19. CONVOLUTION

19.1. Superposition of infinitesimals: the convolution integral. The system response of an LTI system to a general signal can be reconstructed explicitly from the unit impulse response.

To see how this works, start with an LTI system represented by a linear differential operator L with constant coefficients. The system response to a signal f(t) is the solution to Lx = f(t), subject to some specified initial conditions. To make things uniform it is common to specify "rest" initial conditions: x(t) = 0 for t < 0.

We will approach this general problem by decomposing the signal into small packets. This means we partition time into intervals of length say Δt : $t_0 = 0, t_1 = \Delta t, t_2 = 2\Delta t$, and generally $t_k = k\Delta t$. The *k*th packet is the null signal (i.e. has value zero) except between $t = t_k$ and $t = t_{k+1}$, where it coincides with f(t). Write $f_k(t)$ for the *k*th packet. Then f(t) is the sum of the $f_k(t)$'s.

Now by superposition the system response (with rest initial conditions) to f(t) is the sum of the system responses to the $f_k(t)$'s separately.

The next step is to estimate the system response to a single packet, say $f_k(t)$. Since $f_k(t)$ is concentrated entirely in a small neighborhood of t_k , it is well approximated as a rate by a multiple of the delta function concentrated at t_k , $\delta(t - t_k)$. The multiple should be chosen so that the cumulative totals match up; that is, it should be the integral under the graph of $f_k(t)$, which is itself well approximated by $f(t_k)\Delta t$. Thus we replace $f_k(t)$ by

$$f(t_k)(\Delta t)\delta(t-t_k).$$

The system response to this signal, a multiple of a shift of the unit impulse, is the same multiple of the same shift of the weight function (= unit impulse response):

$$f(t_k)(\Delta t)w(t-t_k).$$

By superposition, adding up these packet responses over the packets which occur before the given time t gives the system response to the signal f(t) at time t. As $\Delta t \to 0$ this sum approximates an integral taken over time between time zero and time t. Since the symbol t is already in use, we need to use a different symbol for the variable in the integral; let's use the Greek equivalent of t, τ ("tau"). The t_k 's get replaced by τ in the integral, and Δt by $d\tau$:

(1)
$$x(t) = \int_0^t f(\tau)w(t-\tau) d\tau$$

This is a really wonderful formula. Edwards and Penney call it "Duhamel's principle," but they seem somewhat isolated in this. Perhaps a better name would be the "superposition integral," since it is no more and no less than an integral expression of the principle of superposition. It is commonly called the **convolution integral**. It describes the solution to a general LTI equation Lx = f(t) subject to rest initial conditions, in terms of the unit impulse response w(t). Note that in evaluating this integral τ is always less than t, so we never encounter the part of w(t) where it is zero.

19.2. Example: the build up of a pollutant in a lake. Every good formula deserves a particularly illuminating example, and perhaps the following will serve for the convolution integral. We have a lake, and a pollutant is being dumped into it, at a certain variable rate f(t). This pollutant degrades over time, exponentially. If the lake begins at time zero with no pollutant, how much is in the lake at time t > 0?

The exponential decay is described as follows. If a quantity p of pollutant is dropped into the lake at time τ , then at a later time t it will have been reduced in amount to $pe^{-a(t-\tau)}$. The number a is the decay constant, and $t - \tau$ is the time elapsed. We apply this formula to the small drip of pollutant added between time τ and time $\tau + \Delta \tau$. The quantity is $p = f(\tau)\Delta \tau$ (remember, f(t) is a *rate*; to get a *quantity* you must multiply by time), so at time t the this drip has been reduced to the quantity

$$e^{-a(t-\tau)}f(\tau)\Delta\tau$$

(assuming $t > \tau$; if $t < \tau$, this particular drip contributed zero). Now we add them up, starting at the initial time $\tau = 0$, and get the convolution integral (1), which here is

(2)
$$x(t) = \int_0^t f(\tau) e^{-a(t-\tau)} d\tau.$$

We found our way straight to the convolution integral, without ever mentioning differential equations. But we can also solve this problem by setting up a differential equation for x(t). The amount of this chemical in the lake at time $t + \Delta t$ is the amount at time t, minus the fraction that decayed, plus the amount newly added:

$$x(t + \Delta t) = x(t) - ax(t)\Delta t + f(t)\Delta t$$

Forming the limit as $\Delta t \to 0$, we obtain

(3)
$$\dot{x} + ax = f(t), \qquad x(0) = 0.$$

We conclude that (2) gives us the solution with rest initial conditions.

An interesting case occurs if a = 0. Then the pollutant doesn't decay at all, and so it just builds up in the lake. At time t the total amount in the lake is just the total amount dumped in up to that time, namely

$$\int_0^t f(t) \, dt,$$

which is consistent with (2).

19.3. Convolution as a "product". The integral (1) is called the *convolution* of w(t) and f(t), and written using an asterisk:

(4)
$$w(t) * f(t) = \int_0^t w(t-\tau)f(\tau) d\tau, \quad t > 0.$$

We have now fulfilled the promise we made at the beginning of Section 18: we can explicitly describe the system response, with rest initial conditions, to any input signal, if we know the system response to just one input signal, the unit impulse:

Theorem. The solution to an LTI equation Lx = f(t), of any order, with rest initial conditions, is given by

$$x(t) = w(t) * f(t),$$

where w(t) is the unit impulse response.

Knowing how a system will respond to any input signal should be enough to completely determine the system. And it is: there is an explicit description of the characteristic polynomial p(s) of L in terms of the unit impulse response w(t). This is one of the things the Laplace transform does for us; in fact, the Laplace transform of w(t) is the reciprocal of p(s): see Section 21.