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ABSTRACT
Using a new technology capable of tracking 3D hand pos-
tures in real-time, we developed a recognition system for
continuous natural gestures. By natural gestures we mean
those encountered in spontaneous interaction, rather than a
set of artificial gestures chosen to simplify recognition. To
date we have achieved 95.6% accuracy on isolated gesture
recognition, and 73% recognition rate on continuous ges-
ture recognition, with data from 3 users and twelve gesture
classes. We connected our gesture recognition system to
Google Earth, enabling real time gestural control of a 3D
map. We describe the challenges of signal accuracy and
signal interpretation presented by working in a real-world
environment, and detail how we overcame them.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—input devices and strategies, interaction styles

General Terms
Human Factors

Keywords
Multimodal interaction, natural human computer interac-
tion, gesture recognition, interactive maps, digital table in-
teraction

1. INTRODUCTION
In pursuit of more natural modes of human-computer in-

teraction, we developed a new interface that enables real-
time natural gestural interaction with a tabletop display, in
a relatively uncontrolled environment. We discuss the diffi-
culties presented by the environment and the steps needed
to overcome them, and describe a system that goes beyond
current practice by recognizing gestures from hand pose, as
well as the traditional hand position and trajectory, poten-
tially enabling a finer degree of gesture distinction.

2. NATURAL INTERACTION FOR USAR
While we believe that our work is broadly applicable, our

current motivating task is urban search and rescue (USAR),
which involves coordinating geographically distributed teams
working under time pressure to search buildings and aid vic-
tims in the aftermath of a disaster. The task is both of
considerable pragmatic utility and interesting as a research

effort because it requires strategic assessment of large vol-
umes of geographically-indexed information.

Computational tools currently available in USAR com-
mand centers are typically WIMP-based (window, icon, menu,
pointing device), difficult to use, require substantial train-
ing, and may actually impede teamwork [21]. Interfaces that
more closely conform to the way people naturally interact
would have the potential to lower the users’ cognitive load,
allowing them to concentrate on the decision-making task.

3. USER STUDY
We did an exploratory user study to observe natural be-

havior under a USAR scenario, using a large tabletop display
(described below). We chose a Wizard-of-Oz study in order
to provide a realistic environment for eliciting natural multi-
modal input including speech, hand, and pen-based gesture.
We summarize some of the main observations we made that
are useful for designing a natural multimodal interface.

We found, not surprisingly, that there are variations in
people’s gestures. A single user may use different gestures
for the same task, e.g., by gesturing either on or above the
surface, using one hand or two hands, etc.

We observed users speaking and gesturing at the same
time. As noted in previous work [6][20][12], the co-occurrence
of the two modalities can be used to do mutual disambigua-
tion.

Somewhat more interestingly, manipulative gestures are
at times accompanied by adjectives and adverbs that refine
the actions. As one example, we observed people naturally
using terms like “more” or “smaller” as modifiers of their
gestures. This shows how speech can naturally and usefully
augment gestures when there is a limitation in the expres-
siveness of the gesture or in the physical space of the gesture.

Speech commands people use tend to be succinct and may
not be grammatically correct. Many previous systems re-
quire users to conform to a predefined syntax (e.g., “put
[point] that [point] there” [4]). While we observed certain
high frequency words such as “here” and “there” that are
often accompanied by pointing gestures, there are also a va-
riety of ways people express commands, reinforcing the need
for natural, i.e., reasonably unconstrained interaction.

As the study made clear, the long-term solution requires
a multimodal system capable of handling natural gestures
accompanied by relatively unstructured speech.

While we have done extensive work on understanding hand-
drawn sketches [16], sketching plus speech [1] and a variety
of other multimodal systems, we focus in this paper on ges-
turing, as our first step toward a more complete system.



As work in [17] has shown, gesture is particularly effective
when dealing with spatial information, so it is well suited as
a central modality of interaction for the USAR task.

4. HARDWARE
Large displays are an obvious choice for tasks like USAR

that involve spatial information. In keeping with this, we
constructed an interactive tabletop display (Fig. 1), mod-
eled after the work in [2]. It uses four 1280 × 1024 pixel
projectors connected to two NVIDIA GeForce 8600GT dual-
headed graphics cards on a Dual-Core 2.4GHz desktop PC
with 2GB of RAM, producing a seamless 2560×2048 image.

Four Dell 5100MP projectors  

White surface 
digitizer  

One Fire-i 
digital camera 

Google Earth 
web browser 
plug-in as 3D 
maps  

Figure 1: System setup

The image is projected onto a flat white surface digitizer
(GTCO Calcomp DrawingBoard V), enabling us to capture
writing and drawing on the image. A Fire-iTMcamera (an
ordinary off-the-shelf webcam) mounted above the center
of the tabletop at the level of the projectors provides the
view of the user interacting with the tabletop. Google Earth
provides the 3D map displayed by the system.

4.1 Hand Tracking for Gesture
Accurate gesture understanding requires reliable, real-time

hand position and pose data. Some previous efforts have
used magnetic trackers and cybergloves, but these require
wearing restrictive devices. Other approaches have relied on
vision, but typically track only hand movement and finger
tips, rather than 3D hand postures [7][19][15]. This limited
data in turn often requires that artificial gestures be defined,
in order to make position and pose tracking practical.

As our emphasis is on natural interaction, we want to be
able to recognize gestures that people make spontaneously,
and want minimal equipment on the user’s hand.

We move toward this goal by using the system developed
by Wang and Popović [25], which requires only an ordinary
web camera and a cotton glove imprinted with a custom pat-
tern (Fig. 2), and can track 3D hand postures in real-time.
It provides data with 26 degrees of freedom: six for the hand
position and four per finger. The glove is lightweight cot-
ton, with no electronics or wires, opening up the possibility
of developing more natural gestural interaction.

Figure 2: The colored glove

Given a video of the hand, Wang’s system classifies each
pixel in a frame as either background or one of the ten glove
colors, using Gaussian mixture models trained from a set of
hand-labeled images. The system then uses mean-shift with
a uniform kernel of variable-bandwidth to crop the glove re-
gion. The region is size-normalized and the resultant image
is used to look up the nearest neighbors in a large database
of synthesized hand poses (see [25] for details).

We developed software to interface the tracker directly to
the Fire-i camera, allowing the tracker to capture 640× 480
RGB video at 15Hz with minimum latency.

4.2 Background Removal
Wang’s system was developed originally for use in an office

environment, i.e., a place with diffuse white illumination and
plain backgrounds (e.g., a beige desk), where it can rely on
the assumption that the glove is the only thing in the image
with that particular set of bright colors.

Our tabletop environment, by contrast, with its projected,
changing map, has both a complex and dynamic background,
and non-uniform illumination. As the accuracy of the track-
ing relies on the accuracy of color classification of the glove
image, our environment poses considerable additional chal-
lenges for Wang’s system. Fig. 3 shows the camera’s view
of the table and user’s hand. The complex background and
illumination result in errors in color classification when the
map contains colors close enough to those on the glove.

Figure 3: Camera image with complex background

Traditional background subtraction involves taking an im-
age containing only the background or keeping a running
average (a linear combination of the current image and the
running average image [9]), then subtracting the background
from the current image.

We have the advantage that the background is the map be-
ing displayed, so we know what the background is supposed
to be. Unfortunately, what the Fire-i camera sees (IC) is



Figure 4: Transformation of the image pixels

not what the graphics card is sending (IG). Fig. 4 shows the
physical processes that modify the pixels from the graphics
card as they are projected to the tabletop, then captured
by the camera. To determine what the image background
looks like to the Fire-i, we need to characterize each of the
processes in Fig. 4 through calibration.

4.2.1 Geometric Calibration and Transformation
Two steps of geometric calibration and transformation are

needed. The first takes account of the barrel distortion
produced by the Fire-i. We used the Camera Calibration
Toolbox for Matlab1 to get the intrinsic parameters of the
camera, allowing us to remove the distortion in the camera
image computationally. For real-time performance during
tracking, we generate a lookup table that maps the x, y-
coordinates between the distorted and rectified images.

The second step calibrates the degree to which the camera
is rotated and/or translated relative to the tabletop display.
We do this by projecting a checkerboard image (the target)
on the tabletop and recording the x,y-coordinates of the grid
corners of the target. We take a picture of target with the
Fire-i, rectify the image, and record the corresponding coor-
dinates of the grid corners. Using homogeneous coordinates,
we find the least error transformation that maps the table-
top display coordinates to the camera image coordinates.

4.2.2 Color Calibration and Transformation
Next we need to understand how the colors in the map

image (IG) actually look to the Fire-i. Let cp be the color
projected and cc be the color captured by the camera. We
want to find a function f : R3 → R3 where f = [fr, fg, fb]
such that cc = f(cp).

We find f(cp) by using a color calibration palette with
80 colors, chosen because they are the colors found most
frequently in Google Earth. The original palette and the
color palette as seen by the camera supply a set of training
examples (cip, c

i
c) for i = 1 . . . 80. We explored a number

of different models for the function, finding that the most
effective model was a second degree polynomial in which

1http://www.vision.caltech.edu/bouguetj/calib_doc/

each color channel also depends on all three channels. If x
is one of the color channels, i.e., x ∈ {r, g, b}, fx(cp) = θx ·
φ(cp), where θx is the parameter vector and φ(cp) contains

all polynomial terms up to degree 2 (e.g. cpr, cpg, c
2
pr, cprcpg

etc.). We use regularized least-squares regression to find
the optimal θx. The regularization term ‖θx‖

2 is added to
prevent over-fitting.

4.2.3 Removing the Effect of Illumination
Finally, because light from the projector illuminates the

hand, the color signal reaching the camera from the hand
is the multiplication of illumination and reflectance of the
glove color for each pixel. To eliminate the effect of the il-
lumination, we rectify the camera image (removing the dis-
tortion noted above), then divide it pixel-by-pixel by the
transformed image from the graphics card (i.e., the back-
ground as seen by the camera).

Figure 5(a) shows an example of the result after this pro-
cess, where the background is mostly white and the glove
colors are closer to the actual colors. The result is not per-
fect, due to imperfections in the geometric and color cal-
ibrations, but color classification of the glove colors based
on the image after this background removal (Fig. 5(b)) is
considerably more robust.

(a) (b)

Figure 5: (a) Resultant image after background re-
moval; (b) result of color classification after back-
ground removal

5. GESTURE RECOGNITION
The hand tracking system described above provides de-

tailed 3D hand pose data. Our next step is to use that data
to infer gestures.

5.1 Gesture Taxonomy
We adopt the taxonomy of hand movements proposed by

[18], distinguishing gestures from unintentional hand move-
ments (like beats), and further dividing gestures into manip-
ulative and communicative. Manipulative gestures are used
to act on objects, while communicative gestures have an in-
herent communicational purpose [18]. Our work to date has
focused on recognizing single-hand manipulative gestures.

5.2 Isolated Gesture Recognition
We start by describing our approach to isolated gesture

recognition, and then detail how we recognize continuous
gestures.

5.2.1 Feature Vector
For tracking one hand, the tracker supplies data describ-

ing the hand location in x, y, z coordinates, and orientations



of the hand and each finger joint in quaternions. There are
three joints per finger in the model; the joint at the base
of each finger has two degrees of freedom (DOFs) while the
other two joints of each finger have one DOF each. We are
interested in the bending angles of the joints, so we convert
the joint orientation in quaternions to Euler angles. The
translation of the joint is irrelevant because it is relative to
the hand and (except in painful circumstances) stays un-
changed.

Our feature vector is composed of the velocity of hand
in the x-y plane, the z position of the hand, the roll, pitch
and yaw of the hand, and four angles for each finger (one
angle for each of the first two joints, and two angles for the
base joint). The result is a 26-dimensional feature vector x.
The data are also standardized across each feature to have a
mean value of 0 and a standard deviation of 1. This ensures
that the components of the feature vector have compatible
magnitudes.

The feature vector produces a detailed description of the
hand motion and pose, and as such provides more generality
than would be available had we selected only those features
that discriminated among a set of predetermined gestures.
This approach gives us the flexibility to investigate and train
the gestures that our user studies demonstrate are commonly
employed, rather than being restricted to a predetermined
set of gestures.

5.2.2 Hidden Markov Models
Previous work has suggested that the position and orienta-

tion of hand movement follows a first order Markov process
[23]. Accordingly, we use a Hidden Markov Model (HMM)
as our classification machinery, in particular a variety called
the Bakis model, which is well suited to time-series signals
[3]. The Bakis model allows transitions to the same state,
the next state, and the one after the next state. It is partic-
ularly useful for our task because it allows us to compensate
for different gesture speeds [3].

Figure 6 shows an example of a four-state Bakis model
with the transition probability from state s′ to state s as
t(s|s′) for s, s′ ∈ {1, 2, . . . ,m} where m is the number of
states. We also add the non-emitting entry and exit states
to the model, similar to what Young et al. [26] did for their
speech recognition system. The entry state is added for easy
representation of the initial state probability t(s). Only the
first two states can be the initial state, and only the last two
states can transit to the exit state.

Figure 6: The state transition diagram of a four-
state Bakis model with corresponding transition and
initial state probabilities

There is one HMM (θk) trained for each gesture k. The
probability of an observed sequence P (x1, ...xt; θk) will be
evaluated for all of the gesture models, with the classification
based on the model that gives the highest log-likelihood.

More formally, the classification for an observation sequence
x1, ..., xt is:

k̂ = arg max
k

logP (x1, ...xt; θk). (1)

5.3 Model Selection

5.3.1 Emission Probabilities
We start with the simple case, that of recognizing isolated

gestures from a single user. We define the emission probabil-
ity e using a simple Gaussian distribution whose parameters
depend on its underlying state. More specifically,

e(x | s) = N(x;µ
s
,Σs). (2)

We then generalize the method to accommodate the vari-
ance among multiple users by employing a Gaussian mixture
model for each state. We assume each of the m states has
its own set of l mixtures, so there are l×m mixture compo-
nents. Let qs(z|s) specify a distribution over the l possible
mixture components, which depends on the underlying state
s, so z ∈ {1 . . . l}. Hence,

e(x | s) =

l∑
z=1

qs(z | s)N(x;µ
s,z
,Σs,z). (3)

Note that Equation 2 is just a special case of Equation 3
when l = 1.

5.3.2 Model Size
Choice of model size (the number of states) is an impor-

tant issue in implementing HMMs. An underlying state in
our HMM represents a particular velocity, orientation and
shape of the hand during a gesture. Hence, the states can
be associated with the temporal phases that make up ges-
tures. Psychological studies suggest that gestures have three
phases: preparation, nucleus (peak or stroke [14]), and re-
traction. The preparation phase consists of preparatory
movement that sets the hand in motion from a resting posi-
tion. The nucleus of a gesture has some “definite form and
enhanced dynamic qualities” [13]. In the retraction phase,
the hand either returns to the rest position or is repositioned
for the next gesture. In keeping with this, our HMMs con-
tain at least three (hidden) states [18].

Previous efforts have used from 4 [23] to 41 [24] states
in their HMMS, a difference that may be due in part to
variations in data sampling rates. While more states means
a finer-grain discretization of the movement, which should
lead to better accuracy, there is a trade-off between the com-
plexity of the model and over-fitting the data. In addition,
the number of states should also be related to the sampling
rate (around 15 frame/sec in our case) which affects the
number of frames per gesture. The smaller the number of
frames per gesture, the smaller the number of states should
be used.

We determined model size by training the system on 12
common gestures used for basic map manipulations, using
a MATLAB HMM toolbox2 to get the maximum likelihood
parameters of the models via expectation-maximization (EM).
The gestures used were pan left, right, up and down; pitch,
roll and yaw in clockwise and anticlockwise directions; and
zoom in and out. Panning is moving the hand left, right, up

2http://www.cs.ubc.ca/̃murphyk/Software/HMM/hmm.html



or down, with the hand flat on the tabletop surface. Pitch,
roll and yaw gestures are rotating the hand about the x, y,
and z axes respectively. Zooming in is spreading the fingers
outwards; zooming out is the reverse action. Fig. 7 shows
some examples (only left hand is used to date in training
and testing). As the feature vector we use describes hand
pose in general, we believe our results will be generalizable
for other gestures.

Figure 7: Examples of some gestures used in the
experiment

We collected a single user data set XS over three different
days, with 9 samples for each of the 12 gestures. Three sam-
ples per gesture were set aside for testing, and the remaining
6 samples per gesture were used for training. We used cross-
validation to determine the choice of model size, and found
that using between 3 and 5 states gave the highest testing
accuracy.

We collected a similar data set XM from three users. We
used 14 samples per gesture for training, and 4 samples per
gesture for testing (48 test samples in total). We experi-
mented with different values of l in Equation 3, using k-
means clustering for initializing the parameter estimates for
Gaussian mixtures. Our results indicated that using 3 mix-
tures of Gaussian and 4 states gives the highest recognition
accuracy, 95.6%, on the test data. There are several sources
of possible errors. Although the hand tracker can identify
challenging hand postures with significant self-occlusion [25],
when the hand is rotated (e.g., in the pitch gesture, where
the plane of the palm is almost perpendicular to the cam-
era), and only a small section of the colored patches is vis-
ible, both hand tracking and gesture recognition accuracy
are lower. The variations in different users also contribute
to recognition errors. We need to test the trained model
with more different users in future work.

5.4 Continuous Gesture Recognition
Continuous gesture recognition requires segmentation: de-

tecting start and end points in a continuous gesture sequence
in order to know what segment of the tracking signal to clas-
sify. Some previous systems have required the use of a spec-
ified artificial movement to indicate the start of a gesture
[22], or they distinguished gestures from unintentional hand
movements by restricting hand motion. For a more natural
interface that a user can interact with more naturally, we
needed a more flexible approach.

5.4.1 Segmentation
Gesture is signified by motion. We compute dt, the differ-

ence between the consecutive input data. As the first two
elements of the feature vector x are velocities (already rep-
resenting the difference), we keep these two unchanged, and

calculate the difference for the remaining elements in x:

dt =

[
xt(1 : 2)

xt(3 : 26)− xt−1(3 : 26)

]
, ∀t ∈ {1 . . . T}.

Note that there is no d0. We then take the l2-norm of the
difference vector, i.e., ‖dt‖, and use a two-state HMM to
model the start and the end of a gesture using ‖dt‖ as the
observation sequence.

Fig. 8 shows an example of the segmentation of continuous
gestures using the trained HMM. The green line is the ‖dt‖
value, the red segments are the manually labeled gesture in-
tervals, and the blue segments are gesture intervals resulting
from HMM segmentation. When attempting to provide the
manual labels, we discovered that it is hard to pinpoint the
exact frame when the gesture starts and ends. Hence there
may be errors in our “ground truth”. In any case the dif-
ferences in timing between the HMM segmentation and our
ground truth are small – about 5 to 10 frames, or 0.3 to 0.6
seconds, meaning that the system’s results are quite close to
the manual labels.

The fluctuations in ‖dt‖ are partly due to the noise in
data from the hand tracker: the z value in the feature vec-
tor is especially noisy because there is no stereo imaging.
The variation in the gesture speed is another factor. Even
so, using an HMM is more robust than simply calculating
the average ‖dt‖, and using that as a threshold for gesture
intervals, because an HMM takes the transition probabili-
ties into account, making it less sensitive to high-frequency
fluctuations. However, there still can be false detections in
our current system, as Figure 8 shows.
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Figure 8: An example of gesture segmentation result

5.4.2 Real-Time Recognition
A final important issue is making recognition response

fast enough to allow real-time interaction. Ideally we need
to recognize each gesture even before it ends. Therefore,
instead of evaluating the log-likelihood of a gesture HMM at
the end of the gesture interval and finding the model with
the maximum value, as in Eq. 1, we evaluate the feature



vector at each time step, updating the estimated likelihood
of each gesture.

Let ts and te be the starting and ending time steps of a
gesture. At time step ts ≤ t ≤ te, we calculate the proba-
bility of the observation sequence xts , . . . , xt for the gesture
model θk as

P (xts , . . . , xt; θk) =
∑
s

P (xts , . . . , xt, st = s; θk) =
∑
s

α[t, s].

(4)
α[t, s] can be calculated using the forward algorithm:

α[t, s] =
∑
s′

(α[t− 1, s′]× t(s|s′)× e(xt|s)). (5)

As the probabilities become very small, our implemen-
tation uses logarithmic probabilities. Our approach is also
efficient, requiring only an array to keep track of the α val-
ues and the log-likelihood value for each gesture model. As a
result its storage requirement is O(1) and time requirement
is O(t).

We analyzed the change of log-likelihood values of 12 ges-
ture HMMs from the start to the end of a gesture for the
isolated gestures in the test data set XM . As an empirical
test, for each gesture observation sequence (x1, . . . , xT ), we
plotted

log(P (x1, . . . , xt; θk))

against time t where t = 1 . . . T and k = 1 . . . 12. We ob-
served that the log-likelihood of the correct gesture model
is often the highest even very early in the gesture. Figure
9 shows one such example: the actual gesture is pan down,
and the log-likelihood of the observation sequence for pan
down is the highest at the very beginning.

0 2 4 6 8 10 12 14 16 18
1200

1000

800

600

400

200

0

time step t

lo
g

lik
el

ih
oo

d

pan down

 

 

pan down
pan left
pan right
pan up
pitch anticlockwise
pitch clockwise
roll anticlockwise
roll clockwise
yaw anticlockwise
yaw clockwise
zoom in
zoom out

Figure 9: Change of log-likelihood values for 12
HMMs over time; the actual gesture is pan down

It is of course not always true that the correct gesture
model will have the highest log-likelihood at the beginning:
some gestures start out looking the same. Figure 10 is one
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Figure 10: Change of log-likelihood values for 12
HMMs over time; the actual gesture is pitch anti-
clockwise

such example: all the log-likelihood values are very close in
the beginning.

Our recognition decision is thus made only after the differ-
ence between the highest and second highest log-likelihood
values are greater than an empirically derived threshold. We
get the threshold by analyzing the test data in XM , calcu-
lating the average maximum difference between the highest
and second highest log-likelihood values when the higher one
does not correspond to the correct gesture. Using this ap-
proach means we make a decision about the gesture as early
as possible, i.e., as soon as it becomes clear which gesture is
most likely.

5.4.3 Experiments and Results
We recorded a data set MC containing sequences of con-

tinuous gestures, manually labeling the gestures, their start
and end points. The test sequences contain different number
of gestures, ranging from 2 to 6, with 49 gestures in total.

We measured the recognition rate – defined as the number
of correctly recognized gestures over the number of actual
gestures – without considering the false detections. For the
recognition to be useful for an interactive interface, we define
a correct recognition as one in which the label is correct and
the output gesture interval overlaps with the true gesture
interval. To date, we are able to obtain a recognition rate of
73%. If we consider the false detections of gestures, the rate
is 60%. However, we observed that most false detections
are very brief, typically about 2 – 3 time steps (i.e., 2 –
3 video frames, about 160 ms). As we explain below, such
false detections have relatively little pragmatic consequence.

Figure 11 shows a graphical representation of the recog-
nition process. It plots the log-likelihood values of 12 ges-
ture HMMs against time for a sequence of gestures. The
log-likelihood values are set to 0 when there is no gesture
detected. The upper horizontal line segments indicate the



manually assigned labels of the gestures in those time inter-
vals. The lower line segments are the outputs of the recog-
nition algorithm indicating the recognized gesture intervals.
The classification of the gestures is indicated by combina-
tions of different line colors and line styles.
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Figure 11: Change of log-likelihood values for 12
HMMs over time; continuous gestures

6. INTERACTING WITH GOOGLE EARTH
Using the Google Earth Plug-in and its JavaScript API,

we embedded the Google Earth 3D map into a web page. We
use the Java web browser object in the JDesktop Integration
Components (JDIC) library to load the page. This allows us
to augment the browser, i.e., make it respond to the gesture
events from the gesture recognizer by providing the corre-
sponding actions (panning, rotation, tilting and zooming) to
the map. The actions on the map are written in JavaScript,
invoked through the Java browser object.

When a gesture is recognized, we calculate the parameters
needed for the corresponding action on the map. As noted,
our continuous gesture recognition can have false detections.
However, as long as the false detection period is short, it is
unlikely to have a visible effect because the action the system
will call for will be negligibly small.

The map is of course changed by each gesture, thereby
changing the background displayed on the surface. In re-
sponse, we re-compute the image needed for background re-
moval.

7. RELATED WORK
There are other background removal methods for a projector-

based system including, for example, polarizing filters or
synchronized optical shutters [11]. As our method is purely
software-based, it does not require additional hardware.

Much work on computer recognition of hand gestures has
focused on synthetic gestures, most notably sign language
recognition. Hernández-Rebollar et al. [10] used a glove-like
device with accelerometers to recognize static postures of
American Sign Language alphabets with a hierarchical clas-
sifier. Our research focuses more on gestures with dynamic

change of postures. Bauer and Hienz [3] developed a video-
based continuous sign language recognition system based on
HMMs. They reported an accuracy of 91.7% based on a lex-
icon of 97 signs from a single user’s input. While research
in sign language recognition provides a good starting point
on natural gesture recognition, there are some differences
between the two. Sign language is well structured and has
a defined grammar; natural gestures are free-form, and can
occur in any order.

A variety of efforts have been made at 3D gesture. For
example, Oblong Industries’ g-speak spatial operating envi-
ronment3 allows free hand input in 3D space. Microsoft’s
Project Natal, a controller-free gaming and entertainment
system, enables users to play video games using gestures by
tracking full-body 3D motion. However, by using Wang’s
[25] hand pose tracking system, we can focus on a finer de-
gree of 3D gesture distinction.

The work that is most related to ours is by Sharma et
al. [21]. They did substantial work in analyzing the issues
in designing speech-gesture driven multimodal interfaces for
crisis management. They also did some work on continuous
natural gesture recognition using HMMs [20]. Using their
metrics, they reported a correct rate of 78.07% for three
gesture categories: pointing, area and contour gestures with
data from 6 different people. One main difference between
their work and ours is that they tracked the hands as blobs,
whereas we are recognizing finer degree gestures.

8. DISCUSSION AND FUTURE WORK
We obtained a good recognition rate for isolated gestures

with different users. For continuous gesture recognition, the
recognition rate is lower because there are two more sources
of potential error: the detection of start and end of the ges-
tures and the classification of the gesture before the gesture
ends. There are also false positives due to unintentional
movement or repositioning of the hand. We will take this
into account in future work by adding hand retraction move-
ments to the training data for isolated gestures.

We defined the set of gestures used here for the purpose
of testing the performance of the recognition method. We
need to verify this performance with other sets of gestures,
obtained through our user study, to test the generalizability
of the system. We will also work on bimanual gestures in
the future. First, we will test how sensitive the color-glove
hand tracker is to two-hand occlusion, and take this into
consideration when applying gesture recognition method.

Our user study showed that speech in natural interaction
is highly unstructured and rarely grammatical. We plan to
use an off-the-shelf speech recognizer for key-word spotting
(as in [20]). We want to be able to deal with the ungram-
matical, and largely unrestricted speech we expect people
to use spontaneously. Given current speech understanding
technology, the plausible way to deal with this is to explore
combining keyword spotting with gesture recognition, rely-
ing on research (e.g., [5]) showing that gestures and relevant
classes of words (e.g., nouns) often appear contemporane-
ously, and repeated gestures often indicate coreference [8].
Some informal grammar, however, can also be incorporated
which may help inform the gesture recognition process.

9. ACKNOWLEDGEMENTS
3http://oblong.com/



We thank Robert Wang for assistance in understanding
and using the hard-tracking system he developed.

This work was supported in part by a grant from Pfizer,
Inc., by a grant from Foxconn Technology, and by Award
IIS-1018055 from the National Science Foundation.

10. REFERENCES
[1] A. Adler and R. Davis. Symmetric multimodal

interaction in a dynamic dialogue. In 2009 Intelligent
User Interfaces Workshop on Sketch Recognition.
ACM Press, February 2009.

[2] M. Ashdown and P. Robinson. Escritoire: A personal
projected display. IEEE Multimedia, 12(1):34–42,
2005.

[3] B. Bauer and H. Hienz. Relevant features for
video-based continuous sign language recognition. In
FG ’00: Proceedings of the Fourth IEEE International
Conference on Automatic Face and Gesture
Recognition 2000, page 440, 2000.

[4] R. A. Bolt. “Put-That-There”: Voice and gesture at
the graphics interface. In SIGGRAPH ’80: Proceedings
of the 7th annual conference on Computer graphics
and interactive techniques, pages 262–270, 1980.

[5] P. Cohen, D. McGee, and J. Clow. The efficiency of
multimodal interaction for a map-based task. In
Proceedings of the sixth conference on Applied natural
language processing, pages 331–338. Association for
Computational Linguistics, 2000.

[6] P. R. Cohen, M. Johnston, D. McGee, S. Oviatt,
J. Pittman, I. Smith, L. Chen, and J. Clow. Quickset:
multimodal interaction for distributed applications. In
MULTIMEDIA ’97: Proceedings of the fifth ACM
international conference on Multimedia, pages 31–40.
ACM, 1997.

[7] D. Demirdjian, T. Ko, and T. Darrell. Untethered
gesture acquisition and recognition for virtual world
manipulation, 2003.

[8] J. Eisenstein. Gesture in automatic discourse
processing. PhD thesis, Massachusetts Institute of
Technology, 2008.

[9] W. Freeman and C. Weissman. Television control by
hand gestures. In Proc. of Intl. Workshop on
Automatic Face and Gesture Recognition, pages
179–183, 1995.

[10] J. L. Hernández-Rebollar, R. W. Lindeman, and
N. Kyriakopoulos. A multi-class pattern recognition
system for practical finger spelling translation. In
ICMI ’02: Proceedings of the 4th IEEE International
Conference on Multimodal Interfaces, page 185, 2002.

[11] S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar,
A. Butler, and J. Westhues. Going beyond the display:
a surface technology with an electronically switchable
diffuser. In Proceedings of the 21st annual ACM
symposium on User interface software and technology,
pages 269–278. ACM, 2008.

[12] E. Kaiser, A. Olwal, D. McGee, H. Benko,
A. Corradini, X. Li, P. Cohen, and S. Feiner. Mutual
disambiguation of 3d multimodal interaction in
augmented and virtual reality. In ICMI ’03:
Proceedings of the 5th international conference on
Multimodal interfaces, pages 12–19, 2003.

[13] A. Kendon. Current issues in the study of gesture. In
P. P. J.-L. Nespoulous and A. R. Lecours, editors, The
Biological Foundations of Gestures: Motor and
Semiotic Aspects, pages 23–47. Lawrence Erlbaum
Assoc., New Jersey, 1986.

[14] D. McNeil and E. Levy. Conceptual representations of
in language activity and gesture. In J. Jarvella and
W. Klein, editors, Speech, place and action: Studies in
deixis and related topics. Wiley, 1982.

[15] K. Oka, Y. Sato, and H. Koike. Real-time fingertip
tracking and gesture recognition. IEEE Computer
Graphics and Applications, 22(6):64–71, 2002.

[16] T. Y. Ouyang and R. Davis. A visual approach to
sketched symbol recognition. In Proceedings of the
2009 International Joint Conference on Artificial
Intelligence (IJCAI), pages 1463–1468, 2009.

[17] S. Oviatt. Ten myths of multimodal interaction.
Communications of the ACM, 42(11):74–81, 1999.
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