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13. Natural frequency and damping ratio 

We’ll consider the second order homogeneous linear constant coeffi­
cient ODE 

ẍ + bẋ + cx = 0 

with positive “spring constant/mass” c. In the absence of a damping 
term this spring constant would be the square of the natural circular 
frequency of the system, so we will write it as ω2 with ωn > 0, and call n 

ωn the natural circular frequency of the system. 

Critical damping occurs when the coefficient of ẋ is 2ωn. The damp­
ing ratio ζ is the ratio of b to the critical damping constant: ζ = b/2ωn. 
The ODE then has the form 

¨(1) x + 2ζωnẋ + ω2x = 0n

Note that if x has dimensions of cm and t of sec, then ωn had di­
mensions sec−1, and the damping ratio ζ is “dimensionless,” a number 
which is the same no matter what units of distance or time are chosen. 
Critical damping occurs precisely when ζ = 1: then the characteristic 
polynomial has a repeated root: p(s) = (s + ωn)2 . 

In general the characteristic polynomial is s2 + 2ζωns + ω2, and it n

has as roots 

−ζωn ± ζ2ω2 
n − ω2 = ωn(−ζ ± ζ2 − 1).n 

These are real when ζ ≥ 1, equal when ζ = ±1, and nonreal when | |
ζ < 1. When ζ ≤ 1, the roots are | | | |

ωn(−ζ ± i 1 − ζ2). 

These are complex numbers of magnitude ωn and argument ±θ, where 
= cos θ.−ζ 

Suppose we have such a system, but don’t know the values of ωn or ζ . 
At least when the system is underdamped, we can discover them by a 
simple experiment. Let’s displace the mass and watch it vibrate freely. 
In the underdamped case, the general solution of the homogeneous 
equation is 

(2) x = Ae −ζωnt cos(ωdt − φ) 

where 
� 

(3) ωd = ωn 1 − ζ2 
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is the damped circular frequency of the system. Notice the effect 
of damping on the circular frequency! It decreases from its undamped 
(“natural”) value by a factor of 1 − ζ2 . 

Let’s study the times at which x achieves its maxima. These occur 
when the derivative vanishes, and 

t ẋ = Ae −ζωn (−ζωn cos(ωdt − φ) − ωd sin(ωdt − φ)) . 

The factor in parentheses is sinusoidal with circular frequency ωd, so 
successive zeros are separated from each other by a time lapse of π/ωd. 
If t1 and t2 are the times of neighboring maxima of x (which occur at 
every other extremum) then t2 − t1 = 2π/ωd, so we have discovered the 
damped natural frequency: 

2π 

t
(4) ωd = . 

2 − t1 

We can also measure the ratio of the value of x at two successive 
maxima. Write x1 = x(t1) and x2 = x(t2). The difference of their 
natural logarithms is the logarithmic decrement: 

x1 

x
Δ = ln x1 − ln x2 = ln . 

2 

Then 
−Δ x2 = e x1. 

The logarithmic decrement turns out to depend only on the damping 
ratio. To see this, note that the values of cos(ωdt− φ) at two points of 
time differing by 2π/ωd are equal. Using (2) we find 

x1 e−ζωnt1 
ζωn(t2−t1)= = e . 

x2 e−ζωnt2 

Thus, using (4) and (3), 

x1	 2π 2πζ 

x
Δ = ln = ζωn(t2 − t1) = ζωn = � . 

2 ωd 1 − ζ2 

From the quantities ωd and Δ, which are directly measurable charac­
teristics of the unforced system response, we can calculate the system 
parameters ωn and ζ : 

� �2
Δ/2π	 ωd Δ 

(5)	 ζ = � , ωn = � = 1 + ωd . 
1 + (Δ/2π)2 1 − ζ2 2π 


