Recitation 10, March 14, 2006

Operators, Exponential Response, Exponential shift, Undetermined Coefficients

Solution suggestions

1. What is the general solution of $\frac{d^4x}{dt^4} - x = 0$? Ans. Plugging e^{rt} into $\frac{d^4x}{dt^4} - x = 0$ we obtain the characteristic equation

$$r^4 - 1 = 0 \; .$$

The roots are the 4th roots of 1 which are $e^{\frac{i\pi}{2}k}$ for k = 0..3. Thus we obtain r = 1, i, -1, -i. The basic real solutions are e^{-t} , $\cos t$, $\sin t$, e^t . Notice that the real and imaginary part of the root r = i already gives to real solutions, and that the root r = -i gives the same real solutions (up to a sign in the imaginary part). Thus, the general solution is

$$x(t) = c_1 e^{-t} + c_2 e^t + c_3 \cos t + c_4 \sin t = c_1 e^{-t} + c_2 e^t + A \cos (t - \phi)$$

2. What is an exponential solution of $\frac{d^4x}{dt^4} - x = e^{-2t}$?

Ans. Using the ERF $\frac{A}{p(r)}e^{rt}$ is a solution to $p(D)x = Ae^{rt}$ unless p(r) = 0. In our case $p(r) = r^4 - 1$. We check p(-2) = 15. Thus, with A = 1 and r = -2 we have found the particular solution

$$x_p(t) = \frac{A}{p(r)}e^{rt} = \frac{1}{15}e^{-2t}$$

3. What is a sinusoidal solution of $\frac{d^4x}{dt^4} - x = \cos(2t)$?

Ans. We look at the complex ODE $\frac{d^4z}{dt^4} - z = e^{2it}$ and realize that the desired solution is the real part of a solution to this complex ODE, i.e. $x(t) = \operatorname{Re} z(t)$. To the complex ODE we apply the ERF. We check that with $p(r) = r^4 - 1$ and r = 2i we find p(2i) = 15. Thus, with A = 1 and r = 2i we have found the complex particular solution

$$z_p(t) = \frac{A}{p(r)}e^{rt} = \frac{1}{15}e^{2it}$$

The real part is $x_p(t) = \frac{1}{15} \cos 2t$.

4. What is a polynomial solution of $\frac{d^2x}{dt^2} - x = t^2 + t + 1$?

-1]	x	=	at^2	+	bt	+	С
0]	\dot{x}	=			2at	+	b
1]	\ddot{x}	=					2a
	$t^2 + t + 1$	=	$-at^2$	_	bt	+	(-c+2a)
so $a = -1$, $b = -1$, $c = -1$ and $x_p = -t^2 - t - 1$.							

5. Compute $p(D)\cos(2t)$ if $p(s) = s^4 - 1$. How does this relate to (3)? Ans. By the ESL we have

$$p(D) e^{st} = e^{st} p(D+s) 1 = e^{st} p(s) .$$

With s = 2i and p(2i) = 15 we obtain

$$p(D) e^{2it} = 15 e^{2it}$$
.

Now we take the real part and obtain on the RHS just $15\cos(2t)$ and on the LHS

$$\operatorname{Re}\left(p(D) \ e^{2it}\right) = p(D) \ \operatorname{Re}\left(e^{2it}\right) = p(D) \cos(2t) \ .$$

Therefore, we have found

$$p(D)\cos(2t) = 15\cos(2t)$$

The function $\frac{1}{15}\cos(2t)$ is exactly the particular solution constructed in (3).

6. Compute $D^2(e^{2t}\cos(t))$ in three ways: (1) directly; (2) by writing the function as the real part of an exponential; and (3) using the exponential shift law.

Ans. First we compute it directly:

$$D^{2}(f(t)g(t)) = \ddot{f}(t) g(t) + 2\dot{f}(t) \dot{g}(t) + f(t) \ddot{g}(t) .$$

Thus, we have

$$D^{2}(e^{2t}\cos(t)) = 4e^{2t}\cos(t) - 4e^{2t}\sin(t) - e^{2t}\cos(t) = 3e^{2t}\cos(t) - 4e^{2t}\sin(t) .$$

We can also write the function $e^{2t}\cos(t)$ as the real part of $e^{\alpha t}$ with $\alpha = 2 + i$. Thus,

$$D^{2} \operatorname{Re} e^{\alpha t} = \operatorname{Re} \left(D^{2} e^{\alpha t} \right) = \operatorname{Re} \left(\alpha^{2} e^{\alpha t} \right)$$
$$= \operatorname{Re} \left((3+4i) e^{(2+i)t} \right) = 3e^{2t} \cos(t) - 4e^{2t} \sin(t) .$$

Finally by the exponential shift law we write

$$D^{2}(e^{2t}\cos(t)) = e^{2t} (D+2I)^{2} \cos t = e^{2t} (D^{2}+4D+4I) \cos t$$
$$= e^{2t} (-\cos t - 4\sin t + 4\cos t) = 3e^{2t} \cos(t) - 4e^{2t} \sin(t) .$$

7. What is a solution of $\ddot{x} + 9x = \cos(3t)$? Do this by replacing the signal with a complex exponential signal and using the "resonant exponential response formula."

Ans. We look at the complex ODE $\ddot{z} + 9z = e^{3it}$ and realize that the desired solution is the real part of a solution to this complex ODE, i.e. $x(t) = \operatorname{Re} z(t)$. To the complex ODE we apply the "resonant exponential response formula". In fact, we check that $p(r) = r^2 + 9$ and p(3i) = 0. We compute p'(r) = 2r and $p'(3i) = 6i \neq 0$. By the "resonant exponential response formula" with A = 1 a particular solution is provided by

$$z_p(t) = \frac{1}{p'(3i)} t e^{3it} = \frac{1}{6i} t e^{3it}$$
.

Taking its real part we obtain $x_p(t) = \frac{1}{6}t\sin t$.