Recitation 15, April 6, 2006

Fourier Series: Harmonic response

Solution suggestions

1. Find the Fourier series for the function of period 2π which is given by $f(t) = t/\pi$ for $-\pi < t < \pi$.

Ans. The period of f(t) is 2π , thus $L = \pi$. As you can check we also have f(-t) = -f(t). Therefore, f(t) is odd. All the coefficients a_n in the Fourier series must be zero, and we are left with computing the b_n 's, i.e.

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) \, dx$$
$$= \frac{2}{\pi^2} \int_0^{\pi} x \sin(nx) \, dx \, .$$

The integral can be carried out by integration by parts:

$$b_n = \frac{2}{\pi^2} \int_0^{\pi} x \sin(nx) dx$$

= $\frac{2}{\pi^2} \Big[-x \frac{\cos(nx)}{n} + \frac{1}{n} \int \cos(nx) dx \Big]_0^{\pi}$
= $\frac{2}{\pi^2} \Big[-x \frac{\cos(nx)}{n} + \frac{1}{n^2} \sin(nx) \Big]_0^{\pi}$
= $\frac{2}{\pi^2} \left(-\frac{\pi \cos(n\pi)}{n} \right) = \frac{2(-1)^{n+1}}{\pi n}.$

Thus the Fourier series is

$$f(t) = \frac{2}{\pi} \left(\sin(t) - \frac{1}{2} \sin(2t) + \frac{1}{3} \sin(3t) + \dots \right)$$
$$= \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nt) .$$

2. Find the Fourier series for the function of circular frequency ω which is given by g(t) = t/L for -L < t < L, where $L = \pi/\omega$.

Ans. The period of g(t) is $2L = 2\pi/\omega$. The relation to the function f(t) is given by

$$g(t) = f\left(\frac{\pi t}{L}\right) \;.$$

Using the Fourier series from (1) we obtain

$$g(t) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin\left(\frac{n\pi t}{L}\right) .$$

3. Now drive the harmonic oscillator with the function g(t) from (2): $\ddot{x} + \omega_n^2 x = g(t)$. Express a periodic solution as a Fourier series. **Ans.** Let's first look at the differential equation

$$\ddot{x} + \omega_n^2 x = b_k \sin(k\omega t) \; .$$

To obtain a particular solution we look at the complex equation

$$\ddot{z} + \omega_n^2 z = b_k e^{ik\omega}$$

and remember that a solution of our original problem is given by the imaginary part of a particular complex solution, i.e. $x_p(t) = \text{Im } z_p(t)$.

The characteristic polynomial is $p(s) = s^2 + \omega_n^2$. We already know what the particular complex solution then is: if $\omega_n \neq k\omega$ so that $p(ik\omega) \neq 0$, the particular solution is

$$z_p(t) = \frac{b_k e^{ik\omega t}}{p(ik\omega)} = \frac{b_k}{\omega_n^2 - k^2 \omega^2} e^{ik\omega t}$$

If $\omega = \omega_n$ then $p(ik\omega) = 0$, and the particular solution is instead

$$z_p(t) = \frac{b_k t e^{ik\omega t}}{p'(ik\omega)} = \frac{b_k t}{2ik\omega} e^{ik\omega t}$$

Remember, that we still have to take the imaginary part, so the real particular solution of

$$\ddot{x} + \omega_n^2 x = b_k \sin(k\omega t) \; .$$

is given by

if
$$\omega_n \neq k\omega$$
: $x_p(t) = \frac{b_k}{\omega_n^2 - k^2 \omega^2} \sin(k\omega t)$,
if $\omega_n = k\omega$: $x_p(t) = -\frac{b_k}{2k\omega} t \cos(k\omega t)$.

By the superposition principle we can now also write down the particular solution to

$$\ddot{x} + \omega_n^2 x = \sum_{k=1}^\infty b_k \sin(k\omega t) \; .$$

All we have done here is replacing the input signal by a sum of input signals. All we have to do to find the new particular solution is to sum up the particular solutions for each input signal. This means that the particular solution becomes

$$x_p(t) = \sum_{k=1}^{\infty} \frac{b_k}{\omega_n^2 - k^2 \omega^2} \sin(k\omega t)$$

as long as all $\omega_n \neq k\omega$. For the ODE with input signal g(t)

$$\ddot{x} + \omega_n^2 x = g(t) = \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin\left(\frac{k\pi t}{L}\right)$$

we have

$$b_k = \frac{2}{k\pi} (-1)^{k+1} \qquad k\omega = \frac{k\pi}{L} .$$

The particular solution is

$$x_p(t) = \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k \left[\omega_n^2 - \left(\frac{k\pi}{L}\right)^2\right]} \sin\left(\frac{k\pi t}{L}\right)$$

as long as $\omega_n \neq \frac{k\pi}{L}$ for all k.

4. Imagine changing the capacitance in the AM turner; this changes ω_n . For what values of ω_n does resonance occur?—that is, for what values of ω_n does there fail to be a periodic solution? When ω_n is near one of those values, what is the periodic solution like?

Ans. We see that if we change ω_n such that for a particular k_0 we will have $\omega_n = k_0 \omega = \frac{k_0 \pi}{L}$ then the particular solution we wrote down before is not valid any more. The piece in our particular solution that corresponded to the input $b_{k_0} \sin(k_0 \omega t)$ now has to be the resonant solution

$$-rac{b_{k_0}}{2k_0\omega} t \cos(k_0\omega t)$$
.

Thus, if for k_0 we have $k_0\omega = \omega_n$ then the particular solution is

$$x_p(t) = \sum_{k=1 \text{ but not } k_0}^{\infty} \frac{b_k}{\omega_n^2 - k^2 \omega^2} \sin(k\omega t) - \frac{b_{k_0}}{2k_0 \omega} t \cos(k_0 \omega t)$$

We observe that because of the second term on RHS, $x_p(t)$ is no longer periodic. If $\omega_n \approx k_0 \omega$ but not exactly equal, we still have the periodic particular solution

$$x_p(t) = \sum_{k=1}^{\infty} \frac{b_k}{\omega_n^2 - k^2 \omega^2} \sin(k\omega t) .$$

But as $\omega_n^2 - k_0^2 \omega^2$ will be very small compared to all the other denominators, the dominant term in this sum will be

$$x_p(t) \approx \frac{b_{k_0}}{\omega_n^2 - k_0^2 \omega^2} \sin(k_0 \omega t) .$$

Now since $k_0 \omega \approx \omega_n$ we can write

$$\omega_n^2 - k_0^2 \omega^2 = (\omega_n + k_0 \omega)(\omega_n - k_0 \omega) \approx 2k_0 \omega(\omega_n - k\omega);,$$

and the dominant part of the particular solution is

$$x_p(t) \approx \frac{b_{k_0}}{2k_0\omega(\omega_n - k_0\omega)}\sin(k_0\omega t)$$
.

In the case of the input signal g(t) we thus have the following result: if we change ω_n such that $\frac{\omega_n L}{\pi}$ becomes an integer – which we call k_0 – then the dominant part in the periodic solution is

$$\frac{2(-1)^{k_0+1}}{\pi k_0 \left[\omega_n^2 - \left(\frac{k_0\pi}{L}\right)^2\right]} \sin\left(\frac{k_0\pi t}{L}\right) \approx \frac{L\left(-1\right)^{k_0+1}}{\pi^2 k_0^2 \left[\omega_n - \frac{k_0\pi}{L}\right]} \sin\left(\frac{k_0\pi t}{L}\right) \ .$$