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14. Frequency response 

In Section 3 we studied the frequency response of a first order LTI 
operator. In Section 10.4 we used the Exponential Response Formula 
to understand the response of a general LTI operator to a sinusoidal 
input signal. Here we will study this in more detail in case the operator 
is of second order, and understand how the gain and phase lag vary 
with the driving frequency. We will add a note about the use of an LTI 
system as a “filter.” 

14.1. Second order frequency response. We are looking at a sec­
ond order LTI ODE with a sinusoidal driving force. We may as well 
set the clock so that the force is maximal at t = 0. By dividing by the 
coefficient of ẍ we obtain the differential equation 

¨(1) x + bẋ + cx = a cos(ωt). 

The parameters have the following significance: b is the damping con­
stant, c is the spring constant, a is the amplitude of the signal (all 
divided by the mass), and ω is the circular frequency of the signal. 
We’ll assume that all these are nonnegative. 

As explained in Section 13, it is useful to write c = ω2 (where we n 

choose ωn ≥ 0) and b = 2ζωn; ωn is the “undamped natural circular 
frequency,” and ζ is the “damping ratio.” 

The best path to the solution of (1) is to view it as the real part of 
the complex equation 

iωt (2) z̈ + 2ζωnż + ω2 z = ae .n

The Exponential Response Formula of Section 10 tells us that unless 
ζ = 0 and ω = ωn (in which case the equation exhibits resonance, and 
has no periodic solutions), this has the particular solution 

iωt e
(3) zp = a 

p(iω) 

where p(s) = s2 + 2ζωns + ω2 is the characteristic polynomial of the n 

system. In Section 10 we wrote W (s) = 1/p(s), so this solution can be 
written 

zp = aW (iω)e iωt . 

The complex valued function of ω given by W (iω) is the frequency 
response or the complex gain. We will see now how, for fixed ω, 
this function contains exactly what is needed to write down a sinusoidal 
solution to (1). 
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As in Section 10.4 we can go directly to the expression in terms of 
amplitude and phase lag for the particular solution to (1) given by the 
real part of zp as follows. Write the polar expression (as in Section 6) 
for the complex number W (iω) = 1/p(iω) as 

1 
(4) = ge −iφ . 

p(iω) 

(The use of −φ rather than φ is a little awkward, but it’s forced on 
us by our choice to use the symbol φ for the phase lag rather than the 
phase gain, as we will see just below.) Then 

zp = age i(ωt−φ), xp = ag cos(ωt − φ), 

g is the “amplitude gain” or just “gain,” and φ is the “phase lag” (so 
−φ is the “phase gain” or “phase shift”). This is the only periodic 
solution to (1), and, assuming ζ > 0, any other solution differs from 
it by a transient. This solution is therefore the most important one. 
Its graph is easy to reconstruct and visualize from the amplitude and 
phase lag, and so we will focus on those two numbers and leave it up to 
you and your imagination to reconstruct the explicit sinusoidal solution 
they determine. We want to understand how g and φ depend upon the 
driving frequency ω. 

A short computation shows that the gain g is given in terms of ω by 

1 1 
(5) g(ω) = = � . 

p(iω) (ω2 
n − ω2)2 + 4ζ2ω2ω2 

n
| | 

We can watch what happens to the system response as the signal is 
tuned to different frequencies. At the extremes: (1) g(0) = 1/ω2 and n 
′ g (0) = 0, so when ω is small—so the period of the signal is large—g(ω) 

is approximately the constant 1/ω2 . (2) When ω is large relative to n

ωn, g(ω) is approximately 1/ω2 . 

Figure 6 shows the graphs of gain against the circular frequency 
of the signal for ωn = 1 and several values of the damping ratio ζ 
(namely ζ = 1/(4

√
2), 1/4, 1/(2

√
2), 1/2, 1/

√
2, 1, 

√
2, 2.) As you can 

see, the gain may achieve a maximum. This occurs when the square 
of the denominator in (5) is minimal, and we can discover where this 
is by differentiating with respect to ω and setting the result equal to 
zero: 

d � 

(6) (ω2 
n − ω2)2ω + 8ζ2ω2ω, n − ω2)2 + 4ζ2ω2ω2

� 

= −2(ω2 
ndω n

and this becomes zero when ω takes on the value 

(7) ωr = ωn 1 − 2ζ2 . 
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When ζ = 0 the gain becomes infinite at ω = ωn: this is resonance. As 
ζ increases from zero, the maximal gain of the system occurs at smaller 
and smaller frequencies, till when ζ > 1/

√
2 no such maximum occurs. 

The occurrence of a peak gain is called practical resonance. 

x

We also have the phase lag to consider: the periodic solution to (1) 
is 

p = g cos(ωt − φ). 

Returning to (4), φ is given by the argument of the complex number 

p(iω) = (ω2 
n − ω2) + 2iζωnω. 

This is the angle counterclockwise from the positive x axis of the ray 
through the point (ω2 

n − ω2 , 2ζωnω). Since ζ and ω are nonnegative, 
this point is always in the upper half plane, and 0 ≤ φ ≤ π. The phase 
response graphs for ωn = 1 and several values of ζ are shown in the 
second figure. 

When ω = 0, there is no phase lag, and when ω is small, φ is approx­
imately 2ζω/ωn. φ = π/2 when ω = ωn, independent of the damping 
rato ζ : when the signal is tuned to the natural frequency of the system, 
the phase lag is π/2, which is to say that the time lag is one-quarter of 
a period. As ω gets large, the phase lag tends towards π: strange as it 
may seem, the sign of the system response tends to be opposite to the 
sign of the signal. 

Engineers also typically have to deal with a very wide range of fre­
quencies. In order to accommodate this, and to show the behavior of 
the frequency response more clearly, they tend to plot log10 1/p(iω)| |
and the argument of 1/p(iω) against log10 ω. These are the so-called 
Bode plots. 

The expression 1/p(iω), as a complex-valued function of ω, contains 
complete information about the system response to periodic input sig­
nals. If you let ω run from −∞ to ∞ you get a curve in the complex 
plane called the Nyquist plot. In cases that concern us we may re­
strict attention to the portion parametrized by ω > 0. For one thing, 
the characteristic polynomial p(s) has real coefficients, which means 

that p(−iω) = p(iω) = p(iω) and so 1/p(−iω) is the complex conju­
gate of 1/p(iω). The curve parametrized by ω < 0 is thus the reflection 
of the curve parametrized by ω > 0 across the real axis. 
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Figure 6. Second order amplitude response curves
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14.2. Filters. Understanding the frequency response allows engineers 
to use these systems as filters. Ideally, one may wish to build a system 
with a fixed positive gain for all circular frequencies smaller than some 
critical value ωc, and gain zero for larger circular frequencies. This is 
called a “low-pass filter”: it lets low frequencies through in a uniform 
way but is opaque to higher frequencies. No actual system can match 
this perfectly, and certainly not ones modeled by second order equa­
tions. Nevertheless, engineering like politics is the art of the possible, 
and one attempts to do the best one can. How you measure “the best” 
depends upon circumstances. One popular choice is to ask for the flat­
test possible gain graph for small values of ω, and accept whatever 
follows for larger values of ω. 

The shape of the graph of g(ω) depends upon the parameters ωn 

and ζ . Imagine fixing ωn and varying ζ to obtain the flattest possible 
amplitude response at ω = 0. In (6) we computed the numerator of 
′ ′ g (ω), and the factor of ω shows that g (0) = 0 for any ζ . To get 

“flatter” than that we hope that the parabola best approximating g(ω) 
at ω = 0 is a horizontal straight line; that is, we look for ζ such that 
′′ g (ω) = 0. A little thought shows that this occurs when practical 

resonance occurs at ω = 0, that is, when ωr = 0. By (7) this means 

ζ = 1/
√

2. 

In this case, the gain function has the particularly simple form 

1 
g(ω) = � 

ω4 + ω4 
n 

This system, modeled by the operator L = D2 + 
√

2ωnD + ω2I, is n

the second order Butterworth filter. Its gain graph, in case ωn = 1, is 
among those plotted in the figure. There are analogous filters of higher 
order, which exhibit sharper frequency cut-offs. 

Another attractive feature of the Butterworth filter is that its phase 
response is close to linear for ω not too big. Phase shift often presents 
engineering problems of its own. It is unavoidable, but at least if it’s 
linear in the frequency of the signal it’s easier to deal with. 


