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18.03 Recitation 22, May 4, 2006 

Complex or Repeated Eigenvalues 

Solution suggestions 

Find basic real solutions for u̇ = Au with 

−6 −8 
1. A = . 

5 6 

Ans. Let’s compute the characteristic polynomial of A. It’s 

pA(λ)	 = det(A − λI) 

= λ2 − tr (A) λ + det(A) = λ2 + 4 . 

Thus, the roots are λ = 2i and λ = −2i. The characteristic polynomial has only real 
coefficients, thus the roots – if complex – must be complex conjugates of each other 
which is exactly what we have. 

Now, we have to find the corresponding eigenvector but only for λ. We have to find 
v such that 

v = λv = 2iv .A · 

If v has components a, b then the equation above can be written as 

a a−6 −8 
5 6 

· 
b 

= 2i
b

, 

which becomes 

= 2i a −6a − 8b 

5a + 6b = 2i b 

or 

(−6 − 2i)a 8b = 0−	
. 

5a + (6 − 2i)b = 0 

If we mulitply the first equation with −6
5 
−2i we get the second equation as 

5 −8
(−6 − 2i)

= −8 
5(−6 + 2i)

= 6 − 2i . 
36 + 4 

Thus, we get −(6 + 2i)a = 8b or −(3 + i)a = 4b as our only equation. If we pick 
b = 3 + i we get a = −4. So, we obtain 

−4 
v = . 

3 + i 
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This means that we have found the following complex eigenvalue, complex eigenvector, 
and complex solution to the ODE: 

λ = 2i , v = 
−4 

,
3 + i � � � � �� � � �� 

0 
u(t) = e λt v = e 2i t −4 

= cos(2t) + i sin(2t) 
−4

+ i . 
3 + i 3 1 

But we wanted real solutions. As in the case of second order equations, the real and 
imaginary parts of solutions are again solutions. So these are real solutions: 

0 
u1(t) = Re u(t) = cos(2t) 

−4 − sin(2t)
3 1 

, 

0 
u2(t) = Im u(t) = cos(2t) + sin(2t) 

−4 
. 

1 3 

−15 −25 
2. A = . 

8 13 

Ans. Let’s compute the characteristic polynomial of A. It’s 

pA(λ) = λ2 − tr (A) λ + det(A) = λ2 + 2λ + 5 . 

Thus, the roots are λ = −1 + 2i and λ = −1 − 2i. 

Now, we have to find the corresponding eigenvector for λ. We have to find v such 
that 

v = λv = (−1 + 2i) v .A · 
If v has components a, b then the equation above can be written as 

a−15 −25 a 
= (−1 + 2i)

8 13 
· 

b b
, 

which becomes 

(−14 − 2i)a 25b = 0− 
. 

8a + (14 − 2i)b = 0 

If we mulitply the first equation with −14
8 
−2i we get the second equation as 

8
= −25 

4(−7 + i) 
= 14 − 2i . −25 

(−14 − 2i) 49 + 1 

Thus, we get 8a = −(14 − 2i)b or 4a = (−7 + i)b as our only equation. If we pick 
b = 4 we get a = −7 + i. So, we obtain 

−7 + i 
v = . 

4 

This means that we have found the following complex eigenvalue, complex eigenvector, 
and complex solution to the ODE: 

λ = −1 + 2i , v = 
−7 + i

,
4 � � � � �� � � �� 

1 
u(t) = e λt v = e(−1+2i) t −7 + i 

= cos(2t) + i sin(2t) e−t −7
+ i . 

4 4 0 
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But we wanted real solutions. As in the case of second order equations, the real and 
imaginary parts of solutions are again solutions. So these are real solutions: 

1 
u1(t)	 = Re u(t) = cos(2t) e−t −7 − sin(2t) e−t 

4	 0 
, 

1 
u2(t) = Im u(t) = cos(2t) e−t + sin(2t) e−t −7 

. 
0	 4 

0 1 
3. A = . 

2−1 

Ans. Let’s compute the characteristic polynomial of A. It’s 

pA(λ)	 = det(A − λI) 

= λ2 − tr (A) λ + det(A) = λ2 − 2λ + 1 = (λ − 1)2 . 

Thus, the (only repeated) root is λ1 = 1. 

First, we have to find the corresponding eigenvector for λ1. We have to find v such 
that 

v = λ1 v = v .A · 

If v has components a, b then the equation above can be written as 

0 1 a a 
−1 2 

· 
b 

= 
b

, 

which becomes 

+ b = 0−a 
. 

+ b = 0−a 

Thus, we get a = b as our only equation. If we pick b = 1 we get a = 1. So, we obtain 

1 
v = . 

1 

This means that we have found the following (repeated) eigenvalue, eigenvector, and 
solution to the ODE: 

1 
λ1 =	 1 , v = 

1 
, 

1t u(t) = e λt v = e . 
1 

But we need two real independent solutions. To do so, we have to find w such that 

(A − λ1I)w = v �� � � �� � � 
0 1 1 0	 1 

w = . −1 2 
− 

0 1	 1 
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If w has components c, d then the equation above can be written as 

1 c 1−1 
= . 

1 
· 

d 1−1 

Thus, we get d = 1 + c as our only equation. If we pick c = 0 we get d = 1. So, we 
obtain � � 

0 
w = . 

1 

Let’s write down � � � � �� � � 
1 0 tt w(t) = e λ1t (tv + w) = e t + = e 

t
. 

1 1 t + 1 

We check that 

λ1 e λ1 tẇ(t) = (tv + w) + e λ1t v 

= t e λ1t λ1v + e λ1t (v + λ1w) . 

Now, by our construction we have 

Av = λ1v , Aw = v + λ1w . 

Therefore, we obtain 

λ1t (v + λ1w)ẇ(t) = t e λ1t λ1v + e 

= t e λ1t Av + e λ1t Aw 

= A e λ1t (tv + w) 

= Aw(t) . 

Thus, w(t) is a second real independent solution to the ODE. 

0 1 
4. Note that A = −1 

is a companion matrix. What is the corresponding 
2 

second order ODE? Find a basis for its solutions and compare them with what you 
found using matrix methods. 

Ans. If u(t) has components x(t), y(t) then the ODE 

u̇(t) = Au(t) 

can be written as 

ẋ(t) 0 1 x(t)
= 

ẏ(t) −1 2 
· 

y(t) 
, 

which becomes 

ẋ(t) = y(t) 

ẏ(t) = −x(t) + 2y(t) . 



If we use the first equation to eliminate ẏ(t) = x(t) and y(t) = ẋ(t) from the second ¨
equation we obtain 

ẍ(t) − 2 ̇x(t) + x(t) = 0 . 

We know how to write down two independent solutions to this ODE. The character­
istic polynomial is 

p(λ) = λ2 − 2λ + 1 

and agrees with pA(λ) above. Again, we have one repeated root, λ1 = 1. The two 
indpendent solutions are 

t t x1(t) = e λ1t = e , x2(t) = teλ1t = te . 

These solutions are exactly the first components of u(t) and w(t). 


