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Recitation 15, April 6, 2006 

Fourier Series: Harmonic response 

Solution suggestions 

1. Find the Fourier series for the function of period 2π which is given by 
f (t) = t/π for −π < t < π. 

Ans. The period of f (t) is 2π, thus L = π. As you can check we also have 
f (−t) = −f (t). Therefore, f (t) is odd. All the coefficients an in the Fourier 
series must be zero, and we are left with computing the bn’s, i.e. � π2 

bn = f (x) sin(nx) dx 
π �0 

π2 
= x sin(nx) dx . 

π2 
0 

The integral can be carried out by integration by parts: � π2 
bn = x sin(nx) dx 

π2 
0 � � �π2 cos(nx) 1 

= + cos(nx) dx 
π2 

− x
n n 0 

2 cos(nx) 1 �π 
= + 

2 
sin(nx)

π2 �− x
n 0� n

2 π cos(nπ) 2(−1)n+1 

= = . 
π2 

− 
n πn 

Thus the Fourier series is 

2 1 1 
f (t) = sin(t) − sin(2t) + sin(3t) + . . . 

π 2 3 � (−1)n+12 
∞

= sin(nt) . 
π n 

n=1 

2. Find the Fourier series for the function of circular frequency ω which is 
given by g(t) = t/L for −L < t < L, where L = π/ω. 

Ans. The period of g(t) is 2L = 2π/ω. The relation to the function f (t) is 
given by 

πt 
g(t) = f . 

L 

Using the Fourier series from (1) we obtain 

� (−1)n+12 
∞

nπt 
g(t) = sin . 

π n L 
n=1 
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3. Now drive the harmonic oscillator with the function g(t) from (2): 
ẍ + ω2 x = g(t). Express a periodic solution as a Fourier series. n

Ans. Let’s first look at the differential equation 

ẍ + ω2 x = bk sin(kωt) .n

To obtain a particular solution we look at the complex equation 

ikωt z̈ + ω2 z = bken

and remember that a solution of our original problem is given by the imaginary 
part of a particular complex solution, i.e. xp(t) = Im zp(t). 

The characteristic polynomial is p(s) = s2 + ω2 . We already know what the n

particular complex solution then is: if ωn = kω so that p(ikω) = 0, the 
particular solution is 

bke
ikωt 

zp(t) = = 
bk 

e ikωt . 
p(ikω) ω2 

n − k2ω2 

If ω = ωn then p(ikω) = 0, and the particular solution is instead 

bkte
ikωt 

zp(t) = = 
bkt

e ikωt . 
p�(ikω) 2ikω 

Remember, that we still have to take the imaginary part, so the real particular 
solution of 

ẍ + ω2 x = bk sin(kωt) .n

is given by 

bkif ωn = kω : xp(t) = 
n−k2ω2 sin(kωt) ,

ω2 

if ωn = kω : xp(t) = − bk t cos(kωt) .
2kω 

By the superposition principle we can now also write down the particular 
solution to 

∞

ẍ + ω2 x = bk sin(kωt) .n

k=1 

All we have done here is replacing the input signal by a sum of input signals. 
All we have to do to find the new particular solution is to sum up the partic­
ular solutions for each input signal. This means that the particular solution 
becomes � bk 

xp(t) = 
n − k2ω2 

sin(kωt) 
∞

ω2 
k=1 

as long as all ωn = kω. For the ODE with input signal g(t) 

2 
∞

kπt 
ẍ + ω2 x = g(t) = 

� (−1)k+1 

sinn π k L 
k=1 
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we have 
2 kπ 

(−1)k+1bk = kω = . 
kπ L 

The particular solution is 
∞

2 � (−1)k+1 kπt 
xp(t) = � � �2 

� sin 
π ω2 kπ L 

k=1 k n − 
L 

as long as ωn = kπ for all k.
L 

4. Imagine changing the capacitance in the AM turner; this changes ωn. For 
what values of ωn does resonance occur?—that is, for what values of ωn does 
there fail to be a periodic solution? When ωn is near one of those values, what 
is the periodic solution like? 

ω
Ans. We see that if we change ωn such that for a particular k0 we will have 

n = k0ω = k0π then the particular solution we wrote down before is not valid 
L 

any more. The piece in our particular solution that corresponded to the input 
bk0 sin(k0ωt) now has to be the resonant solution 

bk0 t cos(k0ωt) .− 
2k0ω 

Thus, if for k0 we have k0ω = ωn then the particular solution is � bk
∞

bk0 xp(t) = 
n − k2ω2 

sin(kωt) − t cos(k0ωt) . 
ω2 2k0ω 

k=1 but not k0 

We observe that because of the second term on RHS, xp(t) is no longer periodic. 
If ωn ≈ k0ω but not exactly equal, we still have the periodic particular solution � bk 

xp(t) = 
n − k2ω2 

sin(kωt) . 
∞

ω2 
k=1 

But as ω2
0 ω

2 will be very small compared to all the other denominators, 
the dominant term in this sum will be 

n − k2 

bk0 xp(t) ≈ 
ω2

0 ω
2 

sin(k0ωt) . 
n − k2 

Now since k0ω ≈ ωn we can write 

ω2 
n − k2ω2 = (ωn + k0ω)(ωn − k0ω) ≈ 2k0ω(ωn − kω); ,0 

and the dominant part of the particular solution is 

bk0 xp(t) sin(k0ωt) .≈ 
2k0ω(ωn − k0ω) 

In the case of the input signal g(t) we thus have the following result: if we 
change ωn such that ωnL becomes an integer – which we call k0 – then the 

π 
dominant part in the periodic solution is 

2(−1)k0+1 k0πt L (−1)k0+1 k0πt � sin .� � 
k0 π 

�2 
� sin 

L 
≈ 

π2k2 
� 
ωn − k0π Lπk0 ω2 0 Ln − 

L 


