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LS.5 Theory of Linear Systems 

1. General linear ODE systems and independent solutions. 

We have studied the homogeneous system of ODE’s with constant coefficients, 

(1) x � = Ax , 

where A is an n × n matrix of constants (n = 2, 3). We described how to calculate the 
eigenvalues and corresponding eigenvectors for the matrix A, and how to use them to find 
n independent solutions to the system (1). 

With this concrete experience solving low-order systems with constant coefficients, what 
can be said in general when the coefficients are not constant, but functions of the independent 
variable t? We can still write the linear system in the matrix form (1), but now the matrix 
entries will be functions of t: 

x = a(t)x + b(t)y 

 �

� 
 
a(t) b(t) 

� 
 � 
x x 

(2) 
y � = c(t)x + d(t)y

, 
y 

= 
c(t) d(t) y

, 

or in more abridged notation, valid for n × n linear homogeneous systems, 

(3) x � = A(t) x . 

Note how the matrix becomes a function of t — we call it a “matrix-valued func
tion” of t, since to each value of t the function rule assigns a matrix: 

a(t0) b(t0)t0 � A(t0) = 
c(t0) d(t0) 

In the rest of this chapter we will often not write the variable t explicitly, but it 
is always understood that the matrix entries are functions of t. 

We will sometimes use n = 2 or 3 in the statements and examples in order 
to simplify the exposition, but the definitions, results, and the arguments which 
prove them are essentially the same for higher values of n. 

Definition 5.1 Solutions x1(t), . . . ,xn(t) to (3) are called linearly dependent if there 
are constants ci, not all of which are 0, such that 

(4) c1x1(t) + . . . + cnxn(t) = 0, for all t. 

If there is no such relation, i.e., if 

(5) c1x1(t) + . . . + cnxn(t) = 0 for all t � all ci = 0, 

the solutions are called linearly independent, or simply independent. 

The phrase “for all t” is often in practice omitted, as being understood. This 
can lead to ambiguity; to avoid it, we will use the symbol � 0 for identically 0, 
meaning: “zero for all t”; the symbol →� 0 means “not identically 0”, i.e., there is 
some t-value for which it is not zero. For example, (4) would be written 
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22	 18.03 NOTES: LS. LINEAR SYSTEMS 

c1x1(t) + . . . + cnxn(t) � 0 . 

Theorem 5.1 If x1, . . . ,xn is a linearly independent set of solutions to the n× n system 
x� = A(t)x, then the general solution to the system is 

(6)	 x = c1x1 + . . . + cnxn 

Such a linearly independent set is called a fundamental set of solutions. 

This theorem is the reason for expending so much effort in LS.2 and LS.3 on 
finding two independent solutions, when n = 2 and A is a constant matrix. In 
this chapter, the matrix A is not constant; nevertheless, (6) is still true. 

Proof. There are two things to prove: 

(a) All vector functions of the form (6) really are solutions to x� = Ax. 

This is the superposition principle for solutions of the system; it’s true because the system 
is linear. The matrix notation makes it really easy to prove. We have 

(c1x1 + . . . + cnxn)�	 = c1x1 + . . . + cnx 
n 

= c1Ax1 + . . . + cnAxn, since x
i 
� = Axi ; 

= A (c1x1 + . . . + cnxn), by the distributive law (see LS.1). 

(b) All solutions to the system are of the form (6).


This is harder to prove, and will be the main result of the next section.


2. The existence and uniqueness theorem for linear systems. 

For simplicity, we stick with n = 2, but the results here are true for all n. There are two 
questions that need answering about the general linear system 

x = a(t)x + b(t)y	

 �

� 
 
a(t) b(t) 

� 
 � 
x	 x 

(2) 
� ; in matrix form, =	 . 

y = c(t)x + d(t)y	 y c(t) d(t) y 

The first is from the previous section: to show that all solutions are of the form 

x = c1x1 + x2x2, 

where the xi form a fundamental set (i.e., neither is a constant multiple of the other). (The 
fact that we can write down all solutions to a linear system in this way is one of the main 
reasons why such systems are so important.) 

An even more basic question for the system (2) is, how do we know that has two linearly 
independent solutions? For systems with a constant coefficient matrix A, we showed in the 
previous chapters how to solve them explicitly to get two independent solutions. But the 
general non-constant linear system (2) does not have solutions given by explicit formulas or 
procedures. 

The answers to these questions are based on following theorem. 

Theorem 5.2 Existence and uniqueness theorem for linear systems. 
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If the entries of the square matrix A(t) are continuous on an open interval I containing 
t0, then the initial value problem 

(7) x = A(t) x, x(t0) = x0 

has one and only one solution x(t) on the interval I . 

The proof is difficult, and we shall not attempt it. More important is to see how it is 
used. The three theorems following answer the questions posed, for the 2 × 2 system (2). 
They are true for n > 2 as well, and the proofs are analogous. 

In the theorems, we assume the entries of A(t) are continuous on an open interval I ; 
then the conclusions are valid on the interval I . (For example, I could be the whole t-axis.) 

Theorem 5.2A Linear independence theorem. 

Let x1(t) and x2(t) be two solutions to (2) on the interval I, such that at some point t0 

in I , the vectors x1(t0) and x2(t0) are linearly independent. Then 

a) the solutions x1(t) and x2(t) are linearly independent on I, and 

b) the vectors x1(t1) and x2(t1) are linearly independent at every point t1 of I . 

Proof. a) By contradiction. If they were dependent on I, one would be a constant multiple 
of the other, say x2(t) = c1x1(t); then x2(t0) = c1x1(t0), showing them dependent at t0. � 

b) By contradiction. If there were a point t1 on I where they were dependent, say 
x2(t1) = c1x1(t1), then x2(t) and c1x1(t) would be solutions to (2) which agreed at t1, 
hence by the uniqueness statement in Theorem 5.2, x2(t) = c1x1(t) on all of I , showing 
them linearly dependent on I . � 

Theorem 5.2B General solution theorem. 

a) The system (2) has two linearly independent solutions. 

b) If x1(t) and x2(t) are any two linearly independent solutions, then every solution x 
can be written in the form (8), for some choice of c1 and c2: 

(8) x = c1x1 + c2x2; 

Proof. Choose a point t = t0 in the interval I . 

a) According to Theorem 5.2, there are two solutions x1, x2 to (3), satisfying respec
tively the initial conditions 

(9) x1(t0) = i , x2(t0) = j ,


where i and j are the usual unit vectors in the xy-plane. Since the two solutions are linearly

independent when t = t0, they are linearly independent on I , by Theorem 5.2A. 

b) Let u(t) be a solution to (2) on I . Since x1 and x2 are independent at t0 by Theorem 
� 
1 and c� 

2 such that 5.2, using the parallelogram law of addition we can find constants c

(10) u(t0) = c
1

� x1(t0) + c
2
x2(t0). 

� ( )tx22

� ( ) + tx c11
The vector equation (10) shows that the solutions u(t) and agree at t0;c

therefore by the uniqueness statement in Theorem 5.2, they are equal on all of I , that is, 

u(t) = c � ( )tx22

� ( ) + tx c11
on I. 
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3. The Wronskian 

We saw in chapter LS.1 that a standard way of testing whether a set of n n-vectors are 
linearly independent is to see if the n × n determinant having them as its rows or columns 
is non-zero. This is also an important method when the n-vectors are solutions to a system; 
the determinant is given a special name. (Again, we will assume n = 2, but the definitions 
and results generalize to any n.) 

Definition 5.3 Let x1(t) and x2(t) be two 2-vector functions. We define their Wronskian 
to be the determinant 

� x1(t) x2(t)(11) W (x1,x2)(t) = 
� y1(t) y2(t) 

whose columns are the two vector functions. 

The independence of the two vector functions should be connected with their Wronskian 
not being zero. At least for points, the relationship is clear; using the result mentioned 
above, we can say 

� x1(t0) x2(t0)(12) W (x1,x2)(t0) = � � = 0 ≡ x1(t0) and x2(t0) are dependent. 
� y1(t0) y2(t0) 

However for vector functions, the relationship is clear-cut only when x1 and x2 are solutions 
to a well-behaved ODE sysem (2). The theorem is: 

Theorem 5.3 Wronskian vanishing theorem. 

On an interval I where the entries of A(t) are continuous, let x1 and x2 be two 
solutions to (2), and W (t) their Wronskian (11). Then either 

a) W (t) � 0 on I , and x1 and x2 are linearly dependent on I , or 

b) W (t) is never 0 on I , and x1 and x2 are linearly independent on I . 

Proof. Using (12), there are just two possibilities. 

a) x1 and x2 are linearly dependent on I ; say x2 = c1x1. In this case they are dependent 
at each point of I , and W (t) � 0 on I , by (12); 

b) x1 and x2 are linearly independent on I , in which case by Theorem 5.2A they are 
linearly independent at each point of I , and so W (t) is never zero on I , by (12). � 

Exercises: Section 4E 


