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Recitation 15, April 6, 2006 

Fourier Series: Harmonic response 

Solution suggestions 

1. Find the Fourier series for the function of period 2π which is given by 
f (t) = t/π for −π < t < π. 

Ans. The period of f (t) is 2π, thus L = π. As you can check we also have 
f (−t) = −f (t). Therefore, f (t) is odd. All the coefficients an in the Fourier 
series must be zero, and we are left with computing the bn’s, i.e. � π2 

bn = f (x) sin(nx) dx 
π �0 

π2 
= x sin(nx) dx . 

π2 
0 

The integral can be carried out by integration by parts: � π2 
bn = x sin(nx) dx 

π2 
0 � � �π2 cos(nx) 1 

= + cos(nx) dx 
π2 

− x
n n 0 

2 cos(nx) 1 �π 
= + 

2 
sin(nx)

π2 �− x
n 0� n

2 π cos(nπ) 2(−1)n+1 

= = . 
π2 

− 
n πn 

Thus the Fourier series is 

2 1 1 
f (t) = sin(t) − sin(2t) + sin(3t) + . . . 

π 2 3 � (−1)n+12 
∞

= sin(nt) . 
π n 

n=1 

2. Find the Fourier series for the function of circular frequency ω which is 
given by g(t) = t/L for −L < t < L, where L = π/ω. 

Ans. The period of g(t) is 2L = 2π/ω. The relation to the function f (t) is 
given by 

πt 
g(t) = f . 

L 

Using the Fourier series from (1) we obtain 

� (−1)n+12 
∞

nπt 
g(t) = sin . 

π n L 
n=1 
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3. Now drive the harmonic oscillator with the function g(t) from (2): 
ẍ + ω2 x = g(t). Express a periodic solution as a Fourier series. n

Ans. Let’s first look at the differential equation 

ẍ + ω2 x = bk sin(kωt) .n

To obtain a particular solution we look at the complex equation 

ikωt z̈ + ω2 z = bken

and remember that a solution of our original problem is given by the imaginary 
part of a particular complex solution, i.e. xp(t) = Im zp(t). 

The characteristic polynomial is p(s) = s2 + ω2 . We already know what the n

particular complex solution then is: if ωn = kω so that p(ikω) = 0, the 
particular solution is 

bke
ikωt 

zp(t) = = 
bk 

e ikωt . 
p(ikω) ω2 

n − k2ω2 

If ω = ωn then p(ikω) = 0, and the particular solution is instead 

bkte
ikωt 

zp(t) = = 
bkt

e ikωt . 
p�(ikω) 2ikω 

Remember, that we still have to take the imaginary part, so the real particular 
solution of 

ẍ + ω2 x = bk sin(kωt) .n

is given by 

bkif ωn = kω : xp(t) = 
n−k2ω2 sin(kωt) ,

ω2 

if ωn = kω : xp(t) = − bk t cos(kωt) .
2kω 

By the superposition principle we can now also write down the particular 
solution to 

∞

ẍ + ω2 x = bk sin(kωt) .n

k=1 

All we have done here is replacing the input signal by a sum of input signals. 
All we have to do to find the new particular solution is to sum up the partic
ular solutions for each input signal. This means that the particular solution 
becomes � bk 

xp(t) = 
n − k2ω2 

sin(kωt) 
∞

ω2 
k=1 

as long as all ωn = kω. For the ODE with input signal g(t) 

2 
∞

kπt 
ẍ + ω2 x = g(t) = 

� (−1)k+1 

sinn π k L 
k=1 
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we have 
2 kπ 

(−1)k+1bk = kω = . 
kπ L 

The particular solution is 
∞

2 � (−1)k+1 kπt 
xp(t) = � � �2 

� sin 
π ω2 kπ L 

k=1 k n − 
L 

as long as ωn = kπ for all k.
L 

4. Imagine changing the capacitance in the AM turner; this changes ωn. For 
what values of ωn does resonance occur?—that is, for what values of ωn does 
there fail to be a periodic solution? When ωn is near one of those values, what 
is the periodic solution like? 

ω
Ans. We see that if we change ωn such that for a particular k0 we will have 

n = k0ω = k0π then the particular solution we wrote down before is not valid 
L 

any more. The piece in our particular solution that corresponded to the input 
bk0 sin(k0ωt) now has to be the resonant solution 

bk0 t cos(k0ωt) .− 
2k0ω 

Thus, if for k0 we have k0ω = ωn then the particular solution is � bk
∞

bk0 xp(t) = 
n − k2ω2 

sin(kωt) − t cos(k0ωt) . 
ω2 2k0ω 

k=1 but not k0 

We observe that because of the second term on RHS, xp(t) is no longer periodic. 
If ωn ≈ k0ω but not exactly equal, we still have the periodic particular solution � bk 

xp(t) = 
n − k2ω2 

sin(kωt) . 
∞

ω2 
k=1 

But as ω2
0 ω

2 will be very small compared to all the other denominators, 
the dominant term in this sum will be 

n − k2 

bk0 xp(t) ≈ 
ω2

0 ω
2 

sin(k0ωt) . 
n − k2 

Now since k0ω ≈ ωn we can write 

ω2 
n − k2ω2 = (ωn + k0ω)(ωn − k0ω) ≈ 2k0ω(ωn − kω); ,0 

and the dominant part of the particular solution is 

bk0 xp(t) sin(k0ωt) .≈ 
2k0ω(ωn − k0ω) 

In the case of the input signal g(t) we thus have the following result: if we 
change ωn such that ωnL becomes an integer – which we call k0 – then the 

π 
dominant part in the periodic solution is 

2(−1)k0+1 k0πt L (−1)k0+1 k0πt � sin .� � 
k0 π 

�2 
� sin 

L 
≈ 

π2k2 
� 
ωn − k0π Lπk0 ω2 0 Ln − 

L 


