed if both qa and qb operands are available

and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == word)

qc � qa SRA (qb & 0x3F)

elif(type(qa,qb) == packed int)

qc.a � qa.a SRA (qb.a & 0x1F)

qc.b � qa.b SRA (qb.b & 0x1F)

elif(type(qa,qb) == (packed char or packed short))

qc.a � qa.a SRA (qb.a & 0xF)

qc.b � qa.b SRA (qb.b & 0xF)

qc.c � qa.c SRA (qb.c & 0xF)

qc.d � qa.d SRA (qb.d & 0xF)

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

211

����

SRAC qa, n, qc

Description:
SRAC (arithmetic shift right by constant) performs an arithmetic right-shift

on the contents of qa by the number of digits specified in n, and returns the

result in qc. Bits shifted off the right are thrown away, and the value of the

sign bit is shifted in from the left (zero if the number being shifted is positive,

one if the number being shifted is negative). qa must be of an integer type

(word, packed int, packed short, or packed char), in which case the result in

qc will have the same type as its predecessor. In the case that qa is a packed

type, each subword will be shifted left by the same amount. If qa has an

incompatible type, qc will be tagged as invalid and a type exception raised.

The SRAC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

qc � qa SRA (n & 0x3F)

elif(type(qa) == packed int)

qc.a � qa.a SRA (n & 0x1F)

qc.b � qa.b SRA (n & 0x1F)

elif(type(qa) == (packed char or packed short))

qc.a � qa.a SRA (n & 0xF)

qc.b � qa.b SRA (n & 0xF)

qc.c � qa.c SRA (n & 0xF)

qc.d � qa.d SRA (n & 0xF)

else

throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:
None.

212

�����������

SEQ,SLT,SLE qa, qb, qc

Description:
SEQ, SLT, and SLE perform magnitude comparisons on its arguments and

produce a binary result. SEQ test if qa and qb are equal; SLT tests if qa is

less than qb; and SLE tests if qa is less than or equal to qb˙qa and qb must

be of the same integer type (word, packed int, packed short, or packed char),

in which case the result in qc will have the same type as its predecessor. If

qa or qb have incompatible types, qc will be tagged as invalid and a type

exception raised.

The Sxx operation is only executed if both qa and qb operands are available

and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:
OP is one of arithmetic �, �, �:

if(type(qa,qb) == word)

qc � qa OP qb ? 1 : 0

elif(type(qa,qb) == packed int)

qc.a � qa.a OP qb.a ? 1 : 0

qc.b � qa.b OP qb.b ? 1 : 0

elif(type(qa,qb) == (packed char or packed short))

qc.a � qa.a OP qb.a ? 1 : 0

qc.b � qa.b OP qb.b ? 1 : 0

qc.c � qa.c OP qb.c ? 1 : 0

qc.d � qa.d OP qb.d ? 1 : 0

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

213

�	�

SIC qa, qc

Description:
SIC tests if qa is a capability. If it is, a word type 1 is put into qc. Otherwise,

a word type 0 is put into qc.

The SIC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == capability)

qc � 1

else

qc � 0

Exceptions:

None.

Qualifiers:
None.

Notes:
None.

214

��������������

SEQC,SLTC,SLEC qa, qb, qc

Description:
SEQC, SLTC, and SLEC perform magnitude comparisons on its arguments

and produce a binary result. SEQC test if qa and n are equal; SLTC tests if

qa is less than n; and SLEC tests if qa is less than or equal to n. qa must be

of an integer type (word, packed int, packed short, or packed char), in which

case the result in qc will have the same type as its predecessor. If qa has an

incompatible type, qc will be tagged as invalid and a type exception raised.

The SxxC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

OP is one of arithmetic �, �, �:

if(type(qa,qb) == word)

qc � qa OP n ? 1 : 0

elif(type(qa,qb) == packed int)

qc.a � qa.a OP n ? 1 : 0

qc.b � qa.b OP n ? 1 : 0

elif(type(qa,qb) == (packed char or packed short))

qc.a � qa.a OP n ? 1 : 0

qc.b � qa.b OP n ? 1 : 0

qc.c � qa.c OP n ? 1 : 0

qc.d � qa.d OP n ? 1 : 0

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

215

�
	��

TOINT qa, qc

Description:
TOINT (floating point to integer convert) converts the floating-point value in

qa to an integer stored in qc. Conversion is done using the truncation or

“round to zero” method, so that the number 9.6 is converted to 9, and the

number -2.8 is converted to -2. Overflow in either sign extreme results in qc

having the maximum sized integer of the appropriate sign and the overflow

bit being set in qc’s type field. qa must be of the floating point type, and

the result in qc is of type word. If qa has an incompatible type, qc will be

tagged as invalid and a type exception raised.

The TOINT operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == floating-point)

qc � (word) qa

type(qc) � word

else

throw type exception

Exceptions:
Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit in qc’s type field. At-

tempting to convert +
will result in the largest positive representable integer

in qc and set the overflow bit of qc. Likewise, converting -
 will result in

the most negative representable integer in qc and set the overflow bit of qc.

Attempting to convert NaN’s will result in qc having an invalid type.

216

�
����

TOREAL qa, qc

Description:
TOREAL (integer to floating point convert) converts the integer value in qa

to the nearest representable floating-point value stored in qc. qa must be of

the word type, and the result in qc is of the floating point type. If qa has an

incompatible type, qc will be tagged as invalid and a type exception raised.

The TOREAL operation is only executed if qa is available and there is no

backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == word)

qc � (floating-point) qa

type(qc) � floating-point

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:
None.

217

����

FADD qa, qb, qc

Description:
FADD (floating-point addition) takes the sum of qa and qb and returns the

result in qc. qa and qb must be of the floating-point type, and the result qc

is of the floating point type.

The FADD operation is only executed if both qa and qb operands are avail-

able and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == floating-point)

qc � qa + qb

else

throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

If any operand is a NaN, the result will be NaN.

218

�����

FADDC qa, n, qc

Description:
FADDC (floating-point addition with constant) takes the sum of qa and n and

returns the result in qc. qa must be of the floating-point type, and the result

qc is of the floating point type.

The FADDC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == floating-point)

qc � qa + n

else

throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:
None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

If qa is a NaN, the result will be NaN.

219

����

FSUB qa, qb, qc

Description:
FSUB (floating-point subtraction) takes the difference of qa and qb and re-

turns the result in qc. qa and qb must be of the floating-point type, and the

result qc is of the floating point type.

The FSUB operation is only executed if both qa and qb operands are avail-

able and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == floating-point)

qc � qa - qb

else

throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

If any operand is a NaN, the result will be NaN.

220

�����

FSUBC qa, n, qc

Description:
FSUBC (floating-point addition with constant) takes the difference of qa and

n and returns the result in qc. qa must be of the floating-point type, and the

result qc is of the floating point type.

The FSUBC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == floating-point)
qc � qa - n

else

throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

If qa is a NaN, the result will be NaN.

221

����

FMUL qa, qb, qc

Description:
FMUL (floating-point multiply) takes the product of qa and qb and returns

the result in qc. qa and qb must be of the floating-point type, and the result

qc is of the floating point type.

The FMUL operation is only executed if both qa and qb operands are avail-

able and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa,qb) == floating-point)

qc � qa * qb

else

throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

If any operand is a NaN, the result will be NaN.

222

�����

FMULC qa, n, qc

Description:
FMULC (floating-point multiply with constant) takes the product of qa and n

and returns the result in qc. qa must be of the floating-point type, and the

result qc is of the floating point type.

The FMULC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == floating-point)

qc � qa + n

else

throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:
None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

If qa is a NaN, the result will be NaN.

223

��	

FDIV qa, qb, qc

Description:
FDIV (floating-point division) divides qa by qb and returns the quotient in

qc. qa and qb must be of the floating-point type, and the result qc is of the

floating point type. If qb is zero, a divide-by-zero exception is thrown and

the result qc is tagged as invalid.

The FDIV operation is only executed if both qa and qb operands are avail-

able and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == floating-point)

qc � qa / qb

else

throw type exception

Exceptions:
Type exception, overflow exception, and divide-by-zero exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit in qc’s type field.

If any operand is a NaN, the result will be NaN.

224

��	
�

FDIVC qa, n, qc

Description:
FDIVC (floating-point divide by constant) divides qa by n and returns the

result in qc. qa must be of the floating-point type, and the result qc is of the

floating point type. If n is zero, a divide-by-zero exception is thrown and the

result qc is tagged as invalid.

The FDIVC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == floating-point)

qc � qa / n

else

throw type exception

Exceptions:

Type exception, overflow exception, and divide-by-zero exception.

Qualifiers:
None.

Notes:
Overflowed results also set the respective overflow bit in qc’s type field.

If qa is a NaN, the result will be NaN.

225

��������������

FSEQ,FSLT,FSLE qa, qb, qc

Description:
FSEQ, FSLT, and FSLE perform magnitude comparisons on its arguments

and produce a binary integer result. FSEQ test if qa and qb are equal; FSLT

tests if qa is less than qb; and FSLE tests if qa is less than or equal to qb˙qa

and qb must be of the floating-point type. The result qc is of type word. If

qa or qb have incompatible types, qc will be tagged as invalid and a type

exception raised.

The FSxx operation is only executed if both qa and qb operands are avail-

able and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

OP is one of arithmetic �, �, �:

if(type(qa,qb) == floating-point)

qc � qa OP qb ? 1 : 0

type(qc) � word

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

If any of the operands are NaNs, the result is tagged as invalid.

226

�����������������

FSEQC,FSLTC,FSLEC qa, qb, qc

Description:
FSEQC, FSLTC, and FSLEC perform magnitude comparisons on its argu-

ments and produce a binary result. FSEQC test if qa and n are equal; FSLTC

tests if qa is less than n; and FSLEC tests if qa is less than or equal to n. qa

must be of the floating-point type, and the result in qc is of type word. If qa

has an incompatible type, qc will be tagged as invalid and a type exception

raised.

The FSxxC operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

OP is one of arithmetic �, �, �:

if(type(qa,qb) == floating-point)

qc � qa OP n ? 1 : 0

type(qc) � word

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

If qa is a NaN, the result is tagged as invalid.

227

��

BR offset

Description:

BR (unconditional branch) adds the number specified in the offset field to

the incremented program counter. Execution immediately begins at the new

PC value; there are no branch delay slots.

Operation:
PC � PC + 1

PC � PC + offset

Exceptions:
If the destination of the PC is in a protected or invalid page, an exception is

thrown.

Qualifiers:
None.

Notes:
None.

228

���

BRL offset, qc

Description:
BRL (unconditional branch with link) adds the number specified in the off-

set field to the incremented program counter. Execution immediately be-

gins at the new PC value; there are no branch delay slots. The incremented

program counter offset relative to the start of code (be it method, object, or

absolute-referenced) is stored in qc as a word data type; execution stalls if

qc is full and applying backpressure.

The BRL operation is only executed if there is no backpressure on qc. Oth-

erwise, the instruction stalls.

Operation:
PC � PC + 1

qc � PC

PC � PC + offset

Exceptions:

If the destination of the PC is in a protected or invalid page, an exception is

thrown.

Qualifiers:
None.

Notes:
None.

229

���

BRZ qa, offset, hint

Description:
BRZ (branch if zero) adds the number specified in the offset field to the

incremented program counter if the value in qa is zero; otherwise, the pro-

gram counter is just incremented to the next instruction. qa must be of the

word type. Execution immediately begins at the new PC value; there are no

branch delay slots.

The BRZ operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

if(qa == 0)

PC � PC + 1 + offset

else

PC � PC + 1

Exceptions:
If the destination of the PC is in a protected or invalid page, an exception is

thrown. A type exception is thrown if the type of qa is not word.

Qualifiers:
None.

Notes:
The hint field is an implementation-specific 8-bit number that serves as a

branch prediction hint. The semantics of hint are such that an incorrect

branch hint still leads to correct but slower execution. The actual value of

hint is allowed to have cache-incoherent mutation during run-time as the

dynamic hardware branch-predictor sees fit.

230

����

BRNZ qa, offset, hint

Description:
BRNZ (branch if not zero) adds the number specified in the offset field to

the incremented program counter if the value in qa is not zero; otherwise, the

program counter is just incremented to the next instruction. qa must be of

the word type. Execution immediately begins at the new PC value; there are

no branch delay slots.

The BRNZ operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

if(qa != 0)

PC � PC + 1 + offset

else

PC � PC + 1

Exceptions:
If the destination of the PC is in a protected or invalid page, an exception is

thrown. A type exception is thrown if the type of qa is not word.

Qualifiers:
None.

Notes:
The hint field is an implementation-specific 8-bit number that serves as a

branch prediction hint. The semantics of hint are such that an incorrect

branch hint still leads to correct but slower execution. The actual value of

hint is allowed to have cache-incoherent mutation during run-time as the

dynamic hardware branch-predictor sees fit.

231

����

BRNE qa, offset

Description:
BRNE (branch if not empty) adds the number specified in the offset field to

the incremented program counter if qa is not empty; otherwise, the program

counter is just incremented to the next instruction. The data in qa is not

affected by this instruction. Execution immediately begins at the new PC

value; there are no branch delay slots.

Operation:

if(qa != empty)

PC � PC + 1 + offset

else

PC � PC + 1

Exceptions:

If the destination of the PC is in a protected or invalid page, an exception is

thrown.

Qualifiers:

The qualifier is ignored by this instruction; qa is never dequeued.

Notes:
None.

232

����

BREL qa

Description:

BREL (unconditional relative branch) adds the number in qa to the incre-

mented program counter. qa must be of the word type. Execution immedi-

ately begins at the new PC value; there are no branch delay slots.

The BREL operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

PC � PC + 1 + qa

Exceptions:
If the destination of the PC is in a protected or invalid page, an exception is

thrown. A type exception is thrown if the type of qa is not word.

Qualifiers:
None.

Notes:
None.

233

���

JMP qa, hint

Description:
JMP (unconditional jump) sets the value in PC to the value in qa. Execution

immediately begins at the new PC value; there are no branch delay slots. qa

must be of type word.

The JMP operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

PC � qa

Exceptions:

If the destination of the PC is in a protected or invalid page, an exception is

thrown.

Qualifiers:
None.

Notes:
The hint field is an implementation-specific 48-bit number that serves as

a jump prediction destination hint. The semantics of hint are such that an

incorrect jump hint still leads to correct but slower execution. The actual

value of hint is allowed to have cache-incoherent mutation during run-time

as the dynamic hardware jump-predictor sees fit.

234

�

�

MOVE qa, qc

Description:
MOVE (move) takes the value in qa and puts it into qc. The exact state of the

queues after the MOVE instruction depends on the @ (copy/clobber) modifiers

applied to the queue specifiers.

The MOVE operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:

qc � qa

Exceptions:

An operation exception is thrown if a copy operator is applied to data in qa

that is tagged non-copyable. The result in qc is tagged as invalid, and the

original value remains untouched in qa.

Qualifiers:
None.

Notes:

Exact semantics vary according to the use of the @ modifier.

235

�

���

MOVECF n, qc

Description:
MOVECF (move floating point constant) takes the 32-bit floating-point con-

stant specified in n, converts it to the nearest ADAM 64-bit floating point

number, and puts the properly typed result into qc. The exact state of qc

after the MOVECF instruction depends on the @ (copy/clobber) modifier ap-

plied to the queue specifier.

The MOVECF operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:
qc � (floating-point) n

type(qc) � floating-point

Exceptions:

None.

Qualifiers:
None.

Notes:
Because of the conversion from a 32-bit opcode-stored representation to a 64-

bit standard ADAM floating point representation, the result in qcmay exhibit

some small roundoff error when compared to the desired constant.

Exact semantics vary according to the use of the @ modifier.

236

�

���

MOVECL n, qc

Description:
MOVECL (move long integer constant) takes the 32-bit constant specified in n,

sign-extends it to an ADAM native 64-bit word, and puts the properly typed

result into qc. The exact state of qc after the MOVECL instruction depends

on the @ (copy/clobber) modifier applied to the queue specifier.

The MOVECL operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:

qc � SEXT(n)

type(qc) � word

Exceptions:
None.

Qualifiers:

None.

Notes:
Exact semantics vary according to the use of the @ modifier.

237

�

��	

MOVECI n, qc

Description:
MOVECI (move packed integer constant) takes the 32-bit constant specified

in n, places it in the lower bits of a packed integer, sets the upper bits of the

packed integer to zero, and puts the properly typed result into qc. The exact

state of qc after the MOVECI instruction depends on the @ (copy/clobber)

modifier applied to the queue specifier.

The MOVECI operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:
qc.a � 0

qc.b � n

type(qc) � packed integer

Exceptions:

None.

Qualifiers:
None.

Notes:

Exact semantics vary according to the use of the @ modifier.

238

�

���

MOVECS n, qc

Description:
MOVECS (move packed short constant) takes the dual 16-bit packed short

constant specified in n, places it in the lower bits of a packed short, sets the

upper bits of the packed short to zero, and puts the properly typed result into

qc. The exact state of qc after the MOVECS instruction depends on the @

(copy/clobber) modifier applied to the queue specifier.

The MOVECS operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:
qc.a � 0

qc.b � 0

qc.c � n[31:16]

qc.d � n[15:0]

type(qc) � packed short

Exceptions:

None.

Qualifiers:
None.

Notes:
Exact semantics vary according to the use of the @ modifier.

239

�

���

MOVECC n, qc

Description:
MOVECC (move packed unicode character constant) takes the dual 16-bit

packed unicode character constant specified in n, places it in the lower bits of

a packed char, sets the upper bits of the packed char to zero, and puts the prop-

erly typed result into qc. The exact state of qc after the MOVECC instruction

depends on the @ (copy/clobber) modifier applied to the queue specifier.

The MOVECC operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:
qc.a � 0

qc.b � 0

qc.c � n[31:16]

qc.d � n[15:0]

type(qc) � packed character

Exceptions:

None.

Qualifiers:
None.

Notes:
Exact semantics vary according to the use of the @ modifier.

240

�����

PACKN qa, qb, qc, n

Description:

PACKN (Pack Anything) takes the data in qa and inserts it at a position spec-

ified by n into the data from qb, and places the result into qc. qa must be of

type word, and qb must be of a packed integer type. The result in qc has the

same type as qb.

The PACKN operation is only executed if both qa and qb operands are avail-

able and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

if(type(qb) == packed int)

if(n == 0)

qc.a � qa & 0xFFFFFFFF

qc.b � qb.b

else
qc.a � qb.a

qc.b � qa & 0xFFFFFFFF

elif(type(qb) == packed short or packed char)

if(n == 0)

qc.a � qa & 0xFFFF

qc.b � qb.b

qc.c � qb.c

qc.d � qb.d

elif(n == 1)

qc.a � qb.a

qc.b � qa & 0xFFFF

qc.c � qb.c

qc.d � qb.d

elif(n == 2)

qc.a � qb.a

qc.b � qb.b

qc.c � qa & 0xFFFF

qc.d � qb.d

else
qc.a � qb.a

qc.b � qb.b

qc.c � qb.c

qc.d � qa & 0xFFFF

else
throw type exception

else
throw type exception

241

Exceptions:

Type exception.

Qualifiers:

None.

Notes:
None.

242

�����

PACKH qa, qb, qc

Description:
PACKH (Pack High Half of Packed Short or Char) takes packed integer data

in qa, masks the data and inserts it into the high half of qb, and places the

result into qc. qb must be of type packed short or packed char. The result in

qc has the same type as qb.

The PACKH operation is only executed if both qa and qb operands are avail-

able and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == packed int && type(qb) == packed short or packed char)

qc.a � qa.a & 0xFFFF

qc.b � qa.b & 0xFFFF

qc.c � qb.c

qc.d � qb.d

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

243

�����

PACKL qa, qb, qc

Description:
PACKL (Pack Low Half of Packed Short or Char) takes packed integer data

in qa, masks the data and inserts it into the low half of qb, and places the

result into qc. qb must be of type packed short or packed char. The result in

qc has the same type as qb.

The PACKL operation is only executed if both qa and qb operands are avail-

able and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == packed int && type(qb) == packed short or packed char)

qc.a � qb.a

qc.b � qb.b

qc.c � qa.a & 0xFFFF

qc.d � qa.b & 0xFFFF

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

244

����	

PACKI qa, qb, qc

Description:
PACKI (Pack to Packed Integer) takes word data in qa and qb, masks the

data and packs it into a packed integer stored in qc.

The PACKI operation is only executed if both qa and qb operands are avail-

able and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa,qb) == word)

qc.a � qa & 0xFFFFFFFF

qc.b � qb & 0xFFFFFFFF

type(qc) � packed integer

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

245

������

UNPACK qa, qb, qc

Description:
UNPACK (Unpack) takes a packed integer type qa and extracts and sign-

extends the data at location qb into qc. The result qc is of type word.

The UNPACK operation is only executed if both qa and qb operands are

available and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qb) == word)

if(type(qa) == packed int)

if(qb == 0)

qc � SEXT(qa.a)

else

qc � SEXT(qa.b)

elif(type(qa) == packed short or packed char)

if(qb == 0)

qc � SEXT(qa.a)

elif(qb == 1)

qc � SEXT(qa.b)

elif(qb == 2)

qc � SEXT(qa.c)

else

qc � SEXT(qa.d)

else

throw type exception

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:

None.

246

�������

UNPACKC qa, n, qc

Description:
UNPACKC (Unpack with constant) takes a packed integer type qa and extracts

and sign-extends the data at location n into qc. The result qc is of type word.

The UNPACKC operation is only executed if qa is available and there is no

backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == packed int)

if(n == 0)

qc � SEXT(qa.a)

else

qc � SEXT(qa.b)

elif(type(qa) == packed short or packed char)

if(n == 0)

qc � SEXT(qa.a)

elif(n == 1)

qc � SEXT(qa.b)

elif(n == 2)

qc � SEXT(qa.c)

else

qc � SEXT(qa.d)

else

throw type exception

Exceptions:
Type exception.

Qualifiers:

None.

Notes:

None.

247

������

FLUSHQ qc

Description:

FLUSHQ (Flush Queue) is a special-format instruction, where qc is inter-

preted as an immediate constant. FLUSHQ discards all values currently in

the queue specified by the immediate constant qc. The function of FLUSHQ

upon a queue which has mappings to other contexts, be it head or tail map-

pings, is UNPREDICTABLE. If qc is already empty, nothing happens and

execution continues.

Operation:

qc � empty

Exceptions:
Throws a mapping exception if qc has any mappings.

Qualifiers:
None.

Notes:

None.

248

��
�	�

PROCID qc

Description:
PROCID (Get Process ID) places the value of the current context ID into qc.

qc is a capability with the owner bit set. In addition, the read and write bits

are set. If the context ID is to be passed to another thread, care must be taken

to set the permissions properly.

The PROCID operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:

qc � context ID

Exceptions:
None.

Qualifiers:

None.

Notes:

None.

249

����	��

PTRSIZE qa, qc

Description:
PTRSIZE (Get Pointer Size) computes the size of the region of data pointed

to by the capability in qa and places the size, in words, in qc. The PTRSIZE

operation is valid on any capability, regardless of its permissions. The result

in qc is of the word type.

The PTRSIZE operation is only executed if qa is available and there is no

backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == capability)

qc � sizeof(qa) in words

type(qc) � word

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

250

�
�����

CONSUME qa

Description:
CONSUME (Consume Data) reads exactly one piece of data out of qa and

discards it. If qa is initially empty, CONSUME blocks.

Operation:

while(qa is empty)

stall

if(no @ operator on qa)

dequeue head of qa

Exceptions:
None.

Qualifiers:

None.

Notes:

None.

251

������

SEMPTY qa, qc

Description:
SEMPTY (Set if Empty) is a special format instruction, where qa is inter-

preted as an immediate constant. SEMPTY tests to see if the queue specified

by the immediate constant qa is empty, and if it is, it places an integer 1 into

qc. Otherwise, a 0 is written into qc. The type of the result qc is word.

Operation:

if((qa & 0x7F) is empty)

qc � 1

else

qc � 0

type(qc) � word

Exceptions:

None.

Qualifiers:
None.

Notes:
None.

252

���

EEQ qa

Description:

EEQ (forcE Empty Queue) is a special format instruction, where qa is inter-

preted as an immediate constant. EEQ tests to see if the queue specified by

the immediate constant qa is empty, and if it is, it increments the PC; if not,

the PC remains constant and a yielding stall is reported to the scheduler.

Operation:

if((qa & 0x7F) is empty)

pc � pc + 1

else
pc � pc

Exceptions:

None.

Qualifiers:
None.

Notes:
This instruction complicates the implementation of the processor core. An

alternative would be to use SEMPTY and a BRZ instruction to create a pro-

grammatic loop to check for the emptiness of a queue. However, for the

purposes of backward compatibility with an older ISA, it is included in the

documentation.

253

����
�

RANDOM qc

Description:
RANDOM (Generate Random Number) places a cryptographically secure ran-

dom integer of type word into qc. RANDOM may be implemented as an ex-

ternal hardware device to the processor. Because 64 bits of entropy must be

collected for each RANDOM instruction, it is possible to request random num-

bers faster than the processor or device is capable of generating them. In this

case, the operation blocks until a random number becomes available. In or-

der to smooth out demand patterns, the number generating device may elect

to queue up several pre-generated numbers.

The RANDOM operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:

qc � random number between ���� and �
�� � �

type(qc) � word

Exceptions:

None.

Qualifiers:
None.

Notes:
The exact implementation of the RANDOM function should be disclosed in a

public fashion before it can be trusted. More information on cryptographi-

cally secure random numbers can be found in Annex D.6 “Random number

generation” of the IEEE 1363-2000 standard and in RFC1750, “Randomness

Recommendations for Security”. A user desiring to verify the randomness

properties of the RANDOM instruction may wish to refer to Ueli M. Maurer’s

“A Universal Statistical Test for Random Bit Generators”, Institute of Theo-

retical Computer Science, ETH Zürich, 1992, Journal of Cryptology, Vol. 5,

No. 2.

254

�������

GETSTAT qc

Description:
GETSTAT (Get Status Register) copies the contents of the status register into

qc. There are some portions of the status register that are implementation-

specific. qc is of type word.

The GETSTAT operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:
qc � status register

type(qc) � word

Exceptions:

None.

Qualifiers:
None.

Notes:

Please refer to the implementation notes and the architecture specification for

the meaning of the status register bits.

255

�������

SETSTAT qa

Description:
SETSTAT (Set Status Register) copies the contents of qa into the modifiable

portions of the status register. There are some portions of the status register

that are implementation-specific. qa must be of type word.

The SETSTAT operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:
if(type(qa) == word)

status register � qa

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
Please refer to the implementation notes and the architecture specification for

the meaning of the status register bits. Some of the bits of the status register

are read-only and are unaffected by SETSTAT.

256

�����

GETEX qc

Description:
GETEX (Get Exception Context ID) places the current exception handler’s

context ID into qc. The permissions on the exception handler ID are set to

opaque and owner.

The GETEX operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:
qc � Exception Register

type(qc) � capability

permissions(qc) � opaque, owner

Exceptions:

None.

Qualifiers:
None.

Notes:
None.

257

�����

SETEX qa

Description:
SETEX (Set Exception Context ID) sets the current context’s exception han-

dler ID to be the capability in qa. The operation blocks if qa is applying

backpressure.

Operation:
if(type(qa) == capability)

Exception Register � qa

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
None.

258

���
�

THROW

Description:
THROW (Throw Soft Exception) causes the current context to be set to the

exception handler context and for the PC to jump to the exception handler’s

server code. In addition, the current context ID is saved into the Exceptioned

Context ID register. The user may layer additional conventions on top of the

basic THROW semantics; for example, the user may require that q127 contain

a soft exception ID.

Operation:

PC � PC + 1

Exceptioned Context ID � context ID

context ID � exception handler ID

PC � exception handler server code start

Exceptions:
None.

Qualifiers:

None.

Notes:

Note that there is no requirement for a saved PC because the PC of the excep-

tioned context is not overwritten by the exception handler PC: the context ID

is set to the exception handler before the PC is modified.

This is a multi-cycle, variable execution duration instruction.

259

�����

EXTAG qa, qc

Description:
EXTAG (Extract Tag) extracts the tag bits out of qa and places them into qc.

The tag bits are placed in the MSB’s of qc and zero-padded to the right. The

tag region of a piece of data includes the top 16 bits, whereas the tag region

for a capability includes the top 45 bits. The type of the result in qc is word.

The EXTAG operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == capability)

qc � �qa[79:55],39’b0	

else qc � �qa[79:64],48’b0	

type(qc) � word

Exceptions:

None.

Qualifiers:
None.

Notes:

None.

260

������

SETTAG qa, qb, qc

Description:
SETTAG (Set Tag) sets the tag of the data in qb to the value of the LSB’s of

qa, and places the result into qc. This is a very powerful operator, as it can

force a literal binary transmutation of data types and change several important

attributes about a piece of data. If the value of the bits in qa corresponds to a

capability, the type of qb must also be a capability, and the owner bit for qb

must be set. qa must be of type word.

The SETTAG operation is only executed if both qa and qb operands are

available and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

if(type(qb) == capability)

if(!owner(qb))

throw operation exception

else

tags(qb) � qa[63:39]

else

if(qa[63] == 1)

throw operation exception

else

tags(qb) � qa[63:48]

else

throw type exception

Exceptions:

Operation exception, type exception.

Qualifiers:

None.

Notes:
None.

261

���
����

ALLOCATE qa, qb, qc

Description:
ALLOCATE (Allocate Capability) creates a capability qc of the size nearest

to the number of words specified in qb. The address of the capability and the

increment-only bit are set to restrict the accessible portion of the capability to

exactly the size specified in qb. qb must be of type word. If the allocation

fails, qc is returned as an invalid capability, and an out of memory exception

is thrown. qa contains an allocation metric that guides where the allocated

memory should be placed in the system. qa must be of type packed char or

a capability. If qa is a capability, the system attempts to allocate the new

capability close to the capability in qa.

The ALLOCATE operation is only executed if qa is available and there is no

backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qb) == word && (type(qa) == packed char || (type(qa) == capability)))

if(qa words available)

qc � capability of size qa bytes

else
qc � invalid capability

throw out of memory exception

else
throw type exception

Exceptions:

Out of memory exception, type exception.

Qualifiers:
None.

Notes:

This instruction may take a variable number of cycles to complete. This in-

struction is a “lazy” instruction.

The format of the allocation metric is implementation dependant. The cur-

rent implementation scheme calls for the packed char to contain the follow-

ing sixteen-bit char values, from MSB to LSB: ignored, ignored, expected

communication frequency, desired latency.

262

���
�����

ALLOCATEC qa, n, qc

Description:

ALLOCATEC (Allocate Capability, Size in Constant Field) creates a capabil-

ity qc of the size nearest to the number of words specified in n. The address

of the capability and the increment-only bit are set to restrict the accessible

portion of the capability to exactly the size specified in n. If the allocation

fails, qc is returned as an invalid capability, and an out of memory exception

is thrown. qa contains an allocation metric that guides where the allocated

memory should be placed in the system. qa must be of type packed char or

of type capability. If qa is a capability, the system attempts to allocate the

new capability close to the capability in qa.

The ALLOCATEC operation is only executed if there is no backpressure on

qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == packed char || type(qa) == capability)

if(n words available)

qc � capability of size n bytes

else
qc � invalid capability

throw out of memory exception

else
throw type exception

Exceptions:

Out of memory exception, type exception.

Qualifiers:
None.

Notes:
This instruction may take a variable number of cycles to complete. This in-

struction is a “lazy” instruction.

The format of the allocation metric is implementation dependant. The cur-

rent implementation scheme calls for the packed char to contain the follow-

ing sixteen-bit char values, from MSB to LSB: ignored, ignored, expected

communication frequency, desired latency.

263

���

MML qa, qb

Description:

MML (Map Memory Load) maps the queue number specified in qa to a load

address queue, and maps the return data of the load into the queue number

specified in qb. qa and qb must be of type word.

The memory subsystem expects that the first address entered into a memory

address queue be the access capability, and that subsequent entries to the load

address queue be offsets on the initial capability. Enqueueing the initializa-

tion capability does not cause the memory subsystem to return a load value.

If a capability is sent to the memory subsystem following the initialization

capability, the new capability subsumes the old one; again, no load value is

returned in response to this load capability being sent.

This operation stalls until both qa and qb contain a value.

Operation:
if(type(qa,qb) == word)

MAP (qa & 0x7F) to memory load address queue

MAP memory load return data queue to (qb & 0x7F)

else

throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete the map-

ping, but the PC is allowed to increment in one cycle. This does not lead

to incorrect operation unless the user unmaps the memory mapping instruc-

tion and then immediately re-maps the memory mapping. Users should avoid

unmapping and remapping memory maps using the same queues within the

same context. Note that it is perfectly safe to re-initialize an existing memory

mapping by sending a new capability to the address queue.

264

When unmapping a memory mapped queue pair, the user is responsible for

unmaping both the address and the data queue. There is nothing fundamen-

tally incorrect about unmapping one queue only; however, it may lead to

confusion if the queue mapping is re-used, and the garbage collector will not

de-allocate memory that has even a partial mapping to its capability.

265

���

MMS qa, qb

Description:
MMS (Map Memory Store) maps the queue number specified in qa to a store

address queue, and maps the queue number specified in qb to a store data

queue. qa and qb must be of type word.

Data and addresses may be enqueued at differing times and rates, but the

invariant is that the store blocks until both queues have at least one element

in them, and that data and address pairs are strictly correlated by their relative

order in the queues.

The memory subsystem expects that the first address entered into a memory

address queue be the access capability; this first access is not matched with

a data element in the store data queue. Subsequent addresses are then inter-

preted as offsets to the initial access capability and are paired with data values

in the store data queue.

This operation stalls until both qa and qb contain a value.

Operation:

if(type(qa,qb) == word)

MAP (qa & 0x7F) to memory store address queue

MAP (qb & 0x7F) to memory store data queue

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:
This instruction may take a variable number of cycles to complete the map-

ping, but the PC is allowed to increment in one cycle. This does not lead

to incorrect operation unless the user unmaps the memory mapping instruc-

tion and then immediately re-maps the memory mapping. Users should avoid

266

unmapping and remapping memory maps using the same queues within the

same context. Note that it is perfectly safe to re-initialize an existing memory

mapping by sending a new capability to the address queue.

When unmapping a memory mapped queue pair, the user is responsible for

unmaping both the address and the data queue. There is nothing fundamen-

tally incorrect about unmapping one queue only; however, it may lead to

confusion if the queue mapping is re-used, and the garbage collector will not

de-allocate memory that has even a partial mapping to its capability.

267

����

EXCH qa, qb, qc

Description:
EXCH (Declare Exchange Tuple) marks the queues numbers specified in qa,

qb and qc as a memory exchange tuple. qa is set to be the address queue,

qb is set to be the data in queue, and qc is set to be the data out queue. All

of qa, qb, and qc are interpreted to be immediate constants. The exchange

tuple must be initialized by moving a capability into qa prior to moving an

address offset into qa.

Once the tuple has been initialized with an address value, the next piece of

data moved into qb is exchanged atomically with the contents of memory at

the specified address, and the contents of the memory location prior to the

exchange is placed in qc.

This operation is guaranteed by the memory system to be atomic at the mem-

ory side; however, no other relative timings are guaranteed.

The EXCH mapping remains in effect until it is undone with an UNMAPQ

instruction. The user must unmap all three mappings.

Operation:

MAP qa to atomic memory address queue

MAP qb to atomic memory incoming data queue

MAP qc to atomic memory return data queue

Exceptions:
Type exception and exchange exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.

268

�����

SPAWN qa, qb, qc

Description:
SPAWN (Spawn) starts a new thread by allocating space for the thread, creat-

ing an entry in the thread scheduler for the thread with PC set to the value in

qb, and returning the thread ID (which is also a capability to thread’s data)

in qc. The permissions of the thread ID capability are set to opaque and not

owner. qa contains a spawning metric that is used to guide the run-time as to

where the thread should be spawned. If qa is a capability, the system attempts

to allocate the new thread close to the capability in qa.

qa must be of type packed char or type word, and qb must be of type word.

The SPAWN operation is only executed if qa is available and there is no back-

pressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qb) == word && (type(qa) == packed char || (type(qa) == capability)))

qc � new thread capability

if(qc == invalid)

throw out of memory exception

else
create thread scheduler entry (new thread ID, PC = qa)

else
throw type exception

Exceptions:
Type exception, Out of memory exception.

Qualifiers:
None.

Notes:
This instruction may take a variable number of cycles to complete. This is a

“lazy” instruction.

The format of the spawning metric is implementation dependant. The current

implementation scheme calls for the packed char to contain the following

sixteen-bit char values, from MSB to LSB: expected children, memory re-

quirement, computation requirement, desired latency.

269

������

SPAWNL qa, qb, qc

Description:
SPAWNL (Load Code and Spawn) starts a new thread by allocating space for

the thread, loading its code specified in qb into code space, and creating an

entry in the thread scheduler for the thread with PC set to the value in qa,

and returning the thread ID (which is also a capability to thread’s data) in qc.

The permissions of the thread ID capability are set to opaque and not owner.

The size of the space to be allocated for the thread is encoded in an OSIZE

opcode that should be the first instruction of the new thread.

qa must be of type word, and qb must be a capability to a character array

that describes a universal locator for the code resource.

The SPAWNL operation is only executed if both qa and qb operands are

available and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:
if(type(qa) == word && type(qb) == capability)

load code specified by qb into code space

qc � capability of size indicated in OSIZE opcode at address in qa

if(qc == invalid)

throw out of memory exception

else

create thread scheduler entry (new thread ID, PC = qa)

else

throw type exception

Exceptions:
Type exception, Out of memory exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.

270

������

SPAWNC qa, n, qc

Description:
SPAWNC (Spawn with PC-constant offset) starts a new thread by allocating

space for the thread, creating an entry in the thread scheduler for the thread

with PC set to the value of PC + 1 + n, and returning the thread ID (which

is also a capability to thread’s data) in qc. The permissions of the thread

ID capability are set to opaque and not owner. The size of the space to be

allocated for the thread is encoded in an OSIZE opcode that should be the

first instruction of the new thread. qa contains a spawning metric that is used

to guide the run-time as to where the thread should be spawned. If qa is

a capability, the system attempts to allocate the new capability close to the

capability in qa.

The SPAWNC operation is only executed if there is no backpressure on qc.

Otherwise, the instruction stalls.

Operation:

if(type(qa) == packed char || type(qa) == capability)

qc � capability of size in OSIZE opcode at (n + PC + 1)

if(qc == invalid)

throw out of memory exception

else

create thread scheduler entry (new thread ID, PC = n + PC + 1)

else

throw type exception

Exceptions:
Out of memory exception and type exception.

Qualifiers:

None.

Notes:
This instruction may take a variable number of cycles to complete. This is a

“lazy” instruction.

The format of the spawning metric is implementation dependant. The current

implementation scheme calls for the packed char to contain the following

271

sixteen-bit char values, from MSB to LSB: expected children, memory re-

quirement, computation requirement, desired latency.

272

����

MAPQ qa, qb, qc

Description:
MAPQ (Map Queue) is a special-format instruction. qa is actually interpreted

as an immediate constant: it specifies the queue number in the current context

that is to be mapped. MAPQ does not actually read or modify the contents of

qa in any way. The copy/clobber modifier has no effect on the value of qa

in this case. qb specifies the queue number to read for the queue number of

the destination mapping, and qc specifies the queue number to read for the

destination context ID.

The MAPQ operation is only executed if both qb and qc operands are avail-

able.

Operation:
if(type(qb) == word && type(qc) == capability)

map queue ‘‘qa’’.tail in current context to

queue ((qb & 0x7F) � 7).head in context qc

else

throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:
The odd format of this instruction is an artifact of backward compatibility

with an earlier version of the instruction set. This instruction may be rep-

resented inside the hardware implementation in a more typical fashion and

require the assembler to do a simple format translation. This instruction may

take multiple cycles to complete.

273

�����

MAPQC qa, qb, qc

Description:
MAPQC (Map Queue with Destination as Constant) is a special-format in-

struction. qa and qb are actually interpreted as immediate constants: they

specify the queue number in the current context and the destination queue

number, respectively, that is to be mapped. MAPQC does not actually read

or modify the contents of qa or qb in any way. The copy/clobber modifier

has no effect on the value of qa and qb in this case. qc specifies the queue

number to read for the destination context ID.

The MAPQC operation is only executed if the qc operand is available.

Operation:

if(type(qc) == capability)

map queue ‘‘qa’’.tail in current context to

queue ‘‘qb’’.head in context qc

else

throw type exception

Exceptions:

Type exception.

Qualifiers:
None.

Notes:

The odd format of this instruction is an artifact of backward compatibility

with an earlier version of the instruction set. This instruction may be rep-

resented inside the hardware implementation in a more typical fashion and

require the assembler to do a simple format translation. This instruction may

take multiple cycles to complete.

274

�����

MAPSQ qa, qb

Description:
MAPSQ (Map Queue Source) is a special-format instruction. qa and qb are

actually intepreted as immediate constants. MAPSQ creates a mapping such

that every element enqueued by the network interface into the queue speci-

fied in the immediate constant qa also enqueues the context ID of the data’s

source into the queue specified by the immediate constant qb. The arrival of

data from the network interface in the queue specified by qa is guaranteed to

be simultaneous with the arrival of the context ID in the queue specified by

qb. The resulting type of the IDs in qb are capability, with the opaque bit set

and the owner bit cleared.

Operation:

map incoming data source ID of queue (qa & 0x7F) to (qb & 0x7F)

Exceptions:

None.

Qualifiers:
None.

Notes:

This instruction may take a variable number of cycles to complete.

Note that data arriving in qa via local operations do not cause qb to have the

source enqueued; thus, it is not recommended to share qa as both a target for

local and remote operations.

275

�����
�

MAPDROP qa

Description:
MAPDROP (Set Mapping to Drop Mode) is a special-format instruction where

qa is interpreted as an immediate constant. MAPDROP sets the mode of the

mapping of the queue number specified by the immediate constant qa to

“drop” mode. In this mode, backpressure on the queue causes data to be

dropped instead of stalling the context. This is particularly useful when im-

plementing pure streaming operators on real-time datatypes such as video or

audio.

Operation:

set mode of queue (qa & 0x7F) to drop mode

Exceptions:
None.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.

276

������

UNMAPQ qa

Description:

UNMAPQ (Unmap A Queue) is a special format instruction, in that qa is in-

terpreted as an immediate constant. UNMAPQ resets the mapping of the queue

specified by the immediate constant qa to the default (current context ID).

Care should be taken to guarantee that the specified queue is empty before is-

suing this instruction, otherwise left-over data that may be in the queue when

this instruction retires will never be delivered to its destination.

Operation:
set the mapping of queue (qa & 0x7F) to the current context ID

Exceptions:

None.

Qualifiers:
None.

Notes:
This instruction may take a variable number of cycles to complete.

When unmapping a memory mapped queue pair, the user is responsible for

unmaping both the address and the data queue. There is nothing fundamen-

tally incorrect about unmapping one queue only; however, it may lead to

confusion if the queue mapping is re-used, and the garbage collector will not

de-allocate memory that has even a partial mapping to its capability.

277

������

PARCEL qa, qb, qc

Description:
PARCEL (Parcel out a Capability) takes a capability in qa and attempts to

create a sub-capability with the address and tags described in qb. The result

is placed in qc. qa must be a capability, qb is a word type, and the result qc

is a capability. The format of the sub-capability address and tag specifier is

15 bits of tags followed by a 1 bit increment-only field, followed by a 35 bit

address field. The unused bits to the left are ignored.

35 bit address, word aligned

primary data 64 bits

15 bits base/
bounds

inc-only

Figure D.1: qb format for the PARCEL instruction

If the capability described by qb is outside the bounds of the given capability

in qa, an operation exception is thrown and the result in qc is invalid.

The PARCEL operation is only executed if both qa and qb operands are

available and there is no backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == capability && type(qb) == word)

qc � sub-capability of qa described by qb

else

throw type exception

Exceptions:
Type exception and operation exception.

Qualifiers:

None.

278

Notes:

This instruction may take a variable number of cycles to complete.

279

�����

MSYNC

Description:
MSYNC (Memory Synchronize) causes the current thread to stall until all of

the current thread’s pending memory operations have completed.

Operation:

if(current thread has pending memory operations)

PC � PC

signal structural stall to thread scheduler

else

PC � PC + 1

Exceptions:
None.

Qualifiers:

None.

Notes:

This instruction will take a variable number of cycles to complete.

280

���
��

LDCODE qa, qc

Description:
LDCODE (Dynamically Load Code) takes a capability in qa which contains a

character array that names a code object and its path, attempts to load it into

code memory, and returns the absolute PC address of the code as a word in

qc. A failure to complete this operation causes a code load exception to be

thrown and qc to be invalid.

(Need to determine if the return should be a PC value, or if it should be a

context ID to an object server that was started...)

The LDCODE operation is only executed if qa is available and there is no

backpressure on qc. Otherwise, the instruction stalls.

Operation:

if(type(qa) == capability)

if(qa.permissions == read, not opaque, valid)

load code described by character array in qa

qc � PC of code entry point

if(tags(qc) == invalid)

throw code load exception

else

throw operation exception

else

throw type exception

Exceptions:
Type exception, operation exception, and code load exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.

281

�	��

OSIZE n

Description:
OSIZE (Object Size Directive) is a compiler directive that uses the “hint”

opcode format to inform ADAM how large a region needs to be allocated

for a particular thread object. The size of the region to allocate in words

is indicated in n. This opcode may be located anywhere, but it only has

meaning when it is in the entry point instruction sequence for an object’s

initializer code. When executed, this instruction does nothing to the machine

state except increment the PC.

Operation:
PC = PC + 1

Exceptions:

None.

Qualifiers:
None.

Notes:

None.

282

�	��

HINT t,hint

Description:
HINT (Compiler Hint) is a hint from the compiler or programmer to the

ADAM runtime system. A HINT instruction has no effect on the ADAM

machine state except for incrementing the PC; however, it may have a pro-

found impact upon the OS and/or management coprocessor.

The type of hint is encoded in the t field, and the actual value of the hint is

encoded in the hint field. The valid hint types are TBD, but they fall into

two broad categories: machine specific and machine independent. Machine

specific hints include data placement directives. Machine independent hints

include thread swap hints, prefetch directives, and migration hints. A hint

with an unrecognized hint type is ignored.

An incorrect hint never leads to incorrect program results; an incorrect just

leads to poor performance.

Operation:

PC = PC + 1

Exceptions:
None.

Qualifiers:

None.

Notes:
None.

283

�
�

NOP

Description:
NOP (No Operation) A NOP instruction has no effect on the ADAM machine

state except for incrementing the PC.

Operation:

PC = PC + 1

Exceptions:
None.

Qualifiers:

None.

Notes:

None.

284

Bibliography

[AB93] Arvind and Stephen Brobst. The evolution of dataflow architec-

tures: from static dataflow to P-RISC. International Journal of

High Speed Computing, 5(2), 1993. World Scientific Publishing

Company.

[ABC�95] A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson, D. Kranz,

J. Kubiatowicz, B.H. Lim, K. Mackenzie, and D. Yeung. The

MIT alewife machine: Architecture and performance. In Pro-

ceedings of the 22�� International Symposium on Computer

Architecture, pages 2–13, Santa Margherita Ligure, Italy, June

1995.

[AHKB00] Vikas Agarwal, M.S. Hrishikesh, Stephen W. Keckler, and Doug

Burger. Clock rate versus IPC: The end of the road for conven-

tional microarchitectures. In Proceedings of the 27 �� Annual In-

ternational Symposium on Computer Architecture. ACM, 2000.

[AKK�95] Gail Alverson, Simon Kahan, Richard Korry, Cathy McCann,

and Burton Smith. Scheduling on the Tera MTA. In Dror G.

Feitelson and Larry Rudolph, editors, Job Scheduling Strategies

for Parallel Processing, number 949 in LNCS, pages 19–44,

1995.

285

[ALKK91] A. Agarwal, B.H. Lim, D. Kranz, and J. Kubiatowicz. Limit-

LESS directories: A scalable cache coherence scheme. In Pro-

ceedings of ASPLOS IV, pages 224–234, April 1991.

[ASHH88] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An eval-

uation of directory schemes for cache coherence. In Proceed-

ings of the 15�� International Symposium on Computer Archi-

tecture, pages 28–289, June 1988.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and

Competitive Analysis. Cambridge University Press, 1998.

[BGKH00] Jeremy H. Brown, J.P. Grossman, Tom Knight, and Andrew

Huang. A capability representation with embedded address

and near-exact object bounds. Technical Report Project Aries

Tech Note 5, Massachusetts Institute of Technology AI Lab,

http://www.ai.mit.edu/projects/aries, 2000.

[BL94] R. Blumofe and C. Leiserson. Scheduling multithreaded com-

putations by work stealing. In Proceedings of the 35 �� Annual

Symposium on Foundations of Computer Science, Santa Fe, New

Mexico., pages 356–368, November 1994.

[BP92] Jeff Baxter and Janak H. Patel. Profiling based task migra-

tion. In Sixth International IEEE Parallel Processing Sympo-

sium, pages 192–195, 1992.

[Bro02] Jeremy Hanford Brown. Sparsely Faceted Arrays: A Mech-

anism Supporting Parallel Allocation, Communication, and

Garbage Collection. PhD thesis, Massachusetts Institute of

Technology, 2002.

286

[CCH�00] Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, Jon

Wawrzynek, and André DeHon. Stream computations orga-

nized for reconfigurable execution (SCORE). In Conference on

Field Programmable Logic and Applications. Springer-Verlag,

August 2000.

[CDV�94] Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and

Mendel Rosenblum. Scheduling and page migration for multi-

processor compute servers. In Proceedings of ASPLOS VI, San

Jose, CA, 1994.

[Che] Erik Cheever. Runge-kutta methods.

http://www.swarthmore.edu/natsci/echeeve1/Ref/ Nu-

mericInt/RK2.html.

[CI00a] International Roadmap Committee and ITWGs. International

roadmap for semiconductors update. Technical report, SIA,

http://public.itrs.net/, 2000.

[CI00b] International Roadmap Committee and ITWGs. International

roadmap for semiconductors, PIDS update. Technical report,

SIA, http://public.itrs.net/, 2000.

[CI00c] International Roadmap Committee and ITWGs. International

roadmap for semiconductors, design update. Technical report,

SIA, http://public.itrs.net/, 2000.

[CJDM01] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. High-performance

DRAMs in workstation environments. IEEE Transactions on

Computers, 50(11):1133–1153, November 2001.

287

[CKD94] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally.

Hardware support for fast capability-based addressing. In Pro-

ceedings of ASPLOS VI, October 1994.

[CKW96] Oliver Ciupke, Dietmar Kottmann, and Hans-Dirk Walter. Ob-

ject migration in non-monolithic distributed applications. In

Proc. of the 16�� International Conference on Distributed Com-

puting Systems, pages 529–536, 1996.

[CM97] Haines D. Cronk and P.M. Mehrotra. Thread migration in the

presence of pointers. In Proceedings of the 30 �� Hawaii Inter-

national Conference on System Sciences, volume 1, pages 292–

298. IEEE, 1997.

[Cora] MoSys Corporation. TSMC 0.13�m process fast 1-T SRAM

summary. http://www.mosys.com/1t sram.html. Registration

required to access design materials.

[Corb] Taiwan Semiconductor Manufacturing Cor-

poration. 0.18 �m process summary.

http://www.tsmc.com/technology/cl018.html.

[CS99] David E. Culler and Jaswinder Pal Singh. Parallel Computer

Architecture: A Hardware/Software Approach. Morgan Kauf-

mann Publishers, 1999.

[CSS�91] D. Culler, A. Sah, K. Schauser, T. von Eicken, and

J. Wawrzynek. Fine-grain parallelism with minimal hard-

ware support: A compiler-controlled threaded abstract machine.

In Proc. of 4�� Int. Conf. on Architectural Support for Pro-

gramming Languages and Operating Systems, Santa-Clara, CA,

April 1991.

288

[DeH90] André DeHon. Fat-tree routing for transit. S.B. thesis AI Tech-

nical Report 1224, MIT Artificial Intelligence Laboratory, 1990.

[DeH93] André DeHon. Robust, high-speed network design for large-

scale multiprocessing. S.M. thesis AI Technical Report 1445,

MIT Artificial Intelligence Laboratory, 200 Technology Square,

Cambridge, MA 02139, 1993.

[DS90] M. Dubois and C. Scheurich. Memory access dependencies in

shared-memory multiprocessors. IEEE Transactions on Soft-

ware Engineering, 16(6):660–673, 1990.

[ea92] H. Burkhart III et al. Overview of the KSR1 computer system.

Technical Report KSR-TR-9202001, Kendall Square Research,

Boston, February 1992.

[FKD�95] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P.

Carter, Andrew Chang, Yevgeny Gurevich, and Whay S. Lee.

The M-Machine multicomputer. In Proceedings of the 28 ��

Annual International Symposium on Microarchitecture, pages

146–156. IEEE, 1995.

[FNN93] Matthew K. Farrens, Pius Ng, and Phil Nico. A comparison of

superscalar and decoupled access/execute architectures. In Pro-

ceedings of the 26�� Annual International Symposium on Mi-

croarchitecture, pages 100–103. IEEE, 1993.

[Gal96] Mike Galles. The SGI spider chip. In Proceedings of Hot Inter-

connects IV, pages 141–146. IEEE, 1996.

[GB02] J.P. Grossman and Jeremy Brown. A lightweight idempotent

messaging protocol for faulty networks. In Appearing in the

289

Proceedings of the 2002 Symposium on Parallel Algorithms and

Architectures, 2002.

[GBHK00] J.P. Grossman, Jeremy Brown, Andrew Huang, and

Tom Knight. Using SQUIDs to address forwarding

pointer aliasing. Technical Report Project Aries Tech

Note 4, Massachusetts Institute of Technology AI Lab,

http://www.ai.mit.edu/projects/aries, 2000.

[GHI94] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory:

The Terasys massively parallel PIM array. IEEE Computer,

28(4):23–31, 1994.

[Gro01] J.P. Grossman. Design and evaluation of the Hamal parallel

computer. Doctoral research proposal, Massachusetts Institute

of Technology, 2001.

[GWM90] A Gupta, W.D. Weber, and T Mowry. Reducing memory and

traffic requirements for scalable directory-based cache coher-

ence schemes. In Proceedings of the International Conference

on Parallel Processing, pages 312–321, August 1990.

[Har00] Shawn R. Hartsock. Gravity

works! http://modzer0.cs.uaf.edu/ hart-

sock/C Cpp/OpenGL/Gravity.html, March 2000. Originally

found on www.planet-source-code.com.

[HHK�01] Joseph Hall, Jason Hartline, Anna R. Karlin, Jared Saia, and

John Wilkes. On algorithms for efficient data migration. In

Twelfth Annual Symposium on Discrete Algorithms, pages 620–

629. ACM SIGACT and SIAM, 2001.

290

[HHS�00] Lance Hammond, Ben Hubbert, Michael Siu, Manohar Prabhu,

Mike Chen, and Kunle Olukotun. The stanford hydra CMP.

IEEE Micro Magazine, March–April 2000.

[HS94a] Chao-Ju Hou and Kang G. Shin. Design and evaluation of

effective load sharing in distributed real-time systems. IEEE

Transactions on Parallel Distributed Systems, 5(7):704–719,

July 1994.

[HS94b] Chao-Ju Hou and Kang G. Shin. Load sharing with considera-

tion of future task arrivals in heterogeneous distributed real-time

systems. IEEE Transactions on Computers, 43(9):1076–1090,

September 1994.

[Hsi95] Wilson Cheng-Yi Hsieh. Dynamic Computation Migration in

Distributed Shared Memory Systems. Ph.d. thesis, MIT, 1995.

[HSU�01] Glenn Hinton, Dave Sager, Mike Upton, Darrell

Boggs, Doug Carmean, Alan Kyker, and Patrice

Roussel. The microarchitecture of the Pentium

4 processor. Intel Technology Journal, Q1 2001.

http://developer.intel.com/technology/itj/q12001/articles/art 2.htm.

[HWW93] Wilson C. Hsieh, Paul Wang, and William E. Weihl. Computa-

tion migration: Enhancing locality for distributed-memory par-

allel systems. In Proceedings of the Fourth ACM PPOPP, pages

239–248, California, May 1993.

[Ian88] Robert Iannucci. Toward a dataflow/von Neumann hybrid archi-

tecture. In Proceedings of the 15�� Annual International Sympo-

sium on Computer Architecture, Honolulu, Hawaii, May 1988.

291

[Inc01] Object Management Group Inc., editor. The Common Object

Request Broker: Architecture and Specification (Version 2.5).

http://www.omg.org, September 2001.

[JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black.

Fine-grained mobility in the Emerald system. ACM Transac-

tions on Computer Systems, 6(1):109–133, February 1988.

[Joe96] C. F. Joerg. The cilk system for parallel multithreaded comput-

ing. Technical Report MIT/LCS/TR-701, MIT Laboratory for

Computer Science, 1996.

[KMSM01] V. Kalogeraki, P.M. Melliar-Smith, and L.E. Moser. Dynamic

migration algorithms for distributed object systems. In 21
�

IEEE International Conference on Distributed Computing Sys-

tems, pages 119–126, Phoenix, Arizona, April 2001.

[KPP�97] C. Kozyrakis, S. Perissakis, D. Patterson, T. Andreson,

K. Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad,

K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick. Scalable

processors in the billion-transistor era: IRAM. IEEE Computer,

pages 75–78, September 1997.

[LBCF�00] J.M. London, E. Barkley, Jr. C.G. Fonstand, A. Loomis

of MIT Lincoln Laboratory, and Fari Assaderaghi

of IBM. Silicon-on-gallium arsenide for optoelectronic

integration. Technical report, MIT MTL, http://www-

mtl.mit.edu/mtlhome/6Res/AR2000/AR00index.html, 2000.

[LBF�98] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikr-

ishna, Jonathan Babb, Vivek Sarkar, and Saman Amarasinghe.

Space-time scheduling of instruction-level parallelism on a

292

RAW machine. In Proceedings of ASPLOS-VIII, California.

ACM, 1998.

[LFA96] David K. Lowenthal, Vincent W. Freeh, and Gregory R. An-

drews. Using fine-grain threads and run-time decision making

in parallel computing. Journal of Parallel and Distributed Com-

puting, 37(1):41–54, August 1996.

[LH94] Ben Lee and A.R. Huron. Dataflow architectures and multi-

threading. IEEE Computer, August 1994.

[LJ90] Carl E. Love and Harry F. Jordan. An investigation of static ver-

sus dynamic scheduling. In Proceedings of the 17 �� Annual In-

ternational Symposium on Computer Architecture, pages 192–

201. IEEE, 1990.

[LL97] James Laudon and Daniel Lenoski. System overview of the SGI

Origin 200/2000 product line. In COMPCON. IEEE, 1997.

[LLG�92] D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber,

A. Gupta, and J. Hennessy. The stanford dash multiprocessor.

IEEE Computer, 25(3):63–79, March 1992.

[LW95] Daniel E. Lenoski and Wolf-Dietrich Weber. Scalable Shared-

Memory Multiprocessing. Morgan Kaufmann, 1995.

[Mac00] International Business Machine. Blue Logic Cu-11 ASIC. Tech-

nical Report SA14–2451–00, IBM, 2000.

[Mar00] Norman Margolus. An embedded DRAM architecture for large-

scale spatial-lattice computations. In The 27�� Annual Interna-

tional Symposium on Computer Architecture, pages 149–160.

IEEE, 2000.

293

[McF97] Grant W. McFarland. CMOS Technology Scaling and Its Impact

on Cache Delay. PhD thesis, Stanford University, June 1997.

[MJC�99] C.E. Molnar, I.W. Jones, W.S. Coates, J.K. Lexau, S.M. Fair-

banks, and I.E. Sutherland. Two FIFO ring performance experi-

ments. In Proceedings of the IEEE, volume 87, pages 297–307,

February 1999.

[MJCL97] C.E. Molnar, I.W. Jones, W.S. Coates, and J.K. Lexau. A FIFO

ring performance experiment. In Proceedings of the Third In-

ternational Symposium on Advanced Research in Asynchronous

Circuits and Systems, pages 279–289, 1997.

[MPJ�00] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and

M. Horowitz. Smart memories: A modular reconfigurable ar-

chitecture. In Proceedings of the 13�� annual international sym-

posium on computer architecture, June 2000.

[MSAD90] William Mangione-Smith, Santosh G. Abraham, and Edward S.

Davidson. The effects of memory latency and fine-grained par-

allelism on astronautics ZS-1 performance. In Proceedings of

the Twenty-Third Annual Hawaii International Conference on

System Sciences, volume 1, pages 288–296. IEEE, 1990.

[MSAD91] William Mangione-Smith, Santosh G. Abraham, and Edward S.

Davidson. Architectural vs. delivered performance of the IBM

RS/6000 and the Astronautics ZS-1. In Proceedings of the

Twenty-Fourth Annual Hawaii International Conference on Sys-

tem Sciences, volume 1, pages 397–408. IEEE, 1991.

[MSW93] Henk L. Muller, Paul W.A. Stallard, and David H.D. Warren.

The data diffusion machine with a scalable point-to-point net-

294

work. Technical Report CSTR-93-17, University of Bristol

Computer Science Department, October 1993.

[NA89] Rishiyur S. Nikhil and Arvind. Can dataflow subsume von Neu-

mann computing? In Proceedings of the 16 �� Annual Interna-

tional Symposium on Computer Architecture, Jerusalem, Israel,

May 1989.

[ND91] Peter R. Nuth and William J. Dally. A mechanism for efficient

context switching. In International Conference on Computer

Design, pages 301–304, 1991.

[ND95] Peter R. Nuth and William J. Dally. The named-state register

file: Implementation and performance. In Proceeding of the

First IEEE Symposium on High-Performance Computer Archi-

tecture, pages 4–13, 1995.

[NWD93] M.D. Noakes, D.A. Wallach, and W.J. Dally. The J-Machine

multicomputer: An architectural evaluation. In Proceedings of

the 20�� Annual Symposium on Computer Architecture, pages

224–235, 1993.

[OCS98] M. Oksin, F.T. Chong, and T. Sherwood. Active pages: A com-

putational model for intelligent memory. In The 25 �� Annual

Symposium on Computer Architecture, pages 192–203. IEEE,

1998.

[ONH�96] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wil-

son, and Kunyung Chang. The case for a single-chip multipro-

cessor. In Proceedings of ASPLOS-VII, Cambridge MA. ACM,

1996.

295

[PBB93] G. A. Papadopoulos, Greiner R. Boughton, and M.J. Beckerle.

*T: Integrated building blocks for parallel computing. In Pro-

ceedings of the Conference on Supercomputing, pages 623–635,

1993.

[PM83] Michael L. Powell and Barton P. Miller. Process migration in

DEMOS/MP. In Proceedings of the 9�� ACM Symposium on

Operating Systems Principles, pages 110–119, New York, NY,

1983. ACM Press.

[RC96] Ellard T. Roush and Roy H. Campbell. Fast dynamic process

migration. In Proceedings of the 16�� International Confer-

ence on Distributed Computing Systems, pages 637–645. IEEE,

1996.

[RSAU91] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A sim-

ple load balancing scheme for task allocation in parallel ma-

chines. In ACM Symposium on Parallel Algorithms and Archi-

tectures, pages 237–245, 1991.

[Sch] Wayne Schlitt. Xstar n-body solver.

http://www.midwestcs.com/xstar/.

[Sco96] Steven L. Scott. Synchronization and communication in the T3E

multiprocessor. In Proceedings of ASPLOS VII, Massachusetts,

1996. ACM.

[SDV�87] J.E. Smith, G.E. Dermer, B.D. Vanderwarn, S.D. Klinger, C.M.

Rozewski, D.L. Folwler, K.R. Scidmore, and J.P. Laudon. The

ZS-1 central processor. In Second International Conference on

Architectural Support for Programming Languages and Oper-

ating Systems, pages 199–204, October 1987.

296

[Sem] Matrix Semiconductor. Matrix semiconductor website.

http://www.matrixsemi.com.

[SHK95] Behrooz A. Shirazi, Ali R. Hurson, and Krishna M. Kavi, ed-

itors. Scheduling and Load Balancing in Parallel and Dis-

tributed Systems. IEEE Computer Society Press, 1995.

[SKA01] Michael Sung, Ronny Krashinsky, and Krste Asanović. Multi-

threading decoupled architectures for complexity-effective gen-

eral purpose computing. In Workshop on Memory Access De-

coupled Architectures, PACT-01, Barcelona, Spain, September

2001.

[Smi82a] Burton Smith. Architecture and applications of the HEP multi-

processor computer system. In Proceedings of the International

Society for Optical Engineering, pages 241–248, 1982.

[Smi82b] James E. Smith. Decoupled access/execute computer architec-

tures. In Proceedings of the 9�� Annual International Sympo-

sium on Computer Architecture, Austin, Texas, April 1982.

[Ste85] David Stevenson. IEEE standard for binary floating-point arith-

metic. ANSI/IEEE standard 754-1985, August 1985.

[TP96] Josep Torrellas and David Padua. The illinois aggressive coma

multiprocessor project (I-ACOMA). In 6�� Symposium on the

Frontiers of Massively Parallel Computing, October 1996.

[Tuc84] D.B. Tuckerman. Heat-transfer microstructures for integrated

circuits. Ph.D. dissertation, Stanford University, 1984.

297

[Van02] Benjamin Mead Vandiver. Compilation to a queue-based archi-

tecture. Master’s thesis, Massachusetts Institute of Technology,

2002.

[vCGS92] T. vonEicken, D. Culler, S. Goldstein, and K. Schauser. Ac-

tive messages: a mechanism for integrated communication and

computation, 1992.

[VG98] Alexander V. Veidenbaum and K. A. Gallivan. Decoupled ac-

cess DRAM architecture. IEEE Innovative Architecture for

Future Generation High-Performance Processors and Systems,

pages 94–103, 1997,1998.

[WC01] Robert Woods-Corwin. A high-speed fault-tolerant interconnect

fabric for large-scale multiprocessing. Master’s thesis, Mas-

sachusetts Instituted of Technology, 2001.

[WCD�95] Chih-Po Wen, Soumen Chakrabarti, Etienne Deprit, Arvind

Krishnamurthy, and Katherine Yelick. Runtime support for

portable distributed data structures. In Workshop on Languages,

Compilers, and Runtime Systems for Scalable Computers, May

1995.

[WGQH98] B. Weissman, B. Gomes, J. Quittek, and M. Holtkamp. Efficient

fine-grain thread migration with active threads. In Submitted to

the 12�� International Parallel Processing Symposium and 9th

Symposium on Parallel and Distributed Processing, pages 410–

414, 1998.

[Wul92] William A. Wulf. Evaluation of the WM architecture. In Pro-

ceedings of the 19�� Annual International Symposium on Com-

puter Architecture, pages 382–390. ACM, 1992.

298

[XL97] Chengzhong Xu and Francis C.M. Lau. Load Balancing in Par-

allel Computers: Theory and Practice. Kluwer Academic Pub-

lishers, 1997.

299

