18.03 Recitation 17, April 13, 2006

Convolution

Solution suggestions

$$
f(t) * g(t) = \int_0^t f(t - \tau)g(\tau) d\tau
$$

1. (a) What is the differential operator $p(D)$ whose weight function (i.e. unit impulse response) is the unit step function $u(t)$?

Verify that $u(t) * q(t)$ is the solution to $p(D)x = q(t)$ with rest initial conditions. (Since we are always interested only in $t > 0$, we could write $1 * q(t)$ instead of $u(t) * q(t)$.)

Ans. We already know the relation between $u(t)$ and $\delta(t)$ from their definition. It is $Du(t) = \delta(t)$. Therefore, we should have $p(D) = D = d/dt$. Now, let us check that $u(t)$ really is the unit impulse response to

$$
D\,w(t)=\delta(t)
$$

with rest initial condition, i.e. $w(t) = 0$ for $t < 0$. From the lecture we know that for $t > 0$ this is the same as

$$
D\ w(t) = 0
$$

with initial condition $w(0) = 1$. The solutions $w(t)$ are simply constants $w(t) = a$. The initial condition $w(0) = 1$ fixes this constant to be $a = 1$. This means for $t > 0$ the solution is $w(t) = 1$.

Now we want to solve

$$
p(D) x(t) = \dot{x}(t) = q(t) .
$$

with initial condition $x(0) = 0$. We integrate both sides and obtain the solution

$$
x(t) = x(0) + \int_0^t q(\tau) d\tau = \int_0^t q(\tau) d\tau.
$$

Now for $t > 0$ we have

$$
u(t) * q(t) = \int_0^t u(t - \tau) q(\tau) d\tau = \int_0^t q(\tau) d\tau.
$$

For the last step, we have used that $u(t - \tau) = 1$ as long as τ is in between 0 and t. Thus, we have found

$$
x(t) = u(t) * q(t) .
$$

(b) What is the differential operator $p(D)$ whose weight function is $u(t)t$? Verify that $t * t^n$ is the solution, with rest initial conditions, to $p(D)x = t^n$. Ans. Again, we have to find the unit impulse response with rest initial conditions, i.e.

$$
p(D)w(t) = \delta(t) .
$$

For $t > 0$ this means $p(D)w(t) = 0$, and we want $w(t)$ to turn out to be $t u(t) = t$. So what differential operator has as a general homogeneous solution t or better $at + b$? It's $p(D) = D^2$. We see that the general solution to $p(D)w(t) = 0$ is in fact $w(t) = at + b$. The initial conditions $w(0) = 0$ and $\dot{w}(0) = 1$ then fix $a = 1$ and $b = 0$.

Now, for $t > 0$ let's look at

$$
D^2x = t^n
$$

with initial conditions $x(0) = 0$ and $\dot{x}(0) = 0$. Integrating once gives

$$
\dot{x}(t) = \dot{x}(0) + \int_0^t \tau^n d\tau = \dot{x}(0) + \frac{1}{n+1} t^{n+1},
$$

integrating again gives

$$
x(t) = x(0) + tx(0) + \frac{1}{(n+1)(n+2)}t^{n+2}.
$$

With the initial condition we obtain $x(t) = \frac{1}{(n+1)(n+2)} t^{n+2}$.

On the other hand we have from the definition

$$
t*t^{n} = \int_{0}^{t} (t-\tau)\tau^{n} d\tau = t \int_{0}^{t} \tau^{n} d\tau - \int_{0}^{t} \tau^{n+1} d\tau = \frac{t^{n+2}}{n+1} - \frac{t^{n+2}}{n+2} = \frac{t^{n+2}}{(n+1)(n+2)}.
$$

which is exactly $x(t)$.

2. (a) Suppose $a > 0$. Figure out what $w(t) * \delta(t-a)$ is by using the fact that it is the solution to the equation $p(D)x = \delta(t-a)$ with rest initial conditions.

Ans. Let us look at the differential equation

$$
p(D)x = \delta(t - a)
$$

with rest initial conditions which are $x(t) = 0$ for $t < a$. As long as $t < a$ we have no input signal, thus the output just remains zero, so really $w(t) = 0$ for $t < a$. Let's define a new time by $\tau = t - a$. We check $d/dt = d/d\tau$. Thus, it's the same to look for a solution of

$$
p(D)\,x = \delta(\tau)
$$

with rest initial conditions. But this is just the definition of weight function, i.e. the solution is $w(\tau)$ with $w(\tau) = 0$ for $\tau < 0$. Since $\tau = t - a$ the function $w(t - a)$ is the solution to the original problem.

(b) Then figure out what $w(t) * \delta(t - a)$ is using the definition.

Ans. We have to compute

$$
w(t) * \delta(t - a) = \int_0^t w(t - \tau) \delta(\tau - a) d\tau
$$

Now, $\delta(\tau - a)$ is zero unless $\tau = a$. In general we have

$$
\int_{-\infty}^{\infty} f(x) \delta(x) dx = f(0) .
$$

Therefore, we obtain

$$
w(t) * \delta(t - a) = w(t - a) ,
$$

which agrees with (a) .

3. Compute the convolution product $e^{-t} * (1 + \cos(t))$ by using the integral. Ans. We have to compute

$$
e^{-t} * (1 + \cos(t)) = \int_0^t e^{-(t-\tau)} (1 + \cos(\tau)) d\tau
$$
.

By using Euler's formula we can write the integral as

$$
\int_0^t e^{-(t-\tau)} (1 + \cos(\tau)) d\tau = e^{-t} \Big[\int_0^t e^{\tau} + \int_0^t \text{Re}(e^{(1+i)\tau}) d\tau \Big] .
$$

This can be evaluated as follows

$$
e^{-t} \Big[\int_0^t e^{\tau} + \int_0^t \text{Re} (e^{(1+i)\tau}) d\tau \Big]
$$

= $e^{-t} \Big[e^{\tau} \Big|_0^t + \text{Re} \Big(\int_0^t e^{(1+i)\tau} d\tau \Big) \Big]$
= $1 - e^{-t} + e^{-t} \text{Re} \Big(\frac{1}{1+i} e^{(1+i)\tau} \Big|_0^t \Big)$
= $1 - e^{-t} + e^{-t} \text{Re} \Big(\frac{1}{1+i} e^{(1+i)t} - \frac{1}{1+i} \Big)$
= $1 - e^{-t} + e^{-t} \text{Re} \Big(\frac{1}{\sqrt{2} e^{i\pi/4}} e^{(1+i)t} - \frac{1-i}{2} \Big)$
= $1 - \frac{3}{2} e^{-t} + \frac{1}{\sqrt{2}} \cos \Big(t - \frac{\pi}{4} \Big)$.