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18.03 Muddy Card responses, April 14, 2006


1. A number of people brought up the point made at the end of Lecture 25, on April 

w

12: how do we know what initial conditions yield the unit step or impulse responses? 
This is a tricky point and I did not explain it completely. One point to be made is 
this: in the case of the unit impulse response, when we have anx

(n) + · · ·+ a0x = δ(t), 
the solution x should not be too wild at t = 0 since I have to be able to differentiate 
it n times in order to apply the differential operator to it. If I wind up with a 
discontinuity in the (n − 2)nd derivative, for example, then when I differentiate once 
more I get a delta function, and we have not tried to understand what happens when 
you differentiate a delta function. So the derivatives up to the (n − 2)nd should be 
zero at t = 0 (since they are zero for t < 0). The (n − 1)st should be such that when 
I differentiate once more and multiply by an I get the delta function: so it should 
increase from 0 at 0− to 1/an at 0+. This is why w(0+) = · · · = w(n−2)(0+) = 0 and 

(n−1)(0+) = 1/an. Make sure you understand how this works out in terms of our 
model examples (bank account or radioactive decay for n = 1 and spring system for 
n = 2). 

2. A number of questions concerned justification of the convolution integral. I suggest 
reviewing the lecture notes with the Mathlet Convolution: Accumulation open in 
front of you. 

3. And what is the s in the Laplace transform? Please be patient with this. We will 
see this more clearly by the end of this week. 

4. What’s this business about f (t)δ(t − b)? Well, I claimed that you could use 
generalized functions just like ordinary functions. This is not quite right, though. I 
don’t want to have to multiply them together. In practice, you don’t find yourself 
doing that. But you can multiply an ordinary function by a generalized function, 
sometimes. Since δ(t) = 0 for t = 0, I think it’s clear that f (t)δ(t) = 0 for t = 0 
as well. The only question is whether it makes sense to view it as hδ(t) for some 

∞ 

number h. h will be the area under the graph, h = f (t)δ(t) dt. I should be 
−∞

sure that h doesn’t depend upon which bump function I approximate δ(t) with. A 
∞ 

bump function is is an ordinary function β(t) with β(t) dt = 1. A bump function 
−∞

approximates δ(t) well when β(t) = 0 except for |t| small. If you know that the 
values of f (t) are close to the value f (0) for |t| small—i.e. if f (t) is continuous at 
t = 0—then the product f (t)β(t) will be close to f (0)β(t) when β(t) approximates 
δ(t) well, and we find that h = f (0). So this explains why f (t)δ(t) = f (0)δ(t) when 
f (t) is continuous at t = 0. Same way if you center at some other point b. It also 
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explains why h = f (t)δ(t) dt = f (0). 
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5. Why do we need the 0− in L[f (t)] = f (t)e−st dt? Good question. I shouldn’t 
0−

have mentioned it till I needed it, which is when I wanted to understand L[δ(t)]. 
e−stHere, the integrand is δ(t)e−st , which is δ(t) since | = 1. If you imagine t=0 

approximating δ(t) by a very tall bump function, the value of the integral from exactly 
t = 0 is not well­defined; it depends upon which bump you take. But if you integrate 
from a number a < 0 you do know what you will get—namely, 1—and then you can 
take the limit as a ↑ 0. That’s what the lower limit 0− means. 


