Lecture 26, April 14

Laplace Transform: basic properties; functions of a complex variable; poles
diagrams; s-shift law.

[1] The Laplace transform connects two worlds:

| The t domain
| t is real and positive
| functions f(t) are signals, perhaps nasty, with discontinuities
| and delta functions
| ODEs relating them
| convolution
| systems represented by their weight functions w(t)

| L | ^
| v | L\{-1\}

| The s domain
| s is complex
| beautiful functions F(s), often rational = poly/poly
| and algebraic equations relating them
The use in ODEs will be to apply L to an ODE, solve the resulting very simple algebraic equation in the s world, and then return to reality using the "inverse Laplace transform" L^{-1}.

We continue to consider functions (possibly generalized) $f(t)$ such that $f(t) = 0$ for $t < 0$.

$$F(s) = \int_0^\infty e^{-st} f(t) \, dt$$

This is like a hologram, in that each value $F(s)$ contains information about ALL values of $f(t)$.

Example: $f(t) = u(t)$:

$$F(s) = \int_0^\infty e^{-st} \, dt$$

$$= \lim_{T \to \infty} e^{-sT}/(-s) |^T_0$$

$$= (-1/s) \left(\lim_{T \to \infty} e^{-st} - 1 \right).$$

To compute this limit, write $s = a + bi$ so

$$e^{-sT} = e^{-aT} \left(\cos(-bT) + i \sin(-bT) \right)$$

The second factor lies on the unit circle, so $|e^{-sT}| = e^{-aT}$.

This goes to infinity with T if $a < 0$ and to zero if $a > 0$.

Thus:

$$F(s) = 1/s \text{ for } \text{Re}(s) > 0$$

and the improper integral fails to converge for $\text{Re}(s) < 0$.

This is typical behavior: the integral converges to the right of some vertical line in the complex plane C, and diverges to the left, provided that $f(t)$ doesn't grow too fast. Technically, there should exist a real number k such that for all large t,
\[|f(t)| < e^{kt} \]

In the definition we should add:

"for \ Re(s) \ large."

The expression obtained by means of the integration makes sense everywhere in \(C \) except for a few points - like \(s = 0 \) here - and this is how we define the Laplace transform for values of \(s \) with small real part.

[4] This computation can be exploited using general properties of the Laplace Transform. We'll develop quite a few of these rules, and in fact normally you will not be using the integral definition to compute Laplace transforms.

Rule 1 (Linearity): \(L[af(t) + bg(t)] = aF(s) + bG(s) \).

This is clear, and has the usual benefits.

Rule 2 (s-shift): If \(z \) is any complex number, \(L[e^{zt}f(t)] = F(s-z) \).

Here's the calculation:

\[
L[e^{zt}f(t)] = \int_0^\infty e^{zt} f(t) e^{-st} \, dt \\
= \int_0^\infty f(t) e^{-(s-z)t} \, dt \\
= F(s-z).
\]

Using \(f(t) = 1 \) and our calculation of its Laplace transform we find

\[
L[e^{zt}] = \frac{1}{s-z}. \tag{*}
\]

[5] Especially, we've computed \(L[e^{at}] \) for a real.

This calculation (*) is more powerful than you may imagine at first, since \(z \) may be complex. Using linearity and

\[
\cos(\omega t) = \frac{e^{i\omega t} + e^{-i\omega t}}{2}
\]

we find

\[
L[\cos(\omega t)] = \frac{1/(s - i \omega) + 1/(s + i \omega)}{2}
\]

Cross multiplying, we can rewrite

\[
L[\cos(\omega t)] = \frac{s}{s^2 + \omega^2}
\]

Using

\[
\sin(\omega t) = \frac{e^{i\omega t} - e^{-i\omega t}}{2i}
\]

we find

\[
L[\sin(\omega t)] = \frac{s}{s^2 + \omega^2}
\]
\[L[\sin(\omega t)] = \frac{\omega}{s^2 + \omega^2}. \]

[6] The delta function:

Something new about \(\delta(t) \):

If \(f(t) \) is continuous at \(b \), \(f(t) \, \delta(t-b) = f(b) \, \delta(t-b) \).

Therefore whenever \(a < b < c \), \(\int_a^c f(t) \, \delta(t-b) \, dt = f(b) \):

integrating against \(\delta(t) \) picks out the value of \(f(t) \) at \(t = b \).

Thus, for \(b \geq 0 \),

\[L[\delta(t-b)] = \int_0^\infty \delta(t-b) \, e^{-st} \, dt = e^{-bs} \]

In particular,

\[L[\delta(t)] = 1 \]

This example shows that actually we should write

\[L[f(t)] = \int_{0-}^\infty f(t) \, e^{-st} \, dt \]

to be sure to include any singularities at \(t = 0 \).

[7] The relationship with differential equations:

Compute:

\[L[f'(t)] = \int_{0-}^\infty f'(t) \, e^{-st} \, dt \]

\[u = e^{-st} \quad du = -s \, e^{-st} \, dt \]

\[dv = f'(t) \, dt \quad v = f(t) \]

\[... = e^{-st} \left. f(t) \right|_{0-}^\infty + s \int f(t) \, e^{-st} \, dt \]

The evaluation of the first term at \(t = \infty \) is zero, by our assumption about the growth of \(f(t) \), assuming that \(\text{Re}(s) \) is large enough. The evaluation at \(t = 0- \) is zero because \(f(0-) = 0 \). Thus:

\[\ldots = s \, F(s) \]

Now, what is \(f'(t) \)? If \(f(t) \) has discontinuities, we must mean the generalized derivative. There is one discontinuity in \(f(t) \) that we can't just wish away: \(f(0-) = 0 \), while we had better let \(f(0+) \) be whatever it wants to be. We have to expect a discontinuity at \(t = 0 \).

Just to keep the notation in bounds, let's suppose that \(f(t) \) is differentiable for \(t > 0 \). Then
\((f')_r(t)\) is the ordinary derivative

\((f')_s(t) = f(0+) \delta(t)\)

and the generalized derivative is the sum. Thus

\[L[f'(t)] = f(0+) + L[f'_r(t)] \]

and so

\[L[f'_r(t)] = sF(s) - f(0+) \]