
LS.6 Solution Matrices 

In the literature, solutions to linear systems often are expressed using square matrices 
rather than vectors. You need to get used to the terminology. As before, we state the 
definitions and results for a 2 × 2 system, but they generalize immediately to n × n systems. 

1. Fundamental matrices. We return to the system 

(1) x � = A(t) x , 

with the general solution 

(2) x = c1x1(t) + c2x2(t) , 

where x1 and x2 are two independent solutions to (1), and c1 and c2 are arbitrary constants. 

We form the matrix whose columns are the solutions x1 and x2: 
�

x1 x2 

 

(3) X(t) = ( x1 x2 ) = . 
y1 y2 

Since the solutions are linearly independent, we called them in LS.5 a fundamental set of 
solutions, and therefore we call the matrix in (3) a fundamental matrix for the system (1). 

Writing the general solution using X(t). As a first application of X(t), we can use it 
to write the general solution (2) efficiently. For according to (2), it is 

x = c1 

�
x1 


 

+ c2 

�
x2 


 

= 

�
x1 x2 


 �
c1 


 

, 
y1 y2 y1 y2 c2 

which becomes using the fundamental matrix 
�

c1 

 

(4) x = X(t) c where c = , (general solution to (1)). 
c2 

Note that the vector c must be written on the right, even though the c’s are usually 
written on the left when they are the coefficients of the solutions xi. 

Solving the IVP using X(t). We can now write down the solution to the IVP 

(5) x � = A(t) x , x(t0) = x0. 

Starting from the general solution (4), we have to choose the c so that the initial condition 
in (6) is satisfied. Substituting t0 into (5) gives us the matrix equation for c : 

X(t0) c = x0 . 

Since the determinant |X(t0)| is the value at t0 of the Wronskian of x1 amd x2, it is 
non-zero since the two solutions are linearly independent (Theorem 5.2C). Therefore the 
inverse matrix exists (by LS.1), and the matrix equation above can be solved for c: 

c = X(t0)
−1 x0 ; 

using the above value of c in (4), the solution to the IVP (1) can now be written 

(6) x = X(t)X(t0)
−1 x0 . 

25 



� 

�

� �

26 18.03 NOTES: LS. LINEAR SYSTEMS 

Note that when the solution is written in this form, it’s “obvious” that x(t0) = x0, i.e., 
that the initial condition in (5) is satisfied. 

An equation for fundamental matrices We have been saying “a” rather than “the” 
fundamental matrix since the system (1) doesn’t have a unique fundamental matrix: thare 
are many different ways to pick two independent solutions of x� = Ax to form the columns 
of X . It is therefore useful to have a way of recognizing a fundamental matrix when you see 
one. The following theorem is good for this; we’ll need it shortly. 

Theorem 6.1 X(t) is a fundamental matrix for the system (1) if its determinant |X(t)| 
is non-zero and it satisfies the matrix equation 

(7) X � = A X , 

where X � means that each entry of X has been differentiated. 

Proof. Since |X | �� 0, its columns x1 and x2 are linearly independent, by section LS.5. 
And writing X = ( x1 x2 ) , (7) becomes, according to the rules for matrix multiplication, 

( x� x2 
� ) = A ( x1 x2 ) = ( Ax1 Ax2 ) ,1 

which shows that 

x1 = A x1 and x2 
� = Ax2 ; 

this last line says that x1 and x2 are solutions to the system (1). � 

2. The normalized fundamental matrix. 

Is there a “best” choice for fundamental matrix? 

There are two common choices, each with its advantages. If the ODE system has con
stant coefficients, and its eigenvalues are real and distinct, then a natural choice for the 
fundamental matrix would be the one whose columns are the normal modes — the solutions 
of the form 

xi = ��ie �i t , i = 1, 2. 

There is another choice however which is suggested by (6) and which is particularly useful 
in showing how the solution depends on the initial conditions. Suppose we pick X(t) so that 

� 
1 0 


 

(8) X(t0) = I = . 
0 1 

Referring to the definition (3), this means the solutions x1 and x2 are picked so 

� 
1 

 � 

0 

 

(8�) x1(t0) = 
0 

, x2(t0) = . 
1 

Since the xi(t) are uniquely determined by these initial conditions, the fundamental matrix 
X(t) satisfying (8) is also unique; we give it a name. 

Definition 6.2 The unique matrix Xt0 (t) satisfying 

(9) X � = A �Xt0 , Xt0 (t0) = It0 



�

�
�

�
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is called the normalized fundamental matrix at t0 for A. 

For convenience in use, the definition uses Theorem 6.1 to guarantee �Xt0 will actually 
Xt0 (t)| �be a fundamental matrix; the condition | � = 0 in Theorem 6.1 is satisfied, since the 

definition implies | �Xt0 (t0)| = 1. 

To keep the notation simple, we will assume in the rest of this section that t0 = 0, as it 
almost always is; then �X0 is the normalized fundamental matrix. Since X0(0) = I , we get 
from (6) the matrix form for the solution to an IVP: 

(10) The solution to the IVP x � = A(t) x, x(0) = x0 is x(t) = �X0(t)x0. 

Calculating X0. One way is to find the two solutions in (8�), and use them as the 
columns of X0. This is fine if the two solutions can be determined by inspection. 

If not, a simpler method is this: find any fundamental matrix X(t); then 

(11)	 X0(t) = X(t) X(0)−1 . 

To verify this, we have to see that the matrix on the right of (11) satisfies the two con
ditions in Definition 6.2. The second is trivial; the first is easy using the rule for matrix 
differentiation: 

If M = M(t) and B, C are constant matrices, then (BM)� = BM � , (MC)� = M �C, 

from which we see that since X is a fundamental matrix, 

(X(t)X(0)−1)� = X(t)�X(0)−1 = AX(t)X(0)−1 = A(X(t)X(0)−1), 

showing that X(t)X(0)−1 also satisfies the first condition in Definition 6.2. � 

� 
0 1 


 

Example 6.2A Find the solution to the IVP: x � = x , x(0) = x0 . −1 0 

Solution Since the system is x� = y, y� = −x, we can find by inspection the fundamental 
set of solutions satisfying (8�) : 

x = cos t x = sin t 
and . 

y = − sin t y = cos t 

Thus by (10) the normalized fundamental matrix at 0 and solution to the IVP is 
� 

cos t sin t 

 �

x0 

 � 

cos t 

 �

sin t 

 

x = X x0 =	 = x0 + y0 .�
− sin t cos t y0 − sin t	 cos t 

�
1 3 


 

Example 6.2B Give the normalized fundamental matrix at 0 for x � = x . 
1 −1 

Solution. This time the solutions (8�) cannot be obtained by inspection, so we use the 
second method. We calculated the normal modes for this sytem at the beginning of LS.2; 
using them as the columns of a fundamental matrix gives us 

�
3e 2t −e −2t 


 

X(t) = 2t −2t . 
e e



� 
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Using (11) and the formula for calculating the inverse matrix given in LS.1, we get 
�

3 −1 

 

1 

� 
1 1 


 

X(0) =
1 1 

, X(0)−1 = 4 −1 3 
, 

so that 
2t −e−2t 


 � 
2t −2t 



1 


 � 
3e + e2t 3e2t − 3e

X(t) = 4 

�
3e

2t −2t 
1

= 1 
−2t e2t + 3e−2t .� 1 

e e −1 3 4 e2t − e

6.3 The Exponential matrix. 

The work in the preceding section with fundamental matrices was valid for any linear 
homogeneous square system of ODE’s, 

x = A(t) x . 

However, if the system has constant coefficients, i.e., the matrix A is a constant matrix, 
the results are usually expressed by using the exponential matrix, which we now define. 

Recall that if x is any real number, then 

2 nx x
(12) e x = 1 + x + + . . . + + . . . . 

2! n! 

Definition 6.3 Given an n× n constant matrix A , the exponential matrix eA is the 
n × n matrix defined by 

A2 An 

(13) e A = I + A + + . . . + + . . . . 
2! n! 

Each term on the right side of (13) is an n × n matrix; adding up the ij-th 
entry of each of these matrices gives you an infinite series whose sum is the ij-th 
entry of eA . (The series always converges.) 

In the applications, an independent variable t is usually included: 

At(14) e = I + A t + A2 t2 

+ . . . + An tn 

+ . . . . 
2! n! 

This is not a new definition, it’s just (13) above applied to the matrix A t in which every 
element of A has been multiplied by t, since for example 

2(At)2 = At · At = A · A · t2 = A2t . 

Try out (13) and (14) on these two examples; the first is worked out in your book 
(Example 2, p. 417); the second is easy, since it is not an infinite series. 

at 0 

�

a 0 

 �

e a 0 

 �

e 
Example 6.3A Let A =

0 b
, show: eA = ; eAt = 

0 eb 0 ebt 

�
0 1 


 �
1 1 


 �
1 t


 

Example 6.3B Let A = 
0 0 

, show: eA = ; eAt = 
0 1 0 1 

What’s the point of the exponential matrix? The answer is given by the theorem below, 
which says that the exponential matrix provides a royal road to the solution of a square 



�

�	 �

29 LS.6 SOLUTION MATRICES 

system with constant coefficients: no eigenvectors, no eigenvalues, you just write down the 
answer! 

Theorem 6.3 Let A be a square constant matrix. Then 

(15) (a) e At = X0(t), the normalized fundamental matrix at 0; 

(16) (b) the unique solution to the IVP x� = Ax, x(0) = x0 is x = eAtx0. 

Proof. Statement (16) follows immediately from (15), in view of (10). 

We prove (15) is true, by using the description of a normalized fundamental matrix given 
in Definition 6.2: letting X = eAt, we must show X � = AX and X(0) = I . 

The second of these follows from substituting t = 0 into the infinite series definition (14) 
for eAt . 

To show X � = AX , we assume that we can differentiate the series (14) term-by-term; 
then we have for the individual terms 

d tn tn−1 

An = An · ,
dt n! (n − 1)! 

since An is a constant matrix. Differentiating (14) term-by-term then gives 

dX 
= 

d
e At = A + A2t + . . . + An	 tn−1 

+ . . . 
(18)	 dt dt (n − 1)! 

= A e At = A X . 

Calculation of eAt . 

The main use of the exponential matrix is in (16) — writing down explicitly the solution 
to an IVP. If eAt has to be actually calculated for a specific system, several techniques are 
available. 

a) In simple cases, it can be calculated directly as an infinite series of matrices. 

b) It can always be calculated, according to Theorem 6.3, as the normalized fundamental 
matrix X0(t), using (11): X0(t) = X(t)X(0)−1 . 

c) A third technique uses the exponential law 

Bt Ct (19) e(B+C)t =	 e e , valid if BC = CB. 

To use it, one looks for constant matrices B and C such that 

Bt (20) A = B + C, BC = CB, e and e Ct are computable; 

then 

B t C t (21)	 e At = e e . 

� 
2 1 


	 � 
1 

 

Example 6.3C Let A = . Solve x� = A x, x(0) = , using eAt . 
0 2	 2 

� 
2 0 


 � 
0 1 


 

Solution. We set B = and C = ; then (20) is satisfied, and 
0 2	 0 0 
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At 

�
e2t 0 


�
1 t 


 
2t 

�
1 t 


 

e = 
0 e2t 0 1 

= e 
0 1 

, 

by (21) and Examples 6.3A and 6.3B. Therefore, by (16), we get 

�
1 t 


 �
1 

 

2t 

�
1 + 2t 



At 2t x = e x0 = e = e . 

0 1 2 

Exercises: Sections 4G,H 


