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18.03 Problem Set 9 Solutions


Each problem is worth 16 points, spread across Parts I and II. Part I values: 33: 2 points. 34: 0 points; 
35: 2 points for 4G­1(a), 1 for eAt, 1 for A, 2 for 4G­2(a), 2 for 4G­2(b), for a total of 8 points; 36: 4 
points. 
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� � −e−3t + e
I. 35. 4G­1: e = x1 x2 =

2
−
e
e3t 

− 
+
2
e
e

2

2

t

t −e3t + 2e
. To find the matrix, note that we know 3t 2t 

1 1 1 1
the eigenvalues and their eigenvectors: A = 3 and A = 2 . Put these equations 

1 1 2 2 � � � � � � � � � 
1 1 3 2 3 2 1 1 

−1 � 
4 −1

next to each other: A 
1 2 

= 
3 4

, so A = = 
3 4 1 2 2 1

. 

0 1
33. (a) [8] The characteristic polynomial of A = −1 −2 

is λ2 + 2λ + 1 = (λ + 1)2 which 

1 1
has the repeated root λ1 = −1. Find a nonzero eigenvector: v killed by A − λ1I = : −1 −1 

1 1 
v = −1 

or any nonzero multiple. So one solution is u1 = e−t . For the other we have to −1 
1 1 1 1

solve (A− λ1I)w = v, i.e. −1 −1 
w = −1 

. One solution is w = . (If w is a solution so 
0 

1 1 t + 1 
is w + v for any eigenvector.) So a second basic solution is u2 = e−t(t −1

+ ) = e−t .
0 −t 

The general solution is a linear combination of these two, and any two linearly independent solutions 
qualify as a pair of “basic solutions.” 

(b) [6] The corresponding second order equation is ẍ+ 2 ̇x+ x = 0. The characteristic polynomial is the 
same as that of its companion matrix (this is a general fact!) so there is a repeated root −1, and two 
basic solutions x1 = e−t and x2 = te−t . The corresponding solitions of the companion system are then 

tx1 = 
e−t 

= e−t 1 
and 

x2 = 
e−tt 

. The first is exactly 
ẋ1 −e−t −1 ẋ2 e−t(1 − t)

= e−t 
1 − t 

u1. The second is u2 − u1. Of course, there are many choices here. Any two linearly independent 
solutions of x + 2 ̇x + 2x = 0 qualifies as a pair of “basic solutions.” ¨

1 3
34. (a) [2] A = has trace 1 + d and determinant d + 3. Thus det = tr + 2. 

d−1 

(b) [4] det A = 0 when d = −3. det A = ((trA)/2)2 when d+ 3 = ((d+ 1)/2)2, i.e. 4d+ 12 = d2 + 2d+ 1 
or d2 − 2d− 11 = 0. This happens when d = 1 ± 1 − (−11) = 1 ± 2

√
3, or about −2.464 and 4.464. 

trA = 0 when d = −1. 

(c) [5] Diagram showing: d < −3—(unstable) saddle 
d = −3—degenerate neutrally stable comb 
−3 < d < 1 − 2

√
3—stable node = nodal sink 

d = 1 − 2
√

3—stable defective node = defective nodal sink 
1 − 2

√
3 < d < −1—clockwise stable spiral = spiral sink 

d = −1: clockwise center or ellipse 
−1 < d < 1 + 2

√
3—clockwise unstable spiral = spiral source 

d = 1 + 2
√

3—unstable defective node = defective nodal source 
1 + 2

√
3 < d—unstable node = nodal source. 

(d) [5] 9 phase portraits, illustrating the above nine conditions. 

0 1
35. (a) [I.33 work: A = −1 2 

has characteristic polynomial λ2 − 2λ + 1 = (λ − 1)2 and has 
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1 
λ1 = 1 as repeated eigenvalue. It’s not diagonal so it’s defective. v1 = is a nonzero eigenvector, 

1 
1 1tso normal mode e
1 

. To find another solution, solve (A − λ1I)w = v1, i.e. 
−1 1 

w = −1 1 1
. 

1 
w = 

−1
+ c for any constant c (using this choice of eigenvector); let’s take 

−1 
. Basic 

0 1 0 
1 1tsolutions are then e and et(t + 

−1 
) = et t − 1 

.]
1 1 0 t 

1 −1t[2] A fundamental matrix is given by Φ(t) = e
1 t − 1 

. Φ(0) = , and Φ(0)−1 = 
1 t 1 0� � � � � � � � 

0 1 t 0 1 t 
−1 1 

. Thus eAt = Φ(t)Φ(0)−1 = e
1 t − 1 

−1 1 
= et 1 − t 

1 t −t 1 + t 
. 

(b) [3] 
0 −1 

has characteristic polynomial λ2 + 1 and eigenvalues ±i. A nonzero eigenvector 
1 0 

1 1
for λ = i is (or any nonzero complex multiple), a normal mode is eit , and basic real −i −i 

solutions are given by the real and imaginary parts of this normal mode: 
cos t 

and 
sin t 

.
sin t � − cos t� � � � � 

cos t sin t 1 0 1 0
A fundamental matrix is Φ(t) = , Φ(0)−1 =

0 −1 
, and 

sin t − cos t 
. Φ(0) = 

0 −1� � � � � � 

eAt = Φ(t)Φ(0)−1 = 
cos t sin t 1 0 cos t − sin t 

= 
sin t − cos t 0 −1 sin t cos t 

. 

(c) [3] 
a −b 

has characteristic polynomial λ2 −2a+(a2 +b2) and eigenvalues a± 
� 

a2 − (a2 + b2) = 
b a 

1 
a ± bi. A nonzero eigenvector for λ1 = a + bi is (or any nonzero complex multiple), a normal −i 

1
mode is e(a+bi)t , and basic real solutions are given by the real and imaginary parts of this normal −i 

cos(bt) sin(bt) cos(bt) sin(bt)at atmode: eat and e − cos(bt) 
. A fundamental matrix is Φ(t) = e

sin(bt) sin(bt) − cos(bt)
. � � � � � � � � 

1 0 1 0 at cos(bt) sin(bt) 1 0
Φ(0) = 

0 −1 
, Φ(0)−1 =

0 −1 
, and eAt = Φ(t)Φ(0)−1 = e = 

sin(bt) − cos(bt) 0 −1 
cos(bt) − sin(bt)ate
sin(bt) cos(bt)

. 

[A = 
a −b 

is the matrix representing multiplication by a + bi in the complex plane, and eAt is 
b a 

the matrix representing multiplication by e(a+bi)t.] 

36. [12] The variation of parameters formula for a solution to u̇ = Au+q(t) is u = Φ(t) Φ(t)−1q(t) dt. 

t
We might as well use the exponential matrix eAt = et 1 − t 

. In that case the inverse is e−At = −t � 
1 + t� � � � � � � � � � � � � 

t 
e−t 1 + t −t 

1 − t 
. Then e−At e

= 
1 

, so v = e−At et 
dt =

1 
dt = 

t 
+ c.t tt e 1 e 1 t 

t1 − t
Thus the general solution is u = eAtv = et t 

+ et 
−t 1 + t 

c. However, our initial condition 
t 

tu(0) = 0 is already satsfied by u = e
t 

, so that is the desired solution. 
t 


