Recitation 10, March 14, 2006

Operators, Exponential Response, Exponential shift, Undetermined Coefficients

Solution suggestions

 d^4x 1. What is the general solution of $\frac{d^2x}{dt^4} - x = 0$? **Ans.** Plugging e^{rt} into $\frac{d^4x}{dt^4} - x = 0$ we obtain the characteristic equation

$$
r^4-1=0.
$$

The roots are the 4th roots of 1 which are $e^{\frac{i\pi}{2}k}$ for $k = 0..3$. Thus we obtain $r = 1, i, -1, -i$. The basic real solutions are e^{-t} , cos t, sin t, e^{t} . Notice that the real and imaginary part of the root $r = i$ already gives to real solutions, and that the root $r = -i$ gives the same real solutions (up to a sign in the imaginary part). Thus, the general solution is

$$
x(t) = c_1 e^{-t} + c_2 e^{t} + c_3 \cos t + c_4 \sin t = c_1 e^{-t} + c_2 e^{t} + A \cos (t - \phi).
$$

2. What is an exponential solution of $\frac{d^4x}{dt^4} - x = e^{-2t}$?

Ans. Using the ERF $\frac{A}{p(r)}e^{rt}$ is a solution to $p(D)x = Ae^{rt}$ unless $p(r) = 0$. In our case $p(r) = r^4 - 1$. We check $p(-2) = 15$. Thus, with $A = 1$ and $r = -2$ we have found the particular solution

$$
x_p(t) = \frac{A}{p(r)}e^{rt} = \frac{1}{15}e^{-2t} .
$$

 d^4x **3.** What is a sinusoidal solution of $\frac{d^2x}{dt^4} - x = \cos(2t)$?

Ans. We look at the complex ODE $\frac{d^4z}{dt^4} - z = e^{2it}$ and realize that the desired solution is the real part of a solution to this complex ODE, i.e. $x(t) = \text{Re } z(t)$. To the complex ODE we apply the ERF. We check that with $p(r) = r^4 - 1$ and $r = 2i$ we find $p(2i) = 15$. Thus, with $A = 1$ and $r = 2i$ we have found the complex particular solution

$$
z_p(t) = \frac{A}{p(r)}e^{rt} = \frac{1}{15}e^{2it}.
$$

The real part is $x_p(t) = \frac{1}{15} \cos 2t$.

 d^2x **4.** What is a polynomial solution of $\frac{d^2x}{dt^2} - x = t^2 + t + 1$?

5. Compute $p(D)\cos(2t)$ if $p(s) = s^4 - 1$. How does this relate to (3)? Ans. By the ESL we have

$$
p(D) e^{st} = e^{st} p(D+s) 1 = e^{st} p(s).
$$

With $s = 2i$ and $p(2i) = 15$ we obtain

$$
p(D) e^{2it} = 15 e^{2it} .
$$

Now we take the real part and obtain on the RHS just $15\cos(2t)$ and on the LHS

$$
\operatorname{Re}\left(p(D) e^{2it}\right) = p(D) \operatorname{Re}\left(e^{2it}\right) = p(D) \cos(2t) .
$$

Therefore, we have found

$$
p(D)\cos(2t) = 15\cos(2t) .
$$

The function $\frac{1}{15} \cos(2t)$ is exactly the particular solution constructed in (3).

6. Compute $D^2(e^{2t}\cos(t))$ in three ways: (1) directly; (2) by writing the function as the real part of an exponential; and (3) using the exponential shift law.

Ans. First we compute it directly:

$$
D^{2}(f(t)g(t)) = \ddot{f}(t) g(t) + 2 \dot{f}(t) \dot{g}(t) + f(t) \ddot{g}(t).
$$

Thus, we have

$$
D^{2}(e^{2t}\cos(t)) = 4e^{2t}\cos(t) - 4e^{2t}\sin(t) - e^{2t}\cos(t) = 3e^{2t}\cos(t) - 4e^{2t}\sin(t).
$$

We can also write the function $e^{2t} \cos(t)$ as the real part of $e^{\alpha t}$ with $\alpha = 2 + i$. Thus,

$$
D^2 \operatorname{Re} e^{\alpha t} = \operatorname{Re} \left(D^2 e^{\alpha t} \right) = \operatorname{Re} \left(\alpha^2 e^{\alpha t} \right)
$$

=
$$
\operatorname{Re} \left((3 + 4i)e^{(2+i)t} \right) = 3e^{2t} \cos(t) - 4e^{2t} \sin(t).
$$

Finally by the exponential shift law we write

$$
D^{2}(e^{2t}\cos(t)) = e^{2t} (D+2I)^{2} \cos t = e^{2t} (D^{2}+4D+4I) \cos t
$$

=
$$
e^{2t} (-\cos t - 4\sin t + 4\cos t) = 3e^{2t} \cos(t) - 4e^{2t} \sin(t).
$$

7. What is a solution of $\ddot{x} + 9x = \cos(3t)$? Do this by replacing the signal with a complex exponential signal and using the "resonant exponential response formula."

Ans. We look at the complex ODE $\ddot{z} + 9z = e^{3it}$ and realize that the desired solution is the real part of a solution to this complex ODE, i.e. $x(t) = \text{Re } z(t)$. To the complex ODE we apply the "resonant exponential response formula". In fact, we check that $p(r) = r^2 + 9$ and $p(3i) = 0$. We compute $p'(r) = 2r$ and $p'(3i) = 6i \neq 0$. By the "resonant exponential response formula" with $A = 1$ a particular solution is provided by

$$
z_p(t) = \frac{1}{p'(3i)}te^{3it} = \frac{1}{6i}te^{3it}.
$$

Taking its real part we obtain $x_p(t) = \frac{1}{6}t \sin t$.