
62 

12. Resonance and the exponential shift law 

12.1. Exponential shift. The calculation (10.1) 

rt (1) p(D)e rt = p(r)e 

extends to a formula for the effect of the operator p(D) on a product 
of the form ertu, where u is a general function. This is useful in solving 
p(D)x = f(t) when the input signal is of the form f(t) = ertq(t). 

The formula arises from the product rule for differentiation, which 
can be written in terms of operators as 

D(vu) = v Du + (Dv)u. 

If we take v = ert this becomes 

rt rtD(e rt u) = e rtDu + re u = e (Du + ru) . 

Using the notation I for the identity operator, we can write this as 

rt(2) D(e rt u) = e (D + rI)u. 

If we apply D to this equation again, 
rt rtD2(e u) = D(e rt(D + rI)u) = e (D + rI)2 u , 

where in the second step we have applied (2) with u replaced by (D + 
rI)u. This generalizes to 

rt Dk(e u) = e rt(D + rI)k u. 

The final step is to take a linear combination of Dk’s, to form a 
general LTI operator p(D). The result is the 

Exponential Shift Law: 

(3) p(D)(ertu) = ertp(D + rI)u 

The effect is that we have pulled the exponential outside the differential 
operator, at the expense of changing the operator in a specified way. 

12.2. Product signals. We can exploit this effect to solve equations 
of the form 

p(D)x = e rt q(t) , 

by a version of the method of variation of parameter: write x = ertu, 
apply p(D), use (3) to pull the exponential out to the left of the op
erator, and then cancel the exponential from both sides. The result 
is 

p(D + rI)u = q(t) , 
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a new LTI ODE for the function u, one from which the exponential 
factor has been eliminated. 

x + ẋ + x = t2e .Example 12.2.1. Find a particular solution to ¨ 3t 

¨

With p(s) = s2 + s + 1 and x = e3tu, we have

3t
x + ẋ + x = p(D)x = p(D)(e 3t u) = e p(D + 3I)u . 

Set this equal to t2e3t and cancel the exponential, to find 

p(D + 3I)u = t2 

or u̇ + 3u = t2 . This is a good target for the method of undetermined 
coefficients (Section 11). The first step is to compute 

p(s + 3) = (s + 3)2 + (s + 3) + 1 = s 2 + 7s + 13 , 

so we have ¨

u

u + 7u̇ + 13u = t2 . There is a solution of the form up = 
at2 + bt + c, and we find it is 

p = (1/13)t2 − (14/132)t + (85/133) . 

Thus a particular solution for the original problem is 
3txp = e ((1/13)t2 − (14/132)t + (85/133)) . 

Example 12.2.2. Find a particular solution to ẋ + x = te−t sin t. 

The signal is the imaginary part of te(−1+i)t, so, following the method 
of Section 10, we consider the ODE 

ż + z = te(−1+i)t . 

If we can find a solution zp for this, then xp = Im zp will be a solution 
to the original problem. 

We will look for z of the form e(−1+i)tu. The Exponential Shift Law 
(3) with p(s) = s + 1 gives 

(−1+i)tż + z = (D + I)(e(−1+i)t u) = e ((D − (1 + i)I) + I)u 

= e(−1+i)t(D − iI)u. 

When we set this equal to the right hand side we can cancel the expo
nential: 

(D − iI)u = t 

or u̇ − iu = t. While this is now an ODE with complex coefficients, 
it’s easy to solve by the method of undetermined coefficients: there is a 
solution of the form up = at+b. Computing the coefficients, up = it+1; 
so zp = e(−1+i)t(it + 1). 

Finally, extract the imaginary part to obtain xp:

−t
zp = e (cos t + i sin t)(it + 1) 
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has imaginary part 

−txp = e (t cos t + sin t). 

12.3. Resonance. We have noted that the Exponential Response For
mula for a solution to p(D)x = ert fails when p(r) = 0. For example, 
For example, suppose we have ẋ +x = e−t . The Exponential Response 
Formula proposes a solution xp = e−t/p(−1), but p(−1) = 0 so this 
fails. There is no solution of the form cert . 

This situation is called resonance, because the signal is tuned to a 
natural mode of the system. 

Here is a method to solve p(D)x = ert when this happens. The ERF 
came from the calculation 

rt p(D)e rt = p(r)e , 

which is valid whether or not p(r) = 0. We will take this expression 
and differentiate it with respect to r, keeping t constant. The result, 
using the product rule and the fact that partial derivatives commute, 
is 

rt p(D)te rt = p ′ (r)e + p(r)te rt 

If p(r) = 0 this simplifies to 

rt (4) p(D)te rt = p ′ (r)e . 

′ Now if p (r) = 0 we can divide through by it and see: 

The Resonant Exponential Response Formula: If p(r) = 0 then 
a solution to p(D)x = aert is given by 

tert 

(5) xp = a 
′p (r) 

′ provided that p (r) = 0. 
′ 

x
In our example above, p(s) = s + 1 and r = 1, so p (r) = 1 and 

p = te−t is a solution. 

This example exhibits a characteristic feature of resonance: the solu
tions grow faster than you might expect. The characteristic polynomial 
leads you to expect a solution of the order of e−t . In fact the solution 
is t times this. It still decays to zero as t grows, but not as fast as e−t 

does. 

Example 12.3.1. Suppose we have a harmonic oscillator represented 
by ẍ + ω0

2x, or by the operator D2 + ω0
2I = p(D), and drive it by the 
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signal a cos(ωt). This ODE is the real part of 

iωt z̈ + ω0
2 z = ae , 

so the Exponential Response Formula gives us the periodic solution 
iω0te

zp = a . 
p(iω) 

This is fine unless ω = ω0, in which case p(iω0) = (iω0)
2 + ω2 = 0; so 0 

the amplitude of the proposed sinusoidal response should be infinite. 
The fact is that there is no periodic system response; the system is in 
resonance with the signal. 

To circumvent this problem, let’s apply the Resonance Exponential 
′ ′ Response Formula: since p(s) = s2 +ω0

2 , p (s) = 2s and p (iω0) = 2iω0, 
so 

z
teiω0t 

p = a . 
2iω0 

The real part is 
a 

xp = t sin(ω0t) . 
2ω0 

The general solution is thus 
a 

x = t sin(ω0t) + b cos(ω0t − φ) . 
2ω0 

In words, all solutions oscillate with pseudoperiod 2π/ω0, and grow in 
amplitude like at/(2ω0). When ω0 is large—high frequency—this rate 
of growth is small. 

12.4. Higher order resonance. It may happen that both p(r) = 0 
′ and p (r) = 0. The general picture is this: Suppose that k is such 

that p(j)(r) = 0 for j < k and p(k)(r) = 0. Then p(D)x = aert has as 
solution 

rt tke
(6) xp = a

p(k)(r) 
. 

′ For instance, if ω = ω0 = 0 in Example 12.3.1, p (iω) = 0. The signal 
is now just the constant function a, and the ODE is ¨

e

x = a. Integrating 
twice gives xp = at2/2 as a solution, which is a special case of (6), since 

rt = 1 and p ′′ (s) = 2. 

You can see (6) in the same way we saw the Resonant Exponential 
Response Formula. So take (4) and differentiate again with respect to 
r: 

rt ′ rt p(D)t2 e = p ′′ (r)e rt + p (r)te 
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′ ′′ If p (r) = 0, the second term drops out and if we suppose p (r) = 0 
and divide through by it we get 

rt t2e
p(D) = e rt 

′p (r) 

which the case k = 2 of (6). Continuing, we get to higher values of k 
as well. 

12.5. Summary. The work of this section and the last can be sum
marized as follows: Among the responses by an LTI system to a signal 
which is polynomial times exponential (or a linear combination of such) 
there is always one which is again a linear combination of functions 
which are polynomial times exponential. By the magic of the complex 
exponential, sinusoidal factors are included in this. 


