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18.03 Problem Set 8 Solutions: Part II


Each problem is worth 16 points, spread across Parts I and II. Part I values: 28: 2 points. 
31: 4 points; 32: 3 points for 4C-1, 1 point for 4C-4, 2 points for 4C-6ab, for a total of 6 
points. 

28. (a) (i) The roots of the characteristic polynomial are −1 ± i, so the basic real homoge
neous solutions are e−t cos t and e−t sin t. 

[1] f (t) = ω(t): this gives initial conditions x(0+) = 0, ẋ(0) = 1, which give solution e−t sin t. 

¨[1] f (t) = u(t): this gives initial conditions x(0) = ẋ(0) = 0 and equation x + 2 ̇x + 2x = 1 for 
t > 0. A particular solution (by ERF if you want!) is xp = 1/2. With x = (1/2)+e−t(a cos t+ 
b sin t), 0 = x(0) = (1/2) + a so a = −1/2; then ẋ = e−t((−(−1/2) + b) cos t+?? sin t), so 
0 = ẋ(0) = (1/2) + b and b = −1/2: so x = (1/2)(1 − e−t(cos t + sin t)). 

[2] f (t) = cos(2t): the corresponding complex exponential ODE is z̈ + 2 ̇z + 2z = e2it . p(2i) = 
(2i)2 +2(2i)+2 = −2+4i, so by ERF zp = e2it/(−2+4i) = ((−2−4i)/20)(cos(2t)+i sin(2t)). 
Thus xp = Re (zp) = (−1/10) cos(2t) + (1/5) sin(2t). xp(0) = −1/10 and ẋp(0) = 2/5, so we 
want the transient xh = e−t(a cos t + b sin t) to have xh(0) = 1/10 and ẋh(0) = −2/5. This 
gives a = 1/10, and then ẋh = e−t((−(1/10) + b) cos t+?? sin t), so −2/5 = −(1/10) + b or 
b = −3/10: x = (−1/10) cos(2t) + (1/5) sin(2t) + e−t((1/10) cos t − (3/10) sin t). 

(ii) [1] f (t) = ω(t): X(s) = W (s) = 1/p(s) = 1/((s + 1)2 + 1) has inverse Laplace transform 
w(t) = e−t sin t. 

1 a b(s + 1) + c 
[1] f (t) = u(t): X(s) = = + . Cover up the s to see a = 1/2. 
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Cover up the (s + 1)2 + 1 and set s = −1 + i to see 1/(−1 + i) = bi + c or b = c = −1/2: 

1 1 (s + 1) + 1 
X(s) = . Thus x = (1/2)(1 − e−t(cos t + sin t)). 
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s as + b c(s + 1) + d 
[2] f (t) = cos(2t): X = = + . Cover up the s2 + 4 

(s2 + 4)((s + 1)2 + 1) s2 + 4 (s + 1)2 + 1 
2i 

and set s = 2i: 
(2i + 1)2 + 1 

= a(2i) + b. (2i + 1)2 + 1 = −4 + 4i + 1 + 1 = −2 + 4i has 

reciprocal (−1 − 2i)/10, so (−2i + 4)/10 = 2ai + b or a = −1/10 and b = 2/5. Cover up the 
−1 + i 

(s + 1)2 + 1 and set s = −1 + i:
(−1 + i)2 + 4 

= ci + d. (−1 + i)2 + 4 = 1 − 2i − 1 + 4 = 4 − 2i 

has reciprocal (2 + i)/10 so ci + d = (1/10)(−1 + i)(2 + i) = (1/10)(−3 + i) or c = 1/10 
(s + 1) − 3 

and d = −3/10. Thus X(s) = 
1 −s + 4 

+ 
(s + 1)2 + 1 

. Thus x = (1/10)(− cos(2t) + 
10 s2 + 4 

2 sin(2t) + e−t(cos t − 3 sin t)). I can report that I made more mistakes using this technique 
than I did using (i). 

(iii) We need to use the unit impulse response, computed above as w(t) = e−t sin t (for t > 0). 
� t 

[1] f (t) = ω(t): x(t) = w(t − π )ω(π ) dπ . Here we see that we should really have used 0−
0 

for the lower limit in the convolution integral, so we get x(t) = w(t) from this integral. 
� t � t� t 

[1] f (t) = u(t): x(t) = w(t − π ) dπ (or w(π ) dt = e−� sin(π ) dπ , using commutativ
0 0 0 

ity of the convolution). 
� t 

[1] f (t) = cos(2t): x(t) = w(t − π ) cos(2π ) dπ . 
0 



(b) (i) [2] f(t) is even, so bk = 0 for all k. an is 1/� times the integral over one full “window”
of the product cos(nt)f(t). This window can be taken to be any interval of length 2�. To
avoid questions about what happens at the limits of integration, let’s take this window to
be, say, the interval between −�/2 and 3�/2. The integral is then cos(0) − cos(n�), which
is 0 if n is even and 2 if n is odd. Thus f(t) = (2/�)(cos(t) + cos(3t) + cos(5t) + · · ·).
(ii) [1] The generalized derivative sq�(t) = 2f(t). Thus

sq(t) =

�

4

�
(cos(t) + cos(3t) + cos(5t) + · · ·) dt =

4

�

�

sin(t) +
sin(3t)

3
+ · · ·




+ c .

The constant c is the average value of sq(t), which is zero.

(c) appeared accidentally and is not assigned. Here is an answer anyway. The point is

that in the convolution integral w(t) � q(t) =

� t

0

w(t − π)q(π) dπ the integrand is positive for

0 < π < t, so the integral is positive.

29. (a) [3] �n =
�

25/8 = 5/2
�

2. The roots of the characteristic polynomial are (1/4) ±
(7/4)i, so the system is underdamped with damped circular frequency 7/4. Independent real
solutions are e−t/4 cos(7t/4) and e−t/4 sin(7t/4).

(b) (i) [2] W (s) = (25/4)/(2s2 + s + (25/4)).

(ii) [2] The poles of W (s) occur at the roots of p(s), i.e. at (1/4) ± (7/4)i.

(iii) [2] The graph of |W (s)| is a surface lying over the complex plane, which sweeps up
to infinity above the two poles and levels off to zero as you move away from them in any
direction. It is always positive, and it is symmetric across the real axis.

(c) [3] (i) |W (i�)| = (25/4)/
�

((25/2) − 2�2)2 + �2.

(ii) Same answer.

(iii)

(d) [4] The part of the graph of |W (s)| lying over the imaginary axis is exactly the gain
graph visualized in (c) extended to be an even function of �.
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¨31. (a) [2] s2 + 3s + 2 = (s + 1)(s + 2) has roots −1 and −2, so x + 3 ̇x + 2x = 0 has 
independent solutions x1 = e−t and x2 = e−2t (or the other order), general real solution 
x = ae−t + be−2t, and is overdamped. ẋ1 = e−t and ẋ2 = −2e−2t . 

¨s + 2s + 4 = (s + 1)2 + 3 has roots −1 

−
± 

�
3i, so x + 2 ̇x + 4s = 0 has independent 

real solutions x1 = e−t cos(
�

3t) and x2 = e−t sin(
�

3t) (or the other order), general real 
solution x = e−t(a cos(

�
3t) + b sin(

�
3t)) or x = Ae−t cos(

�
3t − λ), and us underdamped. 

ẋ1 = e−t(− cos(
�

3t) −
�

3 sin(
�

3t)), ẋ2 = e−t(
�

3 cos(
�

3t) − sin(
�

3t)), 
� � � � 

0 1 0 1 
(b) [2] Companion matrices and . −2 −3 −4 −2 

� � 
e−t 

(c) [2] The trajectory of −e−t is the ray eminating from the origin in the direction 

1 
−1 

. (It is NOT the entire line, and it does not include the origin.) It is directed 

e−2t 

inwards. The trajectory of −2e−2t is the ray eminating from the origin in the direcion 

1 
. It is also directed inwards.
−2


¨
(d) [2] We have to solve x + 3 ̇x + 2x = 0 with initial conditions x(0) = 0 and ẋ(0) = 1. 
Using the general solution from (a), which has ẋ = ae−t − 2be−2t , we find a + b = 0 and 

a − 2b = 1. Adding, −b = 1 so b = −1 and a = 
−

1: x = e−t − e−2t . Its derivative is −
ẋ = −e−t + 2e−2t, so the solution is 

e−t − e−2t 

−e−t + 2e−2t . 

(e) [2] The general solution having this trajectory simply shifts time by some constant: 

2e−(t−a) − e−2(t−a) 

−2e−(t−a) + 2e−2(t−a) 

(f ) [2] This solution is a spiral, spiralling clockwise in towards the origin. It pass through 
1 

the point −1 
(and it does this at t = 0, but this information is not part of the phase 

portrait). 

0 
¨To find the trajectory passing through we must solve x + 2 ̇x + 4x = 0 with initial 

1 
condition x(0) = 0, ẋ(0) = 1. x(0) = 0 implies that a = 0 in the general solution computed 
in (a), so ẋ(0) = bẋ2(0) = b

�
3 and so b = 1

�
3. Thus x = (1

�
3)e−t sin(

�
3t) and ẋ = 

e−t(cos(
�

3t) − (1/
�

3) sin(
�

3t)), so a solution with this trajectory is 
(1
�

3)e−t sin(
�

3t) 
e−t(cos(

�
3t) − (1/

�
3) sin(

�
3t)) 

It crosses the y axis again when x(t) = 0, or sin(
�

3t) = 

0, which happens next at t = �/
�

3. The answer is the same for all the solutions with this 
trajectory. 

0 1 
32. (a) The characteristic polynomial of of is �2 + 3� + 2, that is, it is the same −2 −3 
as the characteristic polynomial of the original second order equation (but with variable 
called � instead of s). So the eigenvalues are the roots, −1 and −2. For � = −1, we want a 

1 1 
nonzero vector v1 such that v1 = 0. v1 = 

−1 
or any nonzero multiple will 

1−2 −2 
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2 1 
serve. For � = −2, we want a nonzero vector v2 such that v2 = 0. v2 = −2 −1 −2 
or any nonzero multiple will serve.


The eigenlines are the lines through the origin of slope −1 and slope −2. A solution mov


ing along the first is ce−t −1 
(for any nonnzero constant c), and along the second is 

1 

ce−2t 

−2 
(for any nonzero constant c). 

0 1 
(b) The companion matrix is 

2 −2 
. Its characteristic polynomial is the same as the 

characteristic polynomial of the original equation, �2 + 2� − 2. Its roots are −1 ±
�

3. 

1 −1 
An eigenvector v1 for −1 + 

�
3 satisfies 

1 −
�

3 
−1 −

�
3 

v1 = 0. v1 = 1 −
�

3 
or 

2 
any nonzero multiple will do. 

1 −1 
An eigenvector v2 for −1 −

�
3 satisfies 

1 + 
�

3 
−1 + 

�
3 

v2 = 0. v2 = or 
2 1 + 

�
3 

any nonzero multiple will do. 

The rays with positive slope flee from the origin, and the rays with negative slope converge 
to the origin. 

−1 
Normal modes are given by ce(−1+

�
3)t 

1 −
�

3 
and ce(−1−

�
3)t −1

. 
1 + 

�
3 


