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4. Sinusoidal solutions 

Many things in nature are periodic, even sinusoidal. We will begin 
by reviewing terms surrounding periodic functions. If an LTI system 
is fed a periodic input signal, we have a right to hope for a periodic 
solution. Usually there is exactly one periodic solution, and often all 
other solutions differ from it by a “transient,” a function that dies off 
exponentially. This section begins by setting out terms and facts about 
periodic and sinusoidal functions, and then studies the response of a 
first order LTI system to a sinusoidal signal. This is a special case of a 
general theory described in Sections 10 and 14. 

4.1. Periodic and sinusoidal functions. A function f(t) is peri­
odic if there is a number a > 0 such that 

f(t + a) = f(t) 

for all t. It repeats itself over and over, and has done since the world 
began. The number a is a period. Notice that if a is a period then 
so is 2a, and 3a, and in fact any positive integral multiple of a. If f(t) 
is continuous and not constant, there is a smallest period, called the 
minimal period or simply the period, and is often denoted by P . If the 
independent variable t is a distance rather than a time, the period is 
also called the wavelength, and denoted in physics by the Greek letter 
“lambda,” λ. 

A periodic function of time has a frequency, too, often written using 
the Greek letter “nu,” ν. The frequency is the reciprocal of the minimal 
period: 

ν = 1/P. 

This is the number of cycles per unit time, and its units are (time)−1 . 

Since many periodic functions are closely related to sine and cosines, 
it is common to use the angular or circular frequency, which is 2π 
times the frequency: 

ω = 2πν. 

If ν is the number of cycles per second, then ω is the number of radians 
per second. In terms of the angular frequency, the period is 

2π 
P = . 

ω 

The sinusoidal functions make up a particular class of periodic 
functions, namely, those which can be expressed as a cosine function 
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which as been amplified, shifted and compressed:


(1) f(t) = A cos(ωt − φ) 

The function (1) is periodic of period 2π/ω and frequency ω/2π, and 
circular frequency ω. 

The parameter A (or, better, A ) is the amplitude of (1). By | |
replacing φ by φ + π if necessary, we may always assume A ≥ 0, and 
we will usually make this assumption. 

The number φ is the phase lag. It is measured in radians or degrees. 
The phase shift is −φ. In many applications, f(t) represents the 
response of a system to a signal of the form B cos(ωt). The phase lag 
is then usually positive—the system response lags behind the signal— 
and this is one reason why we choose to favor the lag and not the shift 
by assigning a notation to it. Many engineers prefer to use φ for the 
phase shift, i.e. the negative of our φ. You will just have to check and 
see which convention is in use. 

The phase lag can be chosen to lie between 0 and 2π. The ratio φ/2π 
is the fraction of a full period by which the function (1) is shifted to 
the right relative to cos(ωt): f(t) is φ/2π radians behind cos(ωt). 

Here are the instructions for building the graph of (1) from the graph 
of cos t. First amplify, or vertically expand, the graph by a factor of 
A; then shift the result to the right by φ units; and finally compress it 
horizontally by a factor of ω. 

x 

A 

t 

t P0 

Figure 1. Parameters of a sinusoidal function
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One can also write (1) as 

f(t) = A cos(ω(t − t0)), 

where ωt0 = φ, or 

φ 
(2) t0 = P 

t

2π 

0 is the time lag. It is measured in the same units as t, and repre­
sents the amount of time f(t) lags behind the compressed cosine signal 
cos(ωt). Equation (2) expresses the fact that t0 makes up the same 
fraction of the period P as the phase lag φ does of the period of the 
cosine function. 

There is a fundamental trigonometric identity which rewrites the 
shifted and scaled cosine function A cos(ωt−φ) as a linear combination 
of cos(ωt) and sin(ωt): 

(3) A cos(ωt − φ) = a cos(ωt) + b sin(ωt) 

The numbers a and b are determined by A and φ: in fact, 

a = A cos(φ) , b = A sin(φ) 

This is the familiar formula for the cosine of a difference. Geometrically, 
(a, b) is the pair of coordinates of the point on the circle with radius A 
and center at the origin, making an angle of φ counterclockwise from 
the positive x axis. 

���������� ( ) 

φ 

A 

, (� 

� 

� 

a, b

(0 0) a, 0) 

In the formula either or both of a and b can be negative; (a, b) can be 
any point in the plane. 

I want to stress the importance of this simple observation. Perhaps 
it’s more striking when read from right to left: any linear combination 
of cos(ωt) and sin(ωt) is not only periodic, of period 2π/ω—this much 
is obvious—but even sinusoidal—which seems much less obvious. And 
the geometric descriptions of the amplitude A and phase lag φ is very 
useful. Remember them: 

A and φ are the polar coordinates of (a, b) 
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If we replace ωt by −ωt+φ in (3), then ωt−φ gets replaced by −ωt 
and the identity becomes A cos(−ωt) = a cos(−ωt+φ)+b sin(−ωt+φ). 
Since the cosine is even and the sine is odd, this is equivalent to 

(4) A cos(ωt) = a cos(ωt − φ) − b sin(ωt − φ) 

which is often useful as well. The relationship between a, b, A, and φ 
is always the same. 

4.2. Periodic solutions and transients. Let’s return to the model 
of the cooler, described in Section 2.2: x(t) is the temperature inside 
the cooler, y(t) the temperature outside, and we model the cooler by 
the first order linear equation with constant coefficient: 

ẋ + kx = ky. 

Let’s suppose the outside temperature varies sinusoidally (warmer in 
the day, cooler at night). (This involves choosing units for temperature 
so that the average temperature is zero.) By setting our clock so that 
the highest temperature occurs at t = 0, we can thus model y(t) by 

y(t) = y0 cos(ωt) 

where y0 = y(0) is the daily high temperature. So our model is 

(5) ẋ + kx = ky0 cos(ωt). 

The equation (5) can be solved by the standard method for solving 
first order linear ODEs (integrating factors, or variation of parameter). 
In fact, we will see later that since the right hand side is sinusoidal 
there is an explicit and direct way to write down the solution using 
complex numbers. Here’s a different approach, which one might call 
the “method of optimism.” 

Let’s look for a periodic solution; not unreasonable since the driving 
function is periodic. Even more optimistically, let’s hope for a sinu­
soidal function. At first you might hope that A cos(ωt) would work, 
for suitable constant A, but that turns out to be too much to ask, and 
doesn’t reflect what we already know from our experience with tem­
perature: the temperature inside the cooler tends to lag behind the 
ambient temperature. This lag can be accommodated by means of the 
formula: 

(6) xp = gy0 cos(ωt − φ). 

We have chosen to write the amplitude here as a multiple of the ambient 
high temperature y0. The multiplier g and the phase lag φ are numbers 
which we will try to choose so that xp is indeed a solution. We use the 
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subscript p to indicate that this is a Particular solution. It is also a 
Periodic solution, and generally will turn out to be the only periodic 
solution. 

We can and will take φ between 0 and 2π, and g ≥ 0: so gy0 is the 
amplitude of the temperature oscillation in the cooler. The number g 
is the ratio of the maximum temperature in the cooler to the maximum 
ambient temperature; it is called the gain of the system. The angle φ 
is the phase lag. Both of these quantities depend upon the coupling 
constant k and the circular frequency of the input signal ω. 

To see what g and φ must be in order for xp to be a solution, we will 
use the alternate form (4) of the trigonometric identity. The important 
thing here is that there is only one pair of numbers (a, b) for which this 
identity holds: they are the rectangular coordinates of the point with 
polar coordinates (A, φ). 

If x = gy0 cos(ωt−φ), then ẋ = −gy0ω sin(ωt− φ). Substitute these 
values into the ODE: 

gy0k cos(ωt − φ) − gy0ω sin(ωt − φ) = ky0 cos(ωt). 

I have switched the order of the terms on the left hand side, to make 
comparison with the trig identity (4) easier. Cancel the y0. Comparing 
this with (4), we get the triangle 

����������� (gk, gω) 

k 

(0, 0) � φ 
� (gk, 0) 

From this we read off 

(7)	 tan φ = ω/k 

and 

k 1 
(8)	 g = = � .√

k2 + ω2 1 + (ω/k)2 

Our work shows that with these values for g and φ the function xp 

given by (6) is a solution to (5). 

Incidentally, the triangle shows that the gain g and the phase lag φ 
in this first order equation are related by 

(9)	 g = cos φ. 
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According to the principle of superposition, the general solution is 

(10) x = xp + ce −kt , 

since e−kt is a nonzero solution of the homogeneous equation ẋ+kx = 0. 

You can see why you need the extra term ce−kt . Putting t = 0 in 
(6) gives a specific value for x(0). We have to do something to build a 
solution for initial value problems specifying different values for x(0), 
and this is what the additional term ce−kt is for. But this term dies 
off exponentially with time, and leaves us, for large t, with the same 
solution, xp, independent of the initial conditions. In terms of the 
model, the cooler did start out at refrigerator temperature, far from 
the “steady state.” In fact the periodic system response has average 
value zero, equal to the average value of the signal. No matter what the 
initial temperature x(0) in the cooler, as time goes by the temperature 
function will converge to xp(t). This long-term lack of dependence on 
initial conditions confirms an intuition. The exponential term ce−kt is 
called a transient. The general solution, in this case and in many 
others, is a periodic solution plus a transient. 

I stress that any solution can serve as a “particular solution.” The 
solution xp we came up with here is special not because it’s a particular 
solution, but rather because it’s a periodic solution. In fact (assuming 
k > 0) it’s the only periodic solution. 

4.3. Amplitude and phase response. There is a lot more to learn 
from the formula (6) and the values for g and φ given in (7) and (8). The 
terminology applied below to solutions of the first order equation (5) 
applies equally well to solutions of second and higher order equations. 
See Section 14 for further discussion. 

Let’s fix the coupling constant k and think about how g and φ vary 
as we vary ω, the circular frequency of the signal. Thus we will regard 
them as functions of ω, and we may write g(ω) and φ(ω) in order to em­
phasize this perspective. We are supposing that the system is constant, 
and watching its response to a variety of different input signals. 

As a check, let’s see what happens when ω = 0, i.e. y(t) = y0, a 
constant. In this case the triangle has altitude 0, so φ(0) = 0, g(0) = 1, 
and the cosine term in (6) is the constant function with value 1. We 
find the solution x = y0 + ce−kt . This can be seen directly since if 
ω = 0 our equation is simply ẋ + kx = ky0, which is separable. It 
makes sense, too; the ambient temperature is given by the constant y0, 
and the cooler temperature “relaxes” exponentially to this value. 
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The function 
1 

g(ω) = � 

1 + (ω/k)2 

is the gain (even though in this situation it is less than one) or am­
plitude response and is graphed for various values of k on the next 
page. When ω = 0, g(0) = 1, and as ω increases the gain falls towards 
zero, quickly if the coupling constant k is small and slowly if k is large. 

4.4. More on amplitude and phase response curves. When ω 
is much larger than k, the first term, 1, in the square root in the 
expression (8) for g(ω) is negligible relative to (ω/k)2, and if we drop 
it we get the estimate 

g(ω) ≃ (ω/k)−1 for ω/k large. 

That is, when ω/k is large, the graph of the gain lies approximately on 
a hyperbola. This can be seen on the graphs on the next page. The 
exponent −1 is characteristic of the amplitude response of a first order 
equation. This exponent becomes much clearer if one plots log g(ω) 
against log ω: for large ω, this graph is asymptotic to a straight line of 
slope −1. This log-log graph is a Bode plot. 

We are also be interested in the phase response 

φ(ω) = arctan(ω/k). 

The phase lag φ lies between 0 and π/2. It is usual in engineering to 
plot the phase shift, −φ, and we will follow suit. When ω/k is small the 
phase lag is small; in more detail, the tangent line to −φ(ω) at ω = 0 

′ has slope −1/k, since arctan (0) = 1. The tangent line approximation 
for −φ(ω) thus gives 

−φ(ω) ≃ −ω/k for ω/k small. 

In other words, the slope of the tangent to the graph of −φ(ω) at ω = 0 
is −1/k, and this is visible on the graphs on the next page. 

The phase shift −φ(ω) decreases towards −π/2 as ω/k grows. That 
is: if the driving frequency is large relative to the coupling constant, 
then the system response tends to fall one quarter period behind the 
signal, and so reaches extrema at nearly the same time the signal is 
zero. 

In Figure 2 we illustrate the gain function g(ω) and the phase shift 
−φ(ω) for for k = .25, .5, .75, 1, 1.25, 1.5. 



24 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 
ga

in
 

k=.25 

0 0.5 1 1.5 2 2.5 
circular frequency of signal 

−0.5 

−0.45 

−0.4 

−0.35 

−0.3 

−0.25 

−0.2 

−0.15 

−0.1 

−0.05 

0 

ph
as

e 
sh

ift
: m

ul
tip

le
s 

of
 p

i 

k=.25 

0	 0.5 1 1.5 2 2.5 
circular frequency of signal 

Figure 2. First order amplitude response curves 
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