
18.03 Problem Set 3 ­ Complete 

Due by 1:00 P.M., Friday, March 10, 2006,

[Not Wednesday, as stated on the Syllabus. Problems relating to Wednesday’s


lecture will be on PS4.]

I encourage collaboration in this course. However, if you do your homework in a

group, be sure it works to your advantage rather than against you. Good grades for

homework you have not thought through will translate to poor grades on exams. You

must turn in your own writeups of all problems, and, if you do collaborate,

you must write on the front of your solution sheet the names of the students

you worked with.


Because the solutions will be available immediately after the problem sets are due,

no extensions will be possible.


L8 F 24 Feb 
L9 M 27 Feb 
R6 T 28 Feb 
L10 W 1 Mar 

R7 Th 2 Mar 
L11 F 3 Mar 

L12 M 6 Mar 
R8 T 7 Mar 
L13 W 8 Mar 
R9 Th 9 Mar 
L14 F 10 Mar 

I. First­order differential equations 

Autonomous equations; the phase line, stability: EP 1.7, 7.1.

Linear vs nonlinear: Review.

Exam preparation.

Hour Exam I 

II. Second­order linear equations 

Second order equations: introduction

The spring­mass­dashpot model; superposition;

characteristic polynomial; EP 2.1, 2.2.

Real roots, initial conditions: EP 2.3, SN 9.

ditto

Complex roots; damping conditions: EP 2.4.

ditto

Inhomogeneous equations, superposition: Notes O.1,

EP 2.6 (pp. 157–159 only; see SN 7 if you want to learn

about beats).


Problems 8, 9, and 10 are identical to what was handed out last week. Problems 11 
and 12 are new. 



Part I. 

8. (F 24 Feb) Notes: 1E­1. 

9. (M 27 Feb) [Recitation 6 problem] Find the sinusoidal solution of ẋ + 2x = 
cos(2t) in polar form, A cos(ωt − φ), in the following way: First find the exponential 
solution of the corresponding equation with complex exponential right hand term; 

1 1 
it is zp = e 2it . Then find A and φ such that = Ae−iφ, and use this to 

2i + 2 2i + 2 
re­express zp = Ae(2t−φ)i . Now take the real part. 

10. (W 1 Mar) Nothing 

11. (F 3 Mar) EP 2.1: 1, 3, 43; Notes: 2­C1 a,b. 

12. (M 6 Mar) EP 2.3: 1, 2, 21, 28. 

Part II. 

8. (F 24 Feb) [Autonomous Equations] This problem will use the Mathlet Phase 
Lines. Open the applet and understand its use and conventions. Click on [Phase 
Line] to see a representation of the phase line. Note the color coding: a green dot 
represents a stable or attracting equilibrium; red represents an unstable or repelling 
equilibrium; and blue represents a “semi­stable” equilibrium. 

The autonomous ODE ẏ = .25 − ay + y2 models a population of Australian lovebugs, 
which infest pomagranites in Farmer Jones’s orchard. y is measured in megabugs, or 
millions of bugs. The term .25 reflects a constant immigration into Mr Jones’s orchard 
from the neighboring orchards (where the pomagranites are inferior). These pests can 
be kept in check using an expensive bioengineered spray. Application at a rate a moves 
the natural rate of growth of the lovebug population from y (corresponding to ẏ = y2) 
down to y − a (corresponding to ẏ = (y − a)y). 

(a) Use the Mathlet to determine (approximately) the smallest rate a which will 
contain the lovebug population at a finite level provided that it starts at a sufficiently 
low level. What is that level? Now check this answer analytically. Why is this level 
of application a dangerous strategy for Farmer Jones? 

(b) Better will be a choice of a which brings the lovebug population down to y = 0.25. 
What rate a will lead to that result, according to the Mathlet? How large an initial 
population will this rate of application control? Now check these answers analytically. 

(c) For this value of a, there are five different behaviors possible for the lovebug 
population. Two solutions exhibit the “same behavior” if one is a time­translate of 
the other. Sketch one solution of each of the five types. Your sketch should make it 
clear what the behavior of the solution is as t → −∞ and as t →∞. 

(d) Invoke the Bifurcation Diagram for this autonomous equation. Move a along 
its slider to see the variety of behaviors the phase line of ẏ = .25 − ay + y2 as a 
varies. The green and red curve in the newly displayed bifurcation plane represents 
the equilibrium points for those equations, for various values of a. Give an equation 
for that curve. 



9. (M 27 Feb) [Linear vs Nonlinear] (a) This continues problem 8. In the 
absence of the spray, ẏ = .25 + y2 . Solve this equation analytically subject to the 
initial condition y(0) = 0 (so this is virgin lovebug territory at t = 0). At what value 
of t does the lovebug population become infinite? 

(b) Consider the bank account equation ẋ− Ix = q in the case when the interest rate 
I and the rate of savings q are both constant. This is then an autonomous equation. 
Assume I > 0. Sketch the phase line. If q < 0, what is the sign of the equilibrium? 
Please describe a scenario that this represents. What about when q > 0? 

(c) Suppose it is known that the constant function with value 1 and the function e−t 

are both solutions of the linear equation ẋ + p(t)x = q(t). What are the functions 
p(t) and q(t)? 

10. (W 1 Mar) [Hour Exam: Nothing but good luck] 

11. (F 3 Mar) [Second order models, real roots, initial conditions] Saloon 
doors can swing through the door frame. A good door damper will slow a swinging 
door down so it does not swing through the door frame—unless you shove the door 
hard toward the frame. In that case, it will swing through and return from the other 
side. This is a characteristic of “overdamping.” 

This problem will study this effect, using the Mathlet Damped Vibration. Open the 
applet. It’s about solutions of the second order homogeneous equation ẍ+bẋ+kx = 0. 
The initial conditions are set using the box at left. In it the horizontal direction gives 
ẋ(0) and the vertical direction gives x(0). The right graphing window displays the 
corresponding solution. 

Move the cursor around in the initial conditions box and observe the behavior of 
the left end of the graph in the right window. Verify for yourself that the slope 
increases when the horizontal coordinate increases, and that the value increases when 
the vertical coordinate increases. These coordinates can also be controlled using the 
sliders along the edge of the initial conditions box. 

As you decrease the damping constant b, you will see that the sytem becomes “under­
damped”: the solutions oscillate. In this problem, though, we will study the case in 
which b = 2 and k = 0.75. (The applet won’t let you choose k = 0.75. Approximate 
it by 0.74.) Check that this is overdamped: the characteristic polynomial has two 
distinct real roots, and the solutions don’t oscillate. 

Now set x(0) = 0.50. Set the ẋ(0) slider at −1.00 and start to increase it slowly. 
Watch the effect on the solution curve. At first it swings through x = 0, but soon 
seems not to. You can get a better picture by zooming in using one of the power­of­
ten buttons. Work with this till you come up with the smallest value of ẋ(0) which 
does not result in a solution crossing the t axis. (It will be a negative number.) 

(a) State the value you discover. 

(b) Now find the general solution of this ODE, with these values of k and b. Express 
the constants of integration in terms of ẋ(0) (using x(0) = 0.5). 

(c) Finally, verify that there is a number v such that the solution never takes on the 
value zero for t > 0 if ẋ(0) ≥ v, while it does if ẋ(0) < v. Does v agree with your 
measurement on the Mathlet? What is the solution with ẋ(0) = v? 



12. (M 6 Mar) [Real roots, initial conditions, characteristic polynomial] 
The hyperbolic cosine and sine functions are defined by 

xex + e−x e − e−x 

cosh(x) = , sinh(x) = . 
2 2 

Since the roots of the characteristic polynomial of y�� − y = 0 are ±1, ex and e−x are 
solutions. By superposition, so are cosh(x) and sinh(x). 

c

(a) In fact, any solution of y�� − y = 0 can be expressed as a linear combination of 
cosh(x) and sinh(x) as well. Express the coefficients c1 and c2 in y(x) = c1 cosh(x) + 
2 sinh(x) in terms of the initial conditions y(0) and y�(0). 

c

(b) Check that cos(ωx) and sin(ωx) are solutions of y�� + ω2y = 0. [This is another of 
those facts which you should memorize!] Write a general solution y of y�� + ω2y = 0 as 
a linear combination of them. Express the coefficients c1 and c2 in y = c1 cos(ωx) + 
2 sin(ωx) in terms of y(0) and y�(0). 

For example, take ω = 1 and write down the solution with y(0) = 5, y�(0) = 3. 

(c) Write down the constant coefficient homogeneous linear differential equation with 
characteristic polynomial p(s) = s3 − s, and find three linearly independent solutions 
for it. Show that they are linearly independent by assuming that the third is a linear 
combination of the other two and then seeing that this can’t happen. One way to see 
that it can’t happen, in this case, is to think about what happens when t →∞. 


