Recitation 16, April 11, 2006

Step and delta functions, and step and delta responses

Solutions suggestions

1. Graph the functions

$$
f(t) = 1 + \lfloor t \rfloor - t
$$

(where $\lfloor t \rfloor$ denotes the greatest integer less than or equal to $t)$ and

$$
g(t) = 3(u(t - a) - u(t - b))
$$

(where $a < b$). Then find their generalized derivatives and graph them, using harpoons to denote the delta functions that occur.

Ans. Here is the graph for the function $f(t)$:

Here is the graph of the function $g(t)$ (for $a = 1$ and $b = 3$):

To determine the generalized derivative of $f(t)$, we first notice that $f(t)$ is periodic with period 1. Therefore, it is enough to look at t in the range $-1/2 \le t \le 1/2$. Since $f(-1/2) = f(1/2)$ the function is continuous at $1/2$, and we see that the only kink in the graph of $f(t)$ between $-1/2 \le t \le 1/2$ appears at $t = 0$. Let's write down the possible values for $f(t)$:

$$
f(t) = \begin{cases} -t & -\frac{1}{2} < t < 0\\ 1 - t & 0 < t \le \frac{1}{2} \end{cases}
$$

or for t with $-1/2 \le t \le 1/2$ we can write $f(t) = -t + u(t)$. The generalized derivative is

$$
\dot{f}(t)\Big|_{-\frac{1}{2}\leq t\leq \frac{1}{2}}=-1+\delta(t)\;.
$$

The function $f(t)$ is periodic with period 1. This means that the graph of $f(t)$ for t with $1/2 < t < 3/2$ looks exactly like the graph of $f(t)$ for t with $-1/2 < t < 1/2$ (i.e. shifted by one unit to the right). This means

$$
f(t) = \begin{cases} -(t-1) & \frac{1}{2} < t < 1\\ 1 - (t-1) & 1 < t \le \frac{3}{2} \end{cases}
$$

where we have just replaced t by $t - 1$. Accordingly, the derivative is

$$
\dot{f}(t)\Big|_{\frac{1}{2}\leq t\leq \frac{3}{2}} = -1 + \delta(t-1).
$$

Repeating this argument, we find

$$
\dot{f}(t) = -1 + \sum_{n=-\infty}^{\infty} \delta(t - n) .
$$

Here is the graph of $\dot{f}(t)$ (with harpoons denoting the occuring delta functions):

Similarly, we compute for $g(t)$

$$
\dot{g}(t) = 3\delta(t - a) - 3\delta(t - b).
$$

Here is the graph of the function $\dot{g}(t)$ (for $a = 1$ and $b = 3$):

2. Find the unit step and unit impulse responses to the operator $mD^2 - kI$, for $m > 0$, and graph them.

Ans. Let's start with computing the unit step response: the differential equation we seek to solve is

$$
(mD2 - kI)x(t) = u(t) .
$$

We can write this as

$$
m\ddot{x}(t) - kx(t) = u(t) . \tag{1}
$$

For $t > 0$, Eq. (1) is the same as

$$
m\ddot{x}(t) - kx(t) = 1
$$

with initial conditions $x(0) = 0$ and $\dot{x}(0) = 0$. A particular solution is given by $x_p(t) = -1/k$. To obtain the general solution we have to add the homogenous solution, i.e. the general solution of

$$
m\ddot{x}(t) - kx(t) = 0
$$

which is $Ae^{wt} + Be^{-wt}$ where $w^2 = k/m$. From recitation 15 we know that we can also write this solution as an even plus an odd part, i.e. $a \cosh(wt)$ + $b \sinh(wt)$. Together, the solution becomes

$$
x(t) = -\frac{1}{k} + a \cosh(w t) + b \sinh(w t) .
$$

We want $x(0) = 0$ and this gives $a = 1/k$. Thus, we obtain

$$
x(t) = -\frac{1}{k} + \frac{1}{k}\cosh(w t) + b\sinh(w t) .
$$

We compute $\dot{x}(t)$:

$$
\dot{x}(t) = \frac{w}{k}\sinh(wt) + bw\,\cosh(wt) .
$$

As we also want $\dot{x}(0) = 0$ we find $b = 0$. In summary, the unit step response is given by

$$
x(t) = \begin{cases} -\frac{1}{k} + \frac{1}{k}\cosh(wt) & \text{for } t > 0\\ 0 & \text{for } t < 0 \end{cases}
$$

Here is the graph of $x(t)$ for $k = 1/2$ and $m = 1/2$:

Let's compute the unit impulse response: the differential equation we seek to solve is

$$
(mD^2 - kI)y(t) = \delta(t) .
$$

We can write this as

$$
m\ddot{y}(t) - ky(t) = \delta(t) . \qquad (2)
$$

For $t > 0$ Eq. (2) is the same as

 $m\ddot{y}(t) - ky(t) = 0$

with initial conditions $y(0) = 0$ and $m\dot{y}(0) = 1$. Again, the general solution of

 $m\ddot{y}(t) - ky(t) = 0$

is $a \cosh(wt) + b \sinh(wt)$ with $w^2 = k/m$. Thus

$$
y(t) = a \cosh(wt) + b \sinh(wt) .
$$

We want $y(0) = 0$ thus $a = 0$, and

$$
y(t) = b\sinh(wt)
$$

and

$$
\dot{y}(t) = bw \cosh(wt)
$$

As we also want $m\dot{y}(0) = 1$ we find $b = 1/(mw)$. In summary, the unit step response is given by

$$
y(t) = \begin{cases} \frac{1}{mw} \sinh(wt) & \text{for } t > 0 \\ 0 & \text{for } t < 0 \end{cases} .
$$

Here is the graph of $y(t)$ for $k = 1/2$ and $m = 1/2$:

Since $w = \sqrt{\frac{k}{m}}$, we have $\frac{w}{k} = \frac{1}{mw} = \frac{1}{\sqrt{km}}$. Then, we see that $y(t) = \dot{x}(t)$.

3. Suppose $q(t) = 2u(t+1)+\delta(t)-2u(t-1)$. Sketch a graph of this generalized function. Tell stories which might result in each of the equations $\dot{x} + kx = q(t)$ (your choice of k, it might be negative) and $2\ddot{x} + 4\dot{x} + 18x = q(t)$.

Ans. Here is the graph of $q(t)$:

A driven spring/mass/dashpot system is described by the ODE

$$
m\ddot{x} + b\dot{x} + kx = F_{ext}(t)
$$

where we set $m = 2$, $b = 4$, $k = 18$. Now, we want to design the external force F_{ext} to fit $q(t)$. If we consider a hammer blow large enough to increase the momentum $m\dot{x}(0)$ by one unit, then this would give us an external force of just $\delta(t)$. If we applied a constant force of magnitude 2 in the positive xdirection but only between $-1 < t < 1$ this would result in an external force of $2[u(t+1)-u(t-1)]$. Combining the constant force and the hammer blow gives the right externernal force. The system is then described by the differential equation

$$
2\ddot{x} + 4\dot{x} + 18x = \delta(t) + 2[u(t+1) - u(t-1)].
$$

Now, we want to describe a situation which is modelled by the first order differential equation. Let us look at a nuclear reactor: the amount of plutonium $x(t)$ present in the reactor's core is described by the differential equation

$$
\dot{x} + kx = M(t)
$$

where $M(t)$ describes how much plutonium we place in the reactor core. If we just put a single amount of plutonium in at $t = 0$ this would correspond to setting $M(t)$ equal to $\delta(t)$. If we started loading the reactor at the constant rate 2, but only between $-1 < t < 1$ this would correspond to setting $M(t)$ equal to $2[u(t+1)-u(t-1)]$. Combining the constant loading and the single placement of plutonium in the reactor core gives the differential equation

$$
\dot{x} + kx = \delta(t) + 2[u(t+1) - u(t-1)].
$$

4. Find the unit step and unit impulse responses for $2D^2 + 4D + 20I$. Why is one the derivative of the other?

Ans. We are looking for the solutions of the differential equations

unit step response w/ rest initial conditions:
$$
p(D)x(t) = u(t)
$$
 (3)

and

unit impulse response w/ rest initial conditions:
$$
p(D)y(t) = \delta(t)
$$
 (4)

where

$$
p(D) = 2D^2 + 4D + 20I
$$

and rest initial conditions means

$$
x(t) = 0 \qquad \text{for } t < 0
$$

and the same for $y(t)$.

For $t > 0$ the unit step response (3) is the same as

$$
2\ddot{x} + 4\dot{x} + 20x = 1
$$

with initial conditions

$$
x(0) = 0 , \t\t \dot{x}(0) = 0 .
$$

As $p(s)$ has roots $-1 \pm i3$, the general solution to $p(D)x = 1$ is

$$
x = \frac{1}{20} + e^{-t} \Big(a \cos(3t) + b \sin(3t) \Big).
$$

We want $x(0) = 0$, thus $a = -1/20$ and

$$
x = \frac{1}{20} + e^{-t} \left(-\frac{1}{20} \cos(3t) + b \sin(3t) \right)
$$

and therefore

$$
\dot{x} = e^{-t} \left[\left(3b + \frac{1}{20} \right) \cos(3t) - \left(\frac{3}{20} + b \right) \sin(3t) \right].
$$

Therefore, we have $\dot{x}(0) = 3b + \frac{1}{20}$. We want $\dot{x}(0) = 0$, thus $b = -\frac{1}{60}$. In summary, we have found

$$
x(t) = \begin{cases} \frac{1}{20} - \frac{1}{20}e^{-t} \Big(\cos(3t) + \frac{1}{3}\sin(3t) \Big) & \text{for } t > 0 \\ 0 & \text{for } t < 0 \end{cases}.
$$

Here is the graph of $x(t)$:

For $t > 0$ the unit impulse response (4) is the same as

$$
2\ddot{y} + 4\dot{y} + 20y = 0
$$

with initial conditions

$$
y(0) = 0
$$
, $2\dot{y}(0) = 1$.

As $p(s)$ has roots $-1 \pm i32$, the general solution to $p(D)y = 0$ is

$$
y = e^{-t} \Big(a \cos(3t) + b \sin(3t) \Big).
$$

We want $y(0) = 0$, so $a = 0$ and $y = be^{-t} \sin(3t)$. We compute

$$
\dot{y} = be^{-t} \left(3\cos(3t) - \sin(3t) \right).
$$

Therefore, we have $\dot{y}(0) = 3b$. We want $2\dot{y}(0) = 1$. Thus, $3b = 1/2$ or $b = \frac{1}{6}$. In summary, we have found

$$
y(t) = \begin{cases} \frac{1}{6}e^{-t}\sin(3t) & \text{for } t > 0 \\ 0 & \text{for } t < 0 \end{cases}.
$$

Here is the graph of $y(t)$:

We can check that $y(t) = \dot{x}(t)$. There is good reason for this: let us assume that we have any solution $x(t)$ for Eq. (3) then it must satisfy

$$
p(D)x(t) = u(t) .
$$

Let's take the derivative $D = \frac{d}{dt}$ on both sides, i.e.

$$
D p(D)x(t) = Du(t) .
$$

We know that $Du(t) = \delta(t)$. We check that

$$
D p(D) = D (2D2 + 4D + 20I) = 2D3 + 4D2 + 20D = p(D) D.
$$

This is nothig but saying that $p(D) D = D p(D)$ because the coefficients are constant. Therefore, $y(t) = \dot{x}(t) = Dx(t)$ must be a solution to

$$
p(D)y(t) = p(D) Dx(t) = D[p(D)x(t)] = Du(t) = \delta(t)
$$
.

We just showed that if $x(t)$ is a solution to the unit step response (3) then $y(t) = \dot{x}(t)$ is a solution to the unit impulse response (4).