Recitation 16, April 11, 2006

Step and delta functions, and step and delta responses
Solutions suggestions

1. Graph the functions
f@) =1+ 1[t] =t
(where |t] denotes the greatest integer less than or equal to t) and

g(t) = 3(u(t — a) —u(t — b))

(where a < b). Then find their generalized derivatives and graph them, using
harpoons to denote the delta functions that occur.

Ans. Here is the graph for the function f(¢):
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Here is the graph of the function ¢(t) (for a = 1 and b = 3):
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To determine the generalized derivative of f(t), we first notice that f(t) is
periodic with period 1. Therefore, it is enough to look at ¢ in the range
—1/2 <t < 1/2. Since f(—1/2) = f(1/2) the function is continuous at 1/2,
and we see that the only kink in the graph of f(¢) between —1/2 <t < 1/2
appears at t = 0. Let’s write down the possible values for f(t):

—t —3<t<0
= 2
1 {l—t 0<t<i 7

or for t with —1/2 <t < 1/2 we can write f(t) = —t + u(t). The generalized

derivative is '
(@) =—1+4(t).

The function f(t) is periodic with period 1. This means that the graph of

f(t) for t with 1/2 < t < 3/2 looks exactly like the graph of f(t) for ¢ with

—1/2 <t < 1/2 (i.e. shifted by one unit to the right). This means

1
—5 <t

N |=

Repeating this argument, we find

fty=—=14+ > 6(t—mn).

n=—oo

Here is the graph of f(t) (with harpoons denoting the occuring delta functions):

Similarly, we compute for g(t)
g(t) =30(t —a) —36(t —b).

Here is the graph of the function ¢(¢) (for a = 1 and b = 3):



2. Find the unit step and unit impulse responses to the operator mD? — kI,
for m > 0, and graph them.

Ans. Let’s start with computing the unit step response: the differential equa-
tion we seek to solve is

(mD? — kIx(t) = u(t) .
We can write this as
mi(t) — kx(t) = u(t) . (1)
For ¢t > 0, Eq. (1) is the same as
mi(t) — kx(t) =1

with initial conditions 2(0) = 0 and #(0) = 0. A particular solution is given by
xp(t) = —1/k. To obtain the general solution we have to add the homogenous
solution, i.e. the general solution of

mi(t) — kx(t) =0

which is Ae¥! + Be ™! where w? = k/m. From recitation 15 we know that
we can also write this solution as an even plus an odd part, i.e. acosh(wt) +
bsinh(wt). Together, the solution becomes

1
x(t) = ~Z + acosh(wt) + bsinh(wt) .
We want z(0) = 0 and this gives a = 1/k. Thus, we obtain

1 1
x(t) = =ty cosh(wt) + bsinh(wt) .

We compute Z(t):

z(t) = %sinh(wt) + bw cosh(wt) .



As we also want #(0) = 0 we find b = 0. In summary, the unit step response
is given by

0 fort <0
Here is the graph of z(t) for k = 1/2 and m = 1/2:

2(t) = { —+ + ¢ cosh(wt) fort >0

Let’s compute the unit impulse response: the differential equation we seek to
solve is

(mD?* — kI)y(t) = §(t) .
We can write this as
mij(t) — ky(t) = 6(t) . (2)

For t > 0 Eq. (2) is the same as

mij(t) — ky(t) = 0
with initial conditions y(0) = 0 and my(0) = 1. Again, the general solution of

mij(t) — ky(t) = 0
is a cosh(wt) + bsinh(wt) with w? = k/m. Thus

y(t) = acosh(wt) + bsinh(wt) .

We want y(0) = 0 thus a = 0, and

y(t) = bsinh(wt)

and
y(t) = bw cosh(wt) .

As we also want mg(0) = 1 we find b = 1/(mw). In summary, the unit step
response is given by

—L ginh(wt) fort >0
y(t) = { 0 fort <0

Here is the graph of y(t) for k =1/2 and m = 1/2:
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Since w = \/%, we have ¥ = L = \/%Tn Then, we see that y(t) = @(t).

3. Suppose q(t) = 2u(t+1)+0(t) —2u(t—1). Sketch a graph of this generalized
function. Tell stories which might result in each of the equations & + kx = ¢(t)
(your choice of k, it might be negative) and 2% + 4@ + 18z = ¢(t).

Ans. Here is the graph of ¢(t):

3

A driven spring/mass/dashpot system is described by the ODE
mE + bt + kx = Fou(t)

where we set m = 2, b = 4, k = 18. Now, we want to design the external
force F..; to fit ¢(t). If we consider a hammer blow large enough to increase
the momentum m(0) by one unit, then this would give us an external force
of just &(¢). If we applied a constant force of magnitude 2 in the positive z-
direction but only between —1 < t < 1 this would result in an external force of
2[u(t+1)—u(t—1)]. Combining the constant force and the hammer blow gives



the right externernal force. The system is then described by the differential
equation
2% + 44 + 18z = 6(t) + 2[u(t + 1) —u(t — 1)] .

Now, we want to describe a situation which is modelled by the first order
differential equation. Let us look at a nuclear reactor: the amount of plutonium
x(t) present in the reactor’s core is described by the differential equation

T+ kx = M(t)

where M (t) describes how much plutonium we place in the reactor core. If we
just put a single amount of plutonium in at ¢ = 0 this would correspond to
setting M (t) equal to §(t). If we started loading the reactor at the constant
rate 2, but only between —1 < ¢ < 1 this would correspond to setting M (t)
equal to 2[u(t + 1) — u(t — 1)]. Combining the constant loading and the single
placement of plutonium in the reactor core gives the differential equation

T+ kr=00t)+2u(t+1)—u(t—1)].

4. Find the unit step and unit impulse responses for 2D? +4D + 20I. Why is
one the derivative of the other?

Ans. We are looking for the solutions of the differential equations

unit step response w/ rest initial conditions: (3)
p(D)z(t) = wu(t)
and

unit impulse response w/ rest initial conditions: (4)
p(D)y(t) = 4(t)

where
p(D) = 2D* + 4D + 201

and rest initial conditions means
z(t) =0 fort <0

and the same for y(t).

For ¢ > 0 the unit step response (3) is the same as
20+42 4202 = 1
with initial conditions
2(0)=0,  #(0)=0.
As p(s) has roots —1 &£ i3, the general solution to p(D)x =1 is

_1 —t -
T =55 +e (a cos(3t) + bsm(?)t)).



We want x(0) = 0, thus a = —1/20 and
1

T =—
20

1
+ e*t( ~ 30 cos(3t) + bsin(?)t))

and therefore

&= e*t[ (3b + %) cos(3t) — (% + b) sin(3t)} .

Therefore, we have #(0) = 3b+ 55. We want #(0) = 0, thus b = —&. In
summary, we have found

o(6) = 2_10 _ %e_t(cos(?)t) + %sin(St)) fort >0
fort <0

Here is the graph of z(?):
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For ¢ > 0 the unit impulse response (4) is the same as
2 + 45+ 20y = 0
with initial conditions
y0) =0,  2j(0)=1.
As p(s) has roots —1 £ i32, the general solution to p(D)y = 0 is
y=e" (a cos(3t) + bsin(3t)>.
We want y(0) =0, so a = 0 and y = be " sin(3t). We compute
y=be! (3 cos(3t) — Sin(3t)> :

Therefore, we have §(0) = 3b. We want 2y(0) = 1. Thus, 3b = 1/2 or b = .
In summary, we have found

Le=tsin(3t) fort >0
—J %
y(t) = { 0 fort <0

Here is the graph of y(t):



0.0z

0.06

0.04

0.0z

-0.02

We can check that y(t) = @(¢). There is good reason for this: let us assume
that we have any solution z(¢) for Eq. (3) then it must satisfy

p(D)x(t) = wul(t).
Let’s take the derivative D = % on both sides, i.e.
Dp(D)x(t) = Dult) .
We know that Du(t) = 6(t). We check that
Dp(D) = D<2D2 4D+ 201) —2D3 +4D? 4+ 20D = p(D) D .

This is nothig but saying that p(D) D = D p(D) because the coefficients are
constant. Therefore, y(t) = 4(t) = Dz(t) must be a solution to

p(D)y(t) = p(D)Dx(t) = D[p(D)x(t)] = Du(t) = 6(t) .

We just showed that if x(¢) is a solution to the unit step response (3) then
y(t) = &(t) is a solution to the unit impulse response (4).



