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18.03 Recitation 21, May 2, 2006 

Eigenvalues and Eigenvectors 

Solution suggestions 

We’ll solve the system of equations 
ẋ = −5x − 3y 
ẏ = 6x + 4y 

1. Write down the matrix of coefficients, A, so that we are solving u̇ = Au. What 
is its trace? Its determinant? Its characteristic polynomial pA(λ) = det(A − λI)? 
Relate the trace and determinant to the coefficients of pA(λ). 

Ans. If we think of the vector u(t) having the components x(t) and y(t) we can write 

x(t)
u(t) = x(t)i + y(t)j = . 

y(t) 

The velocity vector u̇ then is 

ẋ(t)
u̇(t) = ẋ(t)i + ẏ(t)j = . 

ẏ(t) 

This means we can write the equations for x, y as � � � � � � 
ẋ(t) x(t)

u̇(t) = = 
−5 −3 

ẏ(t) 6 4 y(t) 

= 
−5 −3 

u(t) . 
6 4 

=A 

We compute 

tr 
−5 −3

= −5 + 4 = −1 , det 
−5 −3

= −5 · 4 − (−3) · 6 = −2 . 
6 4 6 4 

Now we compute the characteristic polynomial �� � � �� 
λ 0 

pA(λ) = det(A − λI) = det 
−5 −3 
6 4 

− 
0 λ 

= det 
−5 − λ −3 

= (−5 − λ)(4 − λ) − (−3)6 
6 4 − λ 

= λ2 + λ − 2 

= λ2 − tr (A) λ + det(A) . 

2. Find the eigenvalues and then for each eigenvalue find a nonzero eigenvector. 

Ans. The eigenvalues are the roots of pA(λ). The solutions of λ2 + λ − 2 = 0 are � � 
1 1 1 3 1 1 

λ1 = − 
2 

+ 
4 

+ 2 = − 
2 

+ 
2 

= 1 , λ2 = − 
2 
− 

4 
+ 2 = −2 , 
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and thus pA(λ) = (λ−1)(λ+2). For λ1 = 1, a nonzero eigenvector v1 with components 
a1, b1 must satisfy the equation 

v1 = λ1 v1 = v1 ,A · 

or written in components it is 

a1 a1−5 −3 
= . 

6 4 
· 

b1 b1 

We can write these two equations as 

−6a1 − 3b1 = 0 , 

6a1 + 3b1 = 0 . 

The second equation is just the negative of the first one. Therefore, we get 2a1 = −b1 

as our only equation. If we pick b1 = 2, then a1 = −1, and the eigenvector is 

−1 
v1 = . 

2 

However, any choice 
−c 
2c 

with c a real number, but not zero would have been fine, too. 

For λ2 = −2 a nonzero eigenvector v2 with components a2, b2 must satisfy 

v2 = λ2 v2 = −2v2 ,A · 

or written in components it is 

−5 −3 a2 −2a2 = . 
6 4 

· 
b2 −2b2 

We can write these two equations as 

−3a2 − 3b2 = 0 , 

6a2 + 6b2 = 0 . 

a
The second equation is just twice the negative of the first one. Therefore, we get 

2 = −b2 as our only equation. If we pick b2 = 1 then a1 = −1, and the eigenvector 
is � � 

−1 
v2 = . 

1 

However, any choice 

c
−c� 

with c� a real number but not zero would have been fine, too. 
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3. Draw the eigenlines and discuss the solutions whose trajectories live on each. 
Explain why each eigenline is made up of three distinct nonintersecting trajectories. 
Begin to construct a phase portrait by indicating the direction of time on portions of 
the eigenlines. Pick a nonzero point on an eigenline and write down all the solutions 
to u̇ = Au whose trajectories pass through that point. 

Ans. The eigenlines are the lines which run through the orgin and have a constant 
velocity vector v1 or v2. For λ1 = 1 (blue graph in the picture below) we take 

1 t ct u(t) = c e λ1t v1 = c e 
−

= e 
−

2 2c 

we can check that it is a solution to the ODE since 

u̇(t) = λ1u(t) = A · u(t) , 

and the initial condition is � � 
c 

u(0) = 
−

. 
2c 

We distinguish the following three cases: (1) For c > 0, we see that u(0) is located in 
the second quadrant. If we let t → ∞ we find a trajectory that runs away from the 
origin on the eigenline which lies in the second quadrant. If we let t → −∞ we find 
a trajectory that asymptotically approaches the origin on the eigenline which lies in 
the second quadrant. Just check that the factor et in fornt of v1 which multiplies the 
two components becomes very small as t → −∞. However, as et is never zero for 
finite t, the trajectory doesn’t reach the origin in finite time. 

(2) For c < 0, we see that u(0) is located in the fourth quadrant. If we let t → ∞ 
we find a trajectory that runs away from the origin on the eigenline which lies in 
the fourth quadrant. If we let t → −∞ we find a trajectory that asymptotically 
approaches the origin on the eigenline which lies in the fourth quadrant. 

(3) For c = 0 the vector is just the zero vector. The ’trajectory’ is just the point 
staying at the origin for all times. 

These three trajectories do not intersect. 

For λ2 = −2 (red graph in the picture below) we take 

1
= e−2t −c� 

u(t) = c�e λ2t v2 = c�e−2t −
1 c� 

we can check that 
u̇(t) = λ2u(t) = A · u(t) , 

and � � 

u(0) = 
−c� 

. 
c

We distinguish three cases: (1) For c� > 0, we see that u(0) is located in the second 
quadrant. If we let t → ∞ we find a trajectory that runs towards the origin on the 
eigenline which lies in the second quadrant. If we let t → −∞ we find a trajectory 
that runs away from the origin on the eigenline which lies in the second quadrant. 
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(2) For c� > 0, we see that u(0) is located in the fourth quadrant. If we let t → ∞ 
we find a trajectory that runs towards the origin on the eigenline which lies in the 
fourth quadrant. If we let t → −∞ we find a trajectory that runs away the origin on 
the eigenline which lies in the fourth quadrant. 

(3) For c� = 0 the vector is just the zero vector. The ’trajectory’ is just the point 
staying at the origin for all times. 

These three trajectories do not intersect. 

We have the following picture: 

1 1 
4. Now study the solution u(t) such that u(0) = . Write as a linear 

0 0 
combination of a vector from the first eigenline and a vector from the second eigenline. 
Use this decomposition to express the solution, and sketch its trajectory. Fill out the 
phase portrait. 

Ans. We want to write 

1 
= αv1 + βv2 = α 

−1
+ β 

−1 
. 

0 2 1 

From the second component we see 2α + β = 0 or β = −2α. Looking at the first 
component then gives 1 = −α − β = α. Going back, we get β = −2. Thus, 

1 
= v1 − 2v2 = 

−1 − 2 
−1 

. 
0 2 1 

Now we write 
λ2t u(t) = e λ1t v1 − 2e v2 . 

We can check that we have 

1 
u(0) = v1 − 2v2 = 

0 
, 

as intended. Moreover, 

− 2e λ2t u̇(t) = λ1 e λ1t v1 + λ2 v2 , 
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and also 

u(t) = e λ1t A · v1 + e λ2t A · v2A · � � � � 
− 2e λ2t = λ1 e λ1t v1 + λ2 v2 , 

and thus 
u̇(t) = A · u(t) , 

and u(t) is in fact the solution to the ODE we were looking for. In conclusion, we 
have � � � � 

u(t) = e t 
−1 − 2e−2t −1 

. 
2 1 

Here is the picture of the eigenlines plus the trajectory of u(t): 

And here is the phase portrait: 

ẋ = 4x + 3y
5. Same sequence of steps for 

ẏ = −6x − 5y 

Ans.: We can write the equations for x, y as 

4 3 
u̇(t) = −6 −5 

u(t) . 

=B 
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We observe that B = −2A−1 . We compute 

tr B = −1 , det B = −2 . 

Thus, the characteristic polynomial is the same as for A, and so are the roots and 
eigenvalues. Thus λ1 = 1 and λ2 = −2. 

For λ1 = 1, the eigenline is given by 

−c 
c 

with c a real number, but not zero. For λ2 = −2 the eigenline is given by 

−c� 

2c� 

with c� a real number but not zero. We see that all we have done is exchanging 
the roles of the eigenvectors v1 and v2 from the first example. Thus, we have the 
following picture for the eigenlines: 

Now, � � � � 

u(t) = αe t 
−1

+ βe−2t −1 
1 2 

is a solution to the ODE with initial condition 

u(0) = 
−α − β

. 
α + 2β 

Thus, for α = −2 and β = 1 it runs through the point (1, 0). Here is the picture of 
the phase portrait: 




