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18.03 Recitation 23, May 9, 2006 

Qualitative analysis of linear systems 

Solutions suggestions 

a 2 
The matrices I want you to study all have the form A = . −2 −1 

1. Compute the trace, determinant, characteristic polynomial, and eigenvalues, in 
terms of a. 

Ans. The trace is 
tr A = a − 1 , 

and the determinant is 

det A = a(−1) − 2(−2) = −a + 4 . 

Thus, the characteristic polynomial is 

pA(λ) = det A − λI = λ2 − tr (A) λ + det(A) = λ2 − (a − 1) λ − a + 4 . 

The eigenvalues are the roots of the characteristic polynomial. The roots are � �2 

λ = 
a − 1 a − 1

+ a − 4 = 
a − 1 1 � 

(a − 1)2 + 4a − 16 . 
2 
± 

2 2 
± 

2 

2. For these matrices, express the determinant as a function of the trace. Sketch 
the (tr A, det A) plane, along with the critical parabola det A = (tr A)2/4, and 
plot the curve representing the relationship you found for this family of matrices. 
On this curve, plot the points corresponding to the following values of a: a = 
−6, −5, −2, 1, 2, 3, 4, 5. 

Ans. From (1) we see 

det(A) = −a + 4 = −(a − 1) + 3 = −tr (A) + 3 . 

We notice that if the matrix lies on the critical parabola det A = (tr A)2/4, then the 
charcateristic polynomial is � �2 � �2 

tr A tr A 
pA(λ) = λ2 − tr (A) λ + det(A) = λ2 − tr (A) λ + = λ − . 

2 2 

This means that for matrices which lie on the critical parabola we have only one 
(repeated) eigenvalue tr A/2. 

Here is the sketch of the (tr A, det A) plane: 
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3. Make a table showing for each a in this list (1) the eigenvalues; (2) information 
about the phase portrait derived from the eigenvalues (real and distinct; real and 
repeated; nonreal) and the stability type (stable if all real parts are negative; unstable 
if at least one real part is positive; undesignated if neither); (3) further information 
beyond what the eigenvalues alone tell you: if a spiral, the direction (clockwise or 
counterclockwise) of motion; if the eigenvalues are repeated, whether the matrix is 
defective or complete. 

Ans. 

a (tr (A), det A) eigenvals phase portrait stability further info 

−6 (−7, 10) −5, −2 real, distinct stable node 
−5 (−6, 9) −3 real, repeated stable defective node 
−2 (−3, 6) −3 

2 ± i 
2 

√
15 complex conjugate stable spiral (clockwise) 

1 (0, 3) ±i
√

3 purely imaginary neutrally stable center (clockwise) 
2 (1, 2) 1 

2 ± i 
2 

√
7 complex conjugate unstable spiral (clockwise) 

3 (2, 1) 1 real, repeated unstable defective node 
4 (3, 0) 0, 3 real, distinct (one zero) unstable degenerate comb 
5 (4, −1) 2 ±

√
5 real, distinct (opposite sign) unstable saddle 

(i), a = −6: The eigenvalues are real and of the same sign, but distinct, You have a 
node. Both normal modes decay to zero, Thus, it’s asymptotically stable: all solutions 
→ 0 as t →∞. But the one with eigenvalue 5 decays much faster: so the nonnormal 
mode trajectories become tangent to this eigenline. The general solution is 

c1e
−2t 1

+ c2e
−5t 2 

. 
2 1 

Here is a picture of a similar pase portrait (the exact parameters are out of reach in 
the Mathlet): 



� � 

� � 

(ii), a = −5: This matrix lies on the critical parabola. We have a repeated real 
eigenvalue −3. It is asymptotically stable. Computing the eigenvectors one finds only 
one eigenvector. Thus, it’s a defective node. If one computes the eigenvector one finds 

1 
v = . 

1 

Solving (A + 3I)w = v we find 

0 
w = 1 , 

2
− 

Thus, the general solution is � � � � � � �� 

c1e
−3t 1 0 

+ c2e
−3t t 

1
+ 

1 1 1 . 
2
− 

Here is a picture of the pase portrait (the exact parameters are out of reach in the 
Mathlet): 

(iii), a = −2: We have two complex eigenvalues. In fact, they are complex conjugates

of each other. This is a spiral. The spirals move in as we have Re (λ) < 0. This means
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that it’s stable. To determine which way they move in we determine u̇ when u = [1; 0]. 
We compute 

2 
u̇ = Au = 

−
,

2−
which is pointing to the left and down. Thus, the spirals are moving in clockwise. 

iThe eigenvector for −3 + 
√

15 is 
2 2 

1 − i
√

15 
� 

v = . 
4 

Thus, the general solution is � �√ �� � √ �� √ �� 
1515 1513 

2

3 
2 

t e− t + sin tc1 cos 
2 4 2 0 � � �� √ �√

15 15 
√

15 
�� 

1 
�� 

t e− + sin+ t t−c2 cos 
2 0 2 4 

Here is a picture of the pase portrait: 

(iv), a = 1: We have two purely imaginary eigenvalues. Thus, the trajectories 
are ellipses. The technical term for this type of phase portrait is center. Since all 
trajectories stay bounded (but they do NOT go to zero for t → ∞) it’s neutrally 
stable. To determine which way the ellipses turn we determine u̇ when u = [1; 0]. We 
compute 

1 
u̇ = Au = 

2 
,−

which is to the right and down. Thus, the ellipses are turning clockwise. The eigen
vector for i

√
3 is � 

−1 − i
√

3 
� 

v = . 
2 

Thus, the general solution is � � �� � � �� 
1 3 

c1 cos 
√

3t 
−

+ sin 
√

3t 
�� √

2 0 � � � � �� �� 
3 1 

+ c2 − cos 
√

3t 
�� √

+ sin 
√

3t 
−

0 2 
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Here is a picture of the pase portrait:


(v), a = 2: We have two complex eigenvalues. In fact, they are complex conjugates 
of each other. This is a spiral. The spirals move out as we have Re (λ) > 0. This 
means that it’s unstable. To determine which way they moves out we determine u̇
when u = [1; 0]. We compute 

2 
u̇ = Au = −2 

, 

which is pointing right and down. Thus, the spirals are moving out clockwise. The√
7 is1 i 

2
eigenvector for
 + 

4 
v = . −3 + i

√
7 

2 

Thus, the general solution is �� √
7

√
7


√
741 

2

1 
2 

t t −3 
− sin �� √

7 

tc1 e cos 
02 2 

cos 

� � �� ��√
7 

√
7 4t t + sin+ tc2 e 

2 0 2 −3 

Here is a picture of the pase portrait: 
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(vi), a = 3: This matrix lies again on the critical parabola. We have a repeated 
real eigenvalue 1. It is asymptotically unstable. Computing the eigenvectors one finds 
only one eigenvector. Thus, it’s a defective node. If one computes the eigenvector one 
finds � � 

−1 
v = . 

1 

Solving (A − I)w = v we find 
0 

w = 1 . 
2
− 

Thus, the general solution is � � � � � � �� 
0t −1

+ c2e t 
−1 

c1e t + 1 . 
1 1 

2
− 

Here is a picture of the pase portrait: 

(vii), a = 4: We have det A = 0. That is the degenerate case. One of the eigenvalues 
is zero. The other is positive. Thus, it’s asymptotically unstable. In fact, it’s an 
unstable comb. 

The eigenvector v1 corresponding to λ1 = 0 is 

1 
v1 = . −2 

The eigenvector v2 corresponding to λ2 = 3 is 

−2 
v2 = . 

1 

Thus, the general solution is 

1 3t −2 
c1 + c2e . 

1−2 

For c2 = 0 there is a line (at least) of constant solutions. Here is a picture of the pase 
portrait: 
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(viii), a = 5: The eigenvalues are real and of opposite sign, the phase portrait is 
a saddle. There are two eigenlines, one with positive eigenvalue and the other with 
negative. Normal modes along one move out, and along the other move in. Thus, it’s 
unstable. 

The eigenvector v1 corresponding to λ1 = 2 + 
√

5 is 

−2 
v1 = . 

3 −
√

5 

The eigenvector v2 corresponding to λ2 = 2 −
√

5 is 

−2 
v2 = . 

3 + 
√

5 

Thus, the general solution is 

(2+
√

5)t −2 (2−
√

5)t −2 
c1e + c2e . 

3 −
√

5 3 + 
√

5 

Here is a picture of the pase portrait (the exact parameters are out of reach in the 
Mathlet): 


