
MIT OpenCourseWare 
http://ocw.mit.edu 

18.03 Differential Equations, Spring 2006 

Please use the following citation format: 

Arthur Mattuck and Haynes Miller, 18.03 Differential Equations, Spring 
2006. (Massachusetts Institute of Technology: MIT OpenCourseWare). 
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative 
Commons Attribution-Noncommercial-Share Alike. 

Note: Please use the actual date you accessed this material in your citation. 

For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms 



MIT OpenCourseWare 
http://ocw.mit.edu 

18.03 Differential Equations, Spring 2006 
Transcript – Lecture 23 

Well, today is the last day on Laplace transform and the first day before we start the 
rest of the term, which will be spent on the study of systems. I would like to spend it 
on one more type of input function which, in general, your teachers in other courses 
will expect you to have had some acquaintance with. It is the kind associated with an 
impulse, so an input consisted of what is sometimes called a unit impulse. Now, 
what's an impulse? It covers actually a lot of things. It covers a situation where you 
withdraw from a bank account. For example, take half your money out of a bank 
account one day. It also would be modeled the same way. 

But the simplest way to understand it the first time through is as an impulse, if you 
know what an impulse is. If you have a variable force acting over time, and we will 
assume it is acting along a straight line so I don't have to worry about it being a 
vector, then the impulse, according to physicists, the physical definition, the impulse 
of f(t) over some time interval. Let's say the time interval running from a to b is, by 
definition, the Integral from a to b of [f(t) dt]. Actually, I am going to do the most 
horrible thing this period. I will assume the force is actually a constant force. So, in 
that case, I wouldn't even have to bother with the integral at all. If f of t is a 
constant, let's say capital F, then the impulse is -

Well, that integral is simply the product of the two, the impulse over that time 
interval is simply F*(b - a). Just the product of those two. The force times the length 
of time for which it acts. Now, that is what I want to calculate, want to consider in 
connection with our little mass system. So, once again, I think this is probably the 
last time you'll see the little spring. Let's bid a tearful farewell to it. There is our little 
mass on wheels. And let's make it an undamped mass. It has an equilibrium point 
and all the other little things that go with the picture. And when I apply an impulse, 
what I mean is applying a constant force to this over a definite time interval. 

And that is what I mean by applying an impulse over that time interval. Now, what is 
the picture of such a thing? Well, the force is only going to be applied, in other 
words, I am going to push on the mass or pull on the mass with a constant force. 
With a little electromagnet here, we will assume, there is a pile of iron filings or 
something inside there. I turn on the electromagnet. It pulls with a constant force 
just between time zero and time two seconds. 

And then I stop. That is going to change the motion of the thing. First it is going to 
start pulling it toward the thing. And then, when it lets go, it will zoom back and 
there will be a certain motion after that. What the question is, if I want to solve that 
problem of the motion of that in terms of the Laplace transform, how am I going to 
model this force? Well, let's draw a picture of it first. 

It starts here. It is zero for t, let's say the force is applied between time zero to time 
h. And then its force is turned on, it stays constant and then it is turned off. And 
those vertical lines shouldn't be there. But, since in practice, it takes a tiny bit of 
time to turn a force on and off. It is, in practice, not unrealistic to suppose that there 



are approximately vertical lines there. They are slightly slanted but not too much. 
Now, I want it to be unit impulse. This is the force access and this is the time access. 
Since the impulse is the area under this curve, if I want that to be one, then if this is 
h, the height to which I -

In other words, the magnitude of the force must be 1 / h in order that the area be 
one, in order, in other words, that this integral be one, the area under that curve be 
one. So the unit impulse looks like that. The narrower it is here, the higher it has to 
be that way. The bigger the force must be if you want the end result to be a unit 
impulse. Now, to solve a problem, a typical problem, then, would be a spring. 

The mass is traveling on the track. Let's suppose the spring constant is one, so there 
would be a differential equation. And the right-hand side would be this f of t. Well, 
let's give it its name, the name I gave it before. Remember, I called the unit box 
function the thing which was one between zero and h and zero everywhere else. The 
notation we used for that was u, and then it had a double subscript from the starting 
point and the finishing point. So oh-- u(oh) (t). This much represents the thing if it 
only rose to the high one. But if it, instead, rises to the height 1 / h in order to make 
that area one, I have to multiply it by the factor one over h. Now, if you want to 
solve this by the Laplace transform. 

In other words, see what the motion of that mass is as I apply this unit impulse to it 
over that time interval. You have to take the Laplace transform, if that is the way we 
are doing it. Now, the left-hand side is just routine and would involve the initial 
conditions. The whole interest is taking the Laplace transform of the right-hand side. 
And that is what I want to do now. The problem is what is the Laplace transform of 
this guy? 

Well, remember, to do everything else, you do everything by writing in terms of the 
unit step function? This function that we are talking about is 1 / h times what you 
get by first stepping up to one. That is the unit step function, which goes up by one 
and tries to stay at one ever after. And then, when it gets to h, it has got to step 
down. Well, the way you make it step down is by subtracting off the function, which 
is the unit step function but where the step takes place, not at time zero but at time 
h. 

In other words, I translate the unit step function of course with, I don't think I have 
to draw that picture again. The unit step function looks like zing. And if you translate 
it to the right by h it looks like zing. And then make it negative to subtract it off. And 
what you will get is this box function. So we want to take the Laplace transform of 
this thing. Well, let's assume, for the sake of argument that you didn't remember. 
Well, you had to use the formula at 2:00 AM this morning and, therefore, you do 
remember it. [LAUGHTER] So I don't have to recopy the formula onto the board. 
Maybe if there is room there. All right, let's put it up there. It says that u(t - a) times 
f, any f, so let's call it g so you won't confuse it with this particular one, times g 
translated. 

If you translate a function from t, if you translate it to the right by a then its Laplace 
transform is e^(-as) times whatever the old Laplace transform was, g(s). Multiply by 
an exponential on the right. On the left that corresponds to translation. Except you 
must remember to put in that factor u for a secret reason which I spent half of 
Wednesday explaining. What do we have here? The L(u(t)), that is easy. That is 
simply 1 / s. The Laplace transform of this other guy we get from the formula. It is 



basically one over s. No, the L(u(t). But because it has been translated to the right 
by h, I have to multiply it by that factor e^(-hs). 

That is the answer. And, if you want to solve problems, this is what you would feed 
into the equation. And you would calculate and calculate and calculate it. But that is 
not what I want to do now because that was Wednesday and this is Friday. You have 
the right to expect something new. Here is what I am going to do new. I am going to 
let h go to zero. As h --> 0, this function gets narrower and narrower, but it also has 
to get higher and higher because its area has to stay one. What I am interested in, 
first of all, is what happens to the Laplace transform as h goes to zero. In other 
words, what is the limit, as h goes to zero of -

Well, what is that function? (1 - e^(-hs)) / hs. Well, this is an 18.01 problem, an 
ordinary calculus problem, but let's do it nicely. You see, the nice way to do it is to 
make a substitution. We will change hs --> u because it is occurring as a unit in both 
cases. This is going to be the same as the limit as u --> 0. 

I think there are too many u's here already. I cannot use u, you cannot use t, v is 
velocity, w is wavefunction. There is no letter. All right, u. It is (1 - e^(-u)) / u. So 
what is the answer? Well, either you know the answer or you replace this by, say, 
the first couple of terms of the Taylor series. But I think most of you would use 
L'Hopital's rule, so let's do that. The derivative of the top is zero here. The derivative 
by the chain rule of e to the negative u is (e^(-u))' = -1*e^(-u). And that minus one 
cancels that minus. So the derivative of the top is simply e to the negative u and the 
derivative of the bottom is one. So, as u --> 0, that limit is one. 

Interesting. Let's draw a picture this way. I will draw it schematically. Up here is the 
function 1 / h u0 h(t), our box function, except it has the height 1 / h instead of the 
height one. We have just calculated that its Laplace transform is that funny thing, (1 
- e^(-hs)) / hs. That is the top line. All this is completely kosher, but now I am going 
to let h go to zero. And the question is what do we get now? Well, I just calculated 
for you that this thing approaches one, has the limit one. And now, let's fill in the 
picture. 

What does this thing approach? Well, it approaches a function which is zero 
everywhere. As h approaches zero, this green box turns into a box which is zero 
everywhere except at zero. And there, it is infinitely high. So, keep going up. Now, of 
course, that is not a function. People call it a function but it isn't. Mathematicians call 
it a generalized function, but that is not a function either. It is just a way of making 
you feel comfortable by talking about something which isn't really a function. It was 
given the name, introduced formally into mathematics by a physicist, Dirac. 

And he, looking ahead to the future, did what many people do who introduce 
something into the literature, a formula or a function or something which they think 
is going to be important. They never name it directly after themselves, but they 
always use as the symbol for it the first letter of their name. I cannot tell you how 
often that has happened. Maybe even Euler called e for that reason, although he 
claims it was in Latin because it has to do with exponentials. Well, luckily his name 
began with an E, too. That is Paul Dirac's delta function. I won't dignify it by the 
name function by writing that out, by putting the world function here, too, but it is 
called the delta function. 



From this point on, the entire rest of the lecture has a slight fictional element. The 
entire rest of the lecture is in figurative quotation marks, so you are not entirely 
responsible for anything I say. This is a non-function, but you put it in there and call 
it a function. And you naturally want to complete, if it's a function then it must have 
a Laplace transform, even though it doesn't, so the diagram is completed that way. 

And its Laplace transform is declared to be one. So let's start listing the properties of 
this weird thing. The delta function, its Laplace transform is one. Now, one of the 
things is we have not yet expressed the fact that it is a unit impulse. In other words, 
since the areas of all of these boxes, they all have areas one as they are shrunk this 
way they get higher that way. By convention, one says that the area under the 
orange curve also remains one in the limit. 

Now, how am I going to express that? Well, it is done by the following formula that 
the integral, the total impulse of the delta function should be one. Now, where do I 
integrate? Well, from any place that it is zero to any place that it is zero on the other 
side of that vertical line. But, in order to avoid controversy, people integrate all the 
way from negative infinity to infinity since it doesn't hurt. Does it? It is zero 
practically all the time. 

This is the function whose Laplace transform is one. Its integral from minus infinity 
to infinity is one. How else can we calculate for it? Well, I would like to calculate its 
convolution. Here is f(t). What happens if I convolute it with the delta function? Well, 
if you go back to the definition of the convolution, you know, it is that funny integral, 
you are going to do a lot of head scratching because it is not really all that clear how 
to integrate with the delta function. Instead of doing that let's assume that it follows 
the laws of the Laplace transform. In that case, its Laplace transform would be what? 
Well, the whole thing of a convolution is that the Laplace transform of the 
convolution is the product of the two separate Laplace transforms. 

So that is going to be F(s) times the Laplace transform of the delta function, which is 
one. Now, what must this thing be? Well, there is some ambiguity as to what it is for 
negative values of t. But if we, by brute force, decide for negative values of t it is 
going to have the value zero, that is the way we make things unique. In fact, why 
don't we make f(t) unique that way to start with? This is a function now that is 
allowed to do anything it wants on the right-hand side of zero starting at zero, but 
on the left-hand side of zero it is wiped away and must be zero. This is a definite 
thing now. Its convolution is this. And the inverse Laplace transform is -

The answer, in other words, is the same thing as what u(t) f(t) would be. It's the 
same thing, F(s). And so, the conclusion is that these are equal, since they must be 
unique. They have been made unique by making them zero for t negative. In other 
words, apply to a function, well, I won't recopy it. But the point is that delta t, for 
the convolution operation, is acting like an identity. 

If I multiply, in the sense of convolution, it is a peculiar operation. But algebraically, 
it has a lot of the properties of multiplication. It is communitive. It is linear in both 
factors. In other words, it is almost anything you would want with multiplication. It 
has an identity element, identity function. And the identity function is the Dirac delta 
function. Anything else here? Yeah, I will throw in one more thing. 

It would just require one more phony argument, which I won't bother giving you, but 
it is not totally implausible. After all, u(t), the unit step function is not differentiable, 



is not a differentiable function. It looks like this. Here its derivative is zero, here its 
derivative is zero, and in this class it is not even defined in between. But, I don't 
care, I will make it go straight up. The question is what's its derivative? 

Well, zero here, zero there and infinity at zero, so it must be the delta function. That 
has exactly the right properties. So the same people who will tell you this will tell you 
that also. And, in fact, when you use it to solve differential equations it acts as if that 
is true. I think I have given you an example on your homework. Let me now show 
you a typical example of the way the Dirac delta function would be used to solve a 
problem. 

Let's go back to our little spring, since it is the easiest thing. You are familiar with it 
from a physical point of view, and it is the easiest thing to illustrate on. We have our 
spring mass system. Where is it? Is it on the board? Up there. That one. And the 
differential equation we are going to solve is y'' + y equals -- And now, I am going to 
assume that the spring is kicked with impulse a. I am not going to kick it at time t = 
0, since that would get us into slight technical difficulties. Anyway, it is more fun to 
kick it at time pi / 2. The thing is, what is happening? Well, we have got to have 
initial conditions. 

The initial conditions are going to be, let's start at time zero. We will start it at the 
position one. So I take my spring, I drag it to the position one, I take the little mass 
there and then let it go. And so it starts going birr. But right when it gets to the 
equilibrium point I give it a, "cha!" with unit impulse. I started it from rest. Those will 
be the initial conditions. And I want to say that I kicked it, not with unit impulse, but 
with the impulse a. Bigger. And I did that at time pi over two. So how are we going 
to say that? Well, kick it means delivered that impulse over an extremely short time 
interval, but in such a way kicked it sufficiently hard that the total impulse was a. 
The way to say that is kick it with the Dirac delta function. 

Translate it to the point time pi / 2. Not at zero any longer. t - pi / 2. But that would 
kick it with a unit impulse. I want it to kick it with the impulse a, so I will just 
multiply that by the constant factor a. Let's put this over here. y(0) = 1, that's the 
starting value. Now we have a problem. The only thing new in solving this with the 
Laplace transform is I have this funny right-hand side. But it corresponds to a 
physical situation. Let's do it. You take the Laplace transform of both sides of the 
equation. Remember how to do that? You have to take account of the initial 
conditions. The Laplace transform of the second derivative is you multiply by s^2, 
and then you have to subtract. You have to use these initial conditions. 

This one won't give you anything, but the first one means I have to subtract 1*s. 
That is the L(y''). L(y) = Y. And how about the Laplace transform of the right-hand 
side. Well, we will have the constant factor a because the Laplace transform is linear. 
And now, the delta function would have the transform one. 

But when I translate it, pi over two, that means I have to use that formula. Translate 
it by pi over two means take the one that it would have been otherwise and multiply 
it by e, that exponential factor. It would be e^(-pi / 2), that is the A times s times 
one, which would be the g(s), the Laplace transform or the delta function before it 
had been translated. But I don't have to put that in because it's one. 

I am multiplying by one. And to do everything now is routine. Solve for the Laplace 
transform. Well, what is it? It is y is equal to. I put the s on the other side. That 



makes the right-hand side the sum of two terms. And I divide by the coefficient of y, 
which is s^2 + 1. The s is over on the right-hand side and it is divided by s squared 
plus one. And the other factor is there, too. And it, too, is divided by s squared plus 
one. 

Now, we take the inverse Laplace transform of those two terms and add them up. 
What will we get? Well, y is equal to, the L^(-1) s / (s^1 + 1) = cos(t). Now, for this 
thing we will have to use our formula. If this weren't here, the L^(-1) A / (s^2 + 1) 
would be what? Well, it would be a times the A sin(t). 

In other words, if this is the g(s) then the function on the left would be basically A 
sin(t). But because it has been multiplied by that exponential factor, e^(-as) where a 
= pi / 2, the left-hand side has to be changed from A sin(t) to what it would be with 
the translated form. So the rest of it is u(t - pi/2), because a is pi over two, times 
what it would have been just from the factor g(s) itself. In other words, A sin(t 
pi/2). I am applying that formula, but I am applying it in that direction. I started 
with this, and I want to recover the left-hand side. And that is what it must look like. 
The A, of course, just gets dragged along for the free ride. 

Now, as I emphasized to you last time, and I hope you did on your homework that 
you handed in, you mustn't leave it in that form. You have to make cases because 
people will expect you to tell them what the meaning of this is. Now, if t is less than 
pi over two, this is zero. And, therefore, that term does not exist. So the first part of 
it is just the cos(t) term if t lies between zero and pi over two. 

If t > pi/2 then this factor is one. It's the unit step function. And I, therefore, must 
add in this term. Now, what is that term? What is the sin(t - pi/2)? The sin(t) looks 
like that. The sine of t, if I translate it, looks like this. If I translate it by pi over two. 
And let's finish it up, the pi that was over here moved into position. That curve is the 
curve -cos(t). 

And so the answer is if t > pi / 2, it is cos(t) - Acos(t). Or, in other words, it is (1 
A) cos(t). Now, do those match up? They have always got to match up, or you have 
made a mistake. You always have to get a continuous function when you have just 
discontinuities. Do we get a continuous function? Yeah, when t = pi / 2 the value 
here is zero. The value of this is also zero at pi over two. 

There is no conflict in the values. Values doesn't suddenly jump. The function is 
continuous. It is not differential but it is continuous. Well, what function does that 
look like? There are cases. It starts out life as the function cos(t). So it gets to here. 
And at t = pi / 2, the mass gets kicked and that changes the function. Now, what are 
the values? 

Well, if A > 1 this is a negative number and it therefore becomes the function 
cos(t). Now, negative cosine t looks like this, the blue guy. Negative cosine t is a 
function that looks like this. So it goes from here, it reverses direction, the mass 
reverses direction from what you thought it was going to do. And it does that 
because A is so large that that impulse was enough to make it reverse direction. Of 
course it might only do this, but this is what will happen if A is bigger than one. This 
will be A, which is a lot bigger than one. If it's not so much bigger than one it might 
look like that. So A is just bigger than one. How's that? 



Well, what if A is less than one? Well, in that case it stays positive. If A is less than 
one, this is now still a positive number. And, therefore, the cosine continues on its 
merry way. The only thing is it might be a little more sluggish or it might be very 
peppy and do that. Let's just go that far. This will be the case A less than one. Well, 
of course, the most interesting case is what happens if A = 1? 

The porridge is exactly just right, I think that's the phrase. Too hot. Too cold. Just 
right. When A is equal to one, it is zero. It starts out as cos(t). When it gets to t, it 
continues on ever after as the function zero. I have a visual aid for the only time this 
term. It didn't work at all. I mean, on the other hand, the last hour, the people who 
worked it were not intrinsically baseball players, so we will use the equation of the 
pendulum instead. That is a lot easier than mass spring. This is a pendulum. It is 
undamped because I declare it to be and it swings back and forth. 

And here I am releasing it. The variable is not x or y but theta, the angle through. 
Here theta is one, let's say. That's about one radian. It starts there and swings back 
and forth. It is not damped, so it never loses amplitude, particularly if I swish it, if I 
move my hand a little bit. I want someone who knows how to bat a baseball. That 
was the problem last hour. Two people. One to release it. I will stand up and try to 
hold it here. Somebody releases it. And then somebody who has to be very skillful 
should apply a unit impulse of exactly one when it gets to the equilibrium point. So 
who can do that? Who can play baseball here? Come on. Somebody elected? 

All right. Come on. [APPLAUSE] Somebody release it, too. Somebody tall to handle it 
all. I think that will be me. Just hold it at what you would take to be one radian. He 
releases it. When it gets to the bottom, you will have to get way down, and maybe 
on this side. Are you a lefty or a righty? Rightly. Okay. Bat it what part. Give it a 
good swat. I will stand up higher. Help. I'm not very stable. [APPLAUSE] A trial run. 

Again. Okay. A little further out. First of all, you have to see where it's going. Why 
don't you stand, oh, you bat rightly. That's right. Okay. Let's try it again. Strike one. 
It's okay. It's the beginning of the baseball season. One more. The Red Sox are 
having trouble, too. Not bad. [APPLAUSE] If he had hit even harder it would have 
reversed direction and gone that way. If you hadn't hit it quite as hard it would have 
continued on, still at cos(t), but with less amplitude. But if you hit it exactly right -

It is fun to try to do. Toomre in our department is a master at this, but he has been 
practicing for years. He can take a little mallet and go blunk, and it stops absolutely 
dead. It is unbelievable. I should have had him give the lecture. Now, I would like to 
do something truly serious. Here, I guess. Because there is a certain amount of 
engineering lingo you have to learn. It is used by almost everybody. Not architects 
and biologists probably quite yet, but anybody that uses the Laplace transform will 
use these words in connection with it. I really think, since it is such a widespread 
technique, that these are things you should know. 

Anyway, it will be easy. It is just the enrichment of your vocabulary. It is always fun 
to learn new vocabulary words. So, let's just consider a general second order 
equation. By the way, all this applies to higher order equations, too. It applies to 
systems. The same words are used, but let's use something that you know. Here is a 
system. It could be a spring mass dashpot system. It could be an RLC circuit. 

Or that pendulum, a damped pendulum, anything that is modeled by that differential 
equation with constant coefficients, second-order. This is the input. The input can be 



any kind of a function. Exponential functions, sine, cosine. It could be a Dirac delta 
function. It could be a sum of these things. It could be a Fourier series. Anything of 
the sort of stuff we have been talking about throughout the last few weeks. 

And let's have simple initial conditions so that doesn't louse things up, the simplest 
possible ones. The mass starts at the equilibrium point from rest. Of course, it 
doesn't stay that way because there is an input that is asking it to move along. Now 
all I want to do is solve this in general with a Laplace transform. If I do it in general, 
that is always easier than doing it in particular since you don't ever have to do any 
calculations. 

It is s^2 Y. There are no other terms here because the initial conditions are zero. 
This part will be a sY. Again, no other terms because the initial conditions are zero. 
Plus bY. And all that is equal to whatever the Laplace transform is of the right-hand 
side. So it is F(s). Next step. Boy, this is an easy problem. You solve for Y. Well, Y = 
F(s) * (1 / (s^2 + as + b)). Now, what is that? The next step now is to figure out 
what the answer to the problem is, what's the Y(t)? 

Well, you do that by taking the inverse Laplace transform. But because these are 
general functions, I don't have to write down any specific answer. The only thing is 
to use the convolution because this is the product of two functions of s. The inverse 
transform will be the convolution of their respective things. The answer is going to be 
the convolution of F(t), the input function in other words, convoluted with the inverse 
Laplace transform of that thing. 

Now, we have to have a name for that, and those are the two words I want to 
introduce you to because they are used everywhere. The function, on the right-hand 
side, this function 1 / (s^2 + as + b), notice it only depends upon the left-hand side 
of the differential equation, on the damping constant. The spring constant if you are 
thinking of a mass spring dashpot system. So this depends only on the system, not 
on what input is going into it. And it is called the transfer function. Is usually called 
capital W(s), sometimes it is capital H(s), there are different things, but it is always 
called the transfer function. 

What we are interested in putting here its inverse Laplace transform. Well, I will call 
that W(t) to go with the capital W(s) by the usual notation. Its inverse Laplace 
transform, well, I cannot calculate that. I will just give it a name, W of t. And that is 
called the weight function of the system. This is the transfer function of the system, 
so put in "of the system" if you are taking notes. 

And so the answer is that always the solution is the convolution to this differential 
equation that we have been solving for the last three or four weeks. It is the 
convolution of that. And, therefore, the solution is expressed as a definite integral of 
the function of the input on the right-hand side, what is forcing the equation, times 
this magic function but flipped and translated by t. That says du for you guys over 
there. In other words, the solution to the differential equation is presented as a 
definite integral. Marvelous. And the only thing is the definite integral involves this 
funny function W(t). To understand why that is the solution, you have to understand 
what W of t is. Well, formally, of course, it's that. 

But what does it really mean? The problem is what is W(t) really? Not just formally, 
but what does it really mean? I mean, is it real? I think the simplest way of thinking 
of it, once you know about the delta function is just to think of this differential 



equation y'' + ay' + b. Except use as the input the Dirac delta function. In other 
words, we are kicking the mass. The mass starts at rest, so the initial conditions are 
going to be what they were before. y(0), y'(0). Both zero. The mass starts at rest 
from the equilibrium position, and it is kicked in the positive direction, I guess that's 
this way, with unit impulse. 

At time zero with unit impulse. In other words, kick it just hard enough so you 
impart a unit impulse. So that situation is modeled by this differential equation. The 
kick at time zero is modeled by this input, the Dirac delta function. And now, what 
happens if I solve it? Well, you see, everything in the solution is the same. The left 
stays the same, but on the right-hand side I should have not f(s) here. Since this is 
the delta function, I should have one. What I get is, on the left-hand side, s^2 Y + 
asY + bY equals, for the Laplace transform of the right-hand side is simply one. And, 
therefore, Y is what? 

Y is one over exactly the transform function. And therefore its inverse Laplace 
transform is that weight function. That is the simplest interpretation I know of what 
this magic weight function is, which gives the solution to all the differential 
equations, no matter what the input is. The weight function is the response of the 
system at rest to a sharp kick at time zero with unit impulse. And read the notes 
because they will explain to you why this could be thought of as the superposition of 
a lot of sharp kicks times zero a little later. Kick, kick, kick, kick. And that's what 
makes the solution. Next time we start systems. 


