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7. Beats 

7.1. What beats are. Musicians tune their instruments using “beats.” 
Beats occur when two very nearby pitches are sounded simultaneously. 
We’ll make a mathematical study of this effect, using complex numbers. 

We will study the sum of two sinusoidal functions. We might as 
well take one of them to be a sin(ω0t), and adjust the phase of the 
other accordingly. So the other can be written as b sin((1 + ǫ)ω0t − φ): 
amplitude b, circular frequency written in terms of the frequency of the 
first sinusoid as (1 + ǫ)ω0, and phase lag φ. 

We will take φ = 0 for the moment, and add it back in later. So we 
are studying 

x = a sin(ω0t) + b sin((1 + ǫ)ω0t). 

We think of ǫ as a small number, so the two frequencies are relatively 
close to each other. 

One case admits a simple discussion, namely when the two ampli­
tudes are equal: a = b. Then the trig identity 

sin(α + β) + sin(α − β) = 2 cos(β) sin(α) 

with α = (1 + ǫ/2)ω0t and β = ǫω0t/2 gives us the equation 

�� ǫ� �ǫω0t 
x = a sin(ω0t) + a sin((1 + ǫ)ω0t) = 2a cos sin 1 + ω0t . 

2 2 

(The trig identity is easy to prove using complex numbers: Compute 

i(α+β) + e i(α−β) −iβ)e iα e = (e iβ + e = 2 cos(β)e iα 

using (6.5); then take imaginary parts.) 

We might as well take a > 0. When ǫ is small, the period of the cosine 
factor is much longer than the period of the sine factor. This lets us 
think of the product as a wave of circular frequency (1 + ǫ/2)ω0—that 
is, the average of the circular frequences of the two constituent waves— 
giving the audible tone, whose amplitude is modulated by multiplying 
it by 

� ǫω0t � 

(1) g(t) = 2a �cos . 
� 2 � 

The function g(t) the “envelope” of x. The function x(t) oscillates 
between −g(t) and +g(t). 
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To study the more general case, in which a and b differ, we will study 
the function made of complex exponentials, 

iω0t + be i(1+ǫ)ω0t z = ae	 . 

The original function	 x is the imaginary part of z. 
iω0t:We can factor out e

iω0t(a + be iǫω0tz = e ). 

This gives us a handle on the magnitude of z, since the magnitude of 
the first factor is 1. Using the formula w 2 = ww on the second factor, | | ¯
we get 

2 2 |z| = a + b2 + 2ab cos(ǫω0t). 

The imaginary part of a complex number z lies between − z and | |
+ z , so x = Im z oscillates between − z and + z . The function | |	 | | | |
g(t) = z(t) , i.e. | |

(2)	 g(t) = a2 + b2 + 2ab cos(ǫω0t), 

thus serves as an “envelope,” giving the values of the peaks of the 
oscillations exhibited by x(t). 

This envelope shows the “beats” effect. It reaches maxima when 
cos(ǫω0t) does, i.e. at the times t = 2kπ/ǫω0 for whole numbers k. A 
single beat lasts from one maximum to the next: the period of the beat 
is 

2π P0
Pb = = 

ǫω0 ǫ 

where P0 = 2π/ω0 is the period of sin(ω0t). The maximum amplitude 
is then a + b, i.e. the sum of the amplitudes of the two constituent 
waves; this occurs when their phases are lined up so they reinforce. 
The minimum amplitude occurs when the cosine takes on the value 
−1, i.e. when t = (2k + 1)π/ǫω0 for whole numbers k, and is a − b .| |
This is when the two waves are perfectly out of sync, and experience 
destructive interference. 

Figure 4 is a plot of beats with a = 1, b = .5, ω0 = 1, ǫ = .1, φ = 0, 
showing also the envelope. 

Now let’s allow φ to be nonzero. The effect on the work done above 
is to replace ǫω0t by ǫω0t − φ in the formulas (2) for the envelope g(t). 
Thus the beat gets shifted by the same phase as the second signal. 



�

38 

0 50 100 150 
−1.5 

−1 

−0.5 

0 

0.5 

1 

1.5 

2ω+x n

Figure 4. Beats, with envelope 

If b = 1 it is not very meaningful to compute the pitch, i.e. the 
frequency of the wave being modulated by the envelope. It lies some­
where between the two initial frequencies, and it varies periodically 
with period Pb. 

7.2. What beats are not. Many textbooks present beats as a sys­
tem response when a harmonic oscillator is driven by a signal whose 
frequency is close to the natural frequency of the oscillator. This is true 
as a piece of mathematics, but it is almost never the way beats occur 
in nature. The reason is that if there is any damping in the system, 
the “beats” die out very quickly to a steady sinusoidal solution, and it 
is that solution which is observed. This is why you won’t find beats 
prominently featured in engineering textbooks. 

Explicitly, the Exponential Response Formula (Section 12, equation 
3) shows that the equation 

¨ x = cos(ωt) 

has the periodic solution 

cos(ωt) 
px = 

ω2 2ω− n 
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unless ω = ωn. If ω and ωn are close, the amplitude of the periodic 
solution is large; this is “near resonance.” Adding a little damping 
won’t change that solution very much, but it will convert homogeneous 
solutions from sinusoids to damped sinusoids, i.e. transients, and rather 
quickly any solution becomes indistinguishable from xp. 

Moreover, textbooks always arrange initial conditions in a very arti­
ficial way, so that the solution is a sum of the periodic solution xp and 
a homogeneous solution xh having exactly the same amplitude as xp. 
They do this by imposing the initial condition x(0) = ẋ(0) = 0. This 
artifice puts them into the simple situation a = b mentioned above. 
For the general case one has to proceed as we did, using complex ex­
ponentials; but I have never seen this worked out in a textbook. 


