LT. Laplace Transform

1. Translation formula. The usual L.T. formula for translation on the t-axis is

(1)
$$
\mathcal{L}\big(u(t-a)f(t-a)\big) = e^{-as}F(s), \quad \text{where } F(s) = \mathcal{L}\big(f(t)\big) , a > 0.
$$

This formula is useful for computing the inverse Laplace transform of $e^{-as}F(s)$, for example. On the other hand, as written above it is not immediately applicable to computing the L.T. of functions having the form $u(t-a)f(t)$. For this you should use instead this form of (1):

(2)
$$
\mathcal{L}(u(t-a)f(t)) = e^{-as}\mathcal{L}(f(t+a)), \quad a > 0.
$$

Example 1. Calculate the Laplace transform of $u(t-1)(t^2+2t)$.

Solution. Here
$$
f(t) = t^2 + 2t
$$
, so (check this!) $f(t+1) = t^2 + 4t + 3$. So by (2),

$$
\mathcal{L}(u(t-1)(t^2+2t)) = e^{-s}\mathcal{L}(t^2+4t+3) = e^{-s}\left(\frac{2}{s^3} + \frac{4}{s^2} + \frac{3}{s}\right).
$$

Example 2. Find $\mathcal{L}\left(u(t-\frac{\pi}{2})\sin t\right)$.

Solution.
$$
\mathcal{L}\left(u(t-\frac{\pi}{2})\sin t\right) = e^{-\pi s/2} \mathcal{L}\left(\sin(t+\frac{\pi}{2})\right)
$$

$$
= e^{-\pi s/2} \mathcal{L}(\cos t) = e^{-\pi s/2} \frac{s}{s^2+1}.
$$

Proof of formula (2). According to (1), for any $g(t)$ we have

$$
\mathcal{L}\big(u(t-a)g(t-a)\big) = e^{-as}\mathcal{L}\big(g(t)\big);
$$

this says that to get the factor on the right side involving g, we should replace $t - a$ by t in the function $g(t - a)$ on the left, and then take its Laplace transform.

Apply this procedure to the function $f(t)$, written in the form $f(t) = f((t - a) + a)$; we get ("replacing $t - a$ by t and then taking the Laplace Transform")

$$
\mathcal{L}\big(u(t-a)f((t-a)+a)\big) = e^{-as}\mathcal{L}\big(f(t+a)\big),\,
$$

exactly the formula (2) that we wanted to prove. \Box

Exercises. Find: a)
$$
\mathcal{L}(u(t-a)e^t)
$$
 b) $\mathcal{L}(u(t-\pi)\cos t)$ c) $\mathcal{L}(u(t-2)e^{-t})$

Solutions. a) $e^{-as}\frac{e^a}{s-1}$ b) $-e^{-\pi s}\frac{s}{s^2+1}$ c) $e^{-2s}\frac{e^{-2}(2s+3)}{(s+1)^2}$

2. The transfer function and Green's function.

If we use the Laplace transform to solve the IVP

$$
y'' + ay' + by = r(t), \t y(0) = 0, y'(0) = 0,
$$

the transform of the IVP, with the usual notation, is

$$
s^2Y + asY + bY = R(s) ;
$$

whose solution for $Y = \mathcal{L}^{-1}(y)$ is

$$
Y = R(s) \frac{1}{s^2 + as + b} ;
$$

using the convolution operator to take the inverse transform, we get as the solution (further down the function $w(t)$ is defined):

(3)
$$
y = r(t) * w(t) = \int_0^t r(u)w(t-u) du.
$$

In this form of the solution, the following terminology is often used. Let $p(D) = D^2 + aD + b$ be the differential operator; then we write

The important thing to note is that each of these depends only on the operator, not on the forcing function $r(t)$; once they are calculated, the solution (3) to the IVP can be written down immediately as the definite integral there, and used for a variety of different $r(t)$.

The weight function $w(t)$ can be thought of as the unique solution to the IVP

(4)
$$
y'' + ay' + by = 0; \qquad y(0) = 0, \quad y'(0) = 1;
$$

or as the solution to the IVP

(5)
$$
y'' + ay' + by = \delta(t); \quad y(0) = 0, \quad y'(0^-) = 0;
$$

in the second equation, $\delta(t)$ is the Dirac delta function. Both IVP's model (for $a, b > 0$) a damped spring-mass system which is initially at rest, but whose mass is given a unit impulse at time zero, say by a sharp blow.

It is an easy exercise to show that $w(t)$ is the solution to both IVP's. As an example of Green's functions, see the last few Laplace Transform exercises (in Section 3D).