Recitation 8, March 7, 2006

Homogeneous second order linear equations
Solution suggestions

1. Find two independent real solutions of & + 4z + 3x = 0.

Ans. The characteristic polynomial p(s) = s* + 4s + 3 = (s + 1)(s + 3) has
roots —1, —3, so the equation has two exponential solutions, e~* and e~3!. This
is “overdamped.”

2. Find two independent real solutions of & + 41 + 5z = 0.

Ans. The characteristic polynomial p(s) = s +4s+ 5 has roots —2 =+, so the
equation has two exponential solutions, e(=2t9* and e(=2=9*. Real solutions
are obtained by taking the real and imaginary parts of either one: e~? cost
and e % sint. This is “underdamped.”

3. Find two independent real solutions of & + 42 + 4x = 0. Check that they
are solutions.

Ans. The characteristic polynomial p(s) = s? 4+ 4s + 4 has just one root, —2.
There is just one exponential solution, e=. A second solution is obtained by
multiplying by ¢: te=2. Let’s check this:

4] r = te %
4 & = (1=2t)e™
1] T = (—2 — 2(1 — Qt))e_% = (_4 + 4t)e—2t

(4t +4(1 —2t) + (—4+4t))e " =0
This is “critically damped.”
4. In each case, find the solution with z(0) = 0, £(0) = 2.

Ans. (1) 2 = cre”t + et & = —cie™t — 3™, 50 0 = 2(0) = ¢1 + ¢,
2 = #(0) = —¢; — 3co. Add them to get 2 = —2¢y, ¢ = —1, ¢; = 2,
x=2et—e 3,

(2) = = e *(acost + bsint), so 0 = z(0) = a and z = be *sint. Then
1 = be *(cost — 2sint), so 2 = £(0) = b: x = 2e *sint.

(8) z = (at +b)e 2, 0 =x2(0) =b, so x = ate?. Then = = a(1 — 2t)e " and
2=1(0) =a: x=2te .

t t

5. Explain why e™* and e"™" are “linearly independent” functions whenever
r1 # ro. This means: neither one is a constant multiple of the other. [Argue
by “contradiction”: suppose one was a constant multiple of the other. What
would follow?]

Ans. There are many ways to see this. Here’s one. Suppose €™ = ce™!. Di-
vide through by e"2* (which is legitimate because this function never vanishes):
em=m2)t — ¢ for all t. If we differentiate this we find (r; — ry)e 2 = 0. If
then set ¢t = 0 we find 1 — 5 = 0, which it was supposed not to be. Conclu-
sion: There’s no such c. By swapping r; and ry we see that you can’t write
e™! as a constant multiple of r" either.



6. Explain why a nonzero solution to the equation in (1) can have at most
one critical point (i.e. there’s at most one value of ¢ for which %(¢) = 0). Ditto
with solutions to (3).

Ans. The general solution of (1) is = cie™" + cpe™?". We want to see that =
has at most one critical point if it’s not the zero solution, i.e. provided ¢; and
¢y are not both zero. If ¢; = 0, then 2 = cye™%, which has no critical points:
OK. If ¢y = 0, then o = c;e™*, which has no critical points: OK. If neither ¢,
nor c, is zero, let’s look at the derivative & = —cie™" — 3cee™!. To find the
critical points of x, set () = 0 and try to solve for ¢: cie™" = —coe™ 3. Divide
through by e and by c¢;: €** = —cy/c;. This has no solutions in ¢ if ¢; and

co are of the same sign, and exactly one if they are of opposite sign.

The general solution of (2) is x = (at + b)e!. This is the zero function when
a = b = 0, so suppose they aren’t both zero. Compute & = (a—2(at+b))e % =
(—2at + a — 2b)e™?. TIf this is zero we can divide through by e 2" to find
2at = a — 2b. This has no solutions if a = 0 (since then b # 0), and one if
a # 0 (namely t = (a — 2b)/2a).



