18.03: Differential Equations, Spring, 2006
Driving through the dashpot

The Mathlet Amplitude and Phase: Second order considers a spring/mass/dashpot
system driven through the spring. If y(¢) denotes the displacement of the plunger at
the top of the spring, and x(¢) denotes the position of the mass, arranged so that
x = y when the spring is at rest, then we found the second order LTI equation

ma +bx + kx = ky.

Now suppose instead that we fix the top of the spring and drive the system by
moving the bottom of the dashpot instead. Here’s a frequency response analysis
of this problem. This time I'll keep m around, instead of setting it equal to 1 or
dividing through by it. A new Mathlet, Amplitude and Phase: Second Order,
11, illustrates this system with m = 1.

Suppose that the position of the bottom of the dashpot is given by y(t), and again
the mass is at x(t), now arranged so that x = 0 when the spring is relaxed. Then the
force on the mass is given by

N d
mi = —/{:x+b&(y—x)

since the force exerted by a dashpot is supposed to be proportional to the speed of
the piston moving through it. This can be rewritten

mi + bi + kx = by .

Suppose now that the motion is sinusoidal with circular frequency w:
y = Bcos(wt).
Then y = —wB sin(wt) so our equation is

mi + b + kx = —bwB sin(wt) .

Since Re (ie™*) = — sin(wt), this equation is the real part of
mz + b2 + kz = biwBe™"
The Exponential Response Formula gives
biw
p(iw)

iwt

Zp:

where
p(s) =ms* +bs+k

is the characteristic polynomial. Thus the “transfer function” is
bs

W=



and the complex gain is

so that 4
z, = W (iw)Be™" .

Using the natural frequency w,, = \/k/m ,
p(iw) = m(iw)? + biw + mw? = m(w? — w?) + biw,

SO ‘
biw

W(iw) = .
(i) m(w? — w?) + biw
We should certainly regard the “physical input signal” as B cos(wt), so I want to
express the sinusoidal solution as

x, = gain - B cos(wt — ¢).

This is what we get with
gain = |W (iw)]

and

—¢ = Arg (W (iw)) .

Thus both the gain and the phase are displayed by the curve parametrized by
the complex valued function W (iw). To understand this curve, divide numerator and
denominator in the expression for W (iw) by biw:

i w?—wr\
Wiiw) = (1— — %)
(i) b/m w
As w goes from 0 to oo, (w? — w?)/w goes from +oo to —oo, so the expression inside
the brackets follows the vertical straight line in the complex plane with real part 1,
moving upwards. As z follows this line, 1/z follows a circle of radius 1/2 and center
1/2, traversed clockwise (exercise!). It crosses the real axis when w = w,,.

This circle is the “Nyquist plot.” It shows that the gain starts small, grows to a
maximum value of 1 exactly when w = w,, (in contrast to the spring-driven situation,
where the resonant peak is not exactly at w, and can be either very large or non-
existent depending on the strength of the damping), and then falls back to zero. For
large w, W (iw) is approximately —ib/mw, so the gain falls off like (b/m)w™.

The Nyquist plot also shows that —¢ = Arg (W (iw)) moves from near 7/2 when

w is small, through 0 when w = w,,, to near —m/2 when w is large.

And it shows that these two effects are linked to each other. Thus a narrow
resonant peak corresponds to a rapid sweep across the far edge of the circle, which in
turn corresponds to an abrupt phase transition from —¢ near 7/2 to —¢ near —m /2.



