18.03 Recitation 23, May 9, 2006

Qualitative analysis of linear systems

Solutions suggestions

The matrices I want you to study all have the form $A = \begin{bmatrix} a & 2 \\ -2 & -1 \end{bmatrix}$.

1. Compute the trace, determinant, characteristic polynomial, and eigenvalues, in terms of a.

Ans. The trace is

$$\operatorname{tr} A = a - 1 \; ,$$

and the determinant is

$$\det A = a(-1) - 2(-2) = -a + 4.$$

Thus, the characteristic polynomial is

$$p_A(\lambda) = \det\left(A - \lambda I\right) = \lambda^2 - \operatorname{tr}(A)\,\lambda + \det(A) = \lambda^2 - (a - 1)\,\lambda - a + 4\,.$$

The eigenvalues are the roots of the characteristic polynomial. The roots are

$$\lambda = \frac{a-1}{2} \pm \sqrt{\left(\frac{a-1}{2}\right)^2 + a-4} = \frac{a-1}{2} \pm \frac{1}{2}\sqrt{(a-1)^2 + 4a-16}$$

2. For these matrices, express the determinant as a function of the trace. Sketch the (tr A, det A) plane, along with the critical parabola det $A = (\text{tr } A)^2/4$, and plot the curve representing the relationship you found for this family of matrices. On this curve, plot the points corresponding to the following values of a: a = -6, -5, -2, 1, 2, 3, 4, 5.

Ans. From (1) we see

$$\det(A) = -a + 4 = -(a - 1) + 3 = -\operatorname{tr}(A) + 3.$$

We notice that if the matrix lies on the critical parabola det $A = (\operatorname{tr} A)^2/4$, then the charcateristic polynomial is

$$p_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\,\lambda + \det(A) = \lambda^2 - \operatorname{tr}(A)\,\lambda + \left(\frac{\operatorname{tr} A}{2}\right)^2 = \left(\lambda - \frac{\operatorname{tr} A}{2}\right)^2\,.$$

This means that for matrices which lie on the critical parabola we have only one (repeated) eigenvalue tr A/2.

Here is the sketch of the (tr A, det A) plane:

3. Make a table showing for each a in this list (1) the eigenvalues; (2) information about the phase portrait derived from the eigenvalues (real and distinct; real and repeated; non-real) and the stability type (stable if all real parts are negative; unstable if at least one real part is positive; undesignated if neither); (3) further information beyond what the eigenvalues alone tell you: if a spiral, the direction (clockwise or counterclockwise) of motion; if the eigenvalues are repeated, whether the matrix is defective or complete.

a	$(\operatorname{tr}(A), \det A)$	eigenvals	phase portrait	stability	further info
-6	(-7, 10)	-5, -2	real, distinct	stable	node
-5	(-6,9)	-3	real, repeated	stable	defective node
-2	(-3, 6)	$-\frac{3}{2} \pm \frac{i}{2}\sqrt{15}$	complex conjugate	stable	spiral (clockwise)
1	(0,3)	$\pm i\sqrt{3}$	purely imaginary	neutrally stable	center (clockwise)
2	(1,2)	$\frac{1}{2} \pm \frac{i}{2}\sqrt{7}$	complex conjugate	unstable	spiral (clockwise)
3	(2,1)	1	real, repeated	unstable	defective node
4	(3,0)	0,3	real, distinct (one zero)	unstable	degenerate comb
5	(4, -1)	$2\pm\sqrt{5}$	real, distinct (opposite sign)	unstable	saddle

(i), a = -6: The eigenvalues are *real* and of the same sign, but *distinct*, You have a *node*. Both normal modes decay to zero, Thus, it's *asymptotically stable*: all solutions $\rightarrow 0$ as $t \rightarrow \infty$. But the one with eigenvalue -5 decays much faster: so the non-normal mode trajectories become tangent to this eigenline. The general solution is

$$c_1 e^{-2t} \begin{bmatrix} 1\\2 \end{bmatrix} + c_2 e^{-5t} \begin{bmatrix} 2\\1 \end{bmatrix}$$

Here is a picture of a similar pase portrait (the exact parameters are out of reach in the Mathlet):

(ii), a = -5: This matrix lies on the critical parabola. We have a repeated real eigenvalue -3. It is *asymptotically stable*. Computing the eigenvectors one finds only one eigenvector. Thus, it's a *defective node*. If one computes the eigenvector one finds

$$\mathbf{v} = \begin{bmatrix} 1\\1 \end{bmatrix}$$
 .

Solving $(A + 3I)\mathbf{w} = \mathbf{v}$ we find

$$\mathbf{w} = \begin{bmatrix} 0\\ -\frac{1}{2} \end{bmatrix} ,$$

Thus, the general solution is

$$c_1 e^{-3t} \begin{bmatrix} 1\\1 \end{bmatrix} + c_2 e^{-3t} \left(t \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} 0\\-\frac{1}{2} \end{bmatrix} \right) .$$

Here is a picture of the pase portrait (the exact parameters are out of reach in the Mathlet):

(iii), a = -2: We have two complex eigenvalues. In fact, they are *complex conjugates* of each other. This is a *spiral*. The spirals *move in* as we have $\operatorname{Re}(\lambda) < 0$. This means

that it's *stable*. To determine which way they move in we determine $\dot{\mathbf{u}}$ when $\mathbf{u} = [1; 0]$. We compute

$$\dot{\mathbf{u}} = A\mathbf{u} = \begin{bmatrix} -2\\ -2 \end{bmatrix} ,$$

which is pointing to the left and down. Thus, the spirals are moving in *clockwise*. The eigenvector for $-\frac{3}{2} + \frac{i}{2}\sqrt{15}$ is

$$\mathbf{v} = \left[\begin{array}{c} 1 - i\sqrt{15} \\ 4 \end{array} \right]$$

Thus, the general solution is

$$c_{1} \quad e^{-\frac{3}{2}t} \left(\cos\left(\frac{\sqrt{15}}{2}t\right) \begin{bmatrix} 1\\4 \end{bmatrix} + \sin\left(\frac{\sqrt{15}}{2}t\right) \begin{bmatrix} \sqrt{15}\\0 \end{bmatrix} \right)$$
$$+ \quad c_{2} \quad e^{-\frac{3}{2}t} \left(-\cos\left(\frac{\sqrt{15}}{2}t\right) \begin{bmatrix} \sqrt{15}\\0 \end{bmatrix} + \sin\left(\frac{\sqrt{15}}{2}t\right) \begin{bmatrix} 1\\4 \end{bmatrix} \right)$$

Here is a picture of the pase portrait:

(iv), a = 1: We have two *purely imaginary* eigenvalues. Thus, the trajectories are ellipses. The technical term for this type of phase portrait is *center*. Since all trajectories stay bounded (but they do NOT go to zero for $t \to \infty$) it's *neutrally stable*. To determine which way the ellipses turn we determine $\dot{\mathbf{u}}$ when $\mathbf{u} = [1; 0]$. We compute

$$\dot{\mathbf{u}} = A\mathbf{u} = \begin{bmatrix} 1\\ -2 \end{bmatrix} ,$$

which is to the right and down. Thus, the ellipses are turning *clockwise*. The eigenvector for $i\sqrt{3}$ is

$$\mathbf{v} = \left[\begin{array}{c} -1 - i\sqrt{3} \\ 2 \end{array} \right] \ .$$

Thus, the general solution is

$$c_{1} \quad \left(\cos\left(\sqrt{3}t\right) \begin{bmatrix} -1\\2 \end{bmatrix} + \sin\left(\sqrt{3}t\right) \begin{bmatrix} \sqrt{3}\\0 \end{bmatrix}\right) \\ + \quad c_{2} \quad \left(-\cos\left(\sqrt{3}t\right) \begin{bmatrix} \sqrt{3}\\0 \end{bmatrix} + \sin\left(\sqrt{3}t\right) \begin{bmatrix} -1\\2 \end{bmatrix}\right)$$

Here is a picture of the pase portrait:

(v), a = 2: We have two complex eigenvalues. In fact, they are *complex conjugates* of each other. This is a *spiral*. The spirals *move out* as we have $\operatorname{Re}(\lambda) > 0$. This means that it's *unstable*. To determine which way they moves out we determine $\dot{\mathbf{u}}$ when $\mathbf{u} = [1; 0]$. We compute

$$\dot{\mathbf{u}} = A\mathbf{u} = \begin{bmatrix} 2\\ -2 \end{bmatrix} ,$$

which is pointing right and down. Thus, the spirals are moving out *clockwise*. The eigenvector for $\frac{1}{2} + \frac{i}{2}\sqrt{7}$ is

$$\mathbf{v} = \left[\begin{array}{c} 4\\ -3 + i\sqrt{7} \end{array} \right]$$

Thus, the general solution is

$$c_{1} e^{\frac{1}{2}t} \left(\cos\left(\frac{\sqrt{7}}{2}t\right) \begin{bmatrix} 4\\-3 \end{bmatrix} - \sin\left(\frac{\sqrt{7}}{2}t\right) \begin{bmatrix} \sqrt{7}\\0 \end{bmatrix} \right)$$
$$+ c_{2} e^{\frac{1}{2}t} \left(\cos\left(\frac{\sqrt{7}}{2}t\right) \begin{bmatrix} \sqrt{7}\\0 \end{bmatrix} + \sin\left(\frac{\sqrt{7}}{2}t\right) \begin{bmatrix} 4\\-3 \end{bmatrix} \right)$$

Here is a picture of the pase portrait:

(vi), a = 3: This matrix lies again on the critical parabola. We have a repeated real eigenvalue 1. It is *asymptotically unstable*. Computing the eigenvectors one finds only one eigenvector. Thus, it's a *defective node*. If one computes the eigenvector one finds

$$\mathbf{v} = \left[\begin{array}{c} -1\\ 1 \end{array} \right] \ .$$

Solving $(A - I)\mathbf{w} = \mathbf{v}$ we find

$$\mathbf{w} = \left[\begin{array}{c} 0\\ -\frac{1}{2} \end{array} \right] \ .$$

Thus, the general solution is

$$c_1 e^t \begin{bmatrix} -1 \\ 1 \end{bmatrix} + c_2 e^t \left(t \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac{1}{2} \end{bmatrix} \right)$$

Here is a picture of the pase portrait:

(vii), a = 4: We have det A = 0. That is the *degenerate* case. One of the eigenvalues is zero. The other is positive. Thus, it's *asymptotically unstable*. In fact, it's an *unstable comb*.

The eigenvector \mathbf{v}_1 corresponding to $\lambda_1 = 0$ is

$$\mathbf{v}_1 = \left[\begin{array}{c} 1\\ -2 \end{array} \right] \ .$$

The eigenvector \mathbf{v}_2 corresponding to $\lambda_2 = 3$ is

$$\mathbf{v}_2 = \left[\begin{array}{c} -2\\ 1 \end{array} \right] \ .$$

Thus, the general solution is

$$c_1 \begin{bmatrix} 1\\ -2 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} -2\\ 1 \end{bmatrix}$$

For $c_2 = 0$ there is a line (at least) of constant solutions. Here is a picture of the pase portrait:

(viii), a = 5: The eigenvalues are real and of opposite sign, the phase portrait is a *saddle*. There are two eigenlines, one with positive eigenvalue and the other with negative. Normal modes along one move out, and along the other move in. Thus, it's *unstable*.

The eigenvector \mathbf{v}_1 corresponding to $\lambda_1 = 2 + \sqrt{5}$ is

$$\mathbf{v}_1 = \left[\begin{array}{c} -2\\ 3-\sqrt{5} \end{array} \right] \ .$$

The eigenvector \mathbf{v}_2 corresponding to $\lambda_2 = 2 - \sqrt{5}$ is

$$\mathbf{v}_2 = \left[\begin{array}{c} -2\\ 3+\sqrt{5} \end{array} \right] \ .$$

Thus, the general solution is

$$c_1 e^{(2+\sqrt{5})t} \begin{bmatrix} -2\\ 3-\sqrt{5} \end{bmatrix} + c_2 e^{(2-\sqrt{5})t} \begin{bmatrix} -2\\ 3+\sqrt{5} \end{bmatrix} .$$

Here is a picture of the pase portrait (the exact parameters are out of reach in the Mathlet):

