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Abstract

We present a method for proving upper bounds on the eigenvalues of the graph Laplacian. A
main step involves choosing an appropriate “Riemannian” metric to uniformize the geometry of
the graph. In many interesting cases, the existence of such a metric is shown by examining the
combinatorics of special types of flows. This involves proving new inequalities on the crossing
number of graphs.

In particular, we use our method to show that for any positive integer k, the kth smallest
eigenvalue of the Laplacian on an n-vertex, bounded-degree planar graph is O(k/n). This bound
is asymptotically tight for every k, as it is easily seen to be achieved for square planar grids. We
also extend this spectral result to graphs with bounded genus, and graphs which forbid fixed
minors. Previously, such spectral upper bounds were only known for the case k = 2.

1 Introduction

Eigenvalues of the Laplacian on graphs and manifolds have been studied for over forty years in
combinatorial optimization and geometric analysis. In combinatorial optimization, spectral meth-
ods are a class of techniques that use the eigenvectors of matrices associated with the underlying
graphs. These matrices include the adjacency matrix, the Laplacian, and the random-walk matrix
of a graph. One of the earliest applications of spectral methods is to graph partitioning, pioneered
by Hall [27] and Donath and Hoffman [18, 19] in the early 1970s. The use of the graph Lapla-
cian for partitioning was introduced by Fiedler [22, 23, 24], who showed a connection between the
second-smallest eigenvalue of the Laplacian of a graph and its connectivity. Since their inception,
spectral methods have been used for solving a wide range of optimization problems, from graph
coloring [7, 3] to image segmentation [44, 48] to web search [32, 10].

Analysis of the Fiedler value. In parallel with the practical development of spectral methods,
progress on the mathematical front has been extremely fruitful, involving a variety of connections
between various graph properties and corresponding graph spectra.
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In 1970, independent from the work of Hall and of Donath and Hoffman, Cheeger [14] proved
that the isoperimetric number of a continuous manifold can be bounded from above by the square
root of the smallest non-trivial eigenvalue of its Laplacian. Cheeger’s inequality was then extended
to graphs by Alon [2], Alon and Milman [4], and Sinclair and Jerrum [45]. They showed that if the
Fiedler value of a graph — the second smallest eigenvalue of the Laplacian of the graph — is small,
then partitioning the graph according to the values of the vertices in the associated eigenvector will
produce a cut where the ratio of cut edges to the number of vertices in the cut is similarly small.

Spielman and Teng [46] proved a spectral theorem for planar graphs, which asserts that the
Fiedler value of every bounded-degree planar graph with n vertices is O(1/n). They also showed
that the Fiedler value of a finite-element mesh in d dimensions with n vertices is O(n−2/d). Kelner
[30] then proved that the Fiedler value of a bounded-degree graph with n vertices and genus g is
O((g + 1)/n). The proofs in [46, 30] critically use the inherent geometric structure of the planar
graphs, meshes, and graphs with bounded genus. Recently, Biswal, Lee, and Rao [8] developed a
new approach for studying the Fiedler value; they resolved most of the open problems in [46]. In
particular, they proved that the Fiedler value of a bounded-degree graph on n vertices without a
Kh minor is O((h6 log h)/n). These spectral theorems together with Cheeger’s inequality on the
Fiedler value immediately imply that one can use the spectral method to produce a partition as
good as the best known partitioning methods for planar graphs [39], geometric graphs [40], graphs
with bounded genus [25], and graphs free of small complete minors [5].

Higher eigenvalues and our contribution. Although previous work in the graph setting focuses
mostly on k = 2 (the Fiedler value of a graph), higher eigenvalues and eigenvectors are used in
many heuristic algorithms [6, 12, 13, 48].

In this paper, we prove the following theorem on higher graph spectra, which concludes a long
line of work on upper bounds for the eigenvalues of planar graphs.

Theorem 1.1 (Planar and bounded-genus graphs). Let G be a bounded-degree n-vertex planar
graph. Then the kth smallest eigenvalue of the Laplacian on G is O(k/n).

More generally, if G can be embedded on an orientable surface of genus g, then the kth smallest
eigenvalue of the Laplacian is at most

O

(
(g + 1)(log(g + 1))2 k

n

)
. (1)

The asymptotic dependence on k and n is seen to be tight even for the special case of square
planar grids; see Remark 5.1. Our spectral theorem provides a mathematical justification of the
experimental observation that when k is small, the kth eigenvalues of the graphs arising in many
application domains are small as well. We hope our result will lead to new progress in the analysis
of spectral methods.

We remark that the (log(g+ 1))2 factor of (1) comes from a certain geometric decomposability
property of genus-g graphs (see Theorem 2.2) and is most likely non-essential. Without this factor,
the bound is tight up to a universal constant, as shown by the construction of [25].

A well-known generalization of graphs which can be drawn on a manifold of fixed genus involves
the notion of a graph minor. Given finite graphs H and G, one says that H is a minor of G if
H can be obtained from G by a sequence of edge contractions and vertex deletions. A family F
of graphs is said to be minor-closed if whenever G ∈ F and H is a minor of G, then H ∈ F as
well. By the famous graph minor theorem of Robertson and Seymour [43], every such family F
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is characterized by a finite list of forbidden minors. For instance, by Wagner’s theorem [50], the
family of planar graphs is precisely the family of graphs which do not have K3,3 or K5 as a minor.
We prove the following (see the end of Section 5.1).

Theorem 1.2 (Minor-closed families). If F is any minor-closed family of graphs which does not
contain all graphs, then there is a constant cF > 0 such that for all G ∈ F with n vertices and
maximum degree dmax, and all 1 ≤ k ≤ n,

λk(G) ≤ cF · dmax
k

n
.

The Riemannian setting and conformal uniformization. The spectra of the Laplacian on
compact Riemannian surfaces of fixed genus is also well-studied. Let M be a compact Riemannian
manifold of genus g, and let λk(M) be the kth smallest eigenvalue of the Laplace operator on M .1

Hersch [29] showed that λ2(M) ≤ O(1/vol(M)) for Riemannian metrics on the 2-sphere, i.e.
for the g = 0 case. This was extended by Yang and Yau [52] to a bound of the form λ2(M) ≤
O((g + 1)/n) for all g ≥ 0. Yau asked whether, for every g ≥ 0, there was a constant cg such that

λk(M) ≤ cg
k

vol(M)
, (2)

for all k ≥ 1. The question was resolved by Korevaar [33] who proved that one can take cg =
O(g + 1). As mentioned at the end of the section, we prove that bounds in the graph setting yield
bounds in the setting of surfaces, and thus our result also gives a new proof of (2) with the slightly
worse constant cg = O((g + 1)(log(g + 1))2).

An important point is that the bounds for planar and genus-g graphs—in addition to the
work discussed above for Riemannian surfaces—are proved using some manifestation of conformal
uniformization. In the graph case, this is via the Koebe-Andreev-Thurston circle packing theorem,
and in the manifold case, by the uniformization theorem. The methods of Hersch, Yang-Yau, and
Spielman-Teng start with a representation of the manifold or graph on the 2-sphere, and then
apply an appropriate Möbius transformation to obtain a test vector that bounds λ2. There is no
similar method known for bounding λ3, and indeed Korevaar’s approach to (2) is significantly more
delicate and uses very strongly the geometry of the standard 2-sphere.

However, the spectra of graphs may be more subtle than the spectra of surfaces. We know of
a reduction in only one direction: Bounds on graph eigenvalues can be used to prove bounds for
surfaces; see Section 5.2. For graphs with large diameter, the analysis of graph spectra resembles
the analysis for surfaces. For example, Chung [15] gave an upper bound of O(1/D2) on the the
Fiedler value, where D is the diameter of the graph. Grigor’yan and Yau [26] extended Korevaar’s
analysis to bounded genus graphs that have a strong volume measure — in particular, these graphs
have diameter Ω(

√
n).

Bounded-degree planar graphs (and bounded genus graphs), however, may have diameter as
small as O(log n), making it impossible to directly apply these diameter-based spectral analyses.
Our work builds on the method of Biswal, Lee, and Rao [8], which uses multi-commodity flows to
define a deformation of the graph geometry. Essentially, we try to construct a metric on the graph

1In Riemannian geometry, the convention is to number the eigenvalues starting from λ0, but we use the graph
theory convention to make direct comparison easier.
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which is “uniform” in a metrically defined sense. We then show that sufficiently uniform metrics
allow us to recover eigenvalue bounds.

To construct metrics with stronger uniformity properties, which can be used to capture higher
eigenvalues, we study a new flow problem, which we define in Section 1.2 and call subset flows; this
notion may be independently interesting. As we discuss in the next section, these flows arise as
dual objects of certain kinds of optimal spreading metrics on the graph. We use techniques from
the theory of discrete metric spaces to build test vectors from spreading metrics, and we develop
new combinatorial methods to understand the structure of optimal subset flows.

Our spectral theorem not only provides a discrete analog for Korevaar’s theorem on higher
eigenvalues, but also extends the higher-eigenvalue bounds to graphs with a bounded forbidden
minor, a family that is more combinatorially defined. Because the Laplacian of a manifold can be
approximated by that of a sufficiently fine mesh graph (see Section 5.2), our result also provides a
new proof of Korevaar’s theorem, with a slightly worse constant.

1.1 Outline of our approach

For the sake of clarity, we restrict ourselves for now to a discussion of the case where G = (V,E)
is a bounded-degree planar graph. Let n = |V |, and for 1 ≤ k ≤ n, let λk be the kth smallest
eigenvalue of the Laplacian on G (see Section 1.2.1 for a discussion of graph Laplacians). We first
review the known methods for bounding λ2 = λ2(G).

Bounding λ2. By the variational characterization of eigenvalues, giving an upper bound on λ2

requires finding a certain kind of mapping of G into the real line (see Section 1.2). Spielman
and Teng [46] obtain an initial geometric representation using the Koebe-Andreev-Thurston circle
packing theorem for planar graphs. Because of the need for finding a test vector which is orthogonal
to the first eigenvector (i.e., the constant function), one has to post-process this representation
before it will yield a bound on λ2. They use a topological argument to show the existence of
an appropriate Möbius transformation which achieves this. (As we discussed, a similar step was
used by Hersch [29] in the manifold setting.) Even in the arguably simpler setting of manifolds, no
similar method is known for bounding λ3, due to the lack of a rich enough family of circle-preserving
transformations.

Our approach begins with the arguments of Biswal, Lee, and Rao [8]. Instead of finding an
external geometric representation, those authors begin by finding an appropriate intrinsic deforma-
tion of the graph, expressed via a non-negative vertex-weighting ω : V → [0,∞), which induces a
corresponding shortest-path metric2 on G,

distω(u, v) = length of shortest u-v path,

where the length of a path P is given by
∑

v∈P ω(v). The proper deformation ω is found via
variational methods, by minimizing the ratio,√∑

v∈V ω(v)2∑
u,v∈V distω(u, v)

. (3)

2Strictly speaking, this is only a pseudometric since distω(u, v) = 0 is possible for u 6= v, but we ignore this
distinction for the sake of the present discussion.
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The heart of the analysis involves studying the geometry of the minimal solutions, via their dual
formulation in terms of certain kinds of multi-commodity flows. Finally, techniques from the theory
of metric embeddings are used to embed the resulting metric space (V, distω) into the real line, thus
recovering an appropriate test vector to bound λ2.

Controlling λk for k ≥ 3. In order to bound higher eigenvalues, we need to produce a system of
many linearly independent test vectors. The first problem one encounters is that the optimizer of
(3) might not contain enough information to produce more than a single vector if the geometry of
the ω-deformed graph is degenerate, e.g. if V = C ∪ C ′ for two large, well-connected pieces C,C ′

where C and C ′ are far apart, but each has small diameter. (Intuitively, there are only two degrees
of freedom, the value of the eigenfunction on C and the value on C ′.)

Spreading metrics and padded partitions. To combat this, we would like to impose the
constraint that no large set collapses in the metric distω, i.e. that for some k ≥ 1 and any subset
C ⊆ V with |C| ≥ n/k, the diameter of C is large. In order to produce such an ω by variational
techniques, we have to specify this constraint (or one like it) in a convex way. We do this using the
spreading metric constraints which are well-known in mathematical optimization (see, e.g. [20]).
The spreading constraint on a subset S ⊆ V takes the form,

1
|S|2

∑
u,v∈S

distω(u, v) ≥ ε
√∑
u∈V

ω(u)2, (4)

for some ε > 0.
Given such a spreading weight ω for sets of size ≈ n/k, we show in Section 2 how to obtain

a bound on λk by producing k smooth, disjointly suppported bump functions on (V, distω), which
then act as our k linearly independent test vectors. The bound depends on the value ε from (4), as
well as a certain geometric decomposability property of the space (V, distω). The bump functions
are produced using padded metric partitions (see, e.g. [35] and [36]), which are known to exist for
all planar graphs from the seminal work of Klein, Plotkin, and Rao [31].

The spreading deformation, duality, and subset flows. At this point, to upper bound λk, it
suffices to find a spreading weight ω for subsets of size ≈ n/k, with ε (from (4)) as large as possible.
To the end, in Section 2.3, we write a convex program whose optimal solution yields a weight ω
with the largest possible value of ε. The dual program involves a new kind of multi-commodity
flow problem, which we now describe.

Consider a probability distribution µ on subsets S ⊆ V . For a flow F in G (see Section 1.2 for
a review of multi-commodity flows), we write F [u, v] for the total amount of flow sent from u to v,
for any u, v ∈ V . In this case a feasible µ-flow is one which satisfies, for every u, v ∈ V ,

F [u, v] = PS∼µ[u, v ∈ S],

where we use the notation S ∼ µ to denote that S is chosen according to the distribution µ. In
the language of demands, every set S places a demand of µ(S) between every pair u, v ∈ S. For
instance, the classical all-pairs multi-commodity flow problem would be specified by choosing µ
which concentrates all its weight on the entire vertex set V .

Given such a µ, the corresponding “subset flow” problem is to find a feasible µ-flow F so that
the total `2-norm of the congestion of F at vertices is minimized (see Section 2.3 for a formal
definition of the `2-congestion). Finally, by duality, bounding λk requires us to prove lower bounds
on the congestion of every possible µ-flow with µ concentrated on sets of size ≈ n/k.
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An analysis of optimal subset flows: New crossing number inequalities. In the case of
planar graphs G, we use a randomized rounding argument to relate the existence of a feasible µ-flow
in G with small `2-congestion to the ability to draw certain kinds of graphs in the plane without
too many edge crossings. This was done in [8], where the relevant combinatorial problem involved
the number of edge crossings necessary to draw dense graphs in the plane, a question which was
settled by Leighton [38], and Ajtai, Chvátal, Newborn, and Szemerédi [1].

In the present work, we have to develop new crossing weight inequalities for a “subset drawing”
problem. Let H = (U,F ) be a graph with non-negative edge weights W : F → [0,∞). Given
a drawing of H in the plane, we define the crossing weight of the drawing as the total weight of
all edge crossings, where two edges e, e′ ∈ F incur weight W (e) ·W (e′) when they cross. Write
cr(H;W ) for the minimal crossing weight needed to draw H in the plane. In Section 4, we prove
a generalization of the following theorem (it is stated there in the language of flows), which forms
the technical core of our eigenvalue bound.

Theorem 1.3 (Subset crossing theorem). There exists a constant C ≥ 1 such that if µ is any
probability distribution on subsets of [n] with ES∼µ|S|2 ≥ C, then the following holds. For u, v ∈ [n],
let

W (u, v) = PS∼µ[u, v ∈ S] .

Then we have,

cr(Kn;W ) &
1
n

(
ES∼µ|S|2

)5/2
,

where Kn is the complete graph on {1, 2, . . . , n}.

Observe that the theorem is asymptotically tight for all values of E|S|2. It is straightforward
that one can draw an r-clique in the plane using only O(r4) edge crossings. Thus if we take
µ to be uniform on k disjoint subsets of size n/k, then the crossing weight is on the order of
k · (1/k)2 · (n/k)4 = n4/k5, which matches the lower bound 1

n(E|S|2)5/2 = 1
n(n/k)5. The proof

involves some delicate combinatorial and analytic arguments, and is discussed at the beginning of
Section 4.

More general families: Bounded genus and excluded minors. Clearly the preceding dis-
cussion was specialized to planar graphs. A similar approach can be taken for graphs of bounded
genus (orientable or non-orientable) using the appropriate generalization of Euler’s formula.

To handle general minor-closed families, we can no longer deal with the notion of drawings,
and we have to work directly with multi-commodity flows in graphs. To do this, we use the
corresponding “flow crossing” theory developed in [8], with some new twists to handle the regime
where the total amount of flow being sent is very small (this happens when bounding λk for large
values of k, e.g. k ≥

√
n).

1.2 Preliminaries

We often use the asymptotic notation A . B to denote A = O(B). We use A � B to denote the
conjunction of A . B and A & B. For a graph G, we use V (G) and E(G) to denote the edge and
vertex sets of G, respectively. We write R+ = [0,∞).
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1.2.1 Laplacian spectrum

Let G = (V,E) be a finite, undirected graph. We use u ∼ v to denote {u, v} ∈ E. We consider
the linear space RV = {f : V → R} and define the Laplacian L : RV → RV as the symmetric,
positive-definite linear operator given by

(Lf)(v) =
∑
u:u∼v

(f(v)− f(u)) ,

which in matrix form could be written as L = D − A where A is the adjacency matrix of G and
D the diagonal matrix whose entries are the vertex degrees. We wish to give upper bounds on the
kth eigenvalue of L for each k. To do this we consider the seminorm given by

‖f‖2L = 〈f,Lf〉 =
∑
u∼v

(f(u)− f(v))2,

and restrict it to k-dimensional subspaces U ⊂ RV . By the spectral theorem, the maximum ratio
‖f‖2L/‖f‖2 over U is minimized when U is spanned by the k eigenvectors of least eigenvalue, in
which case its value is λk. Therefore if we exhibit a k-dimensional subspace U in which ‖f‖2L ≤ c
for all unit vectors f , it follows that λk ≤ c. In particular, this yields the following simple lemma.

Lemma 1.4. For any k ≥ 1, suppose that f1, f2, . . . , fk ∈ RV is a collection of non-zero vectors
such that for all 1 ≤ i < j ≤ k, supp(fi) ∩ supp(fj) = ∅. Then,

λk ≤ max
{
‖fi‖2L
‖fi‖2

: i ∈ {1, 2, . . . , k}
}
.

1.2.2 Flows

Let G = (V,E) be a finite, undirected graph, and for every pair u, v ∈ V , let Puv be the set of all
paths between u and v in G. Let P =

⋃
u,v∈V Puv. Then a flow in G is a mapping F : P → [0,∞).

For any u, v ∈ V , let F [u, v] =
∑

p∈Puv
F (p) be the amount of flow sent between u and v.

Our main technical theorem concerns a class of flows we call subset flows. Let µ be a probability
distribution on subsets of V . Then F is a µ-flow if it satisfies F [u, v] = PS∼µ[u, v ∈ S] for all
u, v ∈ V . For r ≤ |V |, we write Fr(G) for the set of all µ-flows in G with supp(µ) ⊆

(
V
r

)
.

We say a flow F is an integral flow if it is supported on only one path p in each Puv, and a unit
flow if F [u, v] ∈ {0, 1} for every u, v ∈ V . An edge-weighted graph H is one which comes equipped
with a non-negative weight function w : E(H) → [0,∞) on edges. We say that a flow F in G is
an H-flow if there exists an injective mapping φ : V (H) → V such that for all {u, v} ∈ E(H), we
have F [φ(u), φ(v)] ≥ w(u, v). In this case, H is referred to as the demand graph and G as the host
graph.

We define the squared `2-congestion, or simply congestion, of a flow F by con(F ) =
∑

v∈V CF (v)2,
where CF (v) =

∑
p∈P:v∈p F (p). This congestion can also be written as

con(F ) =
∑
p,p′∈P

∑
v∈p∩p′

F (p)F (p′)

and is therefore bounded below by a more restricted sum, the intersection number:

inter(F ) =
∑

u,v,u′,v′

|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

∑
x∈p∩p′

F (p)F (p′).
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2 Eigenvalues and spreading weights

We will now reduce the problem of proving upper bounds on the eigenvalues of a graph G, to
the problem of proving lower lower bounds on the congestion of subset flows in G. In the present
section, if (X, d) is a metric space, and x ∈ X,R ≥ 0, we will use the notation

B(x,R) = {y ∈ X : d(x, y) ≤ R}.

2.1 Padded partitions

Let (X, d) be a finite metric space. We will view a partition P of X as a collection of subsets, and
also as a function P : X → 2X mapping a point to the subset that contains it. We write β(P,∆)
for the infimal value of β ≥ 1 such that∣∣∣{x ∈ X : B(x,∆/β) ⊆ P (x)

}∣∣∣ ≥ |X|
2
.

Let P∆ be the set of all partitions P such that for every S ∈ P , diam(S) ≤ ∆. Finally, we define

β∆(X, d) = inf
{
β(P,∆) : P ∈ P∆

}
.

The following theorem is a consequence [41] of the main theorem of Klein, Plotkin, and Rao
[31], with the dependence of r2 due to [21].

Theorem 2.1. Let G = (V,E) be a graph without a Kr,r minor and (V, d) be any shortest-path
semimetric on G, and let ∆ > 0. Then β∆(V, d) = O(r2).

In particular, if G is planar then β∆(V, d) is upper bounded by an absolute constant, and if G
is of genus g > 0 then β∆(V, d) = O(g), since the genus of Kh is Ω(h2) [28, p. 118]. The paper [37]
proves the following strengthening (which is tight, up to a universal constant).

Theorem 2.2. Let G = (V,E) be a graph of orientable genus g, and (V, d) be any shortest-path
semimetric on G, and let ∆ > 0. Then β∆(V, d) = O(log g).

2.2 Spreading vertex weights

Consider a non-negative weight function ω : V → R+ on vertices, and extend ω to subsets S ⊆ V
via ω(S) =

∑
v∈V ω(v). We associate a vertex-weighted shortest-path metric by defining

distω(u, v) = min
p∈Puv

ω(p).

Say that ω is (r, ε)-spreading if, for every S ⊆ V with |S| = r, we have

1
|S|2

∑
u,v∈S

distω(u, v) ≥ ε
√∑
v∈V

ω(v)2.

Write εr(G,ω) for the maximal value of ε for which ω is (r, ε)-spreading.
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Theorem 2.3 (Higher eigenvalues). Let G = (V,E) be any n-vertex graph with maximum degree
dmax, and let λk be the kth Laplacian eigenvalue of G. For any k ≥ 1, the following holds. For any
weight function ω : V → R+ with ∑

v∈V
ω(v)2 = 1, (5)

we have
λk ≤

64 dmax

ε2n

(
βε/2(V, distω)

)2
,

where ε = εbn/4kc(G,ω).

Proof. Let ω be an (bn/4kc, ε)-spreading weight function. Let V = C1∪C2∪· · ·∪Cm be a partition
of V into sets of diameter at most ε/2, and define for every i ∈ [m],

Ĉi =
{
x ∈ Ci : B(x, ε/(2β)) ⊆ Ci

}
,

where β = βε/2(V, distω). By the definition of β, there exists a choice of {Ci} with

|Ĉ1 ∪ Ĉ2 ∪ · · · ∪ Ĉm| ≥ n/2.

Now, for any set A ⊆ V with diam(A) ≤ ε/2, we see that

1
|A|2

∑
u,v∈A

distω(u, v) ≤ ε

2
=
ε

2

√∑
v∈V

ω(v)2. (6)

Since diam(Ci) ≤ ε/2, if |Ci| > n/4k, then we could pass to a subset of Ci of size exactly bn/4kc
which satisfies (6), but this would violate the (bn/4kc, ε)-spreading property of ω. Hence we know
that |Ci| ≤ n/4k for each i = 1, 2, . . . ,m.

Thus by taking disjoint unions of the sets {Ĉi} which are each of size at most n/4k, we can find
sets S1, S2, . . . , S2k with

n

2k
≥ |Si| ≥

n

4k
. (7)

For each i ∈ [2k], let S̃i be the ε/(2β)-neighborhood of Si. Observe that the sets {S̃i} are pairwise
disjoint, since by construction each is contained in a union of Ci’s, which are themselves pairwise
disjoint.

Now define, for every i ∈ [2k], define

W (S̃i) =
∑
u∈S̃i

∑
v:uv∈E

[ω(u) + ω(v)]2

Clearly, we have

2k∑
i=1

W (S̃i) ≤ 2
∑
uv∈E

[ω(u) + ω(v)]2 ≤ 4dmax

∑
v∈V

ω(v)2 = 4dmax,

where the latter equality is (5). Hence if we renumber the sets so that
{
S̃1, S̃2, . . . , S̃k

}
have the

smallest W (S̃i) values, then for each i = 1, 2, . . . , k, we have W (S̃i) ≤ 4dmax
k .
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Finally, we define functions f1, f2, . . . , fk : V → R by

fi(x) = max
{

0,
ε

2β
− distω(x, Si)

}
so that fi is supported on S̃i, and fi(x) = ε/(2β) for x ∈ Si.

Since each fi is 1-Lipschitz and has supp(fi) ⊆ S̃i, we have

‖fi‖2L =
∑
uv∈E

|fi(u)− fi(v)|2 =
∑
u∈S̃i

∑
v:uv∈E

|fi(u)− fi(v)|2

≤
∑
u∈S̃i

∑
v:uv∈E

distω(u, v)2

=
∑
u∈S̃i

∑
v:uv∈E

[ω(u) + ω(v)]2

= W (S̃i) ≤
4dmax

k
.

Furthermore the functions have disjoint support and satisfy,

‖fi‖2 ≥
(
ε

2β

)2

|Si| ≥
ε2

16β2

n

k
,

where in the final inequality we have used (7).
Combining the preceding two estimates shows that for each fi,

‖fi‖2L
‖fi‖2

≤ dmax

64n

(
β

ε

)2

,

and the proof is complete by Lemma 1.4.

2.3 Spreading weights and subset flows

We now show a duality between the optimization problem of finding a spreading weight ω and the
problem of minimizing congestion in subset flows. The following theorem is proved by a standard
Lagrange multipliers argument.

Theorem 2.4 (Duality). Let G = (V,E) be a graph and let r ≤ |V |. Then

max
{
εr(G,ω)

∣∣∣ω : V → R+

}
=

1
r2

min
{√

con(F )
∣∣∣F ∈ Fr(G)

}
.

Proof. We shall write out the optimizations maxω εr(G,ω) and 1
r2

minF
√

con(F ) as convex pro-
grams, and show that they are dual to each other. The equality then follows from Slater’s condition
[9, Ch. 5]:

Fact 2.5 (Slater’s condition for strong duality). When the feasible region for a convex program (P)
has non-empty interior, the values of (P) and its dual (P∗) are equal.
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We begin by expanding maxω εr(G,ω) as a convex program (P). Let P ∈ {0, 1}P×V be the path
incidence matrix; Q ∈ {0, 1}P×(V

2) the path connection matrix; and R ∈ {0, 1}(
V
r )×(V

2) a normalized
set containment matrix, respectively defined as

Pp,v =
{

1 v ∈ p
0 else

Qp,uv =
{

1 p ∈ Puv
0 else

RS,uv =
{

1/r2 {u, v} ⊂ S
0 else.

Then the convex program (P) = maxω εr(G,ω) is

minimize −ε
subject to ε1 � Rd Qd � Ps s>s ≤ 1

d � 0 s � 0
.

Introducing the non-negative Lagrange multipliers µ, λ, ν, the Lagrangian function is

L(d, s, µ, λ, ν) = −ε+ µ>(ε1−Rd) + λ>(Qd− Ps) + ν(s>s− 1)

so that (P) and its dual (P∗) may be written as

(P) = inf
ε,d,s

sup
µ,λ,ν

L(d, s, µ, λ, ν)

(P∗) = sup
µ,λ,ν

inf
ε,d,s

L(d, s, µ, λ, ν).

Now we simplify (P∗). Rearranging terms in L, we have

(P∗) = sup
µ,λ,ν

inf
ε,d,s

(µ>1− 1)ε+ (λ>Q− µ>R)d+ (νs>s− λ>Ps)− ν

= sup
µ,λ,ν

inf
ε

(µ>1− 1)ε+ inf
d

(λ>Q− µ>R)d+ inf
s

(νs>s− λ>Ps)− ν.

Now the infima infε(µ>1− 1)ε and infd(λ>Q−µ>R)d are either 0 or −∞, so at the optimum they
must be zero and µ>1 − 1 ≥ 0, λ>Q − µ>R � 0. With these two constraints, the optimization
reduces to supλ,ν infs(νs>s − λ>Ps) − ν. At the optimum, the gradient of the infimand is zero,

so s = P>λ
2ν and the infimum is −‖P

>λ‖22
4ν . Then at the maximum, ν = 1

2‖P
>λ‖2, so that the

supremand is −‖P>λ‖2. We have shown that (P∗) is the convex program

maximize −
∥∥P>λ∥∥

2
subject to λ>Q � µ>R µ>1 ≥ 1

λ � 0 µ � 0
.

This program is precisely (the negative of) the program to minimize vertex 2-congestion of a subset
flow in Fr(G), where the subset weights are normalized to have unit sum. The proof is complete.

3 Congestion measures

In this section, we develop concepts that will enable us to give lower bounds on the congestion
con(F ) of all subset flows F in a given graph G. The reader may wish to consult with Section 1.2.2
to recall the relevant definitions.
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Definition 3.1. Let G be an arbitrary host graph, and H an edge-weighted demand graph. Define
the G-congestion of H by

conG(H) = min
F an H-flow in G

con(F )

and the G-intersection number of H by

interG(H) = min
F an H-flow in G

inter(F ),

and the integral G-intersection number of H by

inter∗G(H) = min
F an integral H-flow in G

inter(F ).

Note that even if H is a unit-weighted graph and inter∗G(H) = 0, this does not imply that G
contains an H-minor. This is because the intersection number involves quadruples of four distinct
vertices. For example, if H is a triangle, then inter∗G(H) = 0 for any G, even when G is a tree
(and thus does not have a triangle as a minor). However, we recall the following (which appears as
Lemma 3.2 in [8]).

Lemma 3.2 ([8]). If H is a unit-weighted, bipartite demand graph in which every node has degree
at least two, then for any graph G, inter∗G(H) = 0 implies that G contains an H-minor.

The next lemma is proved via randomized rounding.

Lemma 3.3 (Rounding). For any graph G and unit flow F , there is an integral unit flow F ∗ with
F ∗[u, v] = F [u, v] for all u, v ∈ V (G), and such that

inter(F ∗) ≤ inter(F ).

Consequently for every G and unit-weighted H,

inter∗G(H) = interG(H) ≤ conG(H). (8)

Proof. We produce an integral flow F ∗ randomly by rounding F . For each pair of endpoints u, v,
choose independently a path puv in Puv with P[puv = p] = F (p) for each p. Then

E[inter(F ∗)] =
∑

u,v,u′,v′

|{u,v,u′,v′}|=4

E
[
|puv ∩ pu′v′ |

]
=

∑
u,v,u′,v′

|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

∑
x∈p∩p′

F (p)F (p′) = inter(F )

so that with positive probability we must have inter(F ∗) ≤ inter(F ). Equation (8) follows because
inter(F ) ≤ con(F ) always.

Definition 3.4. Given a host graph G, we say that interG is a (c, a)-congestion measure if for all
unit-weighted graphs H = (V,E), we have the inequality

interG(H) ≥ |E|
3

c|V 2|
− a|V | . (9)

In particular, interG(Kn) ≥ n4

8c − an.
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Lemma 3.5. Suppose that for some G and k = k(G), every unit-weighted H obeys

inter∗G(H) = interG(H) ≥ |E(H)| − k|V (H)| − k2. (10)

Then it follows that for every unit-weighted H,

interG(H) ≥ 1
27
|E(H)|3

k2|V (H)|2
− k|V (H)| (11)

so that interG is an (27k2, k)-congestion measure.

Proof. It suffices to consider |E(H)| ≥ 3k|V (H)| since otherwise the right-hand side of inequality
(11) is negative.

Fix any H-flow F in G. Sample the nodes of H independently with probability p each to produce
a new demand graph H ′ and flow F ′ = F |H′ . Then inter(F ′) ≥ interG(H ′) ≥ |E(H ′)|−k|V (H ′)|−k2,
and by taking expectations we have

p4inter(F ) ≥ p2|E(H)| − pk|V (H)| − k2.

Choosing p = 3k|V (H)|/|E(H)| and using the fact that |E(H)|/|V (H)|2 < 1 we obtain (11).

The next proof follows employs the techniques of [8].

Corollary 3.6. If G is planar, then interG is an (O(1), 3)-congestion measure. If G has genus
g > 0, then interG is an (O(g), O(

√
g))-congestion measure. If G is Kh-minor-free, then interG is

an (O(h2 log h), O(h
√

log h))-congestion measure.

Proof. Suppose that H is a unit-weighted demand graph. If F is an integral H-flow with inter(F ) >
0, then some path in F and corresponding edge of H can be removed to yield an integral H ′-flow F ′

with inter(F ′) ≤ inter(F )− 1. Therefore to prove (10) it suffices to consider H with interG(H) = 0
and show that |E(H)| ≤ k|V (H)|+k2. Then Lemma 3.5 will imply interG is an (O(k2), k)-congestion
measure.

When G is planar, an H-flow F in G with inter(F ) = 0 gives a drawing of H in the plane without
crossings, so that H itself is planar. Then an elementary application of the Euler characteristic
gives

|E(H)| ≤ 3|V (H)| − 6 < 3|V (H)|.

When G is of genus at most g > 0, the same argument gives

|E(H)| ≤ 3|V (H)|+ 6(g − 1),

which suffices for k = O(
√
g).

For Kh-minor-free G and H with interG(H) = 0, if H is bipartite with minimum degree 2, then
Lemma 3.2 implies that H is Kh-minor-free, so that |E(H)| ≤ cKT |V (H)|h

√
log h by the theorem

of Kostochka [34] and Thomason [47].
For general H, we can first take a partition to obtain a bipartite subgraph H ′ with |E(H ′)| ≥

|E(H)|/2. We then remove isolated vertices from H ′, and iteratively remove vertices of degree one
and the associated edges to obtain a bipartite subgraph H ′′ with minimum degree two, and

|E(H ′′)| ≥ |E(H ′)| − |V (H ′)| ≥ |E(H)|/2− |V (H)| . (12)
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Now interG(H) = 0 together with Lemma 3.2 implies that

|E(H ′′)| ≤ 2cKTh
√

log h|V (H ′′)|

which together with (12), implies that |E(H)| ≤ O(h
√

log h)|V (H)|.

In the next section, we will also require the following lemma.

Lemma 3.7. Let µ be any probability distribution over subsets of V . Writing Hµ for the graph on
V with edge weights Hµ(u, v) = PS∼µ[u, v ∈ S], we have

interG(Hµ) ≥ ES∼µ,S′∼µ
[
interG(K|S∩S′|)

]
,

where by Kn we intend the unit-weighted complete graph on n vertices.

Proof. Let F be any Hµ-flow, and let the vertices of Hµ be identified with the corresponding vertices
of G (recall that every H-flow in G comes with an injection from V (H) into V (G)).

Now, define, for every u, v ∈ V with F [u, v] 6= 0, S ⊆ V , and p ∈ Puv, the flow FS by,

FS(p) =
F (p)
F [u, v]

µ({S}),

and observe that since F [u, v] = PS∼µ[u, v ∈ S], we have F =
∑

S⊆V F
S .

In this case, we can write

inter(F ) =
∑

u,v,u′,v′

|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′|F (p)F (p′)

=
∑

u,v,u′,v′

|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′|

(∑
S

FS(p)

)(∑
S

FS(p′)

)

=
∑

u,v,u′,v′

|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′|
∑
S,S′

FS(p)FS
′
(p′)

=
∑
S,S′

∑
u,v∈S
u′,v′∈S′

|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′|FS(p)FS
′
(p′)

=
∑
S,S′

∑
u,v∈S
u′,v′∈S′

|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′|µ({S}) F (p)
F [u, v]

µ({S′}) F (p′)
F [u′, v′]

≥
∑
S,S′

µ({S})µ({S′})
∑

u,v,u′,v′∈S∩S′
|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′| F (p)
F [u, v]

F (p′)
F [u′, v′]

≥ ES∼µ,S′∼µ
[
interG(K|S∩S′|)

]
,

where we have used the fact that the double sum in the penultimate line contains precisely the
intersection number of a unit-weighted complete-graph flow on S ∩ S′.
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4 Congestion for subset flows

We now prove our main estimate on the congestion incurred by subset flows in terms of a graph’s
congestion measure.

The proof of Theorem 4.1 below involves some delicate combinatorial and analytic arguments.
The difficulty lies in controlling the extent to which µ is a mixture of three different types of
“extremal” distributions:

1. µ is uniformly distributed on all sets of size r,

2. µ is concentrated on a single set of size r,

3. µ is uniform over n/r disjoint sets, each of size r.

In the actual proof, we deal with the corresponding cases: (1’) µ is “uniformly spread” over
edges, i.e. PS∼µ[u, v ∈ S] is somewhat uniform over choices of u, v ∈ V . In this case, we have
to take a global approach, showing that not only are there many intra-set crossings, but also a
lot of crossing weight is induced by crossing edges coming from different sets. (2’) PS∼µ[u ∈ S] is
unusually large for all u ∈ V ′ with |V ′| � |V |. In this case, there is a “density increment” on the
induced subgraph G[V ′], and we can apply induction. Finally, if we are in neither of the cases (1’)
or (2’), we are left to show that, in some sense, the distribution µ must be similar to case (3) above,
in which case we can appeal to the classical dense crossing bounds applied to the complete graph
on S ∩ S′ where S, S′ ∼ µ are chosen i.i.d.

Theorem 4.1. There is a universal constant c0 > 0 such that the following holds. Let µ be any
probability distribution on subsets of [n]. For u, v ∈ [n], define

F (u, v) = PS∼µ[u, v ∈ S]

and let Hµ be the graph on [n] weighted by F . For any graph G such that interG is a (c, a)-congestion
measure, we have

interG(Hµ) &
1
cn

(
E|S|2

)5/2 − c0
a

n
E|S|2

Corollary 4.2. If µ is supported on
(

[n]
r

)
for some r, then interG(Hµ) & r5

cn − c0
ar2

n . In particular,
if r & (a · c)1/3, then

interG(Hµ) &
r5

cn
.

Proof of Theorem 4.1. We will freely use the fact that

E|S|2 =
∑
u,v

F (u, v).

Also, put F (u) = PS∼µ[u ∈ S] for u ∈ [n].

The proof will proceed by induction on n, and will be broken into three cases. Let

β =
√

1
n2

∑
u,v

F (u, v),
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and put E(α′, α) = {(u, v) : α′ ≤ F (u, v) ≤ α}. Define the set of “heavy vertices” as

HK = {u : F (u) ≥ Kβ},

for some constant K ≥ 1 to be chosen later. Let EH = {(u, v) : u, v ∈ HK} and EHL =
E(0, β) ∪ EH .

Case I (Light edges):
∑

(u,v)∈E(0,β)

F (u, v) ≥ 1
4

∑
u,v

F (u, v).

The desired conclusion comes from applying the following claim.

Claim 4.3. For every β ∈ [0, 1], we have

interG(Hµ) &

(∑
(u,v)∈E(0,β) F (u, v)

)3

βcn2
− 2β2an. (13)

Proof. First, observe that by (9), the subgraph consisting of the edges in E(α, β) contributes at
least

α2 |E(α, β)|3

cn2
− β2an

to interG(Hµ) for every α, β ∈ [0, 1]. Therefore letting Ei = E
(
2−i−1β, 2−iβ

)
, we have

interG(Hµ) &
1
cn2

∞∑
i=0

2−2iβ2|Ei|3 − an
∞∑
i=0

2−2iβ2.

Let Fi =
∑

(u,v)∈Ei
F (u, v) so that |Ei| ≥ (2i/β)Fi, and then

interG(Hµ) &
1

βcn2

∞∑
i=0

2iF 3
i − 2β2an,

but also
∑∞

i=0 Fi =
∑

u,v∈E(0,β) F (u, v). Thus (13) is proved by noting that

∞∑
i=0

Fi =
∞∑
i=0

(
2−i/3 · 2i/3Fi

)
≤

( ∞∑
i=0

2−i/2
)2/3( ∞∑

i=0

2iF 3
i

)1/3

< 2.27

( ∞∑
i=0

2iF 3
i

)1/3

,

using Hölder’s inequality.

Case II (Heavy endpoints):
∑

(u,v)∈EH

F (u, v) ≥ 1
4

∑
u,v

F (u, v).

Observe that ∑
u∈[n]

F (u) = ES∼µ|S| ≤
√

ES∼µ|S|2 =
√∑

u,v

F (u, v) = βn,

hence |HK | ≤ n/K by Markov’s inequality.
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Apply the statement of the Theorem inductively to the distribution over subsets of V (HK)
corresponding to the random set S ∩ V (HK), to conclude that

interG(Hµ) &
K

cn

 ∑
(u,v)∈EH

F (u, v)

5/2

− c0
a

n

∑
(u,v)∈EH

F (u, v). (14)

Consequently, by choosing K = 32, under the assumption of this case,

K

(∑
(u,v)∈EH

F (u, v)∑
u,v F (u, v)

)5/2

≥ 1

and the conclusion again follows.

Case III (Heavy edges, light endpoints):
∑

(u,v)∈EHL

F (u, v) ≥ 1
2

∑
u,v

F (u, v).

By definition, EHL = {(u, v) : F (u, v) > β, {u, v} * HK}. Let κ = (16ac)1/3, so that κ4

8c ≥ 2aκ.
By Lemma 3.7 and then since interG is a (c, a)-congestion measure, we have

interG(Hµ) ≥ ES∼µ,S′∼µ
[
interG(K|S∩S′|)

]
≥ ES∼µ,S′∼µ

[
interG(K|S∩S′|)1|S∩S′|≥κ

]
≥ 1

8c
ES∼µ,S′∼µ

[
|S ∩ S′|4 1|S∩S′|≥κ

]
− aES∼µ,S′∼µ

[
|S ∩ S′|1|S∩S′|≥κ

]
≥ 1

16c
ES∼µ,S′∼µ

[
|S ∩ S′|4 1|S∩S′|≥κ

]
=

1
16c

∑
u∈[n]

P[u ∈ S ∩ S′] ES∼µ,S′∼µ
[
|S ∩ S′|3 1|S∩S′|≥κ

∣∣∣u ∈ S ∩ S′]
=

1
16c

∑
u∈[n]

(P[u ∈ S])2 ES∼µ,S′∼µ
[
|S ∩ S′|3 1|S∩S′|≥κ

∣∣∣u ∈ S ∩ S′]
≥ 1

16c

∑
u:β≤F (u)≤Kβ

F (u)2 ES∼µ,S′∼µ
[
|S ∩ S′|3 1|S∩S′|≥κ

∣∣∣u ∈ S ∩ S′]
≥ β2

16c

∑
u:β≤F (u)≤Kβ

ES∼µ,S′∼µ
[
|S ∩ S′|3

∣∣∣u ∈ S ∩ S′]− K2β2

16c
nκ3.

Since K2β2

16c nκ
3 = K2a

n E|S|2, to finish the proof we need only show that∑
u:β≤F (u)≤Kβ

ES∼µ,S′∼µ
[
|S ∩ S′|3

∣∣∣u ∈ S ∩ S′] & n
(
E|S|2

)3/2
. (15)

Now for each u ∈ [n] with F (u) = P[u ∈ S] > 0, let µu denote the distribution µ conditioned on
u ∈ S. Let IvS denote the indicator of the event {v ∈ S}, so that P[v ∈ S | u ∈ S] = ES∼µu [IvS ].
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In this case,

ES∼µ,S′∼µ
[
|S ∩ S′|3

∣∣∣u ∈ S ∩ S′] =
∑

v,v′,v′′∈[n]

ES∼µu,S′∼µu

[
IvSIv′SIv′′SIvS′Iv′S′Iv′′S′

]
= ES∼µu,S′∼µu

[(∑
v

IvSIvS′
)3]

≥
(
ES∼µu,S′∼µu

[∑
v

IvSIvS′
])3

=
(∑

v

(
ES∼µu

[
IvS
])2 )3

.

Therefore the left hand side of (15) is at least

∑
u:β≤F (u)≤Kβ

(∑
v

P[v ∈ S | u ∈ S]2
)3

≥ 1
K6

∑
u:β≤F (u)≤Kβ

|{v : F (u, v)/F (u) ≥ 1/K}|3

≥ 1
K6

∑
u:β≤F (u)≤Kβ

|{v : F (u, v) ≥ β}|3 (16)

≥ 1
K6

∑
u:β≤F (u)≤Kβ

|{v : (u, v) ∈ EHL}|3 ,

since each of the edges in EHL appears at least once in the sum (16), because every edge (u, v) ∈ EHL
has either F (u) ≤ Kβ or F (v) ≤ Kβ.

In particular, for such edges, F (u, v) ≤ Kβ, which means that

|EHL| ≥
∑

(u,v)∈EHL
F (u, v)

Kβ
. (17)

Thus by the power-mean inequality, the left hand side of (15) is at least

1
K6

∑
u:β≤F (u)≤Kβ

|{v : (u, v) ∈ EHL}|3 ≥
1

K6n2

 ∑
u:β≤F (u)≤Kβ

|{v : (u, v) ∈ EHL}|

3

≥ 1
K6n2

|EHL|3

and when
∑

(u,v)∈EHL
F (u, v) ≥ 1

2

∑
u,v F (u, v) it follows from (17) that this is at least

1
8K9n2β3

(∑
u,v

F (u, v)

)3

& n
(
E|S|2

)3/2
,

completing the proof.
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5 Eigenvalues of graphs and surfaces

5.1 Graphs

We can now prove our main theorem.

Theorem 5.1. If G is an n-node graph, then for every 1 ≤ k ≤ n, we have the following bounds.
If G is planar, then

λk ≤ O
(
dmax

k

n

)
. (18)

If G is of genus g > 0, then

λk ≤ O
(
dmax

k

n
g(log g)2

)
.

If G is Kh-minor-free, then

λk ≤ O
(
dmax

k

n
h6 log h

)
.

Proof. We prove the planar case; the other cases follow similarly. Let G = (V,E) be planar with
maximum degree dmax and n = |V |. First, by Theorem 2.3, we see that for any weight function
ω : V → R+ and every k ≥ 1,

λk .
dmax

ε2n

(
βε/2(V, distω)

)2
,

where ε = εbn/4kc(G,ω). Since G is planar, by Theorem 2.1, we have βε/2(V, distω) = O(1) for any
ω, hence

λk .
dmax(

εbn/4kc(G,ω)
)2
n
. (19)

Using Corollaries 4.2 and 3.6, we see that for some constant c0 ≥ 1 and any c0 ≤ r ≤ |V |, if
F ∈ Fr(G), i.e. F if a µ-flow with supp(µ) ⊆

(
V
r

)
, then

con(F ) &
r5

n
.

Now, by Theorem 2.4, this implies that for r ≥ c0, there exists a weight ωr : V → R+ with
εr(G,ωr) & 1

r2

√
r5/n =

√
r/n.

If bn/4kc < c0, then (18) holds trivially using the bound λk ≤ 2 dmax for all 1 ≤ k ≤ n. Finally,
using (19), for r = bn/4kc ≥ c0, we have

λk .
dmax

(εr(G,ωr))
2 n

.
dmax

r
. dmax

k

n
,

completing the proof.

Remark 5.1 (Asymptotic dependence on k). We remark that the asymptotic dependence on k in
Theorem 5.1 is tight. First, consider the eigenvalues λ′1 ≤ · · · ≤ λ′n for the n-node path graph Pn.
It is a straightforward calculation to verify that the eigenvalues are precisely the set

{2− 2 cos(2πk/n) : 1 ≤ k ≤ n/2},

and each such eigenvalue has multiplicity at most 2. In particular, λ′k �
k2

n2 for all k ≥ 2.
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Now, since the n× n grid graph Gn is the Cartesian product graph Pn × Pn, it is easy to verify
that the eigenvalues are precisely

{λi,j = λ′i + λ′j : 1 ≤ i, j ≤ n}.

In particular, since λi,j � max(i2, j2)/n2, we have λk(Gn) � k
n2 � k

|Gn| .

Finally, we use the Robertson-Seymour structure theorem to prove Theorem 1.2.

Proof of Theorem 1.2. If F is any minor-closed family of graphs that does not contain all graphs,
then by the deep Robertson-Seymour structure theory [42], there exists some number h ∈ N such
that no graph in F has Kh as a minor. An application of Theorem 5.1 finishes the proof.

5.2 Surfaces

In this section, we shall show how our result implies a bound on the eigenvalues of the Laplacian
of a compact Riemannian surface.

Theorem 5.2. Let (M, g) be a compact, orientable Riemannian surface of genus g and area A,
and let ∆M be its Laplacian. The kth smallest Neumann eigenvalue of ∆M is at most

O
(
k(g + 1) log2(g + 1)/A

)
.

Intuitively, this theorem follows by applying the eigenvalue bound for genus g graphs from
Theorem 5.1 to a sequence of successively finer meshes that approximate M .

Our proof will begin with the combinatorial Hodge theory of Dodziuk [16], which produces a
sequence of finite-dimensional operators ∆(1)

M ,∆(2)
M , . . . whose eigenvalues converge to those of ∆M .

Unfortunately, the objects that this produces will not be the Laplacians of unweighted graphs of
bounded degree. However, we will show that, when applied to a sufficiently nice triangulation, the
operators produced by Dodziuk’s theory can be approximated well enough by such graph Laplacians
to establish our desired result.

5.2.1 The Whitney Map and Combinatorial Hodge Theory

We begin by recalling the basic setup of Dodziuk’s combinatorial Hodge theory [16]. Let χ : K →M
be a finite triangulation of M with vertices p1, . . . , pn ∈ K. For all q ∈ N, let L2Λq = L2Λ(M) be
the space of square integrable q-forms on M , and let Cq = Cq(K) be the space of real simplicial
cochains on K. We will identify each simplex σ of K with the corresponding cochain, which allows
us to write elements of Cq(K) as formal sums of the q-simplices in K. For any triangle σ ∈ K, we
will use area(σ) and diam(σ) to denote that area and diameter of χσ with respect to the Riemannian
metric on M .

For each pi, let βi : K → R equal the pth
i barycentric coordinate on simplices in St(pi), the open

star of pi, and 0 on K \ St(pi). This lets us define barycentric coordinate functions µi = χ∗βi on
M .

Let σ = [pi0 , . . . , piq ] be a q-simplex in K with i0 ≤ · · · ≤ iq. We define the Whitney map
W : Cq(K)→ L2Λ to be the linear map that takes each such simplex to

Wσ = q!
q∑

k=0

(−1)kµikdµi0 ∧ · · · ∧ d̂µik ∧ · · · ∧ dµiq .
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Whitney [51] showed that the above definition gives a well-defined element of L2Λq, even though
the µi are not differentiable on the boundaries of top-dimensional simplices.

The Riemannian metric endows L2Λq with the inner product

(f, g) =
∫
M
f ∧ ∗g,

where ∗ is the Hodge star operator. Using the Whitney map, this lets us define an inner product
on Cq by setting

(a, a′) = (Wa,Wa′)

for a, a′ ∈ Cq. Let dc be the simplicial coboundary operator. Dodziuk defined the combinatorial
codifferential δc to be the adjoint of dc with respect to this inner product, and he defined the
combinatorial Laplacian ∆c

q : Cq → Cq by

∆c
q = dcδc + δcdc.

In the remainder of this paper, we will only use the Laplacian on functions, which we will denote
by ∆c := ∆c

0.
To obtain a sequence of successively finer triangulations, we will use Whitney’s standard subdivi-

sion procedure [51]. For a complex K, this produces a new complex SK in which each q-dimensional
simplex of K is divided into 2q smaller simplices. In contrast to barycentric subdivision, it is con-
structed in a way that prevents the simplices from becoming arbitrarily poorly conditioned under
repeated subdivision.

Let S0K = K, and inductively define Sn+1K = S (SnK). Dodziuk showed the following
convergence result about the discrete Laplacians on functions:3

Theorem 5.3 (Dodziuk). Let λ(n)
i be the ith smallest eigenvalue of ∆c(SnK), and let λi be the ith

smallest eigenvalue of ∆M . Then λ
(n)
i → λi as n→∞.

5.2.2 Relating the Combinatorial and Graph Laplacians

To relate the combinatorial Laplacian to a graph Laplacian, we will construct a triangulation in
which all of the triangles have approximately the same volume, are fairly flat, and have vertex
angles bounded away from 0. We will then show that the eigenvalues of combinatorial Laplacians
arising from such a triangulation and its standard subdivisions can be bounded in terms of those
of the Laplacian of an unweighted graph of bounded degree.

Lemma 5.4. There exist strictly positive universal constants C1, C2, C3, and θ such that, for any
ε > 0, every compact Riemannian surface M has a triangulation K with the following properties:

1. For every triangle σ ∈ K, diam(σ) < ε, the interior angles of σ all lie in [θ, π − θ], and

1
C2
≤ area(σ)

diam(σ)2
≤ C2.

3Dodziuk and Patodi [17] later proved an analogous result for the Laplacians on q-forms, for arbitrary q.
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2. For any two triangles σ1, σ2 ∈ K,

1/C1 ≤
area(σ1)
area(σ2)

≤ C1,

and
1/C1 ≤

diam(σ1)
diam(σ2)

≤ C1.

3. The edges of K are embedded as geodesics, and every vertex of K has degree at most C3.

Furthermore, these properties are satisfied by SnK for all n ≥ 0.

Proof. The existence of such a triangulation is established by Buser, Seppälä, and Silhol [11],
following an argument originally due to Fejes Tóth [49]. They do not explicitly state the degree
bound, but it follows immediately from the fact that the angles are bounded away from zero.
The fact that these properties remain true under subdivision follows from the basic properties of
standard subdivision given by Whitney [51].

Proof of Theorem 5.2. For a given ε, let Kε be a triangulation with the properties guaranteed by
Lemma 5.4, and let G = (V,E) be the 1-skeleton of Kε. Let f : V → R, and let fi = f(pi). We
will show that, for sufficiently small ε,

(f,∆cf)
(f, f)

.
|V |
A

‖f‖2LG

‖f‖22
(20)

for all f , and that this remains true when Kε is replaced by SnKε for any n. By the variational
characterization of eigenvalues, this implies that λk(∆c) . |V |

A λk(LG). By applying Theorem 5.1
to LG, we obtain

λk(∆c) .
|V |
A
λk(LG) .

|V |
A

k(g + 1) log2 g

|V |
=
k(g + 1) log2 g

A
.

This bound remains true as we subdivide Kε, so Theorem 5.2 now follows from Theorem 5.3. It
thus suffices to prove equation (20).

Let σ = [pi0 , pi1 , pi2 ] be a triangle in Kε. We can write the restriction of Wf to σ in barycentric
coordinates as

Wf |σ = f1µi1 + f2µi2 + f3µi3 .

When ε is sufficiently small compared to the minimum radius of curvature of M , we have∫
σ
µiµj dV =

{
(1± o(1))area(σ)/6 if i = j

(1± o(1))area(σ)/12 if i 6= j
,

where dV is the volume element on M , and the o(1) indicates a function that goes to zero with ε.
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This gives ∫
σ
(Wf) ∧ ∗(Wf) =

∫
σ
(Wf)2dV

=
∫
σ
(f1µi1 + f2µi2 + f3µi3)2 dV

� area(σ)
6

(f2
1 + f2

2 + f2
3 + f1f2 + f1f3 + f2f3)

=
area(σ)

12
(
f2

1 + f2
2 + f2

3 + (f1 + f2 + f3)2
)

≥ area(σ)
12

(f2
1 + f2

2 + f2
3 ).

Let Aε be the maximum area of a triangle in Kε. Since all triangles have the same area up to a
multiplicative constant, and each vertex appears in only a constant number of triangles, summing
this over all of the triangles in Kε gives

(f, f) =
∫
M

(Wf) ∧ ∗(Wf) & Aε

n∑
i=1

f2
i = Aε‖f‖22. (21)

When restricted to σ, we have

dcf |σ = (f1 − f0)[pi0 , pi1 ] + (f2 − f1)[pi1 , pi2 ] + (f2 − f0)[pi0 , pi2 ],

so

Wdcf |σ = (f1 − f0) (µi0dµi1 − µi1dµi0)+(f2 − f1) (µi1dµi2 − µi2dµi1)+(f2 − f0) (µi0dµi2 − µi2dµi0) .
(22)

By again assuming that ε is sufficiently small and using the fact that the triangles in Kε are all
well-conditioned, we obtain by a simple calculation the estimate∫

σ
dµik ∗ dµik .

(
1

diam(σ)

)2

· area(σ) � 1

for each k ∈ {0, 1, 2}, where the asymptotic equality of the last two quantities follows from prop-
erty 1 of Lemma 5.4. Applying this and Cauchy-Schwartz to equation (22), and using the fact that
the µij are bounded above by 1, gives∫

σ
(Wdcf) ∧ ∗(Wdcf) . (f1 − f0)2 + (f2 − f1)2 + (f2 − f0)2.

Summing this over all of the triangles and using Lemma 5.4 then yields

(df, df) =
∫
M

(Wdcf) ∧ ∗(Wdcf) .
∑

(i,j)∈E

(fi − fj)2 = ‖f‖2L. (23)

The total area of M equals A, and the area of each triangle is within a constant factor of Aε,
so |V | � A/Aε. If we combine this with the inequalities in (21) and (23), we obtain

(f,∆cf)
(f, f)

=
(df, df)
(f, f)

.
‖f‖2L
Aε‖f‖22

� |V |
A

‖f‖2L
‖f‖22

.

This proves equation (20), which completes the proof of Theorem 5.2.
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