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Recitation 13, March 23, 2006 

Fourier Series: Introduction 

Solutions suggestions 

1. What is the general solution to ẍ + ω2 x = 0? [Quick!] n

Ans. The characteristic polynomial is p(s) = s2 + ω2 . The roots are ±iωnn

and the complex solutions e±iωnt . We pick one of the complex solutions and 
determine its real and imaginary part. The general solution is 

x = c1 cos(ωnt) + c2 sin(ωnt) . 

2.	 Discuss why 

ẍ + ω2 x = a cos(ωt) has solution xp = a 
cos(ωt) 

n	 ω2 
n − ω2 

ẍ + ω2 x = b sin(ωt) has solution xp = b 
sin(ωt) 

n	 ω2 
n − ω2 

Ans. We have to find a particular solution of the complex ODE z̈ + ω2 z = 
Ae

n
iωt . Then its real part Re zp(t) is a solution for the first ODE (with A=a), 

and its imaginary part Im zp(t) is a solution for the second ODE (with A=b).The 
2characteristic polynomial is p(s) = ω2 + s . We find p(iω) = ω2 

n − ω2 . Sincen 

circular frequency are always positive p(iω) is zero exactly if ω = ωn. 

Case 1: (ω = ωn) Now p(iω) = ω2 − ω2 = 0 and we can write down an 

particular solution by the exponential response formula: 

A 
zp(t) = e iωt . 

ω2 
n − ω2 

The real and the imaginary part are exactly the real particular solutions for 
the two ODEs. 

ẍ + ω2 x = A cos(ωt) has solution xp = A 
cos(ωt) 

n	 ω2 
n − ω2 

ẍ + ω2 x = A sin(ωt) has solution xp = A 
sin(ωt) 

n	 ω2 
n − ω2 

Case 2: (ω = ωn) Now p(iω) = ω2 
n − ω2 = 0 and p�(iω) = 2iω. By the 

resonant ERF the particular solution is given by 

At 
zp(t) = e iωt . 

2iω 

The real and the imaginary part are exactly the real particular solutions for 
the two ODEs. 

sin(ωt)
ẍ + ωx = A cos(ωt) has solution xp = At 

2ω 
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cos(ωt)
ẍ + ωx = A sin(ωt) has solution xp = −At 

2ω 

x + ω23. For what values of ωn is there a sinusoidal solution to ¨ nx = sin(t)? 
What is it when it exists? What is the general solution when no sinusoidal 
solution exists? Sketch the graph of one solution in that case. 

Ans. By (3) we know that the general solution for ωn = 1 is 

sin t 
x(t) = c1 cos(ωnt) + c2 sin(ωnt) + . 

ω2 
n − 1 

If ωn = 1 then the general solution becomes 

t cos t 
x(t) = c1 cos t + c2 sin t + . 

2 

Here is the graph of x(t) = 6 cos(t − 2) + t cos t :
2 

4. What is the period of f(t) = sin(t) + (1/2) sin(2t)? 

[A function is periodic if there is a number P > 0 such that f(t + P ) = f(t) 
for all t. Such a number P is then a “period” of f(t). If f(t) is a periodic 
function which is continuous and not constant, then there is a smallest period, 
often called the period.] 

Ans. We know that sin t has period 2π, i.e. t �→ t + 2π leaves sin t unchanged 
for arbitrary t and 2π is the smallest such number. Accordingly, sin(2t) must 
have period π. Again, t �→ t + π or 2t �→ 2t + 2π leaves sin(2t) unchanged for 
arbitrary t. Now, what is the period of their linear combination. It is the least 
common multiple of the two whi is 2π. Here is the graph 
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5. For what values of ω is there a periodic solution to ẍ + ω2 x = sin(t) + n

(1/2) sin(2t)? What is it when such exists? What is the general solution for 
the values of ω when no periodic solution exists? 

Ans. The characteristic polynomial is again p(s) = ω2 + s2 . Let us first n 

assume that ωn = 1 and ωn = 2. By applying the ERF twice we can write 
down the general solution 

sin t sin(2t) 
x(t) = c1 cos(ωnt) + c2 sin(ωnt) + + . 

n − 1 2 (ω2ω2 
n − 4) 

2πThe first two pieces have period 
ωn 

, the last two pieces periods 2π and π. So, 
2πthe period is the least common multiple of 
ωn 

and 2π.


Now, let us assume ωn = 1. The general solution is then given by


t cos t sin(2t) 
x(t) = c1 cos(t) + c2 sin(t) − + 

2 (1 − 4)2 
t cos t sin(2t) 

= c1 cos(t) + c2 sin(t) − . 
2 

− 
6 

Because of the third term this solution is not periodic. 

Similarly, if ωn = 2. The general solution is then given by 

sin t t cos(2t) 
x(t) = c1 cos(2t) + c2 sin(2t) + . 

3 
− 

8 

Because of the fourth term this solution is not periodic. 


