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Abstract

Predicting the future is a basic problem that people have to solve every day and a

component of planning, decision-making, memory, and causal reasoning. This paper

presents five experiments testing a Bayesian model of predicting the duration or extent of

phenomena from their current state. This Bayesian model indicates how people should

combine prior knowledge with observed data. Comparing this model with human

judgments provides constraints on possible algorithms that people might use to predict

the future. The experiments examine the effects of multiple observations, the effects of

prior knowledge, and the difference between independent and dependent observations,

using both descriptions and direct experience of prediction problems. The results indicate

that people integrate prior knowledge and observed data in a way that is consistent with

our Bayesian model, ruling out some simple heuristics for predicting the future. We

suggest some mechanisms that might lead to more complete algorithmic-level accounts.
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Predicting the future as Bayesian inference:

People combine prior knowledge with observations when

estimating duration and extent

Making predictions is hard. Especially about the future.

Neils Bohr (or Yogi Berra)

Despite the difficulty of predicting the future, we do it effortlessly every day. We are

confident about being able to predict the durations of events, how much time we will need

to get home after work, and how long it will take to finish the shopping. In many cases we

have a great deal of information guiding our judgments. However, sometimes we have to

make predictions based upon much less evidence. When faced with new situations our

decisions about how much longer we can expect events to last are based on whatever

evidence is available. When the only information we possess concerns how long a

particular event has lasted until now, predicting the future becomes a challenging

inductive problem.

Being able to predict future events is an important component of many cognitive

tasks. Our expectations about the future are certainly fundamental to planning and

decision making, but inferences about time also play a role in other aspects of cognition.

Anderson’s (1990; Anderson & Schooler, 1991) rational analysis of human memory takes

the fundamental problem of memory to be predicting whether an item will be needed in

the future, with retention favouring those items most likely to be in demand. Assessing

the need for a particular item explicitly involves predicting the future, a problem that

Anderson formulates as a Bayesian inference. Prediction is also intimately related to the

discovery of causal relationships. The regularities induced by causal relationships lead us
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to make predictions about future events that can alter our perceptions (Eagleman &

Holcombe, 2002) and result in surprises when our predictions are incorrect (Huettel,

Mack, & McCarthy, 2002).

In this paper, we test the predictions of a model of predicting the future, formulating

the problem as one of Bayesian inference. Our Bayesian model indicates how people

should combine their prior knowledge about a phenomenon with the information provided

by observed data. Prior knowledge is expressed in terms of a probability distribution over

the extent or duration of a phenomenon, while the effect of observations is incorporated

via a statistical argument that is used in cosmology, known as the “anthropic principle”

(Gott, 1993). We explore the predictions of this model in depth and consider their

implications for the psychological mechanisms that might guide human predictions.

In previous work, we showed that people are sensitive to the statistical properties of

everyday quantities in the way that is consistent with our model (Griffiths & Tenenbaum,

2006). These results indicate that people use prior knowledge, but they do not imply that

people are making predictions by performing the calculations indicated by Bayes’ rule.

Rather, they suggest that whatever algorithm people use for predicting the future, it is

consistent with Bayesian inference in its sensitivity to prior knowledge. Many simple

heuristics might have this property. For example, Mozer, Pashler, and Homaei (2008) have

argued that our results could be explained by people following a simple heuristic, in which

they use only a small number of previous experiences to inform their judgments rather

than having access to the whole probability distribution.

Our goal in this paper is to gain a deeper understanding of the extent to which

people’s predictions are consistent with our Bayesian model, and thus to obtain stronger

constraints on the algorithms that they might be using in making these predictions. Our

Bayesian model makes strong predictions about the effects of providing further

observations, how prior knowledge should be combined with these observations, and the
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difference between independent and dependent observations. Each of these predictions

provides an opportunity to identify a constraint that an algorithm would need to satisfy:

If people behave in a way that is consistent with our model in each of these cases, then

whatever algorithm they are using must also approximate Bayesian inference. We test

these predictions empirically, using both cognitive and perceptual judgments about time,

and consider their implications for simple heuristics that people might use in predicting

the future.

Rational models of predicting the future

We begin our analysis by describing the “anthropic principle” used in predicting the

future. We then present the Bayesian generalization of this argument and consider the

effects of manipulating the prior and the likelihood within this model. This leads us to the

model predictions that we test in the remainder of the paper.

The Copernican anthropic principle

The cosmologist J. Richard Gott III (1993) proposed a simple heuristic for

predicting the future which was intended to provide insight into weighty matters like the

prolonged existence of the human race, but to be just as valid when applied to matters

arising in everyday life. Gott’s heuristic is based on the “Copernican anthropic principle,”

which holds that

. . . the location of your birth in space and time in the Universe is priveleged (or

special) only to the extent implied by the fact that you are an intelligent

observer, that your location among intelligent observers is not special but

rather picked at random (1993, p. 316)

Gott extends this principle to reasoning about our position in time – given no evidence to

the contrary, we should not assume that we are in a “special” place in time. If we adopt
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this principle, the time at which an observer encounters a phenomenon should be

randomly located in the total duration of that phenomenon.1

This principle leads to a simple method for predicting the future: discover how long

a phenomenon has endured until the moment it was observed and predict that it should

last that long into the future. This follows from the anthropic principle because if you

assume you encounter a phenomenon at a random point, it is equally likely you observed

it in the first or second half of its total duration. Denoting the time between the start of a

phenomenon and its observation tpast and its total duration ttotal, a good guess is

ttotal = 2 tpast. The argument works just as well if you know how far a phenomenon will

extend into the future (for example if you see a sign that is counting down to some event),

but do not know how far it extends into the past. Again, you should guess ttotal = 2 tfuture.

For simplicity, we will focus on predicting ttotal from tpast for the remainder of this section.

More formally, Gott’s rule can be justified by a probabilistic analysis that he calls

the “delta t argument”. If we define the ratio

r =
tpast

ttotal
, (1)

the Copernican anthropic principle tells us that r should be uniformly distributed between

0 and 1. This lets us make probabilistic predictions about the value of r. In particular,

the probability that r < 0.5 is 0.5, so there is a 50% chance that ttotal > 2 tpast. Likewise,

there is a 50% chance that ttotal < 2 tpast, making ttotal = 2 tpast a good guess. We can

also use this argument to define confidence intervals over the durations of events by

evaluating confidence intervals on r. For example, r will be between 0.025 and 0.975 with

a probability of 0.95, meaning that with 95% confidence

1

39
tpast < tfuture < 39tpast,
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where tfuture = ttotal − tpast.

This method of reasoning has been used to predict a wide range of phenomena.

Gott (1993) gives the example of the Berlin Wall, which he first encountered in 1969. At

this point the Berlin Wall had been in existence for 8 years, so tpast is 8 years. The 95%

confidence interval on the future duration of the Berlin Wall, tfuture, based upon the

assumption that Gott’s visit was randomly located in the period of its existence is 2.46

months to 312 years, firmly containing the actual tfuture of 20 years. Gott made similar

calculations of tfuture for Stonehenge, the journal Nature, the U.S.S.R., and even the

human race (the good news is that a 95% confidence interval gives us at least 5, 100 years,

the bad news is that it also predicts less than 7.8 million). The principle has subsequently

been applied to a surprisingly broad range of targets, including predicting the run of

Broadway musicals (Landsberg, Dewynne, & Please, 1993).

A Bayesian approach to predicting the future

Gott’s (1993) Copernican anthropic principle suggests how we might formulate a

rational statistical account of our ability to predict the future, but the context in which

we make our daily predictions differs from that assumed by Gott in two important ways:

prior knowledge and multiple observations. In many cases in the real world where it might

be desirable to predict the future, we know more than simply how long a process has been

underway. In particular, our interaction with the world often gives us some prior

expectations about the duration of an event. For example, meeting a 78 year-old man on

the street, we are unlikely to think that there is a 50% chance that he will be alive at the

age of 156 (for a similar example, see Jaynes, 2003). Likewise, our predictions are often

facilitated by the availability of multiple observations of a phenomenon. For example, if

we were attempting to determine the period that passes between subway trains arriving at

a station, we would probably have several trips upon which to base our judgment. If on
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our first trip we discovered that a train had left the station 103 seconds ago, we might

assume that trains run every few minutes. But, after three trips yield trains that have left

103, 34, and 72 seconds ago, this estimate might get closer to 103 seconds. And after ten

trains, all leaving less than 103 seconds before we arrive, we might be inclined to accept a

value very close to 103 seconds.

Gott’s (1993) delta-t argument does not incorporate the prior knowledge about

durations that people bring to the problem of predicting the future, or the possibility of

multiple observations. However, it can be shown that the delta-t argument is equivalent to

a simple Bayesian analysis of the problem of predicting the future (Gott, 1994). Bayesian

inference naturally combines prior knowledge with information from one or many

observations, making it possible to extend Gott’s argument to provide a more general

account of predicting the future. Bayes’ rule states that

P (h|d) =
P (d|h)P (h)

P (d)
, (2)

where h is some hypothesis under consideration and d is the observed data. By

convention, P (h|d) is referred to as the posterior probability of the hypothesis, P (h) the

prior probability, and P (d|h) the likeliihood, giving the probability of the data under the

hypothesis. The denominator P (d) can be obtained by summing across P (d|h)P (h) for all

hypotheses, giving

P (hi|d) =
P (d|hi)P (hi)

∫

H P (d|h)P (h)dh
, (3)

where H is the set of all hypotheses.

In responding to a criticism offered by Buch (1994), Gott (1994) noted that his

method for predicting the future could be expressed in Bayesian terms. In this setting, the

data are the observation of the current duration of a phenomenon, tpast, and the

hypotheses concern its total duration, ttotal. Using the prior P (ttotal) ∝ 1
ttotal

and the
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likelihood P (tpast|ttotal) = 1
ttotal

if ttotal ≥ tpast (and 0 otherwise) yields the same results as

his original formulation of the delta t argument.2 This can be seen if we substitute Gott’s

choices of prior and likelihood into Equation 3,

P (ttotal|tpast) =

1
t2
total

∫ ∞
tpast

1
t2
total

dttotal
, (4)

which yields

P (ttotal|tpast) =
tpast

t2total
. (5)

The probability that an observed phenomenon will have ttotal > t for t ≥ tpast can be

obtained by integrating this density over all values of ttotal > t:

P (ttotal > t|tpast) =

∫ ∞

t

tpast

t2total
dttotal

=
tpast

t
. (6)

This is exactly the probability we would obtain via the delta-t argument: asking whether

ttotal > t is equivalent to asking whether r <
tpast

t and the result follows directly from the

fact that r is uniformly distributed between 0 and 1.

These choices for the likelihood and the prior are not arbitrary. The Copernican

anthropic principle determines the likelihood: If we encounter a phenomenon at a random

point in its duration, then its current duration, tpast is uniformly distributed between zero

and its total duration, ttotal. Consequently, P (tpast|ttotal) = 1
ttotal

for all tpast less than

ttotal. The prior reflects the minimal possible state of knowledge about ttotal. Using 1
ttotal

for the prior avoids building any sense of scale into the predictions: It gives the same

amount of probability to a region even if the scale is transformed multiplicatively. For

example, it gives the same probability to ttotal taking a value between 1 and 2 minutes, 1

and 2 hours, and 1 and 2 years. This kind of prior, which gives very little information
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about the value of ttotal, is known as an “uninformative” prior (Press, 1989; Jeffreys,

1961). This choice of prior leads to the scale-free character of the predictions made by

Gott’s rule: ttotal is predicted to be a constant multiple of tpast, regardless of the value

that tpast takes on. By not imposing a natural scale, the same simple rule can produce

predictions for phenomena that have values of tpast ranging from a few seconds to

hundreds of thousands of years, but it also leads to counter-intuitive conclusions in

contexts where a natural scale does seem to apply, as with the human lifespan.

Changing the prior and likelihood

Crucially, both the prior and the likelihood used in this Bayesian analysis can be

altered to accommodate situations in which we have more knowledge, either as a result of

previous experiences with similar phenomena or having the opportunity to make multiple

observations. Griffiths and Tenenbaum (2006) explored the effects that prior knowledge of

the duration and extent of everyday quantities has on predicting the future. Figure 1

shows the distributions of five everyday quantities – human lifespans, the runtimes of

movies, the box office gross of movies, the length of poems, and the time served by

members of the United States House of Representatives. These quantities have different

distributions, which translate into different predictions. Our Bayesian analysis can be

applied in all these cases, with the modification of tpast and ttotal to refer to the observed

and total extent of phenomena respectively (such as an amount of money, or the number

of lines of text), not just their duration.

We can examine the consequences of using different priors looking at how the

posterior median – the value t such that it is equally likely that the total duration is

greater than or less than t, with P (ttotal > t|tpast) = P (ttotal < t|tpast) = 0.5 – changes as a

function of the current duration tpast. This “prediction function” takes on a different

shape for different priors. Human life spans and movie runtimes roughly follow Gaussian
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distributions, with

P (ttotal) =
1√
2πσ

e−(ttotal−µ)2/2σ2

, (7)

where µ and σ are the mean and standard deviation of the distribution respectively. The

resulting prediction function picks values of ttotal close to the mean of the prior when tpast

is small, and then predicts a value slightly greater than tpast as tpast becomes large. Movie

grosses and the length of poems follow power-law distributions, with

P (ttotal) ∝ t
−γ
total, (8)

where γ is a parameter of the distribution. The resulting prediction function suggests that

ttotal will be 21/γtpast (see Griffiths & Tenenbaum, 2006, for derivations of the results in

this paragraph). The predicted value is thus simply a multiple of tpast, as in Gott’s rule,

although the multiplier depends on the shape of the distribution. The time spent in the

House of Representatives roughly follows an Erlang distribution

P (ttotal) =
ttotale

−ttotal/β

β2
, (9)

where β is a parameter. This distribution has a broad peak at ttotal = β and decays to

zero at 0 and ∞. The resulting prediction function indicates that ttotal will be slightly

larger than tpast, with the predicted value being tpast + β log 2.

Figure 1 also shows the predictions made by human participants in an experiment

where each participant was asked to make a prediction based on a single value of tpast for

a subset of these phenomena. In aggregate, these predictions were in remarkably close

correspondence with the predictions made by our Bayesian model, with the median

human judgment being close to the median of the posterior distribution. However, Mozer

et al. (2008) argued that these results do not provide definitive evidence that people had



Predicting the future 12

detailed knowledge of the underlying prior distribution. Mozer et al. showed that a

heuristic in which each participant only has access to k samples from the prior and then

makes a prediction corresponding to the smallest of these samples that is greater than tpast

– the Mink heuristic – can produce similarly good approximations to our Bayesian model,

when aggregated across many simulated participants. If people are using this heuristic,

they may have less detailed knowledge of the distribution of events than our original

results suggested. In addition, while the Mink heuristic approximates our Bayesian model

in this particular case, it does not incorporate assumptions about how tpast is sampled or

indicate how observations and prior knowledge should be combined more generally, so it

will differ from our Bayesian model in other settings. We have elsewhere argued that

people’s prior knowledge of the distributions of everyday quantities goes beyond a few

samples (Lewandowsky, Griffiths, & Kalish, 2009) and shown that there are circumstances

under which approximating Bayesian computations with small samples can be rational

(Shi, Griffiths, Feldman, & Sanborn, in press; Vul, Goodman, Griffiths, & Tenenbaum,

2009). In this paper, we will turn to the question of whether people’s judgments remain

consistent with our Bayesian model for more complex prediction problems.

Bayesian models indicate not just how prior knowledge should be used, but how this

knowledge should be integrated with observed data. The experiments we present in this

paper thus focus on examining how people combine prior knowledge with observations in

predicting the future. One property of our Bayesian model, but not of heuristic accounts

such as Gott’s delta-t argument or the Mink heuristic proposed by Mozer et al. (2008), is

that the number of observations of the current duration of a phenomenon people see

should affect their predictions. This is most applicable for cyclic phenomena, where ttotal

represents the interval between instances of a recurring event. For example, we might try

to estimate how often trains run on a particular subway line based on having waited for

trains on multiple occasions. The Copernican anthropic principle determines the
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probability of a set of observations of this kind in exactly the same way that it determines

the probability of a single observation. We will use T to denote a set of n times drawn

independently and uniformly at random from the total duration of a phenomenon, as

might occur when waiting for a train n different times on the same subway line. Then,

taking tpast to be the largest value in T , we have

P (T |ttotal) =















(

1
ttotal

)n
ttotal ≥ tpast

0 otherwise

(10)

where n appears in the exponent because the probabilities of independent events multiply

and each observation has probability 1
ttotal

. This equation says that for any total duration

ttotal any set of observations less than ttotal is equally likely, but the probability of the set

of observations decreases as ttotal increases, favoring values of ttotal that are closer to tpast.

As the number of observations increases, so does the preference for smaller values of ttotal.

Changing the prior and likelihood used in our Bayesian model has important

implications for the resulting predictions. We can see some of these implications by

examining the effects of these changes on the posterior median t when we manipulate tpast

and the number of examples (n = 1, 3, 10). The predictions of Gott’s (1993) delta-t

argument, presented in Equation 1, are shown in Figure 2 (a). The predictions are

unaffected by n and are thus constant at t = 2tpast, a consequence of the fact that the

simple form of the delta-t argument is not designed to take into account situations in

which multiple observations are available. The predictions that result from following this

heuristic are also insensitive to prior information, offering a single prediction for all

situations. This seems to defy intuition and is the weakest of the models we will consider.

At the next level of complexity is a Bayesian model with 1
ttotal

for the likelihood of a

single example and the uninformative prior P (ttotal) ∝ 1
ttotal

. As shown in Figure 2 (b), the

model shows an effect of the number of examples, resulting from the fact that the
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likelihood of n independent examples is ( 1
ttotal

)n. The exponent in the likelihood gives

smaller durations more weight as the number of examples increases, reducing the estimate

of t. The curve shown in the figure corresponds to the prediction t = 21/ntpast,

approaching tpast as n becomes large. This reduction in t makes intuitive sense: Consider

the problem of predicting the time that passes between trains discussed at the start of this

section: An initial tpast of 103 seconds suggests ttotal is a few minutes, but seeing more

examples, each less than 103 seconds, brings our estimate much closer to tpast. The main

problem with this model is that it does not make use of the flexibility provided by the

inclusion of prior knowledge in inference.

While we should certainly use precise information about the distribution of ttotal if

available (as was done in Griffiths & Tenenbaum, 2006), in general we can use a simpler

prior to impose some sense of scale on the predictions. In the remainder of the paper, we

will use an Erlang distribution as a prior (Equation 9). This parameterized peaked

distribution provides a simple way to summarize many of the kinds of distributions that

might be encountered across temporal domains and to explore the results of manipulating

different aspects of the model. Of the everyday quantities considered by Griffiths and

Tenenbaum (2006), two were well-described by an Erlang distribution (length of terms in

the United States House of Representatives and the durations of reigns of pharaohs in

Ancient Egypt). The use of an informative prior imposes a natural scale on a

phenomenon, meaning that people’s predictions about ttotal are no longer simply a fixed

multiple of tpast. Figure 2 (c) shows the predicted values of ttotal are shown for 1, 3, and

10 observations using an Erlang prior where the maximum value of tpast is varied but β is

held constant. As tpast increases, the ratio of the predicted value of ttotal to tpast decreases,

providing a clear pattern indicating the use of an informative prior.
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Model predictions

Our Bayesian model of predicting the future has several properties that discriminate

it from existing heuristic accounts, such as the rule proposed by Gott (1993) or the Mink

heuristic proposed by Mozer et al. (2008). Exploring the extent to which people’s

judgments are consistent with these properties provides constraints on algorithms that

could be used to explain how people predict the future. Each point of consistency

highlights a property that a heuristic account must possess, and makes it more challenging

to define a single simple heuristic that might explain people’s behavior.

The most important property of our Bayesian model is its treatment of multiple

observations. The tightening of predictions about tpast is a direct consequence of the

Copernican anthropic principle and plays an important role in models of human

generalization and word learning in the form of the “size principle” (Tenenbaum &

Griffiths, 2001; Xu & Tenenbaum, 2007a, 2007b). As more observations less than tpast are

obtained, predictions should converge towards the smallest possible value of ttotal that is

greater than tpast. The equivalent statistical structure of predicting the future and

generalization also suggest that this phenomenon should be observed whether a judgment

is about time or some other quantity for which the same set of hypotheses (ie. intervals

from 0 to some upper limit) is appropriate, such as healthy levels of a toxin (where small

amounts are presumably not dangerous, but there is some point at which it becomes a risk

to health).

Our Bayesian model also asserts that manipulating the prior probability distribution

across the hypothesis space will produce a general change in predictions, at least until the

effect of the priors is overwhelmed by the likelihoods. In particular, inducing a prior

preference for a relatively high value of ttotal will bias inferences towards hypotheses

around that value. Griffiths and Tenenbaum (2006) showed that people are sensitive to

the distribution of everyday quantities when they make predictions, meaning that they
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make use of prior knowledge. However, our Bayesian model also makes clear quantitative

predictions about how this prior knowledge of durations should be combined with the

information provided by multiple observations: As the number of observations increases,

the influence of prior knowledge should decrease, with judgments becoming more similar

regardless of priors. These predictions are not consistent with simple heuristic accounts.

Use of Gott’s rule cannot predict any effect of prior knowledge. If the biasing information

is not provided in terms of samples from the prior, it is hard to see how it could be

explained by the Mink heuristic. Since neither of these heuristics can handle multiple

observations, they also cannot predict the diminishing effect of prior knowledge as the

number of observations increases.

Finally, the effect of multiple observations under our Bayesian model should be

sensitive to the process by which the observations were generated. In particular, we

should only expect a rapid reduction in the extent of generalization if a set of observations

are probabilistically independent. If the observations are dependent, then successive pieces

of data will not reduce our predictions about ttotal. For example, imagine we were trying

to predict how long Stonehenge would continue to exist. The first time we visit provides

an observation of tpast from which we can extrapolate ttotal. Each subsequent visit gives us

a new value for tpast, but these visits do not provide independent observations: If

Stonehenge existed at the most recent value of tpast, it must also have existed at all

smaller values. This corresponds to using the likelihood function

P (T |ttotal) =















(

1
ttotal

)

ttotal ≥ tpast

0 otherwise

(11)

for a set of observations T with maximum value tpast. Using this likelihood function we

should not reduce our estimate of ttotal each time we visit Stonehenge, as we would if we

were using the likelihood given in Equation 10, which assumes independent observations.
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This prediction falls out of the statistical analysis of the prediction problem and is hard to

explain unless people are sensitive to the way in which the data they observe are sampled.

Interestingly, previous research has provided both positive and negative results concerning

people’s sensitivity to dependence between observations: Xu and Tenenbaum (2007a)

found evidence that children are sensitive to the way in which examples are sampled in

learning words, while Barsalou, Huttenlocher, and Lamberts (1998) found that adults can

fail to use such information in learning categories.

Our Bayesian model has three clear implications for the kind of judgments that

people should produce when reasoning about the duration of events. The effect of multiple

observations, integration of prior probabilities, and impact of independent observations

are all important properties of how these judgments are made. These predictions provide

an opportunity to identify constraints on algorithms that people could be using in

predicting the future and are inconsistent with existing heuristic accounts. Experiments

1-3 examine these predictions in turn, using a task in which people read about the

durations of events and then form predictions. Experiments 4 and 5 supplement these

results with a task in which people actually experience events of different durations and

form their predictions on the basis of this perceptual experience.

Experiment 1: Multiple observations

The first experiment examined the effect of introducing multiple observations into

problems of predicting the future and compared the resulting predictions with judgments

made in non-temporal domains. The aim was to evaluate whether our Bayesian model

could provide a good account of these judgments and to examine the correspondence

between predicting the future and other problems of generalization.
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Method

Participants. Participants were 81 undergraduates participating for partial course

credit. The participants were randomly assigned to four conditions, to give 21 participants

in the Teacake condition, 21 in the Train condition, 16 in the Toxin condition, and 23 in

the Taxicab condition.

Stimuli. A simple questionnaire format was used, examining four scenarios in which

inductive decisions were required, two of which involved temporal judgments. Each

questionnaire had three sections. The first section outlined the situation and give a single

number on which judgments were to be based. This summary was intended to establish a

context for the judgment and to provide some information relevant to forming reasonable

prior expectations. The second and third sections added further information, giving a

total of three numbers and ten numbers respectively.

The first scenario, Teacake, described a coffee shop that had recently started selling

teacakes. The situation was described as follows:

Each day, on your way to class, you walk past a coffee shop. The shop has

recently started a new advertising campaign: they bake fresh teacakes

regularly throughout the day, and have a clock outside that shows how long it

has been since the teacakes were taken out of the oven. You are interested in

buying a teacake as soon as it is removed from the oven, and wonder how often

batches of teacakes are baked. Today, the clock shows that it has been 34

minutes since the last batch of teacakes was removed from the oven.

The story gives tpast and participants were asked to predict ttotal. Specifically, they were

asked:

Please write down your best guess of how much time elapses between batches

of teacakes, in minutes. Try to make a guess, even if you feel like you don’t
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have enough information to make a decision – just go with your gut feeling.

You may assume that the batches of teacakes are always separated by the

same amount of time.

The second and third sections added further times. The second section read:

Suppose that you check the clock on your way to class for the next two days.

Each time, you note how long it has been since the teacakes came out of the

oven. Including the first day, the times you have seen are 34, 8, and 21 minutes.

Participants were then asked exactly the same question about the time between batches of

teacakes. Finally, the third section read:

Suppose that you note the time on the clock every time you walk past the

coffee shop in the next week, checking how long it has been since the teacakes

came out of the oven. Including the three days from the previous week, the

times you have seen are 34, 8, 21, 18, 2, 5, 27, 22, 10 and 14 minutes.

This was followed by the same question about the time between batches of teacakes.

The second scenario, the Train scenario, outlined a similar situation in the domain

of public transport:

Imagine that you are visiting a foreign country, and want to catch a subway

train. Your guidebook says that the subway service is very efficient, with trains

running to fixed schedules, guaranteeing that you won’t have to wait very long

at the station. The book doesn’t mention how much time passes between

trains, so you will have to try to guess. When you get to the station, you see a

clock on the wall indicating that the next train will arrive in 103 seconds.

Here, the clock provides tfuture and participants are asked to predict ttotal. As noted

above, our Bayesian model does not differentiate between tpast and tfuture, as they are both
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observations of a period less than ttotal assumed to be uniformly distributed between 0

and ttotal. We thus expect these predictions to be captured by our model in the same way

as the predictions based on tpast from the first scenario. Participants were then asked to

write down their best guess of how much time passes between successive trains. The

second and third sections introduced additional observations of 34 and 72 seconds, then

61, 17, 29, 101, 97, 42 and 52 seconds, respectively.

These scenarios were complemented with two analogous situations that made no

reference to time. The first asked people to estimate what levels of a toxin might be

healthy. The description of the Toxin scenario was:

On a visit to the doctor, you undergo a range of tests. In one case, the doctor

informs you that he is testing for levels of a certain environmental toxin in

your blood. He has a chart that indicates healthy levels of environmental

toxins, but you can’t quite read the numbers indicating the threshold between

healthy and unhealthy amounts. The doctor tells you that you need only get

another appointment if the test suggests that you have unhealthy levels of

toxin in your blood. When you go in to pick up your results, you find a stack

of reports that have been classified as “healthy”. You are relieved to find your

report in the “healthy” stack. You see that the concentration listed on your

report is 34 ng/mL.

Participants were then asked to give their best guess of the highest concentration of the

toxin that would be considered healthy. Subsequent information was introduced in the

next two sections, with additional observations of 8 and 21 ng/mL, then 18, 2, 5, 27, 22,

10 and 14 ng/mL.

The second comparison scenario was a version of the Jeffreys (1961) tramcar

problem: participants were told the serial number of a taxicab (as well as being given the

information that all cabs are given a unique number between 1 and the total number of
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cabs in the company) and asked to guess the number of cabs in the company (the

presentation of the problem in terms of taxicabs was inspired by Jaynes 1994). The

Taxicab scenario gave participants the information shown below.

Imagine that your business requires you to travel by train to a certain town or

city for ten weeks. When the train pulls up at the station, you get into the first

taxicab you find. As you get into the cab, you notice a serial number on the

rear fender of your cab. You are curious about this, and ask the driver how the

cabs are labelled. He tells you that each cab is given a unique number between

1 and the total number of cabs in the company, and that each number in that

range corresponds to a cab. The serial number of this particular cab is 103.

Participants were asked to estimate the total number of cabs in the company. Additional

observations were introduced in the next two sections, with numbers 34 and 72, then 61,

17, 29, 101, 97, 42 and 52.

For each of the scenarios, the first number given was the largest, meaning that

further observations would only tighten the range of generalization. The largest example

was 34 minutes (ng/mL) for the Teacake (Toxin) scenario, and 103 seconds (cabs) for the

Train (Taxicab) scenario. These values were selected based on an expectation that they

would be broadly consistent with people’s expectations for these quantities. As can be

seen above, the sets of numbers given were identical for the teacake and toxin scenarios

and the train and taxicab scenarios. The numbers after the first were approximately

uniformly distributed and were selected to suggest a random sampling process.

Procedure. Each participant received a questionnaire containing all three sections on

a single sheet. At the top of the sheet was the statement “Please answer each question

before going on to the next, and do not go back and change your answers.” in boldface.

These instructions were the same for all four conditions.
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Results and Discussion

Plausible responses to these problems are constrained to be greater than the largest

example provided, so participants who produced responses less than tpast were viewed as

not having understood the task and omitted from the analysis. This criterion eliminated

approximately 15% of the participants in each of Experiments 1-3. Inspection of

participants who were rejected suggested that they were either giving estimates of the

spacing between observations, or of the central tendency of the observations, consistent

with two possible misunderstandings of the instructions. Responses more than three

standard deviations from the mean were considered outliers and were also excluded. Only

one outlier was identified in the course of Experiments 1-3. Responses were transformed to

t
tpast

, where t is the raw score and tpast is the largest example.

A one-way within-subjects ANOVA showed a statistically significant effect of the

number of examples for each scenario (F (2, 30) = 9.71, MSE = 0.23, F (2, 32) = 18.00,

MSE = 2.39, F (2, 44) = 9.57, MSE = 3.69, F (2, 30) = 15.05, MSE = 0.017, for the

Teacake, Train, Taxicab, and Toxin scenarios respectively, all p < .001). Means and

standard errors are shown in Figure 3, which demonstrate that all four scenarios show a

similar effect of new information. The figure also shows fits generated by our Bayesian

model, using the Erlang prior with β estimated for each scenario by minimizing the sum

of the normalized squared errors to the human data (ie. taking the difference between the

model prediction and the mean of the human data for each point, dividing by the

standard error for that mean, then summing over points). The parameterization of the

distribution reflects the different priors that might exist across different scenarios, relative

to the scale of the examples selected. The values of β for the Teacake, Train, Toxin and

Taxicab scenarios were 1.6, 5.4, 0.7 and 4.4 times the maximum of tpast respectively. The

peak of the Erlang prior is at ttotal = β, yielding values of 54 minutes between batches of

teacakes, 9 minutes 21 seconds between trains, 24 ng/mL of toxin, and 460 taxicabs, all of
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which seem appropriate.

The results are consistent with the predicted effect of multiple observations: smaller

predictions were made as more observations were provided. This effect appeared in both

the temporal and the non-temporal tasks, as might be expected if we view all four tasks as

instances of Bayesian inference. This pattern of behavior indicates that people update

their beliefs as they receive additional observations, something that is not accommodated

by existing heuristics. The variation in the absolute magnitude of responses across

different tasks is also consistent with using an informative prior. Under the prior used by

Gott (1994), we would not expect to see such variation. Experiment 2 explores the issue of

priors in more detail, examining whether priors can also be manipulated within scenarios.

Experiment 2: Priors

Griffiths and Tenenbaum (2006) explored the basic prediction that results from

taking a Bayesian approach to predicting the future, showing that prior knowledge about

the distribution of durations influences people’s predictions. Experiment 1 provided

further support for this idea, showing that there was variation in people’s predictions

across scenarios, which can be captured in the different distributions assumed for ttotal in

our model. However, there are still two important questions to address related to the use

of prior knowledge in predicting the future, concerning how such knowledge is represented

and how it is combined with multiple observations. Experiment 2 explores these questions.

The question of how prior knowledge of durations is represented is relevant to

understanding what kinds of algorithms might allow people to predict future events. The

Mink heuristic proposed by Mozer et al. (2008) assumes that people have access to

samples from the probability distribution P (ttotal) associated with the quantity to be

predicted. While this may be a reasonable assumption for some of the everyday prediction

problems considered by Griffiths and Tenenbaum (2006), it is clear that people can also
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make predictions in contexts where they might not have direct experience. Experiment 2

uses a simple manipulation of prior knowledge, providing instructions that modify people’s

expectations, which is harder to account for in terms of drawing upon some stored set of

samples of ttotal.

The question of how prior knowledge is combined with multiple observations

provides a further opportunity to examine whether people form predictions in a way that

is consistent with Bayesian inference. The experiment conducted by Griffiths and

Tenenbaum (2006) asked participants to make a prediction based on only one observation.

The results of Experiment 1 demonstrate that people can take into account information

from multiple observations and seem to do so in a way that is consistent with Bayesian

inference, reducing their predictions towards a value that is the largest observation so far

as the number of observations increases. This is the result of the likelihood function

(Equation 10) asserting a stronger preference for smaller values of ttotal as n increases and

should thus appear independently of manipulation of the prior. Experiment 2 tests this by

providing multiple observations, in addition to manipulating the prior.

The basic strategy we adopted for exploring manipulations of people’s priors was to

provide our participants with information that we expected should affect their priors,

obtain predictions with different numbers of observations and then fit our Bayesian model

to these results to estimate a prior distribution. We could then check whether the change

in the inferred prior distributions was consistent with the change that should have been

produced by the information that we provided to our participants.

Method

Participants. Participants were 78 undergraduates participating for partial course

credit. The participants were randomly assigned to four conditions. The Teacake No Prior

condition had 17 participants, Teacake Prior had 16, Train No Prior had 22, and Train
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Prior had 23.

Stimuli. The Teacake and Train scenarios from Experiment 1 were used, together

with two new scenarios. The new scenarios gave participants information that was

designed to alter their prior before they were given specific numbers upon which a

prediction could be based. The sentence “A friend who you are walking with says that he

worked in a coffee shop in the same chain last year, and that shops usually bake every two

hours, although it varies from shop to shop” was added to the teacake scenario, and “In

the course of your travels, you have noticed that most subway trains in this country run

approximately every seven minutes, although it varies from place to place” to the train

scenario. Both pieces of information were intended to increase the durations people would

expect for these scenarios, being greater than the estimated mode in Experiment 1. These

new scenarios were termed Teacake Prior and Train Prior, while the original scenarios are

Teacake No Prior and Train No Prior. All scenarios asked for predictions with 1, 3, and

10 examples, using the same numbers as those presented in the stimuli for Experiment 1.

Procedure. The procedure was the same as for Experiment 1.

Results and Discussion

Responses were screened using the same procedure as in Experiment 1. The

scenarios were grouped into Teacake and Train and examined for the effect of number of

examples and manipulating priors using two-way within-between ANOVAs. The Teacake

scenarios showed an effect of the number of examples (F (2, 42) = 25.87, MSE = 0.27,

p < .001) and manipulating priors (F (1, 21) = 4.70, MSE = 1.72, p < .05), as well as an

interaction between the two (F (2, 42) = 3.80, p < .05). Similar results were shown for the

Train scenarios. There was a statistically significant effect of the number of examples

(F (2, 68) = 50.31, MSE = 0.62 p < .001), as well as an effect of manipulating priors

(F (1, 34) = 5.85, MSE = 1.58, p < .05). In both groups the effect of the number of
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examples replicates the results of Experiment 1, and the higher means for the group given

the raised prior is consistent with the predictions of our Bayesian model.

Means and standard errors are shown in Figure 4, together with the model fits,

obtained via the same method as used in Experiment 1. The β values used in fitting the

data were 1.6, 3.3, 3.25, and 3.85 for the Teacake No Prior, Teacake Prior, Train No

Prior, and Train Prior conditions respectively. The β values are greater in the conditions

where the prior was raised, and give peak values of 1 hour, 52 minutes for the teacakes

and 6 minutes 40 seconds for the trains. It is notable that these values are within 10% of

the priors supplied in the experimental materials, supporting the efficacy of the

manipulation and the appropriateness of the model.

Experiment 3: Independence

Experiments 1 and 2 required participants to respond to a sequence of observations

in which they see the largest value, make a response, see two smaller values, make another

response, then see another seven values smaller than the first before making a third

response. While we interpret the decreasing trends observed in all three experiments as a

rational statistical inference, a possible confound in these experiments is that the largest

observation was always presented first. This suggests that participants might be applying

an “anchoring and adjustment” heuristic (Tversky & Kahneman, 1974). Specifically,

participants form an estimate after the first section of the questionnaire, use this estimate

as an anchor, and then adjust downwards as more information becomes available.

Experiment 3 was designed to obtain further constraints on heuristics that people

might be using to make predictions. The experiment had two differences from

Experiments 1 and 2. First, it used a between-subjects design in which each participant

saw a single set of numbers (containing 1, 3, or 10 examples). The between-subjects

design was intended to remove the opportunity for people to adjust their judgments
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between responses: The largest observation was always presented last and each participant

made only a single response, so the task demands no longer made an explicit strategy of

this kind attractive. Second, we manipulated the dependency structure of the samples.

This provided a way to test whether the statistical structure of the problem affected

people’s predictions, which would be another aspect of human behavior that would need

to be incorporated into heuristic accounts.

Formally, the treatment of dependency is as follows. The likelihood given in

Equation 10 only applies if the set of n examples are independent. This would be the case

if we were to observe a phenomenon on several different occasions, where each occasion

corresponds to a different instance of the phenomenon (as in our examples in Experiments

1 and 2, where different episodes of baking or different trains are observed). If the

observations are completely dependent, as would be the case if they were all observations

of a single instance of the phenomenon, the likelihood is that given in Equation 11 and

new observations less than the maximum value of tpast will have no effect on predictions

about ttotal. An example of this would be standing outside the coffee shop and waiting,

noting down the time on the clock every minute. Only the largest observed time should be

used in evaluating how often teacakes are baked, as all of the other observations are

rendered irrelevant by this (if the clock says 54 minutes, it would have said 53 minutes a

minute ago, etc.). If people are using values of tpast to make a statistical inference about

ttotal, we should expect to see an effect of the number of observations when those examples

are independent, but not if they are dependent.

Method

Participants. Participants were 220 undergraduates participating for partial course

credit. Participants were randomly assigned to five conditions: 42 participants saw only a

single example, while 37 saw three independent examples, 52 saw ten independent
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examples, 45 saw three dependent examples, and 44 saw ten independent examples.

Stimuli. Five questionnaires were used, representing two scenarios and three

different numbers of examples. The original Teacake scenario was used, together with a

second scenario in which the successive observations of the clock outside the shop were

rendered dependent. This was made apparent through a change in instructions. The

questionnaire for three dependent examples read:

Suppose that one day you decide to wait outside the shop until a fresh batch of

teacakes is baked. You look up several times, and see that the clock reads 8,

then 21, then 34 minutes, all without a new batch of teacakes being made.

Since the dependent times were listed from smallest to largest, the independent times on

the original Teacake scenario were presented in the same order. Each participant saw

either one, three, or ten examples. Since the notion of independence is irrelevant for a

single example, only five conditions were needed.

Procedure. The procedure was the same as for Experiments 1 and 2.

Results and Discussion

Responses were screened as in Experiment 1. The effect of examples was examined

separately for the independent condition and the dependent condition, since the single

example cell was used in both analyses. A one-way between subjects ANOVA revealed

that varying the number of examples had a statistically significant effect on predictions

when the examples were independent (F (2, 102) = 4.10, MSE = 0.58, p < .05), but not

when they were dependent (F (2, 115) = 0.55, MSE = 1.52, p = 0.58), as predicted by our

Bayesian account. The means for the different conditions are displayed in Figure 5.

The results of this experiment suggest that people show a sensitivity to the

statistical properties of the information provided when making judgments about time and
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cast doubt on explanations of the results in terms of a simple heuristic like anchoring and

adjustment. First, the between-subjects design meant that people saw only one set of

numbers and were thus not given an opportunity to explicitly anchor a judgment and then

revise it incrementally in the face of further smaller durations. Second, the results provide

no evidence for a tightening of generalization when the observations are dependent. A

sensitivity to dependency needs to be part of an account of predicting the future: If

people are using a simple heuristic to address the task, they are still making an inference

about whether or not the statistical structure of the problem warrants the application of

that heuristic.

Complete dependence between observations is obviously an extreme case, but

provides the strongest manipulation for testing whether people are sensitive to the

statistical structure of their observations. We used this strong manipulation in part

because a similar strategy has been used in exploring children’s sensitivity to the way in

which examples are sampled in word learning (Xu & Tenenbaum, 2007a). However, our

results raise the question of how sensitive people are to this kind of statistical property of

the input – something that can be explored in future work by providing vignettes that

interpolate between complete independence and complete dependence. Understanding

how people reason about dependencies between observations is particularly interesting

given other work showing that people fail to appropriately account for biases in the way

that their observations are sampled (Fiedler & Juslin, 2006; Hertwig, Barron, Weber, &

Erev, 2004; Ross & Nisbett, 1991).

Experiment 4: Predictions from experienced durations

Experiments 1-3 suggest that people’s temporal predictions correspond well to the

qualitative properties of our Bayesian account. However, these experiments all involve

cognitive judgments about time: people receive a set of numbers that correspond to
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durations and are asked to produce a response in similar format. Our remaining

experiments examined the effects of multiple observations and prior beliefs in a set of

tasks where both the stimuli and the responses were actual durations. These experiments

involved learning about “Goodman Gems,” named for Goodman (1955). These gems have

the unique property that after a fixed amount of time, they change from one color to

another. Each type of gem has two characteristic colors, spending the same amount of

time displaying one color before switching to the other, and all gems of the same type take

the same amount of time to change. People presumably expect gems not to change in

color, so we used these stimuli as a way to introduce the task in a way where people would

have relatively little prior knowledge about durations. In each experiment the participants

were presented with sets of gems under different viewing conditions and asked to judge

how long it takes those gems to change color using a timer. Experiment 4 tested the basic

predictions of our Bayesian model, exploring how people’s judgments vary as the value of

tpast and the number of observations change. This was thus a replication and extension of

Experiment 1 with perceptual rather than conceptual presentation of durations.

Method

Participants. Participants were 27 undergraduates participating for partial course

credit.

Stimuli. The gems were presented as two-dimensional diamonds on a computer

screen, and participants directly observed how long it took them to change color. There

was no need to consider the psychophysical scaling of the stimuli, since the relationship

between actual and perceived time is approximately linear for the intervals used in this

experiment (Allan, 1979).

Procedure. In an initial instruction and practice phase, participants were told about

the properties of Goodman gems and then watched seven gems go through their full color
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change cycle, starting in one color, changing to a second, and then changing back to the

first. The time taken for these gems to change color was uniformly spaced on a logarithmic

scale, from 0.5 to 32 seconds. Participants saw these gems in random order and then

learned how to click “Start” and “Stop” buttons with the mouse to record how long they

thought the gems took to change color, on average. The initial instructions read:

This is an experiment about a special kind of gemstone, called a Goodman

Gem. Goodman Gems have the unique property of cyclically changing color.

Each gem has two different colors. After a fixed amount of time, it will

suddenly change from one color to the other. Some gems change color rapidly,

while others take longer.

In this experiment, you will see Goodman Gems of many different kinds. Your

job is to estimate the how much time passes between color changes for each

kind of Goodman Gem.

Every Goodman gem of a particular kind changes color after exactly the same

amount of time. You can tell that two gems are of the same kind because they

have the same colors. This means that you can use your experiences with one

gem of a particular kind to predict how much time should pass between

changing colors for another gem of that kind.

Clicking on the button below with the mouse will show you seven samples of

different kinds of Goodman gems changing color, one after the other. Each

gem starts having just changed color, and you will see it change to its other

color and then back again.

Clicking a button then led to the initial examples, and training on the use of the “Start”

and “Stop” buttons, with the following instructions:

Because this experiment involves making judgments about how much time it
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takes for a particular kind of Goodman gem to change color, you are going to

use a timer to record your responses.

At several points in the experiment, you will be asked a question about time.

For each question, the procedure will be exactly the same. You will see a

“Start Timer” button, like the one below. When you are ready to record your

response, click on the “Start Timer” button with the mouse.

When you click on the button, it will disappear and you will be told that the

timer is running. A “Stop timer” button will also appear. You should then

wait until the time since you pressed the “Start Timer” button is the same as

the amount of time that corresponds to the answer to the question, then click

on the “Stop Timer” button.

Following this initial phase, participants received further instructions outlining a

story about miners and scientists, intended to establish the nature of the experimental

task:

The seven kinds of Goodman Gems you have seen so far were once thought to

be the only Goodman Gems in existence. However, it has recently been

discovered that a group of miners in a faraway country has found fifteen other

kinds of Goodman Gems, and is trying to sell them to the highest bidder. As a

consequence, the gems will probably be sold to private collectors. You

represent a group of scientists who are interested in knowing how long it takes

these particular Goodman Gems to change color. Unfortunately the miners

realise that once the scientists have this knowledge, they are less likely to try

to buy the gems. Consequently, they won’t let you see any of their new kinds

of gems go through a complete color change cycle. However, since the miners

need to demonstrate that these are actually Goodman Gems, you have the
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opportunity to see each of their gems change color once.

There are fifteen new kinds of gems, and the miners are selling ten gems of

each kind. You are only allowed to view one gem at a time.

Each gem is kept in a different room, and you enter the room at a random

point in the color change cycle. Once the gem changes color, the miners lead

you back out of the room.

The scientists with whom you are working want you to use the information

you obtain from your observation of the gems to decide how much time it takes

for gems of each kind to change color.

The instructions were discussed with each participant, ensuring that the nature of the

sampling procedure was clear and emphasizing that they would have incomplete

information for making these judgments.

In the main part of the experiment, participants saw fifteen sets of new Goodman

Gems. The sets of gems were chosen in a 5 × 3 factorial array, crossing the maximum time

taken to change color (1, 2, 4, 8, or 16 seconds) with the number of examples (1, 3, or 10).

All of the gems of a single kind were seen one after the other, and the participants were

presented with a display showing up to 10 rooms that they could choose to “enter” by

clicking on different buttons. An example set of instructions at this point was as follows:

You are about to see a new kind of Goodman gem.

The miners have ten gems of this kind, each housed in a different room. On

the next screen, you will see a set of buttons corresponding to the different

rooms you can enter. To enter a room, click on the appropriate button. When

you enter a room, you will see the color of the gem and will wait until it

changes color.
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All of the Goodman gems you see will be of the same kind, although they will

be at a random point in their color change cycle when you encounter them.

In each set, one gem took the maximum time to change color, while the remaining

durations were random values below this maximum, reflecting the fact that the

participant had entered the room at a later point in the gem’s color change cycle. The

gems were shown in random order, so the point at which the gem taking the maximum

time to change color appeared was randomized across sets and subjects. After viewing

each set of gems, participants made a judgment about how long it took that type of gem

to change color, using the “Start” and “Stop” buttons. For these judgments, they were

given the instructions:

Now make a guess about how much time passes before this particular kind of

Goodman gem changes color. Since you haven’t seen any gems change color

and then change back again, you can’t know for certain how much time it

takes. Try to use the information you have obtained so far to make an

informed guess.

Results and Discussion

The design provides the same statistical structure as used in Experiments 1-3,

although the effect of multiple observations is manipulated across sets of gems rather than

within sets of gems. We should thus expect participants to produce smaller predictions for

sets containing more examples. As in the previous experiments, responses shorter than the

longest example indicate a misunderstanding of the requirements of the task. However,

since actual duration estimates tend to be less precise than written responses, we relaxed

our criterion to reject only those participants who produced responses that were less than

half as long as the longest example. This procedure reduced the number of participants

contributing data to 23. We used the same transformation as in the previous experiments
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for all analyses, converting responses t to t
tpast

.

The results of the experiment are shown in Figure 6, with the characteristic pattern

of reduced generalization with more examples found in Experiments 1-3. A two-way

within-subjects ANOVA revealed that there was a significant effect of number of examples

(F (2, 44) = 35.87, MSE = 0.69, p < .001) and stimulus duration

(F (4, 88) = 43.04, MSE = 0.48, p < .001), and a significant interaction between the two

(F (8, 176) = 15.16, MSE = 0.37, p < .001). This pattern of results is consistent with our

Bayesian model, as illustrated by the predictions resulting from using a prior in which β is

chosen so that the peak is at 4 seconds, the geometric mean of the values given as practice

stimuli. These predictions are also shown in Figure 6 (a).

The main effect of number of examples supports our argument, showing the

characteristic pattern predicted by our Bayesian model as a result of the independent

sampling assumption made in the likelihood. The main effect of stimulus duration also

provides strong support for another aspect of our model, reflecting the combination of

observed data with a prior distribution. Inspection of Figure 6 (a) shows that this main

effect results from participants producing smaller predictions relative to the maximal

value of tpast for for stimuli of longer duration. That is, people tended to produce

predictions for the total duration that were closer to the maximum observed duration as

the maximum observed duration increased. Such an effect is impossible to explain with

the uninformative prior used by Gott (1994). Under Gott’s analysis, we would expect to

see the same pattern of predictions for all five durations. The smaller predictions with

longer durations indicate that people have expectations about how long our gems should

take to change color. When the observed durations are shorter than expected, they make

a larger prediction. As the observed durations increase, the extent to which they are

willing to go beyond the maximum observed value decreases. The ability of our model to

capture this pattern with a single choice of β equal to the geometric mean of the practice
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data suggests that people have estimated the typical time scale for this scenario and use

that as an ingredient in a rational statistical prediction of duration.

Experiment 5: Irrelevance of order

Experiment 4 showed that the magnitude of people’s predictions relative to the

maximum value of tpast decreases as a function of the number of examples, consistent with

the predictions of our Bayesian model. An alternative explanation for these results could

be formed based upon the fact that as the number of examples increases, so does the

elapsed time between observing the maximum value of tpast and making a prediction.

With one observation, the maximum value has to be the last thing the participant saw.

With three observations, there will typically be one other observation between the

maximum value and the time when participants make a judgment. With ten observations,

there will typically be four or five observations between the maximum value and the time

when participants make a judgment. This increase in elapsed time could account for our

results if people forget earlier observations, or if people put greater weight on more recent

trials (a recency effect).

To address this alternative explanation, we replicated Experiment 4 but fixed the

order of examples so that the largest value of tpast always appeared last. Our Bayesian

model is insensitive to the order of the observations and thus the basic pattern of results

should be similar to those of Experiment 4. Recent work has pointed out that order

effects pose a challenge for Bayesian models that assume observations are independent and

identically distributed (e.g., Kruschke, 2006). Our goal here is not to exhaustively rule out

order effects in the predicting the future task, but to examine whether this specific aspect

of order – the location of the maximal observation – could account for our findings in

Experiment 4. If the distance between this maximum value and the prediction is

responsible for the observed effect, then the effect should be removed by adopting this
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presentation order. If people are instead sensitive just to the statistical structure of the

task, we would expect to see an effect of multiple observations despite the maximum value

of tpast appearing last.

Method

Participants. Participants were 21 undergraduates participating for course credit.

Stimuli. Stimuli were the same as for Experiment 4.

Procedure. Procedure was the same as for Experiment 4, except the largest value of

tpast was always the last to be presented.

Results and Discussion

Two participants produced values of t less than half as long as tpast and were

excluded from the analysis. The same transformation as in Experiment 4 was used for all

analyses. The results are shown in Figure 6 (b). The results reproduced the pattern seen

in Experiment 4, with a significant effect of number of examples

(F (2, 38) = 31.50, MSE = 0.27, p < .001) and stimulus duration

(F (4, 76) = 20.94, MSE = 0.69, p < .001), and a significant interaction between the two

(F (8, 152) = 5.71, MSE = 0.24, p < .001). Again, the results were consistent with our

Bayesian account, as can be seen from the predictions of the model with the same value of

β as in Experiment 4, also shown in Figure 6 (b).

Our results indicate that forgetting previous observations or placing greater weight

on more recent observations cannot account for the decrease in the magnitude of people’s

predictions relative to the maximal value of tpast as they obtain more observations. Even

when the maximal value was the most recent, we saw a decrease in predictions consistent

with our Bayesian model. However, this experiment examined only one manipulation of

the order of observations and do not rule out the possibility of order effects in this task.
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Since our Bayesian model predicts that the order of observations should be irrelevant to

people’s predictions, a more comprehensive investigation of order effects would provide a

strong test of the model.

Taken together, these two experiments suggests that the effect of multiple examples

observed in Experiments 1-3 extends beyond cognitive stimuli dealing with time, affecting

explicitly temporal judgments in which both stimuli and responses are actual durations.

The results also illustrate that the effect of multiple observations can be obtained in

situations where judgments are not a direct result of the revision of beliefs in the face of

new information. Since the experiment used different stimuli for sets of different sizes, the

resulting judgments did not reflect the gradual accumulation of information about a single

temporal quantity, but several decisions about different quantities. People showed the

predicted effect of multiple observations in making these decisions. This outcome is

similar to that obtained in Experiment 3, but extends the result to perceptual stimuli and

a situation in which a single individual makes multiple judgments.

General Discussion

Predicting the future is a difficult inductive problem, but one that people often solve

effortlessly. Our results suggest that people’s predictions about temporal events are

consistent with a rational statistical account of predicting the future, which uses Bayesian

inference to combine prior knowledge of durations with information from multiple

examples. Experiment 1 showed that the effect of providing further examples conformed

to the predictions of our Bayesian model: more examples promoted a reduction in the

scope of generalization, with predictions becoming closer to the largest example provided.

Experiment 2 showed that people’s predictions could be affected by the manipulation of

their prior expectations and that this effect was consistent with the interaction of priors

and likelihoods in Bayesian inference. Experiment 3 showed that the revision of beliefs as
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a result of further information was appropriately sensitive to the dependency structure of

the observations. Finally, Experiments 4 and 5 demonstrated that the effect of multiple

observations extended to explicitly temporal judgments with perceptual stimuli and

situations in which judgments did not require the direct revision of beliefs.

These results provide constraints on possible algorithms that people could be using

to predict future events. People’s predictions are inconsistent with existing simple

heuristics, such as the multiplicative rule proposed by Gott (1993) and the Mink heuristic

proposed by Mozer et al. (2008). In particular, neither of these heuristics provides an

account of how multiple observations should influence predictions, making it difficult to

explain the results of Experiments 1, 4, and 5. The sensitivity to instructional

manipulation of priors in Experiment 2 and statistical dependency structure observed in

Experiment 3 also suggests that people are doing something more sophisticated than

naively applying a simple heuristic, since they seem to take into account prior knowledge

of durations in a form other than samples from the distribution and the sampling process

by which the observations were generated. This kind of sensitivity is consistent with

treating the problem of forming predictions as one of statistical inference.

In the remainder of the paper, we will explore in detail several issues that are raised

by our results. First, we will discuss how accounts of predicting the future at different

levels of analysis can be mutually informative. Our analysis is at Marr’s (1982)

computational level, defining the the computational problem presented by predicting the

future and considering how it might be solved. Characteristically for this kind of analysis,

we have been concerned with why people make the judgments they do, rather than how

they make those judgments. Further insights into the algorithms behind everyday

predicting the future can be gained from a study by Sternberg and Kalmar (1998), and

our computational account suggests some simple heuristics in addition to those considered

so far that may guide people’s predictions. Having discussed these issues, we will briefly
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consider how predicting the future relates to other cognitive problems.

Levels of analysis

In presenting a Bayesian account of predicting the future, we are not claiming that

people explicitly perform Bayesian calculations whenever they pass a coffee shop or arrive

at a train station. Rather, we are claiming that a probabilistic analysis of the problem of

predicting the future can provide us with insight into the human ability to solve inductive

problems. This account is complementary to analyses of the cognitive processes involved

in forming predictions (e.g., Sternberg & Kalmar, 1998) and can be conducted in parallel

with investigations of whether people’s judgments can be explained in terms of simple

heuristics.

Computation and algorithm. Marr (1982) identified three levels at which theories of

cognition can provide explanations: computational, algorithmic, and implementational.

Our analysis of the problem of predicting the future aims to provide an explanation at the

computational level, addressing the question “What is the goal of the computation, why is

it appropriate, and what is the logic of the strategy by which it can be carried out?”

(Marr, 1982, p. 25). We have made no commitments to the algorithms by which people

solve this computational problem, or how they might be implemented. Theories at these

different levels have the potential to provide complementary insights into people’s ability

to predict the future. While neuroscientists have begun to investigate the neural basis of

prediction (Huettel, Mack, & McCarthy, 2002) and the perception of time (Eagleman &

Holcombe, 2002), we still lack a clear account of how the ability to predict the future

might be implemented in our brains. However, a detailed algorithmic level analysis of

everyday induction was conducted by Sternberg and Kalmar (1998), providing some

results that parallel our findings.

Sternberg and Kalmar (1998) had participants make a series of judgments about
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events either in the future or the past (they termed these tasks “prediction” and

“postdiction” respectively) and then used psychometric techniques to establish which

properties of the stimuli affected the time taken to form these judgments. Their results

were interpreted in terms of a 17-step information-processing model, where each step

identified a computational operation involved in encoding the stimuli, accessing memory,

forming a prediction, and making a response. The variables found to affect response time

included the amount of time between the present and the past or future date, whether the

judgment was prediction or postdiction, and how much additional information might be

needed to make a prediction. On the basis of these results, Sternberg and Kalmar

concluded that the key steps in the algorithm were those that involved computing the

difference between the current and the past or future time and developing a schema

describing the event.

Sternberg and Kalmar’s (1998) results suggest that the strategies people use to

make predictions about the past and the future are highly similar, with overlapping (but

non-identical) factors influencing response latencies in prediction and postdiction. This

provides a nice algorithmic analogue to our analysis, in which values of tpast and tfuture are

equally informative about ttotal (as discussed briefly in Experiment 1). Their findings also

illustrate the important role that prior knowledge plays in everyday inductive inferences.

While our analysis assumes a simple prior, in which domain knowledge is reflected only in

the choice of β, the retrieval and processing of information relevant to a problem will be

an important step in being able to reach solutions that reflect both appropriate knowledge

about the domain and the effect of the observations.

Statistics and heuristics. The consistency of human behavior with our Bayesian

model suggests that our intuitions about predicting the future can be understood in terms

of rational statistical inference, but does not imply that we work through Bayes’ rule

whenever we need to make predictions. Presumably, people are following some cognitive
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algorithm when solving this problem. An analysis of a problem at the computational level

can provide informative constraints on possible algorithmic-level theories. In this case,

behavior consistent with our Bayesian model provides constraints on the heuristics that

people might be using in solving the problem of predicting the future. The standard use of

heuristics in psychological theory is as a direct alternative to applying any form of

Bayesian reasoning to a problem. In contrast, we view heuristics as providing simple

means of achieving solutions similar to the Bayesian solution, without the computational

overhead. A probabilistic analysis of a cognitive problem is complementary to identifying

a heuristic that seems consistent with human behavior: the probabilistic analysis can

explain why a particular heuristic is useful, while the heuristic answers the question of

how people are able to perform a task.

Our experiments illustrate that people seem to combine observations with prior

knowledge in a way that is consistent with Bayesian inference and can take into account

information from multiple observations. A heuristic account needs to be able to

accommodate both of these findings. The Mink heuristic introduced by Mozer et

al. (2008) illustrates how the effects of prior knowledge on predictions could be

implemented without requiring sophisticated probabilistic computations. Mozer et

al. used this heuristic to show that results consistent with our Bayesian analysis could be

produced by aggregating across a population in which each participant has access to only

k samples from the prior. Subsequent work using a within-subjects version of the

predicting the future task provides evidence against this account (Lewandowsky et al.,

2009). However, sampling from the prior still provides a good way to approximate

Bayesian inference and is consistent with performance on this task if participants draw a

new set of k samples from the prior each time they have to make an inference (Shi et al.,

in press). Indeed, approximations based on a small number of samples can represent an

optimal trade-off between accuracy and computation time (Vul et al., 2009).
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The Mink heuristic, in its current form, is not capable of accounting for how people

incorporate information from multiple observations (as illustrated in Experiments 1, 4,

and 5), how they adjust their priors based on verbal instructions (as illustrated in

Experiment 2), or why they are sensitive to the statistical dependency structure of their

observations (as illustrated in Experiment 3). Each of these results thus poses a challenge

to this account. However, this does not mean that it will not be possible to construct a

heuristic that satisfies these constraints. For the purpose of illustration, we will show how

simple heuristics might be able to account for the effect of multiple observations.

We will consider two variants on a simple heuristic, making use of the intuition that

as the density of observations in an interval increases, the range of generalization should

decrease. The simplest form of this “density” heuristic is the rule “The distance to

extrapolate is the range of scores divided by the number of examples”. Using this

heuristic, the predicted value of ttotal is

t = tpast +
tpast

n
. (12)

This heuristic derives its pedigree from frequentist statistics, where statistical problems

equivalent to our problem of predicting the future are addressed by using t as an unbiased

estimator of ttotal. This simple density heuristic is insensitive to scale and thus cannot

account for the variation in judgments seen in Experiments 1 and 2. In fact, it is closely

related to our Bayesian model with the scale free prior: a first order Taylor series

expansion of P (ttotal > t|T ) around the maximum value of tpast gives the prediction

t = tpast +
tpast

2n . Using this heuristic might thus make sense if one has very little knowledge

about the domain, but will be inappropriate if one has a sense of the scale of predictions.

In order to accommodate the results of our experiments, a heuristic needs to reflect

the natural scale of durations in a particular domain. Observing that the Erlang prior
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results in the prediction t = tpast + β log 2 with a single observation, we might define a

density heuristic for a domain with a natural scale to be

t = tpast +
β

n
. (13)

Here, the density of the observations is evaluated not with respect to tpast, but with

respect to the assumed scale of the problem. This heuristic gives a reasonably good

account of our data from Experiments 4 and 5 with β = 2.7s, as can be seen in Figure 7.

The full Bayesian model with an Erlang prior gives correlations of r = 0.933 and r = 0.920

for Experiments 4 and 5 respectively, while this density heuristic gives r = 0.906 and

r = 0.895. Just as the Erlang prior is not suitable for all circumstances (such as predicting

human lifespans and the grosses of movies, as discussed above and in Griffiths &

Tenenbaum, 2006), this particular heuristic might be expected to have limited application.

However, heuristics based on density should be able to capture one of the central results of

our Bayesian analysis and our experiments – the decrease in the extent of generalization

as a function of the number of examples.

Taken together, using samples from the prior and paying attention to the density of

observations might provide a way to approximate our Bayesian model. However, adopting

the appropriate heuristic for producing such an approximation might be a challenging task

in itself. While assessing the density of a set of observations does not require any

statistical sophistication, people still need to be sufficiently aware of the statistical

structure of a problem to know that applying a particular heuristic is justified: the results

of Experiment 3 indicate that if a set of observations has the wrong dependency structure,

people do not apply this kind of heuristic. Judging whether or not a simple heuristic is

applicable can require a complex inference that relies upon subtle details of a problem and

is a current topic of investigation in research on heuristics (Gigerenzer & Brighton, 2009).
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Predicting the future and other cognitive problems

We have considered predicting the future to be a desirable goal in itself, but being

able to form such judgments also has important implications for other areas of cognition.

In this section, we consider how our analysis relates to work on memory and

generalization.

Memory and the future. Our analysis of predicting the future is based upon the

problem of predicting the duration of events, but a similar statistical analysis can be

provided for other kinds of prediction tasks. In any such task, the key to making

predictions will be specifying a statistical model that captures the quantities to be

predicted and the relationship between past and future observations. Anderson (1990)

argued that a number of phenomena in human memory can be understood by considering

the goal of memory to be the efficient storage of facts that are likely to be needed in the

future. Anderson’s analysis of this problem views the memory system as assuming a

simple statistical model of when facts are needed, essentially a non-homogeneous Poisson

process, and estimating the properties of each fact according to this model. While the

specifics of his account differ from ours, the two approaches embody a similar philosophy

in providing a computational level analysis of the problem of predicting the future.

Anderson (1990) suggests that these inferences occur unconsciously and are an important

part of the human memory. One attractive component of future research is thus exploring

the extent to which unconscious temporal judgments more broadly reflect simple

statistical principles.

Predicting the future as generalization through time. Our Bayesian approach to

predicting the future is closely related to Shepard’s (1987) analysis of the problem of

generalization. Given two objects x and y, represented as points in a psychological space,

and the knowledge that x has a particular property (equivalent to belonging to a
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“consequential region” in psychological space C, containing all objects with that

property), the problem of generalization involves computing the probability that y also

has that property, P (y ∈ C|x). Shepard (1987) used a simple Bayesian argument to show

that this probability decreases as an exponential function of the distance between x and y.

Tenenbaum and Griffiths (2001) extended Shepard’s (1987) analysis of the problem

of generalization to cover different kinds of consequential regions and to allow for

situations in which not just a single object x but a set of objects X were offered as

examples drawn from C. The generalization function P (y ∈ C|X) can be evaluated via

Bayesian inference, computing

P (y ∈ C|X) =

∫

h∈H,h∋X,y P (X|h)P (h)
∫

h∈H,h∋X P (X|h)P (h)
, (14)

where h is a hypothetical consequential region, H is the set of all such hypotheses, P (X|h)

is the probability of the set of objects X being sampled from the consequential region h,

and P (h) is a prior on consequential regions. Tenenbaum and Griffiths (2001) defined the

likelihood P (X|h) to be

P (X|h) =















(

1
|h|

)n
X ∈ h

0 otherwise

(15)

where |h| is the size of h, being the number of objects in a discrete set or the measure of a

continuous hypothesis, and n is the number of objects in X. The likelihood reflects the

assumption that the objects were independently sampled uniformly at random from h and

implies that smaller, more specific hypotheses will receive higher probabilities than larger,

more general hypotheses, even when both are equally consistent with the set of

observations. Tenenbaum and Griffiths (2001; Tenenbaum, 1999) called this as the “size

principle”.

The method for predicting the future outlined above can be expressed in terms of
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Equation 14. H is the set of all possible durations of a phenomenon, with each h an

interval [0, ttotal] for ttotal ∈ [0,∞). Instead of X we observe T , a set of n observations

with maximum value tpast, and it is easily seen that Equation 15 becomes Equation 10:

the Copernican anthropic principle is equivalent to the size principle. Instead of y we have

a new time t and thus Equation 14 becomes

P (ttotal > t|T ) =

∫ ∞
t P (T |ttotal)P (ttotal) dttotal

∫ ∞
tpast

P (T |ttotal)P (ttotal) dttotal
,

which is exactly the same computation as Equation 6.

The problem of predicting the duration of a phenomenon is equivalent to Shepard’s

(1987) problem of generalization. While Shepard’s original formulation involved

generalization through psychological space, predicting the future involves generalization

through time. We should thus expect to find similar principles guiding people’s

generalizations regardless of whether they involve time or some other quantity, as long as

they embody the same statistical structure. As mentioned earlier in the paper, one

problem that has the same structure as predicting the future is predicting healthy levels of

imaginary toxins: given a number that is a healthy level of a particular toxin, guessing the

highest level of the toxin that would be considered healthy. This situation is exactly

analogous to predicting the total duration of an event from the amount of elapsed time

since the start of the event. In both cases one is given a number that is assumed to be

randomly sampled from the set of all numbers satisfying a particular criterion, and one is

asked to judge the nature of this criterion. Since both duration and toxin levels are

numbers required to be between 0 and some maximum number, this judgement requires

the estimation of the maximum number (ttotal in the case of predicting the future). The

results of Experiment 1, in which judgments for healthy levels of toxins were similar to

predictions of ttotal, provides support for the idea that predicting the future may simply
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be an aspect of the human ability to form meaningful generalizations.

Other problems of estimation and prediction. Our analysis of predicting the future

involves a very specific situation, in which people need to form an estimate of the total

extent or duration of a phenomenon and that quantity is constant across multiple

observations. This limits the range of problems to which the simple solution to this

problem that we present here should be applied. One restrictive assumption is that there

is no variability in the total extent or duration across instances of a phenomenon. For

example, in our teacake scenario the coffee shop baked to a fixed but unknown schedule.

However, most coffee shops probably bake on a variable schedule throughout the day,

meaning that ttotal is not a single fixed value, but something that varies from batch to

batch. This can be incorporated into our Bayesian model by making our hypotheses

represent different forms for the distribution of ttotal, rather than a single value, but this

adds a significant amount of complexity.

This example should make it clear that our Bayesian model does not provide a

general solution to problems of estimation and prediction. The Bayesian framework, in

which prior knowledge is combined with the information provided by a set of observations,

can be used to solve these problems in general, but the nature of the hypotheses under

consideration will vary from task to task. The analysis given in the previous section should

make it clear that another Bayesian model – Shepard’s (1987) account of generalization –

corresponds to assuming a slightly more general class of hypotheses. Bayesian models used

in other domains, such as models of category learning (e.g., Anderson, 1991), provide

strategies for estimating probability distributions over observations, taking different forms

for those distributions as the hypotheses that they evaluate. Forming good predictions

requires using a set of hypotheses that matches the structure of the problem to be solved,

as well as prior knowledge appropriate to that domain.
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Conclusion

The ability to effortlessly solve inductive problems is one of the most compelling

aspects of human cognition. Bayesian inference provides a natural framework for studying

everyday induction, being a formal method for combining rational statistical inferences

from observations with rich prior knowledge. These two components are central to

understanding how it is that people can solve difficult inductive problems. In this paper,

we have shown how the problem of predicting the future can be addressed within this

framework and examined how well a Bayesian model of predicting the future accounts for

people’s judgments. The results of our experiments indicate that people behave in a way

that is consistent with our Bayesian model, incorporating information from multiple

observations, using prior knowledge, and being sensitive to the statistical structure of the

observed data. These results provide constraints on algorithms that might explain how

people are able to solve the challenging problem of predicting the future.
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Notes

1A more standard use of the anthropic principle in cosmology is as a way to explain

otherwise improbable events, such as cosmological constants taking values that support a

stable universe or the emergence of intelligent life. If we condition on there being an

intelligent observer to observe such events, their probability is 1. A detailed discussion of

uses of the anthropic principle is given in Bostrom (2002).

2It should be noted that this is an “improper” prior, since it does not integrate to 1

over all values of ttotal from 0 to ∞. Such priors can be used in Bayesian inference in cases

where the resulting posterior distribution still integrates to 1, as it does in this case. For

details, see Jaynes (2003) or Bernardo and Smith (1994).
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Figure Captions

Figure 1. Effects of prior knowledge on predicting the future. The upper panels show the

distributions associated with five everyday quantities: human lifespans (in years), the

runtimes of movies (in minutes), the box office gross of movies (in millions of United

States dollars), the length of poems (in lines), and the time served by members of the

United States House of Representatives (in years). The histograms show the actual

distributions, and the red curves show approximations from Gaussian (life spans and

movie runtimes), power-law (movie grosses and length of poems), and Erlang (time in the

House of Representatives) distributions. The lower panels show optimal Bayesian

predictions for these quantities, corresponding to the posterior median of ttotal given tpast

(see text for details). Black lines use the histogram as a prior, grey lines use the

approximating distributions. The dotted line shows Gott’s rule, with ttotal estimated as

twice tpast, which seems appropriate in some cases (such as movie grosses) but not in

others (such as life spans). The black dots indicate the median of human predictions for

these quantities, with error bars corresponding to a 68% confidence interval estimated by

bootstrap (see Griffiths & Tenenbaum, 2006, for details).

Figure 2. Predictions of the various models, depicting the posterior median (the point t at

which P (ttotal < t|T ) = 0.5) for a set T containing 1, 3 and 10 observations. The

predictions of each model are shown as a line connecting three points: the left point is the

prediction for a single example, the center point shows the prediction for three

observations and the right point is the prediction for ten observations. On all graphs, the

vertical axis shows the predicted value of t in proportion to tpast, the largest value in the

set of observations T . (a) The predictions produced by the simple delta t argument. (b)

The predictions of a Bayesian model with uninformative prior but a likelihood that

accommodates multiple observations. (c) The predictions of a Bayesian model with an
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Erlang prior of β = 4 given sets of observations varying in the maximum value of tpast.

Figure 3. Results of Experiment 1. The mean responses for each condition are displayed

in the same format as Figure 2, with 1, 3, and 10 examples corresponding to the left,

center, and right points on each plotted line. Error bars show one standard error. All four

conditions show a clear effect of number of examples, irrespective of whether they are

judgments involving time, as well as variation in the overall range of generalization

corresponding to differences in priors.

Figure 4. Results of Experiment 2. The mean responses for each condition are displayed

in the same format as Figure 3, with 1, 3, and 10 examples corresponding to the left,

center, and right points on each plotted line. Error bars show one standard error. The

results are consistent with the manipulation of the priors described in the text.

Figure 5. Results of Experiment 3. The mean responses for each condition are displayed

in the same format as Figure 3, with 1, 3, and 10 examples corresponding to the left,

center, and right points on each plotted line. Error bars show one standard error. An

effect of multiple observations is only observed when the examples are independent.

Figure 6. Results of Experiment 4 (upper panel) and Experiment 5 (lower panel). The

mean responses for each condition are displayed in the same format as Figure 3, with 1, 3,

and 10 examples corresponding to the left, center, and right points on each plotted line.

Error bars show one standard error. The effect of multiple observations persists with

perceptual stimuli and the variation in the size of predictions can be accounted for by

assuming a single prior distribution over total duration.

Figure 7. As in Figure 6, (a) shows the results of Experiment 4 and (b) shows the results

of Experiment 5. The dotted lines indicate the predictions of a version of the density
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heuristic that fixes a natural scale, as described in the text.
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