18.03 Study Guide and Practice Hour Exam II, March, 2006
I. Study guide.

Homogeneous equations. The second order linear ODE m# + bi + kx = ¢(t) models
a spring/mass/dashpot system, where an external force ¢(t) is acting on the mass. We
have always assumed m, b, and k are constant in time. The characteristic polynomial
is p(s) = ms® + bs + k, and the operator p(D) = mD? + bD + kI is a second order (if
m # 0) LTI (linear time invariant, i.e. linear constant coefficient) differential operator.
The equation is homogeneous if q(t) = 0. Solutions then are given by the following table,
in which we suppose m = 1 (by dividing through by it if need be) and r; and ry are the
roots of p(s).

Name Overdamped | Critically Damped Underdamped
Roots r1 # 1o real rL=1T9 r1 = T5 not real
Condition v > 4k b = 4k b < 4k
Gen Real Sol | ¢ie™! 4 cpe™ (c1t + co)e™? e%2(cy cos(wat) + cosin(wgt))
= Ae /2 cos(wat — @)

The names are only really appropriate when k,b > 0. In this case, Re r1» < 0, and
Rerio <0if k>0 and b > 0. In that case all these solutions die off as ¢ — oco. In the

underdamped case, wg = \/k — (b/2)? is the damped circular frequency. The two forms
of the general solution in the nonreal root case are related by the standard triangle: A, ¢

are the polar coordinates of the point (c1,c) (so A = /¢ + ¢3 and tan ¢ = ¢/ ).

If p(D) is a second order LTI operator and x; and x5 is any pair of solutions to p(D)z = 0
such that neither is a multiple of the other, then the general solution to p(D)z = 0 is
given by ¢y + coxo for ¢q, ¢y constants. Such a pair of solutions is called “basic.” For
any initial condition x(a), #(a), one can solve for ¢; and c¢,. This process is very easy
if x1, 29 is “normalized at t = a,” x1(a) = 1, @1(a) = 0, 23(a) = 0, #2(a) = 1. Then
x = z(a)ry+x(a)re. Example: cos(w,t), (1/w,)sin(w,t) is a normalized pair of solutions
to the harmonic oscillator & + w2z = 0.

The key to solving homogeneous constant coefficient linear equations is to look for ex-
ponential solutions. If ¢ # 0, ce™ is a solution to p(D)x = 0 exactly when r is a root of
p(s), p(r) = 0. Usually a degree n polynomial p(s) has n distinct complex roots. When
this happens, there are n distinct nonzero exponential solutions for p(D)x = 0, and the
general solution is a linear combination of them.

Inhomogeneous equations. The superposition principle states that the general solu-
tion to p(D)x = ¢(t) is given by © = x,+x), where x, is any solution to p(D)z = ¢(t) and
xp, is the general solution to p(D)x = 0 (called by EP the complementary solution). Also,
if p(D)z1 = (1) and p(D)z2 = g2(1), then p(D)x = c1¢1(t) +c202(t) if 2(t) = c121 + 2.

We found particular solutions z, for various different input signals ¢(¢). These methods
work for any p(D).



(1) The Exponential response formula ERF: A solution to p(D)z = €' is given by
x, = €™ /p(r), as long as p(r) # 0.

Application: To solve p(D)x = q(t) with ¢(t) = cos(wt) or sin(wt), write down the new
ODE p(D)z = €™*; solve it using ERF; and extract the real (or if the input signal is
sine, the imaginary part). Case: & + w2z = cos(wt) has solution z, = cos(wt) /(w2 — w?)
(and same with sine), as long as w # w,. Case: if b and k are positive then there is just
one sinusoidal solution to & + b& + kx = F cos(wt). It is given by A cos(wt — ¢) where
A and —¢ are the polar coordinates of the “complex gain” W (iw) = F/p(iw); that is,
W (iw) = Ae™%.

More generally, if ¢(t) = e cos(wt) or e® sin(wt), solve p(D)z = e(*T™)t and continue.

(2) Undetermined coefficients: If ¢(¢) is polynomial of degree at most k, and p(0) # 0,
then there is exactly one solution of p(D)z = ¢(t) which is polynomial of degree at most
k. Case: if q(t) = ¢, a constant, then x = ¢/p(0) is a solution.

(3) “Resonance” means that the exponent r is a root of p(s), so the ERF fails. In
that case we have the Resonant Response Formula: If p(r) = 0 but p'(r) # 0, then
p(D)x = €™ has as solution z, = te™/p/(r). See the Supplementary Notes or Notes and
Exercises for a more general statement.

Application: # + w2z = cos(w,t) has solution z, = (t/2w,) sin(w,t). Case: & + bz = 1.
Since e = 1if r = 0, we find x, = t/b as long as b # 0. In any case, solutions grow
faster that the exponential growth/decay predicted by the real part of the root.

(4) The exponential shift law ESL: p(D)(e"'u) = e"p(D + r@)u. If q(t) = e"q.(t)
where ¢ (t) is some other function, then x = e"u is a solution to p(D)z = ¢(t) provided
that u is a solution to p(D — rI)u = ¢;(t). ESL eliminates exponentials. Application: if
b # 0, a solution to Z + w?z = cos(wt) is x, = (1/2w)tsin(wt). The function ¢;(t) might
be polynomial for example.

Putting all this together, we have actually proven the following theorem:

Theorem. If ¢(t) is a linear combination of products of polynomials and exponential
functions, then all solutions to p(D)x = ¢(t) are too.

Here we mean to include complez linear combinations of products of polynomials with
complex coefficients and compler exponential functions. For example sin(t) = (e —
ie” ) /2i is included.



II. Practice Hour Exams.

Exponential Response Formula:
x, = Ae™ /p(r) solves p(D)x = Ae™
provided p(r) # 0.

Resonant Response Formula:
x, = Ate™ /p/(r) solves p(D)x = Ae"
provided p(r) = 0 and p'(r) # 0.

Exponential Shift Law:
p(D)(e"u) = e"p(D + rl)u.

First Practice Exam (50 minutes)

1. A spring/mass/dashpot system is modeled by 2& + 2b& + 42 = —10.
(a) What is the steady state (constant) solution?
(b) For what values of the damping constant b does the system “ring,” i.e. oscillate?

(c) When it does oscillate, what is the pseudoperiod (in terms of b)?

2. Find a particular solution to # + 4% + 4z = e~ cos(2t).

3. Find the solution to & + 44 + 4z = 4 such that x(0) = 0 and #(0) = 0.
4. Find a particular solution to & 4 4% + 4x = 8t> + 8.

5. (a) Find the amplitude of the sinusoidal solution to & + 2& + 2x = cos(wt), as a
function of the input signal circular frequency w.
(b) For what value of w is the phase lag zero?

(c) For what value of w is the phase lag 90°7

Second Practice Exam (90 minutes?)
1. Find w, A, and ¢ such that x, = A cos(wt —¢) is a solution to &+ 2%+ 15z = 2 cos(3t).

2. (a) For what value of w does resonance occur in Z + 2z = cos(wt)?

(b) For what value of ¢ does critical damping occur in & + ¢t + 4x = 07

3. (a) What is the general real solution of & + 44 + 5z = 07
(b) Find a particular solution to & + & + 2z = 2t* + 2t + 4.

4. (a) If e7% 4 2e~ is a solution to # + ¢t + kx = 0, what are the constants ¢ and k?

t

(b) Same question if te~" is a solution instead.

(c) What are the exponential solutions of ¥+ 2%+ 2x = 07 Find the general real solution.
What is the damping type of this equation?



5. Suppose & + 4x = e 't1?. For a suitable constant r, if we write x as e"u then u

satisfies a differential equation of the form i+ ctt + ku = t'°. What is r, and what is this
new ODE? (Don’t try to solve it!)

6. True or False: For appropriate ¢, k, and ¢, both e~ and sin(¢) are solutions to the
single equation & + ci + kx = q(t).

7. (a) The substitution z = e"u (for an appropriate value of r) lets you replace the
ODE # + 24 + 2z = te 'sin(t) with a different ODE (for u) having right hand side t.
What is the new ODE?

(b) Find a solution of @ + x = tsint by replacing it by a complex equation and solving
using the substitution x = e"u for appropriate r.

(c) Find a polynomial solution of # + z = ¢* + 1. What is the general solution?

8. (a) Find a periodic solution to & + 2& + 2x = 1 + 2 cos(?).

(b) What is the amplitude of the sinusoidal solution to & + 2& + 2z = 2 cos(¢)? What is
the phase lag ¢?

(c) Find a solution to & — 4z = €.



IT1. Solutions.
First Practice Exam
1. (a) z = —5/2.

(b) The characteristic polynomial has roots —b/2 4+ 1/(b/2)? — 2. They are complex as
long as (b/2)? < 2, i.e. |b| < 2V/2.

(c) wag=4/2—(b/2)? so Py =2m/wy =27/,/2 — (b/2)2.

2. The equation is the real part of p(D)z = e(=2*2)t where p(s) = s2+4s+4. p(—2+2i) =
(—2+42i)24+4(—2+2i) +4 = —4, so by the ERF z, = e(=2¥2)!/(—4) and so 7, = Re 2, =
—(1/4)e™% cos(2t). Other methods work too: try z, = e~ (acos(2t) + bsin(2t)); or use
ESL to eliminate e~ 2.

3. 2, =1,s502,(0) = 1and #,(0) = 0. For x = x,+x), to satisfy the given initial condition
we need z;,(0) = —1 and i, (0) = 0. p(s) = (s + 2)? so the general homogeneous solution
is x, = (at + ca)e . @, = (=21t + (c1 — 2¢2))e™, s0 21,(0) = ¢, ©4(0) = ¢ — 2¢a.
This gives c; = =1l and ¢; = =2, s0 v = 1 + (=2t — 1)e™ 2.

4. v = at> + bt +c, & = 2at + b, ¥ = 2a, so we want a,b,c such that 8> + 8 =
4at®+(4b+8a)t+(4c+4b+2a). This gives a = 2, then b = —4, then ¢ = 5: x, = 2t*—4t+5.

5. (a) z, = Re ! /p(iw) has amplitude |1/p(iw)]. p(iv) = (iw)*+2iw+2 = (2—w?)+2iw
s0 A = [1/p(iw)| = 1/,/(2 — w?)? + 4w,

(b) Zero phase lag occurs when p(iw) is real (and positive), which happens only when
w=0.

(c) Phase lag of 90° occurs when p(iw) is purely imaginary with positive imaginary part.
This happens only when w? =2 and w > 0, i.e. w = /2.

Second Practice Exam

1. Start by writing down a complex equation having this as its real part: p(D)z = 2¢3*,

with p(s) = s* + 2s + 15. By the key formula this has solution 2z, = (2/p(3i))e 3“.
p(3i) = =9+ 6i + 15 = 6 + 6i. The clever way to solve the problem is to switch to
polar coordinates right away: p(3i) = (6v/2)e™/*, so z, = (v/2/6)e'®*="/9_ The original
equation has solution z, = (v/2/6) cos(3t — 7/4). Thus w = 3, A = \/2/6, and o =m/4

2. (a) It occurs when w equals the natural frequency of the system, which is v/2.

(b) It occurs when the two roots of the characteristic polynomial are equal, which is
when ¢ = 4 (so both roots are —2)

3. (a) The roots of the characteristic polynomial p(s) = s?> +4s + 5 are r = —2 &4, s0
r=c¢ *(acost + bsint).

(b) Try z = at®> + bt + ¢, so & + & + 2z = (2a) + (2at + b) + 2(at® + bt + ¢) = 2at® +
(2a+ 2b)t + (2a + b+ 2¢) Equating this with 2¢? + 2¢ + 4 gives, successively, a = 1, b = 0,
¢ =1: so x, = t* + 1. This is easy to check.

4. (a) The only way this sum can occur is if both e™?! and e~ are solutions, so the roots

of p(s) = s*+ecs+kare —1 and —2: p(s) = (s—(—=1))(s — (=2)) = s +3s+2: s0 ¢ = 3,
k=2.



(b) The only way te™" can be a solution is if —1 occurs as a double root: so p(s) =
(s+1)2=s"4+2s+1:soc=2k=1.

(c) The roots of p(s) = s?+2s+2 are —1414, so the exponential solutions are e(~1*9* and
e(=17)* (and their constant multiples). The general real solution is e *(acost + bsint).
This is an underdamped equation.

5. Take r = —1 and use ESL: e '#!* = p(D)(e"'u) = e 'p(D — Iu, so p(D — Iu = t'°.
p(s) = s2+4,s0 p(s—1) = (s—1)>+4 = s> —2s+5, and the equation is i — 20+ 5u = ¢1°,
Or substitute and compute directly.

6. False. Reason: If these are system responses to the same signal, then their difference
must be a system response to the null signal, that is, a homogeneous solution. But such
solutions are linear combinations of two exponentials (or, in the case of a repeated root,
linear combinations of an expnential and ¢ time the same exponential). sin(t) —e™" is

not of this form.

7. (a) The equation is the imaginary part of p(D)z = te"1+) with p(s) = 5% + 2s + 2.
Take z = e"*Vy and use ESL: p(D)z = p(D)(e"" ") = Dt (D + (=1 +4) 1 )u.
Equating and canceling the exponential gives p(D + (=1 + i)I)u = t. We compute
p(D+ (=1+40) )= (D+ (=1+)I)>+2(D+ (—1+1i)I) + 2] = D?*+ 2iD, so the new
ODE is @ 4 2iw = t. This can also be done by direct substitution.

(b) This equation is the imaginary part of p(D)z = Z + 2 = te'. Take z = e''u apply
ESL: p(D)z = p(D)(e"u) = e"p(D + il )u. Equating and canceling the exponential gives
p(D +il)u =t. We compute p(D +il) = (D +il)+1 =D+ (1+1)I, so the equation
is 4+ (1 +4)u = t. This can be obtained also by direct substitution. Use undetermined
coefficients, with u = at + b: @ = a, so the equation reads a + (1 + i)(at + b) = ¢, so
a=1/(1+1)=(1—1i)/2and b = —a/(1+14) =i/2. Thus u, = ((1 —1)/2)t+ (i/2). Then
2, = (((1—1)/2)t+ (i/2))(cost +isint), and x, = Iz, = (t/2)(sint — cost) + (1/2) cost.

(c) Try z = at®> + bt + ¢; © = 2at + b, & = 2a, so & + x = at® + bt + (¢ + 2a). For this to
be equal to t* + 1 we must have a =1, b =0, and so c=1—2a = —1: z, =t* — 1. The
general solution is z = (t* — 1) + acost + bsint.

8. (a) Use superposition: the signal 1 has periodic solution given by the constant
1/2. For the other term, once again I recommend replacing the problem with a complex
one: p(D)z = 2¢" which has solution z, = 2¢/p(i) by the Exponential Response
Formula. p(s) = s*+2s+2sop(i) = —1+2i+2 =142 and z, = (2/(1 + 2i))e" =
((2 — 44)/5)(cost + isint) has real part z, = (2/5)cost + (4/5)sint. Thus the original
problem has a periodic solution (1/2) + (2/5) cost + (4/5) sin t.

(b) We just saw that & + 2@ + 2z = 2sin(2t) has for a solution the imaginary part
of (2/p(i))e®, and that p(i) = 1 4 2i. Write p(i) = v/5¢, so ¢ = arctan(2). Then
2z, = (2/4/5)e'*? 5o 1, has amplitude 2/4/5 and phase lag ¢ = arctan(2). Alternatively,
use the usual triangle with sides 2/5 and 4/5 from the final form of the solution to (a).

(c) 2 is a characteristic root here so we can’t apply the Exponential Response Formula.
We are in a resonance situation, and multiplying by ¢ comes to the rescue: Try x = Ate*.
Then = A(2t+1)e*, & = A(2(2t+1)+2)e? = A(4t+4)e* and i—4x = 4Ae*. (This can
also be done using ESL: p(D)(e* At) = e*p(D +2I)(At), and since p(D) = (D +2I)(D —
2I), p(D +21) = (D +41)D and p(D + 21)At = (D +41)D(At) = (D + 41)A = 4A.)
Setting this equal to €** we find A = 1/4 and x, = (1/4)te*.



