Recitation 13, March 23, 2006

Fourier Series: Introduction

Solutions suggestions

1. What is the general solution to $\ddot{x} + \omega_n^2 x = 0$? [Quick!]

Ans. The characteristic polynomial is $p(s) = s^2 + \omega_n^2$. The roots are $\pm i\omega_n$ and the complex solutions $e^{\pm i\omega_n t}$. We pick one of the complex solutions and determine its real and imaginary part. The general solution is

$$
x = c_1 \cos(\omega_n t) + c_2 \sin(\omega_n t) .
$$

2. Discuss why

$$
\ddot{x} + \omega_n^2 x = a \cos(\omega t) \quad \text{has solution} \quad x_p = a \frac{\cos(\omega t)}{\omega_n^2 - \omega^2}
$$
\n
$$
\ddot{x} + \omega_n^2 x = b \sin(\omega t) \quad \text{has solution} \quad x_p = b \frac{\sin(\omega t)}{\omega_n^2 - \omega^2}
$$

Ans. We have to find a particular solution of the complex ODE $\ddot{z} + \omega_n^2 z =$ $Ae^{i\omega t}$. Then its real part $\text{Re } z_p(t)$ is a solution for the first ODE (with A=a), and its imaginary part Im $z_p(t)$ is a solution for the second ODE (with A=b). The characteristic polynomial is $p(s) = \omega_n^2 + s^2$. We find $p(i\omega) = \omega_n^2 - \omega^2$. Since circular frequency are always positive $p(i\omega)$ is zero exactly if $\omega = \omega_n$.

Case 1: $(\omega \neq \omega_n)$ Now $p(i\omega) = \omega_n^2 - \omega^2 \neq 0$ and we can write down a particular solution by the exponential response formula:

$$
z_p(t) = \frac{A}{\omega_n^2 - \omega^2} e^{i\omega t} .
$$

The real and the imaginary part are exactly the real particular solutions for the two ODEs.

$$
\ddot{x} + \omega_n^2 x = A \cos(\omega t) \quad \text{has solution} \quad x_p = A \frac{\cos(\omega t)}{\omega_n^2 - \omega^2}
$$
\n
$$
\ddot{x} + \omega_n^2 x = A \sin(\omega t) \quad \text{has solution} \quad x_p = A \frac{\sin(\omega t)}{\omega_n^2 - \omega^2}
$$

Case 2: $(\omega = \omega_n)$ Now $p(i\omega) = \omega_n^2 - \omega^2 = 0$ and $p'(i\omega) = 2i\omega$. By the resonant ERF the particular solution is given by

$$
z_p(t) = \frac{At}{2i\omega}e^{i\omega t} .
$$

The real and the imaginary part are exactly the real particular solutions for the two ODEs.

$$
\ddot{x} + \omega x = A\cos(\omega t) \quad \text{has solution} \quad x_p = At \frac{\sin(\omega t)}{2\omega}
$$

$$
\ddot{x} + \omega x = A \sin(\omega t) \quad \text{has solution} \quad x_p = -At \frac{\cos(\omega t)}{2\omega}
$$

3. For what values of ω_n is there a sinusoidal solution to $\ddot{x} + \omega_n^2 x = \sin(t)$? What is it when it exists? What is the general solution when no sinusoidal solution exists? Sketch the graph of one solution in that case.

� Ans. By (3) we know that the general solution for $\omega_n \neq 1$ is

$$
x(t) = c_1 \cos(\omega_n t) + c_2 \sin(\omega_n t) + \frac{\sin t}{\omega_n^2 - 1}.
$$

If $\omega_n = 1$ then the general solution becomes

$$
x(t) = c_1 \cos t + c_2 \sin t + \frac{t \cos t}{2}.
$$

Here is the graph of $x(t) = 6\cos(t-2) + \frac{t \cos t}{2}$:

4. What is the period of $f(t) = \sin(t) + (1/2)\sin(2t)$?

[A function is *periodic* if there is a number $P > 0$ such that $f(t + P) = f(t)$ for all t. Such a number P is then a "period" of $f(t)$. If $f(t)$ is a periodic function which is continuous and not constant, then there is a smallest period, often called the period.]

Ans. We know that sin t has period 2π , i.e. $t \mapsto t + 2\pi$ leaves sin t unchanged for arbitrary t and 2π is the smallest such number. Accordingly, $sin(2t)$ must have period π . Again, $t \mapsto t + \pi$ or $2t \mapsto 2t + 2\pi$ leaves $\sin(2t)$ unchanged for arbitrary t . Now, what is the period of their linear combination. It is the least common multiple of the two whi is 2π . Here is the graph

5. For what values of ω is there a periodic solution to $\ddot{x} + \omega_n^2 x = \sin(t) + \omega_n^2 x$ $(1/2)\sin(2t)$? What is it when such exists? What is the general solution for the values of ω when no periodic solution exists?

assume that $\omega_n \neq 1$ and $\omega_n \neq 2$. By applying the ERF twice we can write Ans. The characteristic polynomial is again $p(s) = \omega_n^2 + s^2$. Let us first down the general solution

$$
x(t) = c_1 \cos(\omega_n t) + c_2 \sin(\omega_n t) + \frac{\sin t}{\omega_n^2 - 1} + \frac{\sin(2t)}{2(\omega_n^2 - 4)}.
$$

The first two pieces have period $\frac{2\pi}{\omega_n}$, the last two pieces periods 2π and π . So, the period is the least common multiple of $\frac{2\pi}{\omega_n}$ and 2π .

Now, let us assume $\omega_n = 1$. The general solution is then given by

$$
x(t) = c_1 \cos(t) + c_2 \sin(t) - \frac{t \cos t}{2} + \frac{\sin(2t)}{2(1-4)}
$$

= $c_1 \cos(t) + c_2 \sin(t) - \frac{t \cos t}{2} - \frac{\sin(2t)}{6}$.

Because of the third term this solution is not periodic. Similarly, if $\omega_n = 2$. The general solution is then given by

$$
x(t) = c_1 \cos(2t) + c_2 \sin(2t) + \frac{\sin t}{3} - \frac{t \cos(2t)}{8}.
$$

Because of the fourth term this solution is not periodic.