18.03 Muddy Card responses, April 21, 2006

1. LTI = Linear, Time Invariant. This is a property of an operator or a system. An operator (which is a rule L that converts one function of time to another one) is linear if L(f+g) = L(f) + L(g) and L(cf) = cL(f) for functions f and g and constants c. Differention D is linear, adding 1 (i.e. sending f(t) to f(t) + 1) is not. An operator is time invariant if (Lf)(t-a) = L(f(t-a)) for any constant a and any function f. This is more or less the same as commuting with D: LD = DL. Differentiation is time independent, while multiplication by t, sending f(t) to tf(t), is not: (Lf)(t-a) = (t-a)f(t-a), while L(f(t-a)) = tf(t-a). The system represented by a time independent operator does not change through time.

A differential operator is LTI when it has the form $p(D) = a_n D^n + \cdots + a_1 D + a_0 I$ for constants a_0, \ldots, a_n . This has been our main object of study. It has a characteristic polynomial, gotten by replacing D by s: $p(s) = a_n s^n + \cdots + a_1 s + a_0$. The characteristic polynomial determines the operator, too, by replacing s by s.

- 2. "What universal technique is there to find" how initial conditions show up in the Laplace transform? I don't have one. The best thing is to use the formulas for L[f'(t)] and L[f''(t)]. Of course there are similar formulas for $L[f^{(n)}(t)]$ as well. In the example I did in class, $X = \frac{(5/s) + (2s+7)}{s^2 + 2s + 5}$, the 5/s is the Laplace transform of the signal, the 2s+7 records the initial conditions, and the denominator is p(s).
- 3. "Don't get how to find p(D) from the weight function." Great point: the answer is: the weight function (AKA the unit impulse response) satisifes $p(D)w = \delta(t)$ with rest initial conditions. Apply Laplace transform: p(s)W(s) = 1, so W(s) = 1/p(s)—or p(s) = W(s). That is, the characteristic polynomial of the operator is one over the Laplace transform of the weight function.
- 4. "What exactly is the physical meaning of the transfer function?" The transfer function of an operator p(D) is the function W(s) of the complex number s such that $x = W(r)e^{rt}$ solves $p(D)x = e^{rt}$. The ERF says that W(s) = 1/p(s). If we take $r = i\omega$ and use the real parts, we find that if we write $W(i\omega)$ in polar form as $W(i\omega) = |W(i\omega)|e^{-i\phi}$ then the sinusoidal solution to $p(D)x = \cos(\omega t)$ is $|W(i\omega)|\cos(\omega t \phi)$. If the physical input signal is the complete input signal $\cos(\omega t)$, then $|W(i\omega)|$ is the "gain," and $W(i\omega)$ is called the "complex gain."
- **5.** A lot of questions about coverup and complex coverup. Read §20 of the Supplementary Notes.
- **6.** For specific confusions about points in the lecture, try reading the lecture notes on the web.
- 7. Further muddy point about using Laplace transform to find inpulse and step response: If you use LT correctly you do not need to "reset" initial conditions. Use the original form of the t-derivative rule, $\mathcal{L}[f'(t)] = sF(s)$ (using the generalized derivative). Assuming f(0+) = 0, so that there is no singular term at t = 0 in f'(t), we can do this again: $\mathcal{L}[f''(t)] = s^2F(s)$. Thus if we apply \mathcal{L} to $p(D)w = \delta(t)$, we get p(s)W = 1. To find the weight function of $D^s + 2D + 5I$, for example, apply \mathcal{L} to $\ddot{w} + 2\dot{w} + 5w = \delta(t)$: $(s^2 + 2s + 5)X = 1$ or $X = 1/(s^2 + 2s + 5) = 1/((s+1)^2 + 4)$, so using the s-shift law $\mathcal{L}[e^{at}f(t)] = F(s-a)$ with a = -1 and the computation $\mathcal{L}[\sin(\omega t)] = \omega/(s^2 + \omega^2)$ with $\omega = 2$ gives us $w(t) = (1/2)e^{-t}\sin(2t)$.