18.03 Recitation 23, May 9, 2006

Qualitative analysis of linear systems

Solutions suggestions

The matrices I want you to study all have the form $A = \begin{bmatrix} a & 2 \\ -2 & -1 \end{bmatrix}$.

1. Compute the trace, determinant, characteristic polynomial, and eigenvalues, in terms of a.

Ans. The trace is

$$
tr A = a - 1 ,
$$

and the determinant is

$$
\det A = a(-1) - 2(-2) = -a + 4.
$$

Thus, the characteristic polynomial is

$$
p_A(\lambda) = \det (A - \lambda I) = \lambda^2 - \text{tr}(A)\lambda + \det(A) = \lambda^2 - (a - 1)\lambda - a + 4.
$$

The eigenvalues are the roots of the characteristic polynomial. The roots are

$$
\lambda = \frac{a-1}{2} \pm \sqrt{\left(\frac{a-1}{2}\right)^2 + a - 4} = \frac{a-1}{2} \pm \frac{1}{2}\sqrt{(a-1)^2 + 4a - 16}.
$$

2. For these matrices, express the determinant as a function of the trace. Sketch the (tr A, det A) plane, along with the critical parabola det $A = (\text{tr } A)^2/4$, and plot the curve representing the relationship you found for this family of matrices. On this curve, plot the points corresponding to the following values of a: $a =$ $-6, -5, -2, 1, 2, 3, 4, 5.$

Ans. From (1) we see

$$
det(A) = -a + 4 = -(a - 1) + 3 = -tr(A) + 3.
$$

We notice that if the matrix lies on the critical parabola det $A = (\text{tr } A)^2/4$, then the charcateristic polynomial is

$$
p_A(\lambda) = \lambda^2 - \text{tr}(A)\lambda + \det(A) = \lambda^2 - \text{tr}(A)\lambda + \left(\frac{\text{tr} A}{2}\right)^2 = \left(\lambda - \frac{\text{tr} A}{2}\right)^2.
$$

This means that for matrices which lie on the critical parabola we have only one (repeated) eigenvalue tr $A/2$.

Here is the sketch of the $(tr A, det A)$ plane:

3. Make a table showing for each a in this list (1) the eigenvalues; (2) information about the phase portrait derived from the eigenvalues (real and distinct; real and repeated; non-real) and the stability type (stable if all real parts are negative; unstable if at least one real part is positive; undesignated if neither); (3) further information beyond what the eigenvalues alone tell you: if a spiral, the direction (clockwise or counterclockwise) of motion; if the eigenvalues are repeated, whether the matrix is defective or complete.

(i), $a = -6$: The eigenvalues are *real* and of the same sign, but *distinct*, You have a node. Both normal modes decay to zero, Thus, it's asymptotically stable: all solutions $\rightarrow 0$ as $t \rightarrow \infty$. But the one with eigenvalue -5 decays much faster: so the non-normal mode trajectories become tangent to this eigenline. The general solution is

$$
c_1e^{-2t}\left[\begin{array}{c}1\\2\end{array}\right]+c_2e^{-5t}\left[\begin{array}{c}2\\1\end{array}\right].
$$

Here is a picture of a similar pase portrait (the exact parameters are out of reach in the Mathlet):

(ii), $a = -5$: This matrix lies on the critical parabola. We have a repeated real eigenvalue −3. It is asymptotically stable. Computing the eigenvectors one finds only one eigenvector. Thus, it's a defective node. If one computes the eigenvector one finds

$$
\mathbf{v} = \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \ .
$$

Solving $(A+3I)\mathbf{w} = \mathbf{v}$ we find

$$
\mathbf{w} = \left[\begin{array}{c} 0 \\ -\frac{1}{2} \end{array} \right] ,
$$

Thus, the general solution is

$$
c_1e^{-3t}\left[\begin{array}{c}1\\1\end{array}\right]+c_2e^{-3t}\left(t\left[\begin{array}{c}1\\1\end{array}\right]+\left[\begin{array}{c}0\\-\frac{1}{2}\end{array}\right]\right).
$$

Here is a picture of the pase portrait (the exact parameters are out of reach in the Mathlet):

(iii), $a = -2$: We have two complex eigenvalues. In fact, they are *complex conjugates* of each other. This is a *spiral*. The spirals move in as we have $\text{Re}(\lambda) < 0$. This means

that it's *stable*. To determine which way they move in we determine \dot{u} when $u = [1; 0]$. We compute

$$
\dot{\mathbf{u}} = A\mathbf{u} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} ,
$$

which is pointing to the left and down. Thus, the spirals are moving in *clockwise*. The eigenvector for $-\frac{3}{2} + \frac{i}{2}\sqrt{15}$ is

$$
\mathbf{v} = \left[\begin{array}{c} 1 - i\sqrt{15} \\ 4 \end{array} \right] .
$$

Thus, the general solution is

$$
c_1 \quad e^{-\frac{3}{2}t} \left(\cos\left(\frac{\sqrt{15}}{2}t\right) \begin{bmatrix} 1\\4 \end{bmatrix} + \sin\left(\frac{\sqrt{15}}{2}t\right) \begin{bmatrix} \sqrt{15}\\0 \end{bmatrix} \right)
$$

$$
+ c_2 \quad e^{-\frac{3}{2}t} \left(-\cos\left(\frac{\sqrt{15}}{2}t\right) \begin{bmatrix} \sqrt{15}\\0 \end{bmatrix} + \sin\left(\frac{\sqrt{15}}{2}t\right) \begin{bmatrix} 1\\4 \end{bmatrix} \right)
$$

Here is a picture of the pase portrait:

(iv), $a = 1$: We have two *purely imaginary* eigenvalues. Thus, the trajectories are ellipses. The technical term for this type of phase portrait is center. Since all trajectories stay bounded (but they do NOT go to zero for $t \to \infty$) it's neutrally stable. To determine which way the ellipses turn we determine $\dot{\mathbf{u}}$ when $\mathbf{u} = [1; 0]$. We compute

$$
\dot{\mathbf{u}} = A\mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} ,
$$

which is to the right and down. Thus, the ellipses are turning *clockwise*. The eigenwhich is to the r
vector for $i\sqrt{3}$ is

$$
\mathbf{v} = \left[\begin{array}{c} -1 - i\sqrt{3} \\ 2 \end{array} \right] .
$$

Thus, the general solution is

$$
c_1 \left(\cos\left(\sqrt{3}t\right) \begin{bmatrix} -1\\2 \end{bmatrix} + \sin\left(\sqrt{3}t\right) \begin{bmatrix} \sqrt{3}\\0 \end{bmatrix} \right)
$$

$$
+ c_2 \left(-\cos\left(\sqrt{3}t\right) \begin{bmatrix} \sqrt{3}\\0 \end{bmatrix} + \sin\left(\sqrt{3}t\right) \begin{bmatrix} -1\\2 \end{bmatrix} \right)
$$

Here is a picture of the pase portrait:

(v), $a = 2$: We have two complex eigenvalues. In fact, they are *complex conjugates* of each other. This is a *spiral*. The spirals move out as we have $\text{Re}(\lambda) > 0$. This means that it's *unstable*. To determine which way they moves out we determine \dot{u} when $\mathbf{u} = [1; 0]$. We compute

$$
\dot{\mathbf{u}} = A\mathbf{u} = \left[\begin{array}{c} 2 \\ -2 \end{array} \right] ,
$$

which is pointing right and down. Thus, the spirals are moving out *clockwise*. The eigenvector for $\frac{1}{2} + \frac{i}{2}\sqrt{7}$ is

$$
\mathbf{v} = \left[\begin{array}{c} 4 \\ -3 + i\sqrt{7} \end{array} \right] .
$$

Thus, the general solution is

$$
c_1 \quad e^{\frac{1}{2}t} \left(\cos \left(\frac{\sqrt{7}}{2} t \right) \begin{bmatrix} 4 \\ -3 \end{bmatrix} - \sin \left(\frac{\sqrt{7}}{2} t \right) \begin{bmatrix} \sqrt{7} \\ 0 \end{bmatrix} \right)
$$

$$
+ c_2 \quad e^{\frac{1}{2}t} \left(\cos \left(\frac{\sqrt{7}}{2} t \right) \begin{bmatrix} \sqrt{7} \\ 0 \end{bmatrix} + \sin \left(\frac{\sqrt{7}}{2} t \right) \begin{bmatrix} 4 \\ -3 \end{bmatrix} \right)
$$

Here is a picture of the pase portrait:

(vi), $a = 3$: This matrix lies again on the critical parabola. We have a repeated real eigenvalue 1. It is asymptotically unstable. Computing the eigenvectors one finds only one eigenvector. Thus, it's a *defective node*. If one computes the eigenvector one finds

$$
\mathbf{v} = \left[\begin{array}{c} -1 \\ 1 \end{array} \right] \ .
$$

Solving $(A - I)\mathbf{w} = \mathbf{v}$ we find

$$
\mathbf{w} = \left[\begin{array}{c} 0 \\ -\frac{1}{2} \end{array} \right] \ .
$$

Thus, the general solution is

$$
c_1e^t\left[\begin{array}{c} -1\\1 \end{array}\right]+c_2e^t\left(t\left[\begin{array}{c} -1\\1 \end{array}\right]+\left[\begin{array}{c} 0\\-\frac{1}{2} \end{array}\right]\right).
$$

Here is a picture of the pase portrait:

(vii), $a = 4$: We have det $A = 0$. That is the *degenerate* case. One of the eigenvalues is zero. The other is positive. Thus, it's asymptotically unstable. In fact, it's an unstable comb.

The eigenvector \mathbf{v}_1 corresponding to $\lambda_1 = 0$ is

$$
\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ -2 \end{array} \right] \ .
$$

The eigenvector \mathbf{v}_2 corresponding to $\lambda_2 = 3$ is

$$
\mathbf{v}_2 = \left[\begin{array}{c} -2 \\ 1 \end{array} \right] .
$$

Thus, the general solution is

$$
c_1\left[\begin{array}{c}1\\-2\end{array}\right]+c_2e^{3t}\left[\begin{array}{c}-2\\1\end{array}\right].
$$

For $c_2 = 0$ there is a line (at least) of constant solutions. Here is a picture of the pase portrait:

(viii), $a = 5$: The eigenvalues are real and of opposite sign, the phase portrait is a saddle. There are two eigenlines, one with positive eigenvalue and the other with negative. Normal modes along one move out, and along the other move in. Thus, it's unstable.

The eigenvector \mathbf{v}_1 corresponding to $\lambda_1 = 2 + \sqrt{5}$ is

$$
\mathbf{v}_1 = \left[\begin{array}{c} -2 \\ 3 - \sqrt{5} \end{array} \right] .
$$

The eigenvector \mathbf{v}_2 corresponding to $\lambda_2=2-\sqrt{5}$ is

$$
\mathbf{v}_2 = \left[\begin{array}{c} -2 \\ 3 + \sqrt{5} \end{array} \right] .
$$

Thus, the general solution is

$$
c_1 e^{(2+\sqrt{5})t} \left[\frac{-2}{3-\sqrt{5}} \right] + c_2 e^{(2-\sqrt{5})t} \left[\frac{-2}{3+\sqrt{5}} \right].
$$

Here is a picture of the pase portrait (the exact parameters are out of reach in the Mathlet):

