Recitation 5, February 23, 2006

Complex numbers, complex exponentials

Solution suggestions

1. Mark the points $e^{i\frac{\pi}{3}}$ and $e^{\ln 2 + i\frac{\pi}{4}}$ complex plane and find their expressions in the form $a + bi$.

 $e^{i\frac{\pi}{3}}$ is the point on the unit circle (about the origin) which you obtain when you start at its intersection with the positive x -axis and move counterclockwise for an angle of 60 degrees (the one-o'clock-position). We write by the Eulerformula

$$
e^{i\frac{\pi}{3}} = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = \frac{1}{2} + i\frac{\sqrt{3}}{2}.
$$

 $e^{\ln 2+i\frac{\pi}{4}} = 2e^{i\frac{\pi}{4}}$ is the point on the circle of radius 2 (about the origin) which you obtain when you start at its intesection with the positive x -axis and move counterclockwise for an angle of 45 degrees. We write by the Euler-formula

$$
e^{\ln 2 + i\frac{\pi}{4}} = 2e^{i\frac{\pi}{4}} = 2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right) = \sqrt{2} + i\sqrt{2}.
$$

2. Express the fourth roots of -1 in the form $a + bi$.

The fourth roots of unity are $e^{i\frac{2\pi}{4}k} = e^{i\frac{\pi}{2}k}$ where k is 0, 1, 2, 3. We have to multiply these four roots of unity with the principal value for the fourth root of $-1 = e^{i\pi}$ which is $e^{i\frac{\pi}{4}}$. Therefore, we obtain for the fourth roots of -1 the complex numbers $e^{i(\frac{\pi}{2}k+\frac{\pi}{4})}$ for $k = 0, 1, 2, 3$ or complex numbers $e^{i(\frac{\pi}{2}k+\frac{\pi}{4})}$ for $k=0,1,2,3$ or

$$
e^{i\frac{\pi}{4}}\ ,\quad e^{i\frac{3\pi}{4}}\ ,\quad e^{i\frac{5\pi}{4}}\ ,\quad e^{i\frac{7\pi}{4}}\ .
$$

 $e^{i\frac{\pi}{4}}$ is the point on the unit circle which you obtain when you start at its intesection with the positive x-axis and move counterclockwise for an angle of 45 degrees. We obtain in the same way as in Problem 1

$$
e^{i\frac{\pi}{4}} = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}.
$$

You can now already draw a picture of all the roots in the complex plane. Notice that you always move counterclockwise for an angle of 90 degrees, i.e. $\frac{\pi}{2}$, on the unite circle to get from one root to the next. You will get the following picture:

From the picture you see

$$
e^{i\frac{3\pi}{4}} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2},
$$

\n
$$
e^{i\frac{5\pi}{4}} = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2},
$$

\n
$$
e^{i\frac{7\pi}{4}} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}.
$$

3. Find the general solution of

$$
\dot{x} + 2x = e^t \tag{1}
$$

Remember, to find a solution of

$$
\dot{x} + p(t)x = q(t)
$$

you have to find a nonzero solution of $\dot{x}_h+p(t)x_h=0$ first. Then write $x=ux_h$ and solve for u. The formulas are:

$$
x_h = e^{-\int p(t) dt}, \qquad x = x_h \int x_h^{-1} q dt + cx_h
$$

In our example we have $x_h = e^{-2t}$ and

$$
x = e^{-2t} \int e^{3t} dt + ce^{-2t} = \frac{1}{3}e^t + ce^{-2t} . \tag{2}
$$

In the lecture, you have learned that you can also obtain a particular solution by plugging Ae^t into the differential equation (1) and solving for A. The idea is that a particular solution has the same form as the input function on the RHS of Eq. (1). Plugging Ae^t into the Eq. (1) we obtain on the LHS

$$
\dot{x} + 2x = 3Ae^t.
$$

The RHS of Eq. (1) is equal to e^t , so we find $A = \frac{1}{3}$. Thus, a particular solution to the differential equation is given by $\frac{1}{3}e^t$. From this, the general solution is obtained by adding the solution of the homogeneous ODE

$$
\dot{x} + 2x = 0.
$$

The solution to the homogeneous ODE is ce^{-2t} . We obtain for the general solution of (1)

$$
x = \frac{1}{3}e^t + ce^{-2t} \,,\tag{3}
$$

which agrees with (2).

4. Solve $\dot{x} + 2x = \cos(2t)$ by replacing it with a complex valued equation, solving that, and then extracting the real part.

We write the complex equation

$$
\dot{z} + 2z = e^{2it}.
$$

Once we have found a solution $z(t)$, then a solution to our original ODE will be given by $x(t) = \text{Re}z(t)$.

We repeat the steps from Problem 3 and find $z_h = e^{-2t}$ and

$$
z = e^{-2t} \int e^{(2+2i)t} dt + ce^{-2t} = \frac{1}{2+2i} e^{2it} + ce^{-2t}.
$$

We now have to find the real part of $z(t)$: notice that

$$
\frac{1}{2+2i} = \frac{2-2i}{8} = \frac{1-i}{4}.
$$

Therefore, we have (remember $i^2 = -1$)

$$
\operatorname{Re}\left(\frac{1-i}{4}e^{2it}\right) = \operatorname{Re}\left(\frac{1-i}{4}(\cos(2t) + i\sin(2t)\right) = \frac{1}{4}\left(\cos(2t) + \sin(2t)\right).
$$

Finally, we obtain

$$
x(t) = \frac{1}{4} \Big(\cos(2t) + \sin(2t) \Big) + ce^{-2t} .
$$

5. Write each of the following functions $f(t)$ in the form $A \cos(\omega t - \phi)$. In each case, begin by drawing a right triangle with sides a and b. (a) $cos(2t) + sin(2t)$. it

(b)
$$
\cos(\pi t) - \sqrt{3}\sin(\pi t)
$$
. (c) Im $\frac{e^{it}}{2+2i}$.

Taking the real part of the equation

$$
e^{i\omega t}e^{-i\phi}=e^{i(\omega t-\phi)}
$$

we obtain the angle difference formula

$$
\cos(\omega t)\cos(\phi) + \sin(\omega t)\sin(\phi) = \cos(\omega t - \phi).
$$

Multiplying with A we obtain

$$
\cos(\omega t) \underbrace{A \cos(\phi)}_{=a} + \sin(\omega t) \underbrace{A \sin(\phi)}_{=b} = A \cos(\omega t - \phi) .
$$

Thus, our goal is to determine ϕ and A when a and b are given. If we draw a right triangle with sides a and b , then the length of the hypotenuse is A and the angle between A and the positive x-axis is ϕ .

(a) $a = b = 1$, thus $A = \sqrt{2}$ and $\phi = \frac{\pi}{4}$ (45 degrees), thus

$$
\cos(2t) + \sin(2t) = \sqrt{2}\cos\left(2t - \frac{\pi}{4}\right) .
$$

(b) $a = 1, b = -\sqrt{3}$. Then $A = 2$ and $\phi = -\frac{\pi}{3}$ (-60 degrees), thus

$$
\cos(\pi t) - \sqrt{3}\sin(\pi t) = 2\cos\left(\pi t + \frac{\pi}{3}\right).
$$

(c) We have

$$
\frac{1}{2+2i} = \frac{2-2i}{8} = \frac{1-i}{4}.
$$

Therefore, we are dealing with the expression

Im
$$
\frac{e^{it}}{2+2i} = -\frac{1}{4}\cos(t) + \frac{1}{4}\sin(t)
$$
.

We have $a = -\frac{1}{4}$, $b = \frac{1}{4}$. From a picture like the following 1 4

we see $A = \frac{\sqrt{2}}{4}$, and $\phi = \frac{3\pi}{4}$ (135 degrees). thus

$$
-\frac{1}{4}\cos(t) + \frac{1}{4}\sin(t) = \frac{\sqrt{2}}{4}\cos\left(t - \frac{3\pi}{4}\right).
$$