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22. The pole diagram and the Laplace transform 

When working with the Laplace transform, it is best to think of the 
variable s in F (s) as ranging over the complex numbers. In the first 
section below we will discuss a way of visualizing at least some aspects 
of such a function—via the “pole diagram.” Next we’ll describe what 
the pole diagram of F (s) tells us—and what it does not tell us—about 
the original function f(t). In the third section we discuss the properties 
of the integral defining the Laplace transform, allowing s to be complex. 
The last section describes the Laplace transform of a periodic function 
of t, and its pole diagram. 

22.1. Poles and the pole diagram. The real power of the Laplace 
transform is not so much as an algorithm for explicitly computing lin­
ear time-invariant system responses as in gaining insight into these 
responses without explicitly computing them. (A further feature of the 
Laplace transform is that it allows one to analyze systems which are 
not modeled by ODEs at all, by exactly the same methodology.) To 
achieve this insight we will have to regard the transform variable s as 
complex, and the transform function F (s) as a complex-valued function 
of a complex variable. 

A simple example is F (s) = 1/(s−z), for a fixed complex number z. 
We can get some insight into a complex-valued function of a complex 
variable, such as 1/(s−z), by thinking about its absolute value: 1/(s−|
z) = 1/ s−z . This is now a real-valued function on the complex plane, | | |
and its graph is a surface lying over the plane, whose height over a point 
s is given by the value 1/(s − z) . This is a tent-like surface lying over | |
the complex plane, with elevation given by the reciprocal of the distance 
to z. It sweeps up to infinity like a hyperbola as s approaches z; it’s as 
if it is being held up at s = z by a tent-pole, and perhaps this is why 
we say that 1/(s − z) “has a pole at s = z.” Generally, a function of 
complex numbers has a “pole” at s = z when it becomes infinite there. 

F (s) = 1/(s−z) is an example of a rational function: a quotient of 
one polynomial by another. A product of two rational functions is again 
a rational function. Because you can use a common denominator, a sum 
of two rational functions is also a rational function. The reciprocal 
of any rational function except the zero function is again a rational 
function—exchange numerator and denominator. In these algebraic 
respects, the collection of rational functions behaves like the set of 
rational numbers. 
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Partial fractions let you write any rational function as a sum 

w1 wn
(1)	 F (s) = p(s) + + . . . + 

s − z1 s − zn 

w

where p(s) is a polynomial and w1, . . . , wn and z1, . . . zn are complex 
constants. As long as the zk’s are different from each other, and the 

k’s are nonzero (so the term really appears!), the poles of F (s) occur 
exactly at the points z1, . . . , zn in the complex plane. 

From the way the partial fraction algorithm works, the poles of a 
quotient of polynomials, say N(s)/D(s), occur at the roots of D which 
don’t occur also as roots of N(s)—or, more precisely, which occur to 
greater multiplicity than they do in D(s). 

For example, the calculation done in Section 20.5 shows that the 
2poles of F (s) = 1/(s3 +s −2) are at s = 1, s = −1+ i, and s = .−1− i

The pole diagram of a complex function F (s) is just the complex 
plane with the poles of F (s) marked on it. Figure 22.1 shows the pole 

2diagram of the function F (s) = 1/(s3 + s − 2). 

1 

−1+i 

−1−i 

The constant wk appearing in 1 is the residue of the pole at s = zk. 
The calculation in 20.5 shows that the residue at s = 1 is 1/5, the 
residue at s = −1 + 2i is (−1 + 2i)/10, and the residue at s = −1 − 2i 
is (−1 − 2i)/10. 

Laplace transforms are not always rational functions. For example, 
the exponential function occurs: F (s) = ews , for w a complex constant. 
The exponential function has no poles: it takes on well defined complex 
values for any complex input s. 
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2 e
We can form more elaborate complex functions by taking products— 

−s/(s3 + s − 2), for example. The numerator doesn’t contribute any 
poles. Nor does it kill any poles—it is never zero, so it doesn’t cancel 
any of the roots of the denominator. The pole diagram of this function 

2is the same as the pole diagram of 1/(s3 + s − 2). 

A general complex function of the type that occurs as a Laplace 
transform (the mathematical term is meromorphic) does not have a 
partial fraction decomposition, so we can’t use (1) to locate the poles. 
Poles occur where the value of the function blows up. This can be 
expressed as follows. Define the residue of F (s) at s = z as 

(2) ress=zF (s) = lim(s − z)F (s). 
s→z 

If F (s) takes on a complex value at s = z, or if at least lim F (s) does 
s→z 

so, then the residue at s = z is zero. In this case s = z is not a pole of 
F (s). Poles occur at the places where the residue is nonzero. 

A complex function is by no means completely specified by its pole 
diagram. Nevertheless, the pole diagram of F (s) carries a lot of infor­
mation about F (s), and if F (s) is the Laplace transform of f(t), it tells 
you a lot of information of a specific type about f(t). 

22.2. The pole diagram of the Laplace transform. 

Summary: The pole diagram of F (s) tells us about long-term behavior 
of f(t). It tells us nothing about the near-term behavior. 

This is best seen by examples. 

Suppose we have just one pole, at s = 1. Among the functions with 
this pole diagram we have: 

−as c ce c e
F (s) = , G(s) = , H(s) = + b 

1 − −as 

ss − 1 s − 1 s − 1 

where c = 0. (Note that 1 − e−as becomes zero when s = 0, canceling 
the zero in the denominator of the second term in H(s).) To be Laplace 
transforms of real functions we must also assume them all to be real, 
and a ≥ 0. Then these are the Laplace transforms of 

t−a ce for t > a, 
f(s) = ce t , g(t) = 

ce for t > a, 
, h(t) = 

t 

0 for t < a cet + b for t < a 

All these functions grow like a multiple of et when t is large. You 
can even say which multiple: it is given by the residue at s = 1. (Note 
that g(t) = (ce−a)et, and the residue of G(s) at s = 1 is ce−a.) But 
their behavior when t < a is all over the map. In fact, the function 
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can be anything for t < a, for any fixed a; as long as it settles down to 
something close to cet for t large, its Laplace transform will have just 
one pole, at s = 1, with residue c. 

Now suppose we have two poles, say at s = a + bi and s = a − bi. 
Two functions with this pole diagram are 

cb 
F (s) = 

c(s − a) 

(s − a)2 + b2 
, G(s) = . 

(s − a)2 + b2 

and we can modify these as above to find others. These are the Laplace 
transform of 

f(t) = ce at cos(bt) , g(t) = ce at sin(bt). 

This reveals that it is the real part of the pole that determines the 
long term growth in maximum magnitude. The imaginary part of the 
pole determines the circular frequency of oscillation for large t. We 
can’t pick out the phase—it can oscillate like a sine or a cosine, or 
exhibit any other phase shift. And we can’t promise that it will be 
exactly sinusoidal times exponential, but it will resemble this. And 
again, the pole diagram of F (s) says nothing about f(t) for small t. 

Now let’s combine several of these, to get a function with several 
poles. Suppose F (s) has poles at s = 1, s = −1 + i, and s = −1 − i, 
for example. We should expect that f(t) has a term which grows 
like et (from the pole at s = 1), and another term which behaves 
like e−t cos t (up to constants and phase shifts). When t is large, the 
damped oscillation becomes hard to detect as the other term grows 
exponentially. 

We learn that the rightmost poles dominate—the ones with largest 
real part have the dominant influence on the long-term behavior of f(t). 

The most important consequence relates to the question of stability: 

If all the poles of F (s) have negative real part then f(t) decays 
exponentially to zero as t → ∞. 

If some pole has positive real part, then f(t) becomes arbitrarily | |
large for large t. 

In summary: 
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The position of the rightmost poles of F (s) determine the gen­
eral behavior of f(t) for large time. If the rightmost pole is at 
a + bi, then f(t) will behave roughly like a multiple of e(a+bi)t 

for t large; that is, it will grow (or decay) approximately like the 
function eat , and oscillate approximately like cos(bt). 

There is a further subtlety here: the order of the pole contributes 
a polynomial factor to the rate of growth. This can be seen in the 
example tn−1 

� n!/sn . 

Here’s the general picture, with all the detail in place. To determine 
the large-time behavior of f(t), look at the rightmost poles of F (s); 
say they occur along the line Re (s) = a. Among them, take those of 
maximal order, say n. Then there is a constant C for which f(t) <| |
Ctneat for all large t. The real number a is minimal with this property, 
and given a the integer n is minimal with this property. Finally, if 
there’s only one such pole, say at s = a + bi, then f(t) oscillates with 
approximate circular frequency b. 

Comment on reality. We have happily taken the Laplace transform 
of complex valued functions of t: eit 

� 1/(s − i), for example. If f(t) 
is real, F (s) enjoys a symmetry with respect to complex conjugation: 

(3) If f(t) is real-valued then F (s) = F (s). 

The pole diagram of a function F (s) with this property is symmetric 
about the real axis: non-real poles occur in complex conjugate pairs. 
Thus: 

The pole diagram of the Laplace transform of a real function is sym­
metric across the real axis. 

22.3. The Laplace transform integral. In the integral defining the 
Laplace transform, we really should let s be complex. We are thus 
integrating a complex-valued function of a real parameter t, e−stf(t), 
and this is done by integrating the real and imaginary parts separately. 

� T 

It is an improper integral, computed as the limit of e −stf(t) dt 
0 

as . [Actually, we will see in Section 21 that it’s better to T → ∞
think of the lower limit as “improper” as well, in the sense that we 
form the integral with lower limit a < 0 and then let a 0.] The ↑
textbook assumption that f(t) is of “exponential order” is designed so 
that if s has large enough real part, the term e−st will be so small (at 
least for large t) that the product e−stf(t) has an integral which stays 
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bounded as T → ∞. In terms of the pole diagram, we may say that the 
integral converges when the real part of s is bigger than the real part 
of any pole in the resulting transform function F (s). The exponential 
order assumption is designed to guarantee that we won’t get poles with 
arbitrarily large real part. 

The region to the right of the rightmost pole is called the region of 
convergence. Engineers abbreviate this and call it the “ROC.” 

Once the integral has been computed, the expression in terms of s 
will have meaning for all complex numbers s (though it may have a 
pole at some). 

For example, let’s consider the time-function f(t) = 1, t > 0. Then: 
� ∞ −st 

�T 
� � 

F (s) = e −stdt = lim 
e

= 
1 

lim e −sT − 1 . 
T→∞ s � s T→∞ 0 − 0 −

Since �e−sT 
� = e−aT if s = a + bi, the limit is 0 if a > 0 and doesn’t 

exist if a < 0. If a = 0, e−sT = cos(bT )− i sin(bT ), which does not have 
a limit as T 0 unless b = 0 (which case is not relevant to us since →
we certainly must have s = 0). Thus the improper integral converges 
exactly when Re (s) > 0, and gives F (s) = 1/s. Despite the fact that 
the integral definitely diverges for Re (s) ≤ 0, the expression 1/s makes 
sense for all s ∈ C (except for s = 0), and it’s better to think of the 
function F (s) as defined everywhere in this way. This process is called 
analytic continuation. 

22.4. Final value formula. Suppose that f(t) has only finitely many 
points of discontinuity and that its singular part has only finitely many 
delta functions in it. If all poles of F (s) are to the left of the imaginary 
axis, then 

lim f(t) = 0. 
t→∞ 

If there is a simple pole at s = 0 and all other poles are to the left of 
the imaginary axis, then 

lim f(t) = ress=0F (s). 
t→∞ 

In other situations, lim f(t) doesn’t exist; either f(t) oscillates without 
t→∞ 

decaying, or f(t) grows without bound. | |
We will not attempt to justify this in detail, but notice that c/s has 

a pole at s = 0 with residue c (see Section 22, (2)) and its inverse 
Laplace transform is the constant function c, which certainly has “final 
value” c. 
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The final value formula implies a description of the behavior of f(t) 
as t → ∞ for a much broader class of functions f(t). Suppose that the 
rightmost pole of F (s) has real part strictly less than a. By the s-shift 

−atf(t)rule, the Laplace transform of e is F (s + a). The pole diagram 
of F (s + a) is the same as the pole diagram of F (s) but shifted to the 
left by a units in the complex plane. Thus all its poles are to the left of 

−atf(t)the imaginary axis, and so lim e = 0. This says that f(t) grows 
t→∞ 

at more slowly than eat , or (if a < 0) decays faster than e . 

Similarly, if F (s) has one pole whose real part is larger than those 
of all its other poles, and that pole is real—say it’s a—then 

atf(t)lim e = ress=aF (s). 
t→∞ 

If the pole at s = a is simple, so the residue is finite, then this says 
that f(t) grows or decays like a constant multiple of the exponential 
function e−at . 

If on the other hand there is a rightmost pole which is not real (so if 
f(t) is to be real there is at least a complex conjugate pair of rightmost 
poles) then the function oscillates. If there is one conjugate pair of 
rightmost poles, a±iω, then f(t) oscillates with an overall approximate 
circular frequency of ω, while growing or decaying approximately as fast 
as e−at . This can be seen in the examples 

at at e cos(ωt) � 
s − a ω 

(s − a)2 + ω2 
, e sin(ωt)� . 

(s − a)2 + ω2 

In these cases the poles of F (s) are at a ± iω. 

This is an important principle: the general behavior of f(t) as t → ∞ 
is controlled by the pole diagram of its Laplace transform F (s); in 
fact, its main features are controlled by the rightmost poles in the pole 
diagram. 

22.5. Laplace transform and Fourier series. We now have two 
ways to understand the harmonic components of a periodic function 
f(t). First, we can form the Laplace transform F (s) of f(t) (regarded 
as defined only for t > 0). Since f(t) is periodic, the poles of F (s) lie 
entirely along the imaginary axis, and the locations of these poles reveal 
periodic constituents in f(t). On the other hand, f(t) has a Fourier 
series, which explicitly expresses it as a sum of sinusoidal components. 
What is the relation between these two perspectives? 
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For example, the Fourier series of the squarewave sq(t) of period 2π, 
with value 1 for 0 < t < π and −1 for −π < t < 0, is 

4 sin(3t) sin(5t)
sq(t) = sin(t) + + + . 

π 3 5 
· · · 

The circular frequencies of the Fourier components of sq(t) are 1, 3, 5, . . .. 
In the notes on Laplace transform we studied the Laplace transform of 
periodic functions (restricted to the interval (0,∞)), and found among 
other things that the poles of the Laplace transform of sq(t) (regarded 
now as defined for t > 0) occur at ±i,±3i,±5i, . . . . These poles reveal 
the presence in the squarewave of oscillations with circular frequencies 
1, 3, 5, . . ., but none with even circular frequencies, a somewhat surpris­
ing circumstance confirmed by the Fourier series. 

It is easy to see the connection in general, especially if we use the 
complex form of the Fourier series, 

∞ 

f(t) = cne 
int . 

n=−∞ 

Simply apply the Laplace transform to this expression, using eint 
� 

1 
: 

s − in 
∞ 

� cn
F (s) = 

s − in 
n=−∞ 

The only possible poles are at the complex numbers s = in, and the 
residue at in is cn. 

The same conclusion holds if f(t) has period 2a: 

If f(t) is periodic of period 2a, the poles of F (s) occur only at 
points of the form kπi/a for k an integer, and the residues at 
these poles are precisely the complex Fourier coefficients cn of 
f(t). 

In our example of the squarewave, an = 0 for all n, bn = 0 for n 
even, and bn = 4/nπ for n odd. The predicted residues are thus 0 at 
±ni for n even (so no pole there), and 2/nπi at s = ni for n odd, in 
agreement with our earlier calculation. 


