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16. More on Fourier series 

16.1. Harmonic response. One of the main uses of Fourier series is 
to express periodic system responses to general periodic signals. For 
example, if we drive an undamped spring with a plunger at the end of 
the spring, the equation is given by 

¨mx + kx = kf(t) 

where f(t) is the position of the plunger, and the x coordinate is ar
ranged so that x = 0 when the spring is relaxed and f(t) = 0. The 

natural frequency of the spring/mass system is ω = k/m, and divid
ing the equation through by m gives 

¨ 2(1) x + ω x = ω2f(t) . 

An example is given by taking for f(t) the squarewave sq(t), the 
function which is periodic of period 2π and such that 

1 for 0 < t < π 
sq(t) = −1 for −π < t < 0 

Its Fourier series is 

4 sin(3t) sin(5t)
(2) sq(t) = sin(t) + + + . 

π 3 5 
· · · 

The periodic system response to the term in the Fourier series for 
ω2sq(t) 

4ω2 

sin(nt)
πn 

(where n is an odd integer) is, by the Exponential Reponse Formula 
(10.10), 

4ω2 sin(nt) 
. 

2 − n2πn 
· 
ω

Thus the periodic system response to f(t) = sq(t) is given by the 
Fourier series 

4ω2 sin t sin(3t)
(3) xp(t) = 

ω2 
+

3(ω2 − 9)
+ 

π − 1 
· · · 

as long as ω isn’t one of the frequencies of the Fourier modes of the 
signal, i.e. the odd integers. 

This function can be understood qualitatively, by graphing it using 
Matlab for example, and the method of decomposing the input signal 
into its Fourier components and calculating the system response to each 
of them independently give the best general account of periodic system 
responses. 
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In this example, and many others, however, the same solution can 
be obtained quite easily using standard methods of linear ODEs, using 
some simple features of the solution. These features can be seen directly 
from the equation, but from our present perspective it’s easier to see 
them from (3). They are: 

xp(0) = 0 , xp(π) = 0 . 

I claim that as long as ω isn’t an integer, (1) has just one solution with 
these properties. That solution is given as a Fourier series by (3), but 
we can write it out differently using our older methods. 

In the interval [0, π], the equation is simply 

x + ω2 x = . 

x

¨ ω2 

We know very well how to solve this! A particular solution is given 
by a constant, namely 1, and the general solution of the homogeneous 
equation is given by a cos(ωt) + b sin(ωt). So 

p = 1 + a cos(ωt) + b sin(ωt) 

for some constants a, b. 

Substituting t = 0 gives a = −1, so 

(4) xp = 1 − cos(ωt) + b sin(ωt) , 0 < t < π. 

Substituting t = π gives the value for b, depending upon ω: 

cos(πω) − 1 
b = . 

sin(πω) 

In the interval [−π, 0], the complete signal is −ω2, so exactly the 
same calculation gives the negative of the function just written down. 
Therefore the solution xp is the odd function of period 2π extending 

(5) xp = 1 − cos(ωt) + 
cos(πω) − 1 

sin(ωt) , 0 < t < π . 
sin(πω) 

The Fourier series of this function is given by (3), but I for one would 
never have guessed that the expression (3) summed up to such a simple 
function. 

Let’s finish up our analysis of this example by thinking about the sit
uation in which the natural frequency ω equals the circular frequency of 
one of the potential Fourier components of the signal—i.e., an integer, 
in this case. 

In case ω is an even integer, the expression for b is indeterminate 
since both numerator and denominator are zero. However, in this case 
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the function xp = 1 − cos(ωt) already satisfies xp(π) = 0, so we can 
(and must!) take b = 0. Thus xp is the odd extension of 1 − cos(ωt). 
In this case, however, notice that this is not the only periodic solution; 
indeed, in this case all solutions are periodic, since the general solution 
is (writing ω = 2k) 

xp + c1 cos(2kt) + c2 sin(2kt) 

and all these are periodic of period 2π. 

In case ω is an odd integer, ω = 2k + 1, there are no periodic solu-
tions; the system is in resonance with the Fourier mode sin((2k + 1)t) 
present in the signal. We can’t solve for the constant b; the zero in 
its denominator is not canceled by a zero in its numerator. It is not 
hard to write down a particular solution in this case too, using the 
Resonance Exponential Response Formula, Section 12. 

We have used the undamped harmonic oscillator for this example, 
but the same methods work in the presence of damping. In that case it 
is much easier to use the complex form of the Fourier series (Section 16.6 
below) since the denominator in the Exponential Response Formula is 
no longer real. 

16.2. The Gibbs effect. The Fourier series for the odd function of 
period 2π with 

x 
F (x) = 

π −
for 0 < t < π 

2 
is 

∞ 
� sin(kx)

F (x) = . 
k 

k=1 

In Figure 8 we show the partial sum 

n 
� sin(kx)

Fn(x) = 
k 

k=1 

with n = 20 and in Figure 9 we show it with n = 100. The horizontal 
lines of height ±π/2 are also drawn. 

Notice the “overshoot” near the discontinuities. If you graph Fn(t) 
for n = 1000 or n = 106, you will get a similar picture. The spike near 
x = 0 will move in closer to x = 0, but won’t get any shorter. This is 
the “Gibbs phenomenon.” We have F (0+) = π/2, but it seems that 
for any n the partial sum Fn overshoots this value by a factor of 18% 
or so. 
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Figure 8. Fourier sum through sin(20x)
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Figure 9. Fourier sum through sin(100x) 

A little experimentation with Matlab shows that the spike in Fn(x) 
occurs at around x = x0/n for some value of x0 independent of n. It 
turns out that we can compute the limiting value of Fn(x0/n) for any 
x0: 

Claim. For any x0, 
� x0 

� x0 sin t 
lim Fn = dt. 

n→∞ n t0 

To see this, rewrite the sum as 
� � 

n 
x0 

� sin(kx0/n) x0
Fn = . 

n kx0/n 
· 

n 
k=1 

Using the notation 
sin t 

f(t) = 
t 
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this is 
n � � 

� � 

� kx0 x0x0
Fn = f 

n n 
· 

n 
k=1 

You will recognize the right hand side as a Riemann sum for the func
tion f(t), between t = 0 and t = x0. In the limit we get the integral, 
and this proves the claim. 

To find the largest overshoot, we should look for the maximal value 
x0 sin t sin t 

of dt. Figure 10 shows a graph of : 
t t0 

1 

0.8 

0.6 

0.4 

0.2 

0 

−0.2 

−0.4 
−20 −15 −10 −5 0 5 10 15 20 

sin t 
Figure 10. 

t 

The integral hits a maximum when x0 = π, and the later humps are 
smaller so it never regains this size again. We now know that 

� π 
� π� sin t 

lim Fn = dt. 
n→∞ n t0 

The actual value of this definite integral can be estimated in various 
ways. For example, the power series for sin t is 

t3 t5 

sin t = t − + . 
3! 5! 

− · · · 

Dividing by t and integrating term by term, 
� x0 3 5sin t x0 x0dt = x0 − + . 

t 3 3! 5 5! 
− · · · 

0 · ·
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Take x0 = π. Pull out a factor of π/2, to compare with F (0+) = π/2: 
� π sin t π 

dt = · G, 
t 20 

where 
π2 π4 

G = 2 1 − + . 
3 3! 5 5! 

− · · · · ·
The sum converges quickly and gives 

G = 1.17897974447216727 . . . . 

We have found, on the graphs of the Fourier partial sums, a sequence 
of points which converges to the observed overshoot: 

� π�� � �� π π 
0, (1.1789 . . .)

n
, Fn 

n 
→ · 

2 
, 

that is, about 18% too large. As a proportion of the gap between 
F (0−) = −π/2 and F (0+) = +π/2, this is (G − 1)/2 = 0.0894 . . . or 
about 9%. It can be shown that this is the highest overshoot. 

The Gibbs overshoot occurs at every discontinuity of a piecewise 
continuous periodic function F (x). Suppose that F (x) is discontinuous 
at x = a. The overshoot comes to the same 9% of the gap, F (a+) −
F (a−), in every case. 

Compare this effect to the basic convergence theorem for Fourier 
series: 

Theorem. If F (x) is piecewise continuous and periodic, then for any 
fixed number a the Fourier series evaluated at x = a converges to 

F (a) if F (x) is continuous at a, and to the average 
F (a+) + F (a−)

in 
2 

general. 

The Gibbs effect does not conflict with this, because the point at 
which the overshoot occurs moves (it gets closer to the point of discon
tinuity) as n increases. 

The Gibbs effect was first noticed by a British mathematician named 
Wilbraham in 1848, but then forgotten about till it was observed in the 
output of a computational machine built by the physicist A. A. Michel
son (known mainly for the Michelson-Morey experiment, which proved 
that light moved at the same speed in every direction, despite the mo
tion of the earth through the ether). Michelson wrote to J. Willard 
Gibbs, the best American physical mathematician of his age and Pro
fessor of Mathematics at Yale, who quickly wrote a paper explaining 
the effect. 
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16.3. Symmetry and Fourier series. A function g(t) is even if 
g(t) = g(−t), and odd if g(t) = −g(−t). 

Fact: Any function f(t) is a sum of an even function and an odd 
function, and this can be done in only one way. 

The even part of f(t) is 

f+(t) = 
f(t) + f(−t) 

. 
2 

and the odd part is 

f−(t) = 
f(t) − f(−t) 

. 
2 

It’s easy to check that f+(t) is even, f−(t) is odd, and that 

f(t) = f+(t) + f−(t). 

We can apply this to a periodic function. We know that any periodic 
function f(t), with period 2π, say, has a Fourier expansion of the form 

∞ 
a0 

+ (an cos(nt) + bn sin(nt)). 
2 

n=1 

If f(t) is even then all the bn’s vanish and the Fourier series is simply 
∞ 

a0 
+ an cos(nt). 

2 
n=1 

If f(t) is odd then all the an’s vanish and the Fourier series is 
∞ 

bn sin(nt). 
n=1 

Most of the time one is faced with a function which is either even or 
odd. If f(t) is neither even nor odd, we can still compute its Fourier 
series by computing the Fourier series for f+(t) and f−(t) separately 
and adding the results. 

16.4. Symmetry about other points. More general symmetries are 
often present and useful. A function may exhibit symmetry about 
any fixed value of t, say t = a. We say that f(t) is even about a if 
f(a + t) = f(a − t) for all t. It is odd about a if f(a + t) = −f(a − t). 
f(t) is even about a if it behaves the same as you move away from a 
whether to the left or the right; f(t) is odd about a if its values to the 
right of a are the negatives of its values to the left. The usual notions 
of even and odd refer to a = 0. 
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Suppose f(t) is periodic of period 2π, and is even (about 0). f(t) 
is then entirely determined by its values for t between 0 and π. When 
we focus attention on this range of values, f(t) may have some further 
symmetry with respect to the midpoint π/2: it may be even about π/2 
or odd about π/2, or it may be neither. For example, cos(nt) is even 
about π/2 exactly when n is even, and odd about π/2 exactly when 
n is odd. It follows that if f(t) is even and even about π/2 then its 
Fourier series involves only even cosines: 

a0
f(t) = + an cos(nt). 

2 
n even 

If f(t) is even about 0 but odd about π/2 then its Fourier series involves 
only odd cosines: 

f(t) = an cos(nt). 
n odd 

Similarly, the odd function sin(nt) is even about π/2 exactly when n 
is odd, and odd about π/2 exactly when n is even. Thus if f(t) is odd 
about 0 but even about π/2, its Fourier series involves only odd sines: 

f(t) = bn sin(nt). 
n odd 

If it is odd about both 0 and π/2, its Fourier series involves only even 
sines: 

f(t) = an sin(nt). 
n even 

16.5. Fourier distance. One can usefully regard the Fourier coeffi
cients of a function f(t) as the “coordinates” of f(t) with respect to 
some coordinate system. 

Imagine a vector v in 3-space. We can compute its x coordinate 
in the following way: move along the x axis till you get to the point 
closest to v. The value of x you find yourself at is the x-coordinate of 
the vector v. 

Similarly, move about in the (x, y) plane till you get to the point 
which is closest to v. This point is the orthogonal projection of v into 
the (x, y) plane, and its coordinates are the x and y coordinates of v. 

Just so, one way to think of the component an cos(nt) in the Fourier 
series for f(t) is this: it is the multiple of cos(nt) which is “closest” to 
f(t). 

The “distance” between functions intended here is hinted at by the 
Pythagorean theorem. To find the distance between two points in 
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Euclidean space, we take the square root of the sum of squares of 
differences of the coordinates. When we are dealing with functions 
(say on the interval between −π and π), the analogue is 

� 

1 
� π	 �1/2 

(6) dist(f(t), g(t)) = (f(t) − g(t))2 dt . 
2π −π 

This number is the root mean square distance between f(t) and 
g(t). The fraction 1/2π is inserted so that dist(1, 0) = 1 (rather than √

2π) and the calculations on p. 560 of Edwards and Penney show that 
for n > 0 

1	 1 
dist(cos(nt), 0) = , dist(sin(nt), 0) = .√

2	
√

2 

One may then try to approximate a function f(t) by a linear combi
nation of cos(nt)’s and sin(nt)’s, by adjusting the coefficients so as to 
minimize the “distance” from the finite Fourier sum and the function 
f(t). The Fourier coefficients give the best possible multiples. 

Here is an amazing fact. If you use a random collection of multiples 
for the cos(nt)’s and sin(nt)’s, and then decide to get serious about one 
of them, say cos(7t), the coefficient of cos(7t) to use to minimize the 
distance to f(t) is precisely the Fourier coefficient a7 of f(t), indepen
dent of the other coefficients you have used. You can fix up one at a 
time, ignoring all the others till later. You can adjust the coefficients to 
progressively minimize the distance to f(t) in any order, and you will 
never have to go back and fix up your earlier work. It turns out that 
this is a reflection of the “orthogonality” of the cos(nt)’s and sin(nt)’s, 
expressed in the fact, presented on p. 560 of Edwards and Penney, that 
the integrals of products of distinct sines and cosines are always zero. 

16.6. Complex Fourier series. With all the sines and cosines in the 
Fourier series, there must be a complex exponential expression for it. 
There is, and it looks like this: 

∞ 

(7)	 f(t) = cne 
int 

n=−∞ 

The power and convenience we have come to appreciate in the complex 
exponential is at work here too, making computations much easier. 
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To obtain an integral expression for one of these coefficients, say cm, 
the first step is to multiply the expression (7) by e−imt and integrate: 

π ∞ � π 

(8)	 f(t)e −imtdt = cn e i(n−m)tdt 
−π −πn=−∞ 

Now 
 

2π if m = n 
 

� π 
 

 

e i(n−m)tdt = i(n−m)t 
�π . e � 

−π  

 
� = 0 if m = n, 

 
�

m) �i(n −
−π 

The top case holds because then the integrand is the constant function 
i(n−m)(−π)1. The second case follows from ei(n−m)π = (−1)n−m = e . 

Thus only one term in (8) is nonzero, and we conclude that 

1 
� π 

(9)	 cm = f(t)e −imt dt 
2π −π 

This works perfectly well even if f(t) is complex valued. When f(t) 

is in fact real valued, so that f(t) = f(t), (9) implies first that c0 is 
real; it’s the average value of f(t), that is, in the older notation for 
Fourier coefficients, c0 = a0/2. Also, c−n = cn because 

1 
� π 

c
1 

� π 

−n = f(t)e −i(−n)tdt = f(t)e intdt = cn. 
2π −π 2π −π 

Since also e−int = eint , the nth and (−n)th terms in the sum (7) are 
conjugate to each other. We will group them together. The numbers 
will come out nicely if we choose to write 

(10)	 cn = (an − ibn)/2 

with an and bn real. Then c−n = (an + ibn)/2, and we compute that 
int −int cne + c−ne = 2Re (cne 

int) = an cos(nt) + bn sin(nt). 

(I told you the numbers would work out well, didn’t I?) The series (7) 
then becomes the usual series 

∞ 
a0

f(t) = + (an cos(nt) + bn sin(nt)) . 
2 

n=1 

Moreover, taking real and imaginary parts of the integral (9) (and 
continuing to assume f(t) is real valued) we get the usual formulas 

1 
� π 

π 
a

1 
� π 

m = f(t) cos(nt)dt, bm = f(t) sin(nt)dt. 
−π π −π 


