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13. NATURAL FREQUENCY AND DAMPING RATIO

We’ll consider the second order homogeneous linear constant coeffi-
cient ODE

T+bt+cr=0

with positive “spring constant/mass” c. In the absence of a damping
term this spring constant would be the square of the natural circular
frequency of the system, so we will write it as w? with w,, > 0, and call
w, the natural circular frequency of the system.

Critical damping occurs when the coefficient of # is 2w,,. The damp-
ing ratio ( is the ratio of b to the critical damping constant: ¢ = b/2w,,.
The ODE then has the form

(1) T+ 20wt + wiz =0

Note that if x has dimensions of cm and t of sec, then w, had di-
mensions sec”!, and the damping ratio ¢ is “dimensionless,” a number
which is the same no matter what units of distance or time are chosen.
Critical damping occurs precisely when ¢ = 1: then the characteristic
polynomial has a repeated root: p(s) = (s + w,)?.

In general the characteristic polynomial is s? + 2¢w,s + w?, and it
has as roots

—Cwn £ /w2 — w2 =w,(—C £/ —1).

These are real when || > 1, equal when ( = +1, and nonreal when
|C| < 1. When [¢| < 1, the roots are

wn(—C £ 14/1—(C?).
These are complex numbers of magnitude w,, and argument 46, where
—( = cos .

Suppose we have such a system, but don’t know the values of w,, or (.
At least when the system is underdamped, we can discover them by a
simple experiment. Let’s displace the mass and watch it vibrate freely.
In the underdamped case, the general solution of the homogeneous
equation is

(2) x = Ae” " cos(wat — @)
where

(3) wg = w1 — (2
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is the damped circular frequency of the system. Notice the effect
of damping on the circular frequency! It decreases from its undamped

(“natural”) value by a factor of /1 — (2.

Let’s study the times at which x achieves its maxima. These occur
when the derivative vanishes, and

i = Ae %t (—Cwy cos(wat — @) — wgsin(wat — ¢)).
The factor in parentheses is sinusoidal with circular frequency wy, so
successive zeros are separated from each other by a time lapse of 7/wy.
If ¢, and ¢y are the times of neighboring maxima of = (which occur at
every other extremum) then ¢y —t; = 27 /wy, so we have discovered the
damped natural frequency:

(4) wy = —2

to —t1

We can also measure the ratio of the value of x at two successive
maxima. Write 1 = z(¢;) and zo = z(t2). The difference of their
natural logarithms is the logarithmic decrement:

A=Inz; —Inzy =1In (ﬂ) .

)
Then
Ty = e_Axl.
The logarithmic decrement turns out to depend only on the damping
ratio. To see this, note that the values of cos(wqt — ¢) at two points of
time differing by 27 /w, are equal. Using (2) we find

—Cwnty
i _ ¢ _ cCwnlta—t1)

Ty  e~Cwnt
Thus, using (4) and (3),

T 2T 2n(
A=In|—) =Cwy(ts — t1) = (w, — = ——.
() ottt = =y
From the quantities wy and A, which are directly measurable charac-
teristics of the unforced system response, we can calculate the system
parameters w,, and (:

B A/2m o Wa A 2w
O = mamr ey () e




