
18.03: Differential Equations, Spring, 2006 

Driving through the dashpot 

The Mathlet Amplitude and Phase: Second order considers a spring/mass/dashpot 
system driven through the spring. If y(t) denotes the displacement of the plunger at 
the top of the spring, and x(t) denotes the position of the mass, arranged so that 
x = y when the spring is at rest, then we found the second order LTI equation 

mẍ + bẋ + kx = ky . 

Now suppose instead that we fix the top of the spring and drive the system by 
moving the bottom of the dashpot instead. Here’s a frequency response analysis 
of this problem. This time I’ll keep m around, instead of setting it equal to 1 or 
dividing through by it. A new Mathlet, Amplitude and Phase: Second Order, 
II, illustrates this system with m = 1. 

Suppose that the position of the bottom of the dashpot is given by y(t), and again 
the mass is at x(t), now arranged so that x = 0 when the spring is relaxed. Then the 
force on the mass is given by 

d 
xm¨ = −kx + b (y − x)

dt

since the force exerted by a dashpot is supposed to be proportional to the speed of 
the piston moving through it. This can be rewritten 

mẍ + bẋ + kx = bẏ . 

Suppose now that the motion is sinusoidal with circular frequency ω: 

y = B cos(ωt) . 

Then ẏ = −ωB sin(ωt) so our equation is 

mẍ + bẋ + kx = −bωB sin(ωt) . 

Since Re (ieiωt) = − sin(ωt), this equation is the real part of 

mz̈ + bż + kz = biωBe iωt . 

The Exponential Response Formula gives 

biω 
zp = Be iωt 

p(iω) 

where 
p(s) = ms 2 + bs + k 

is the characteristic polynomial. Thus the “transfer function” is 

bs 
W (s) = 

p(s) 
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and the complex gain is

biω 

W (iω) = . 
p(iω) 

so that 
zp = W (iω)Be iωt . 

Using the natural frequency ωn = k/m , 

p(iω) = m(iω)2 + biω + mω2 = m(ω2 
n − ω2) + biω , n 

so 
biω 

W (iω) = . 
m(ω2 

n − ω2) + biω 

We should certainly regard the “physical input signal” as B cos(ωt), so I want to 
express the sinusoidal solution as 

xp = gain · B cos(ωt − φ) . 

This is what we get with 
gain = |W (iω)| 

and 
= Arg (W (iω)) .−φ 

Thus both the gain and the phase are displayed by the curve parametrized by 
the complex valued function W (iω). To understand this curve, divide numerator and 
denominator in the expression for W (iω) by biω: 

−1
i ω2 

W (iω) = 1 − 
b/m 

n − ω2 

. 
ω 

As ω goes from 0 to ∞, (ω2 
n − ω2)/ω goes from +∞ to −∞, so the expression inside 

the brackets follows the vertical straight line in the complex plane with real part 1, 
moving upwards. As z follows this line, 1/z follows a circle of radius 1/2 and center 
1/2, traversed clockwise (exercise!). It crosses the real axis when ω = ωn. 

This circle is the “Nyquist plot.” It shows that the gain starts small, grows to a 
maximum value of 1 exactly when ω = ωn (in contrast to the spring­driven situation, 
where the resonant peak is not exactly at ωn and can be either very large or non­
existent depending on the strength of the damping), and then falls back to zero. For 
large ω, W (iω) is approximately −ib/mω, so the gain falls off like (b/m)ω−1 . 

The Nyquist plot also shows that −φ = Arg (W (iω)) moves from near π/2 when 
ω is small, through 0 when ω = ωn, to near −π/2 when ω is large. 

And it shows that these two effects are linked to each other. Thus a narrow 
resonant peak corresponds to a rapid sweep across the far edge of the circle, which in 
turn corresponds to an abrupt phase transition from −φ near π/2 to −φ near −π/2. 


