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AB STRACT

SOLAR ENERGY AND SHELTER DESIGN by Bruce Anderson

Submitted to the Department of Architecture on 24 January 1973
in partial fulfilment of the requirements for the degree of
Master of Architecture

One of the major contributions to the global environmental crisis
is our misuse of energy and our inability to harness certain en-
ergy sources. Our country is one of the primary culprits in the
crisis, but there are many people who would like to participate in
the solution. One means of participating is to develop an active
relationship with the natural environment. This thesis will help
people to develop that active relationship by helping them to des-
ign with solar energy. This will be done primarily through three
major sections: 'The Issues', 'Designing with the Sun', and 'Solar
Energy Collection and Utilization.'

The first section discusses the environmental situation which re-
quires new attitudes toward living; it discusses those attitudes,
especially those which affect our use of the sun's energy; it dis-
cusses some of the effects of using the sun's energy.

Section two deals with the misuse of energy by showing energy-eco-
nomic tradeoffs of various design alternatives which relate to how
buildings use the sun's energy. It is shown that by making adjust-
ments in our values (both economic and attitudinal), by making the
information which we have about the energy losses of buildings more
understandable and usable, we can reduce the heat loss of buildings
and reduce the use of mechanical, energy-consumptive devices (es-
pecially those which burn fossil fuels).

The third section analyzes our ability to directly harness solar
energy (in spite of all of our efforts in section two we may still
need mechanical sources of energy). Again, by making adjustments
in our values and by better understanding the available information
on solar energy collection, storage, and utilization, it is shown
that wider application of such energy is practical.
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THE U IE
THE GLOBAL CRISIS environmental decay, hunger, war, over population,
natural resource depletion

The goal of behavioral processes in a stable system is to
achieve an optimum output - nevet a maximum one. (ED - 3)

1) If the present growth trends in world population, industrializa-
tion, pollution, food production, and resource depletion continue
unchanged, the limits to growth on this planet will be reached some-
time within the next >ne hundred years. The most notable result will
be a rather sudden and uncontrollable decline in both population
and industrial capacity.

2) It is possible to alter these growth trends and to establish a
condition of ecological and economic stability that is sustainable
far into the future. The state of global equilibrium could be
designed so that the basic material needs of each person on earth
are satisfied and each person has an equal opportunity to realize
his individual potential.

3) If the world's people decide to strive for this second outcome
rather than the first, the sooner they begin working to attain it,
the greater will be their chances of success.

- (LIMITS TO GROWT - 23)

I do not wish to seem overdramatic;
but I can only conclude from Informa-
tion that is available to me as Secre-
tary General, that the members of the
United Nations have perhaps ten years
left in which to subordinate their an-
cient quarrels and launch a global pa-
rtnership to curb the arms race, to
improve the human environment, to de-
fuse the population explosion, and to
supply the required momentum to devel-
opment efforts. If such a global part-
nership is not forged within the next
decade, then I very much fear that the
problems I have mentioned will have
reached such staggering proportions
that they will be beyond our capacity
to control -

U THANT
1969

Most persons think that a state in
order to be happy ought to be large;
but even if they are right, they have
no idea of what is a large and what
(is) a small state... .To the size
of states there is a limit, as there
is to other things, plants, animals,
implements; for none of these retain
their natural power when they are too
large or too small, but they either
wholly lose their nature or are
spoiled -

ARISTOTLE
322 BC



* Half of the world's production of petroleum to 1970 took place
during the '60's. (PC - 5)

* oil wells are going 30,000' -- previous limits of 15,000' --

more drilling, more energy expenditure, is required per success-
ful well. (SR - 1)

* In 1970, the US used 685 x 1015 BTU, 1/3 of all of the energy
used in the world. (Ed Allen, MIT, 20 Mar '72)(US is 6% of the
world's population and uses 35% of the world's energy -1971)
(SFFP - 653)

* The utility industry projects electricity consumption "to
double between 1970 and 1980, and almost to quadruple by 1990."
(SFFP - 654)

* From 1970 to-2000 the US will use more energy than it used pre-
viously, total. (Ed Allen, MIT, 20 Mar '72)

- @ Energy consumption in 1970 in the US was equivalent to each person
having 80 human slaves.(SFFP - 654)

* If we satisfied our power requirements which are projected for
1980, up to 1/3 of all the water in our rivers and lakes would be
necessary for cooling. (PC - 5)

* If, by 2000 AD, 75% of our electricity is nuclear generated, we
would have a 735,000 megawatt capacity -- at 33% efficiency, that's
30 million pounds of nuclear waste/year.

* With present known global reserves and with the projected rate of
growth in the use of those reserves, it is calculated that we have
22 years of natural gas and 20 years of petroleum left. (LTG - 58)

0 Residential and commercial lighting, heating, cooking, air con-
ditioning and electrical appliances used 23.2% of the total US
energy in 1971. (SFFP -663)

* Space heating consumes nearly 20% of the fuel used in the US,
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THE POTENTIAL OF SOLAR ENERGY

0 420 Btuh/ft2 (700 cal/cm2 - day) of solar radiation strikes out-
side of the earth's atmosphere, the equivalent of 0.7 tons coal/
acre - hr. (ETA - 50)

* 330 Btuh/ft 2 reaches sea level through a clear atmosphere, the
equivalent of 27 watt-hours, 255.000 foot-pounds, 0.13 hp-hours,
27 mph wind/ft' hour, 300 gallons H20 falling 100 feet, %cubic
foot of manufactured gas, (FUS - 12)

* Solar radiation is the most abundant form of energy available to
man. That which hits 0.5% of our land is 'more than the total
energy needs of the country projected to 2000 AD. (SET - 1088)

* A 33 foot-square roof (100 m2) can receive in 8 hours on a bright
day about 500,000 kcal, the equivalent of 2,000,000 Btu, 150 lbs
coal, 15 gallons gas, 58 kw electricity if 10% efficient. (IUSE -2)

* Solar energy could supply half of the 20% of the total US energy
consumption that is now used for residential and commercial space
conditioning. (SET - 1088)

" Solar space conditioning could be cheaper now than using elec-
tricity and could be competitive with the use of gas and oil when
they double in price (which they will in a very short time).
(SET - 1088)

* Fossil fuels are not optimally used as a source of space condi-
tioning since such work requires much lower temperatures than
these fuels optimally produce.

* Low operation temperatures of a solar space conditioning system
decrease the possibility of fire.

" A solar energy system doesn't use fossil fuel (a rapidly depleting
non-renewable natural resource).

" A solar energy system doesn't pollute (smoke) or produce waste
(ashes).

" A solar energy system requires low upkeep costs (but high initial
investment).

"It is the predicament of mankind that
man can perceive the problematique, yet
despite his considerable knowledge and
skills, he does not understand the ori-
gins, significance, and interrelationships
of its many components and thus is unable
to devise effective responses. The fai-
lure occurs in large part because we
continue to examine single items in the
problematique without understanding that
the whole is more than the sum of its
parts, that change in one element means
change in others."

(LTG - 11)



A HARMONIOUS RELATIONSHIP WITH PLANET EARMH

The ecological crises of natural resource depletion
high energy consumption

land destruction
pollution

are manifestations of a much larger problem
dis-orientation
discontinuity

insensitivity
of and by human life of and from
a total realization (even partial realization)
of our place as life-creatures in time and space

here and now
Earth, 1973 -

A reliance on the god of technology
the ingenuity of the scientist

the inventor
the confidence in the 'specialist'
the dependence upon the omnipowerful tool - money - to

get us what we need
what we do not need

the lack of global
national

personal self-confidence which we long
previously surrendered to the secular gods -

Man's limited relationship to his environment, both built
and unbuilt

is part of the total problem
dis-orientation

We have great difficulty seeing the grand inter-connect-
edness of our many decisions

indecisions
non-decisions

with the many decisions
indecisions

non-decisions of the world around us.
Building an environment where before there was only the

natural environment is a decision which has far-reaching
effects. Designing that built environment without deeply
considering the macro-

micro-environment around it is sheer idiocy.
When we build, we must have a clear understanding of the

origin of the materials which we use
of the processes by which they came to the site



to thus ultimately become consumed by this built envir-
onment,

We should have a clear sense of what the implications are
of the mechanical systems

appliances which we incorporate into this
built environment, in terms of the natural resource con-

sumption and pollution production
which went into their manufacture

which goes into their function
maintenance

in terms of what it means about our
relationship
non-relationship to the natural

environment -
Less technologically developed cultures have used a variety

of methods of acknowledging their dependence upon natures
rituals of supplication

joy
submission
worship

ornaments
jewelry

artifacts
built environments - single houses

great pyramids
spatial arrangements of groups
of buildings -

In many cultures there are, to varying extents, acknowledge-
ment of the power of the sun, Not only does it bring
warm relief from cold weather but it burns the very
energy out of the body when the warmth becomes instead
unbearable heat. Not only does it make the crops
grow tall and green, but it scorches them to useless
tinder -

As man develops technology
flexes his scientific muscles, he increases his

desire to more
more
more control nature. With regard to the

sun, he wants it when he wants it
at the right temperature

when he wants rain instead he makes it.
Too often he does not understand the meaning of

shelter, ambiguously sheltering himself from all of
nature's elements simultaneously, with one sweeping
effort at enclosure. His awareness of the special
qualities of sun-shelter swiftly vanished in the
bustle of controlling what he can of the world
around him -

The use of solar energy, whether it be for heating
cooling

lighting
or the

generation of electric power, can, with the proper
sensitivity to its nature, redevelop within us a deeper
understanding of
a closer relationship with both our built environ-

ment and our unbuilt, natural environment. Such an
understanding might be only a piece of the total pro-
cess of redeveloping a total ecological understanding
of a harmonious relationship with our home

planet Earth -



USE OF NATURAL RESOURCES IN SOLAR ENERGY SYSTEMS

A flat-plate solar heat collector embodies an element which must be

aivan a areat deal of consideration when choosing materials. This ele-

ment is the collecting surface, which in many cases has been made of

aluminum and coated with flat-black paint (the MIT solar house IV

used two coats). The water-circulation pipes through which the heat is

conducted from the aluminum to the water have often been of copper.

Both aluminum and copper are among two of the non-renewable natural

resources which are in very short supply.

At our present rate of usage and with our present known reserves,

aluminum is due to last 100 years and copper 36 years. At our present

exponential rate of growth of usage (we use more and more each year),

the present reserves would last only 31 years and 21 years respective-

ly. Should we discover five times more of these precious metals than

we now know about (being optimistict), those numbers become 55 years

for aluminum and 48 for copper. (LTG - 56)

Since the collection of solar heat is part of an effort to live

more in harmony with our home, planet Earth, every effort should be

tak'n in the design of the system to respond to that attitude. The

ecological tradeoffs (in this case possible higher efficiencies with

aluminum and copper against lower efficiencies using renewable nat-

ural resources) must be weighed taking many considerations into acc-

ount.

For example, if efficiency is decreased by using alternatives to

10



aluminum and coDner) is it significant enough so that a larger coll-

ector must be built, thereby using more of some other natural re-

source (which we hope would be renewable)? Or if a larger collector

is not built, does the auxiliary heating system (which would have to

satimfy a larger percentage of the heating load)run on precious fuels

(oil or gas) which are also non-renewable and in very short supply?

What are the consequences on the depletion of non-renewable nat-

ural resources of using alternative materials? For example, plastic

pive is used instead of copper. Plastic may be either wood- or pet-

roleum-based. With proper management, wood is a renewable natural re-

source, but many petroleum-based plastics might be considered as a

poor alternative to copner, depending on the amount of petroleum used,

the manufacturing process (water-use, energv-use, and pollution resul-

ting from manufacture), and life-expectancy of the product (use of

short-lived products is generally ecologically-poor practice).

Asphalt may have an absorptivity as high as 97% (this needs to be

checked); the aluminum-copper tube assembly of the MIT House IV had

the same. MetAls other than aluminum are being investigated for absor-

ptivity when coated with blark paint. It may be found that the main

advantage to aluminum is its light weight.

11



SOCIAL IMPLICATIONS of increased house cost

There are several social implications due to the higher initial cost

of a solar space conditioning installation. Already the sale price of

houses is so high that a very large percentage of our population is

unable to afford them. They are unable to make a down payment and to

pay high monthly mortgage payments. Many efforts are being made in

the building industry to control costs, but prices continue to rise,

as much as 45% in five years. It has been suggested that one way to

decrease initial cost is to encourage the utility companies to own

the mechanical equipment of the house (decreasing the initial cost)

and to then rent it to the homeowner. A similar means might be used

to lessen the financial burden of a solar space conditioning system.

Perhaps there should be government tax incentives to encourage its

use, taxing heavily homes which use fossil fuels (including electri-

city which is generated by fossil fuels) and which pollute the air as

they heat the house, or giving tax breaks to those who use solar

heating.

Community and collective approaches to housing can also ease the

financial burden through a sharing of land, space, and utilities.

Exploration should be made into the economic desirability of large

community collectors and storage systems. The collector, for example,

might help to shelter a community activity. Perhaps a community acti-

vity or factory could make use of the collected heat during the spring

and fall when it is not needed for space conditioning (for example, a

This is difficult to intuitively
believe, however, since it seems ad-
vantageous for both the collector
and storage to be contiguous to the
space they are heating so that some
of the inefficiency of the system
due to heat loss will be regained
by capturing some of that loss in
those heated spaces. However, this
possibility is explored in section
three, 'Long-term StOrage'.

12



community swimming pool). If each house had its own collector, per.

haps the excess heat collected by them during the spring and fall

could be given to the community in exchange for auxiliary heating

from a centralized source during the winter.

13



POLITICAL RAMIFICATIONS

Listed to the left are companies who

make things for the home - Ap= who

make war products ..................

The introduction of solar energy use

in this country on a large scale is as

much a political issue as it is an eco-

logical one. The large energy-producing

and -consuming corporations of this

country have powerful voices in our fed-

eral legislative and administrative halls.

Pollution control laws and repeals of

resource depletion allowances, for ex-

ample, are fought bitterly by this

group. The federal government should

consider laws aimed at all levels of en-

ergy consumption to discourage the use

of fossil fuels and encourage the use

of alternatives such as solar energy.

HUD could be a leader in this, not giv-

ing FRA loans to energy-wasteful hous-

ing designs, or giving lower interest

rates to those which use alternatives

such as solar energy. Solar collection

devices could be freed from property

taxes.

I. Companies Who Make War Products--Who Make
Things for the Home

ALUMPIU' CO. OF AMERICA Wear-ever utensils,
Alcoa wrap, Cutco cutlery. Also: 2.75 inch
rocket motor tubes.

AMF INC. Volt ruboer, sporting goods, Harley-
Davidson motorcycles. Also: Mk 82 bomb parts
and metal parts for 750 lb. bombs.

BULOVA WATCH CO. Watches. Also: fuses for rock-
ets and anti-personnel projectiles, includ-
ing the 50 mm white phosphorous projectile.
White phosphorous ignites on contact with
the air and continues to burn even when im-
bedded in flesh.

E.I. duPONT deNEM4OURS AND CO. Teflon, Cantrece,
Orlon, Mylar, Dacron, Lycra and Duco.
Also: TNT, rocket propellents, dyna-
mite.

EASTNAN KODAK CO. Cameras, film, office sup-
plies and coolers. Also: multi-million
dollar contracts for various explosives.

FORD MOTOR CO. Phi Ico, Ford and Autol ite.
Also: Shillelagh missile systems, systems
for Chaparral missile, electronics equipment.

GENERAL ELECTRIC CO. Refrigerators, washers,
dryers, stereos, etc. Also: Mk 73 Tartar
missiles, Chaparral missile guidance,
guidance and control systems for Polaris and
Mk 3 Poseidon missiles.

GENERAL MOTORS CORP. Frigidaire, autos and auto
parts. Also: M 16 weapons, Mk 48 torpedo
warheads, 81 mm projectiles, parts for 105 mm
projectiles, 155 mm self-propelled Howitzers.

HONEY'aELL INC. Computors, Pentax, Rollei and
Elmo photographic equipment, and thermostats.
Also: Minutemen III components, Mark 46 tor-
pedoes, Rockeye i cluster bombs, white phos-
phorous anti-personnel mines, and guava
bombs. A "mother" bomb contains hundreds of
guava bombs, each of which release in turn 300

(PY P-22)

steel balls, which explode, filling the
air with, a deadly hall.

INTERNATIONAL TELEPHONE AND TELEGRAPH CO.
Owns Continental Baking which makes Wonder-
bread, Hostess Cupcakes and Morton Foods
'and owns Avis. Also makes: electronic
counter-measure equipment.

MOTOROLA INC. Stereos, radios, TV, 'tape re-
corders. Also: 40 mm shell fuses, bomb
proximity fuses.

RAYTHEON CO. Refrigerators, air conditioners,
gas stoves, electronic tubes. Also: Chap-
arral missile systems, engineeriing for Hawk
missiles, control systems for Sidewinder
missile, advanced development for SAM-D
missile.

RCA CORP. TV, radio, stereos, records, Hertz,
NBC, Whirlpool, Random House, Modern Library,
Pantheon, Knopf. Also: Fuses for Zuni
rockets, ,development of Advanced Surface-
Missile.

SINGER CO. Sewing machines, vacuums, record
players, furniture. Also: Modification of
Mk 48 torpedo, instrument dev. Advanced
Ballistic Re-entry system, gu4dance for
Poseidon missile.

II. Other Companies with Major War Contracts

ASIATIC PETROL Indirectly related to Shell
OR| Co6.

AVCO CORP. PauF Revere Life insurance, Sea--
board Finance Co., Carte Blanche Corp'.

GENERAL DYNAMICS CORP. Associated Finance
Corp., Strombert-Carlson Corp.

GENERAL TELEPHONE AND ELECTRONICS CORP. Syl-
vania radios, l ights, TV's, telephones.

GENERAL TIRE & RUBBER CO. Ohio-tires, tubes,
rubber products, Pennsylv. Champion tennis
balls, RKO-General, Inc.

IBM Typewriters, etc.
KAISER INDUSTRIES Aluminum products, Willy,

Jeeps.
LING-TEMCO-VAUGHT, INC. Wilson sporting goods,

University loudspeakers, Braniff Airways.
LITTON INDUSTRIES Stouffer Foods, Cole Steel

Equipment, American Book Co., Van Nostrand
Pubs., Royal Typewriters.

MAGNAVOX Electrical entertainment equipment,
band instruments, Consolidated Furniture
Industries.

MOBIL OIL All Mobil products.
NORRIS INDUSTRIES Waste King gas and electric

ranges, ovens, dishwashers, space and water
heaters, garbage disposals.

OLIN CORP. Pool chemicals, insecticides, fer-
tilizers, Winchester firearms-.

PAN AM WORLD AIRWAYS All Pan-Am lines, inter-
continental Hotel Corp., Grandes Hotels,
New York Airways.

SPERRY RAND CORP. Health and beauty care prod-
ucts, Remington shavers and typewriters.

STANDARD OIL Chevron, Standard, Humble Oil Ta



THIRD WORLD ISSUES

Introduction of the use of solar energy into third world countries is

as complicated a problem as is its introduction into the countries of

higher-energy use. As third world countries increase their energy de-

mands and raise their standards of living, they may see solar energy

introduction as a ploy for Western countries being able to hoard for

themselves the diminishing supply of fossil fuels. If we should be

able to get around this issue, there are others:

These countries generally are in the warm belt of the world and
need cooling mechanisms more than they need those for heating.
The technology for using solar energy for cooling has yet to be
developed at an unsophisticated level applicable for use in
'underdeveloped' countries.

Even if solar cooling devices were properly developed, the demand
for solar devices would more probably be for those which could
purnp water for irrigation, refrigerate food to improve diets, or
generate electricity.

Appropriate solar devices should require little, preferably no,
auxiliary electricity for their operation. They could permit mod-
erate and simple use of auxiliar.y fuel (which is usually very ex-
pensive in third world countries). They should be a very low in-
itial cost and should take into account the use of local materi-
als (many countries do not manufacture glass, or aluminum, or cop-
per....) Cheap and plentiful labor might be available for un-
skilled construction and daily manual adjustment or the orienta-
tion and tilt angle of solar collectors.

The appraisal of 'need' in such countries is difficult ... Do abori-

gines 'need' radioes? hot water? This appraisal is the most important

and difficult part of almost any aid to other countries, and the in-

troduction of solar energy utilization is no exception. (No answers

are given here).

15



DESIGN AND ECOLOGICAL TECHNOLOGIES

The architectural significance of the integration of ecological tech-

nologies into built form lie far deeper than trying to synthesize,

for example, a huge solar heat collector and concomitant huge storage

tank into an architectural whole, or In trying to use alternative eco-

logical mechanical accessories, for example, low-waste-producing

toilets. Inextricably interwoven into the broader understanding of

the interrelationship between ecology and architectural design is an

awareness of man-nature-man-nature... (If in fact we dare even to be

bold enough to semantically separate man and nature).

An intense awareness/understanding/sensitivity to this man-nature

interaction is in fact a requisite foundation for making a contribu-

tion to this interaction through the application of ecological princi-

ples to built form. Since the advent of homo sapia, individuals and

groups have searched for, and to various measure have succeeded in

discovering, man's role as a member of earth's living community. Art

and architecture have released some of the most sensitive conclusions

to this search, and the man-nature synthesis potentially evolves to

higher heights with each such contribution.

It is no secret however that our technology has and is designed

for the most part to exploit the abundance and generosity of this pla-

net, but we have the beginnings of a 'rebirth of wonder', as well as

the technological capability to truly act and interact with nature in

a positive, contributory way. Such a contribution requires an intense

16



awareness/understanding/sensitivity to the man-nature interaction.

Man is at a crucial point in his history: he can synthesize technology

and nature, but not without this sensitivity.

17



INTEGRATION 2E SOIA ENERGY with other life functions

Too many solar researchers have seen the use of solar energy in the

very narrow context of simply replacing the existing job of fossil

fuels without investigating what other changes might be necessary in

other facets of ourlives which are in some way affected by the global

energy crisis. Solar energy collectors are tacked onto a house which

is designed in such a way as to be sold to a 'contemporary' or 'mod-

ern' buying public. The dwelling may have extra insulation, heavy

curtains across the windows, or even triple glazing, but the owner is

not in other ways aware that his heat comes from the sun. Engineers

and scientists, in developing solar systems, have just assumed that

'you can't change human nature' (in what other countries is there

such an expression?) and have tried to design systems which require

little or no owner participation in its performance. The results have

often been complicated control systems which break down, add to the

cost, and make only small gains in overall efficiency (when they are

working).

Human nature may have to change, however. We are coming to a

point in human history in which the change must come, either willing-

ly of our own volition or forcefully through a series of traumatic,

perhaps catastrophic global happenings (fuel shortages, starvation,

pollution deaths). Even if the latter possibility is overdramatic, it

should be clear that we should, when dealing with solar energy, look

beyond simply tacking a collector onto a house, and judging its

18



success on its fossil fuel savings. One of the primary changes will be

in the attitude of people toward consumption - The per capita consump-

tion of energy and natural resources in this country is about fifty

times greater than that in India. People may decide that such exor-

bitance is unjustified. As this affects the design of their home/

shelter, efforts will be made to use less energy and resources in its

construction, in its maintenance, and in its functions. To decrease

consumption of fuels and other natural resources for the purposes of

heating and cooling the home/shelter, large efforts will be made to

design the house in a way that it will lose less heat through its

skin to the outside during the winter (but gain as much of the sun's.

energy as possible), and gain less heat through its skin from the out-

side during the summer.

Most locations in the world need, in addition to taking proper

advantage of the natural processes of heating and cooling, auxiliary

man-made systems. Such systems range from simple hand-fed fires to

complicated, automatically-controlled mechanical heating-cooling-

ventilating-humidifying-air purifying-systems. The latter systems are

often needed, in hospitals for example, but too often we have ignored

the free contributions which nature can make to our comfort; we have

taken advantage of our cheap sources of energy (and assumed that they

are inexhaustible); and we have completely, or as much as possible,

isolated our buildings from the outside, introducing technological,

resource-consuming devices to regulate the inside weather (often lea-

ving no control to the actual users).

Thus as one change will be the attitude toward consumption, anoth-

er will be a change in how we deal with the interface between the 19



home/shelter and nature. We will recognize that our natural re-

sources are not inexhaustible, that our cheap sources of energy will

become expensive, that we must take advantage of some of nature's

gifts to our heating, cooling, ventilating needs.

It may follow from these two mentioned changes that in cases

where technological solutions no longer make sense, owner/user part-

icipation may be necessary to take better advantage of what nature has

to offer us. This in fact may be another change which we may make --

that instead of relying on other people (for example, builders and

repairmen) and on technological devices (from electric toothbrushes

to fully automated indoor climate controls), we will, to a much

greater extent, participate in and interact with the life functions

which support our existence.

Let us assume that we intend to collect and store the sun's

energy and use it for heating or cooling the house or for heating

domestic hot water. In subsequent pages it will be shown that there

are numerous problems with making such a system work. As has already

been mentioned, one of the setbacks of earlier systems has been the

method of incorporating them into the total scene of domestic living,

that is, the systems were simply tacked onto existing types of shel-

ters and existing attitudes and patterns of living. Little attempt was

made to incorporate them, to integrate them into other life functions.

When we try to solve problems by making significant innovative change,

it is often advantageous to investigate other areas within the total

context of the problem and the solution. Slight changes and adjust-

ments in other areas might lead to a more harmonious solution than the
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one originally conceived.

Thus when we find that the use of solar energy may be a viable

alternative to present methods of heating and cooling, perhaps, by

looking at some of the many other life functions by which we are

affected, we can more readily integrate a solar energy system into

the home/shelter situation and come up with a better solution. This

thesis deals with some of those other life functions, particularly

those which are related to the heat loss and heat gain of the home/

shelter. It has been suggested earlier that a method of solving the

solar energy problem might be to look at the community level of coll-

ection and distribution. But there is another important area of in-

vestigation which could lead to better solutions. just how can all of

the life functions work together in such a way so that the inefficien-

cies of some will be balanced by the efficiencies of others? Or,

another way, is it possible for the total set of life functions to

operate more efficiently (using less energy) if they were more integ-

rated with each other?

There are many scales at which to direct research into such an

integration of functions. An example at a very large scale is the

economic advantage that seems to be derived from using the heat gen-

erated by the insides of a building to help balance the heat loss at

the exterior skin of that building. At an even larger scale, warmed

cooling water from electric power generators is being distributed to

homes for heating purposes.

At the level of domestic solar energy use, it will be shown that

an auxiliary heating system is necessary for those times when there is
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not enough sunshine or when the heating demand is too great. Per-

haps instead of the usual investment in a furnace, a combination of

heat pumps, windmills, waterwheels, fireplaces, space heaters, heat

from a compost pile, or the burning of homemade methane gas would

work better (use less fossil fuels). Perhaps instead of the solar

energy system being limited to use for winter heating, it could also

be used for cooling during the summer, for heating domestic hot water,

for cooking, for growing food year round, for the distillation of

water, for the generation of electricity, and so on, thus spreading

the cost of the system over a large number of functions. Such avenues

of integration are only offered as areas of possible investigation

and will not be discussed in detail. But it is up to the people in-

volved in a project utilizing solar energy to investigate these

possibilities. The following is one such integration of life functions,

diagrammed by Duane Huntington and Jiri Skopek in "Artificial Domes-

tic Ecosystem", a booklet which they wrote in 1972.

The use of integrated systems on a self-sufficient level re-

quires an intense evaluation of each case. 'No man is an island' is

especially true ecologically. There is no question that animals vary

in the extent to which they depend upon their herd, hive, pack, flock,

or other such kin group. Within the single species, "man", the varia-

tion is just as great, with different degrees of success at indepen-

dence and self-sufficiency.

A single building or group of buildings which is trying to res-

pond ecologically to the environment may have much greater success if

it makes the effort in conjunction with others. Fuller has said that
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ownership of property and things is 'immoral' in these times of

limited resources. So too, it may be immoral if each 'island' is

equipped with everything it needs to maintain self-sufficiency. It is

necessary to evaluate in very broad terms the relative efficiencies

of various degrees of self-sufficiency, efficiency not only in terms

of personal comfort, but also in terms of consumption of natural re-

sources and energy.

For example, at present, the domestic sector of our society

accounts for about 35% of the energy commercially consumed in this

country. If, through the introduction of 'total energy systems', in-

tegrated ecologically-technical systems and the like (making the

dwelling self-sufficient and using few natural resources in its

function and maintenance), we were able to decrease this amount to

10%, would we really be making progress in lowering the energy and

natural resource consumption of the country as a whole if the result-

ing situation required that the 25% change in energy consumption by

the dwellings was merely transferred to the industrial complex which

was being required to produce the many individual mechanical sub-

systems? We would think not (but we don't know for sure), but such are

the questions and issues which we must continually raise as we deal

with the question of solar energy.
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oVERVIEW OF DESIGN PROBLEMS

Let gs abandon the self-mutilation which has been our way and give expression to the po-
tential harmony of man-nature. The world is abundant, we require only a deference born of
understanding to fulfil man's promise. Man is that unique conscious creature who can per-
ceive and express. He must become the steward of the biosphere. To do this he must design
with nature -

Ian McHarg
(OWN - 5)

We must set a tone and adopt an attitude which will aid us in

approaching the discussion of energy-economic tradeoffs.

Your shelter

There are a number of reasons for the use of the word shelter

instead of the traditional words-home, house, or building. It is

one of the main premises of this thesis that one way of making solar

energy collection and utilization more practical is by changing our

lifestyle, either slightly or drastically. The use of the words house

and home may carry connotations too strong to overcome.

The traditional method of collection and utilization of solar

energy is to assume that 'people never change' and that the only way

to sell the use of solar energy to the public is to make it appear to

the-homeowner that everything in life is as it always wasi he should

hardly be aware that he is using solar energy. Such a situation seems

We talk a lot these days about the
ecological revolution, about new life-
styles, and about new priorities but
we tend to think more in terms of new
versions of old mistakes - safer det-
ergents, cleaner-burning automobile
engines; that sort of thing. I don't
see that very many of us are committ-
ed to any real change, and that's a
shame because those who have tried to
simplify their lives - and I count my-
self as only one of the most timid
among them - seem to share a unani-
mous and very genuine real connection
that real riches - the kind Thoreau
was talking about - increase In direct
proportion to the simplicity of one's
life -

Malcolm Wells
(AES - 434)
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almost impossible. For anyone using solar e4gy, looking for the sun

is going to be first on each day's agenda. Such a person is also

going to go to great lengths to utilize the sun's energy as wisely as

possible. Thus, using solar enrgy requires new attitudes toward the

sun, new attitudes toward the conservation and utilization of energy,

and new attitudes toward home-house-shelter design,

The use of the word shelter also implies that we are 'sheltering'

something from something else. Such is the case. We are making an

effort, when designing and constructing a shelter, to protect our-

selves and our activities from forces which may affect us and these

activities in ways we may not like. (Designs also seek to do other

things of course, such as to enhance the performance of the activities

and to promote sense of place and time). People are protecting them-

se.lves according to their individual needs (cooking, sleeping, sewing,

reading, boatbuilding, etc.), according to their site (animals, vege-

tation, terrain, wind, other people) and according to the climate (it

would thus seem obvious that houses in northern climates would be

different from those of southern'climates, this is often not the

case). By using the word shelter, it is hoped that a person can, be-

fore incorporating the use of solar energy into his structure, define

in greater detail his activities and how-they relate to and interact

with each other, define what the forces are that effect those activi-

ties and how to protect and shelter himself from those forces. If a

person is making or has made the above analysis, then he may perhaps

be ready to take the next step of incorporating ecological principles

into the design. He may want to take the further step of collecting
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and utilizing solar energy.

ecological principles - the site

A person has not satisfactorily analyzed the solution for the shel-

tering of his life's activities unless he has seriously considered

the solution in the context of the site. A'site must be examined as

an element of a much larger order, the earth's BIOSPHERE. The dis-

cussion of the global crisis at the beginning of this thesis began

to examine this relationship. The site, the land of which a person is

steward, cannot be made into an island of itself, except figuratively,

becoming highly self-sufficient, or literally, surrounded by water or

walls. But the survival of the land is dependent upon its interaction

with the entire biosphere.

A lot of words have been written about how the biosphere, the

site, and the shelter respond to and inter-relate with each other, It

is becoming clearer that one of the primary roles of the intelligent

animal, homo sapiens, is the intelligent stewardship of this planet.

More direct use of the sun's energy (such as solar energy collection

and utilization, windmills, solar cooking) than was previously the

case may aid us in achieving a new sensitivity to our inter-relation-

ship with the natural environment. As this attitude concerns owned

land, we may come to regard ourselves as stewards rather than, or as

well as, owners. Ecologically this land stewardship means that if the

The environment - land, sea, air and
creatures - does change; and so the
question arises, can the environment
be changed intentionally to make it
more fit, to make it more fitting for
man and the other creatures of the
world? Yes, but to do this one must
know the environment, its creatures
and their interactions - which is to
say ecology. This is the essential
pre-condition for planning - the for-
mulation of choices related to goals
and the means for their realization -

Ian McHarg
(DWN - 52)

We continually use solar energy whe-
ther we are conscious of it or not.
For example, photosynthesis, sun tann-
ing, insolation on buildings, light,
weather, fossil fuels

if we are collecting solar heat we
sure are going to be eager to see
the sun, and we sure aren't going to

want to waste it once we've caught
iti
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site does not benefit by the construction which we impose upon it,

then we ought not to build.

We are learning how to more ecologically build on the land, both

in a natural way and with technological innovations. Such information

is not contained here (see the bibliography for hints on where to

start). It is possible to find a lot of information on themes such as

planting or harvesting, growing or killing, harnessing streams or

letting them flow by, building on the top of a hill or on its side,

recycling wastes or burying them. I wish that I could cover all these

themes of ecological living, but I have attempted to deal most spe-

cifically with the use of solar energy in shelter design and less spe-

cifically with how the shelter (the built environment) fits more

harmoniously and ecologically into the biosphere (the natural environ-

ment).

& desian ethic

An ecological sensitivity can be regarded as a sort of reverance. It

revolves around a very different' attitude about what is important,

valuable, and beautiful in life. Monuments to man become less imp-

ortanti material possessions become valueless; and a built environ-

ment indiscriminately placed in the natural environment becomes ugly,

no matter how 'elegant' the forms or how 'rich' the materials or how

'tasteful' and 'stylish' the 'lines'.

e Is a building necessary?
* Is there an abandoned building
available?

Here are some general ecological
principles when building:

eUse abundant local materials (to
reduce transportation required,
thereby decreasing energy consum -
ption, and~to:Jmprave local eco-
nomy)

@ Do not use products (except when
they have a long, energy-conser-
vative/producing life) which use
in their construction, maintenan-
ce or function non-renewable nat-
ural resources such as redwood,
gas, petroleum, copper, aluminum,
lead, gold, mercury, silver, tin,
zinc.

*Use long-lived, durable materials
*Return water and waste to the tand
eDo the construction yourself
e Build simply
*Build permanently - make it last,
make it durable

*Use lots of insulation
*Use waterproofing and other pre-
servation methods

It's tempting to start by talking spe -
cifics, about not building in swamps
or on flood plains, about things like
the new 'miracle' insulations, or per-
colation beds, or even earth-covered
roofs, but unless we reach some sort
of agreement on the principles behind
such architecture we may in the name
of ecology do more harm than good -

Malcolm Wells
(AES - 433)

'Different': from today's usual stan-
da rd

the farmer is the prototype. He pros-
pers only insofar as he understands
the land and his management maintains
its bounty. So too with the man who
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The Japanese have long been known for their spiritual sensiti-

vity. Dr. Jiro Harada, in his book JAPANESE HOUSE AND GARDEN, re-

counts an example of such reverance in telling about Rikyu, a

Japanese tea-master (OBH-5):

When his new tea-room and garden were completed at Sakai he
invited a few of his friends to a tea ceremony for the house-
warming. Knowing the greatness of Rikyu, the guests naturally
expected to find some ingenious design for his garden which
would make the best use of the sea, the house being on the slope
of a hill.
But when they arrived they were amazed to find that a number of
large evergreen trees had been planted on the side of the garden,
evidently to obstruct the view of the sea. They were at a loss to
understand the meaning of this. Later when the time came for the
guests to enter the tea-room, they proceeded one by one over the
stepping-stones in the garden to the stone water-basin to rinse
their mouths and wash their hands, a gesture of symbolic clean-
sings, physically and mentally, before entering the tea-room,
Then it was found that when a guest stooped to scoop out a dipper-
ful of water from the water-basin, only in that humble posture
was he suddenly able to get a glimpse of the shimmering sea in
the distance by way of an opening through the trees, thus making
him realize the relationship between the dipperful of water in
his hand and the great ocean beyond, and also enabling him to
recognize his own position in the universes he was thus brought
into a correct relationship with the infinite.

Sensitivity and reverance need not be quite so spiritual or

esoteric. Lloyd Kahn, an author of DOMEBOOK I and DG{EBOOK 11,

summarized some things he's learned about shelter through his work

with domes, (the form of which he has now renounced) (SBN):

1. Use of human hands is essential, at least in single-house
structures. Human energy is produced in a clean manner, compared
with oil-burning machines....
2. ...economy/beauty/durability: time.You've got to take Lt= to
make a good shelter. Manual human energy....
3. The best materials are those that come from close by, with
the least processing possible. Wood is good in damp climates,
which is where trees grow. In the desert where it is hot and you
need good insulation there is no wood, but plenty. of dirt, adobe.
Thatch can be obtained in many places, and the only processing
required is cutting it.
4. Plastics and computers are way overrated in their possible
applications to housing.

builds. IF he is perceptive to the
processes of nature, to materials and
to forms, his creations will be app-
ropriate to the place; they will sat-
isfy the needs of social process and
shelter, be expressive and endure -

Ian McHarg
(DWN - 29)

someone called and wanted to know for
whom I was living

and i said myself
and they said no I mean for Whom
and I said Myself

then someone called and wanted to know
what I will be doing next year

and I said I didn't even know what I
would be doing next second

and they said no I mean what do you -
want to Be.

and I said I Am.

someone called and wanted to know if
people who never had their name
in a newspaper are really alive

and I said yes
and they said but how can that be
and I said great

and then someone called and wanted to
know where I will go when I leave
the earth

and I said I cannot leave
and they said figuratively speaking.

and I said figuratively speaking I Am
the earth.

- Susan Thayer
(PYP - 113)

HE LOOKED UPON US AS SOPHISTICATED
CHILDREN - SMART BUT NOT WISE -

Saxton T. Pope
(Said of Ishi)
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5, there is a fantastic amount of information on building that
has almost been lost.... many of the 100-year-old ways of build-
ing are more sensible hjgb; now.

Malcolm Wells, an ecologist/coni'ervationist and a registered

architect, expands upon these concepts and has developed specific

criteria for evaluating the ecological success of a building (AES-

434)1

A. Build Reverently: Use the most abundant of local materials or
those whose production seems to cause the least amount of damage
to the land.
B. Build simply: Use as few materials as possible. But don't
skimp on important things like first-class waterproofing and
super-extra-double insulation. They'll repay your efforts for
the life of the building, which brings up the need to
C. Build Permanently: Instant domes and throw-away buildings
sound appealing but their use gives nature no time to heal the
wounds of construction before the next round starts. Each time
we move, uproot, repave, regrade, or break ground we tear the
fragile fabric of life on the land, a fabric which may have
taken decades or even centuries to develop. We must build hun-
dred-year and two-hundred year buildings. Inside, their occupancy
and decor can be changed whenever necessary, but for God's sake,
no more ticky-tackyl It's too expensive.
D. Build Naturally: Make sure your project and its site, whether
one house is involved or a thousand, do most of the following#

(1) create pure air (trees, shrubs, vines, grasses, wild-
flowers)
(2) create pure water (slow runoff, mulch, percolation)
(3) store rain water (ponding, percolation)
(4) produce their own food (this is a tough onel)
(5) create rich soil (mulch, compost)
(6) use solar energy (if you solve this one you'll get three
Nobel prizes, and mankind will move ahead three giant steps)
(7) store solar energy (another Nobel for this one, too)
(8) create silence (dense plantings, sound insulations)
(9) consume their own wastes (live organically)
(10) maintain themselves (permanent materials, earth cover,
ood waterproofing)
11) match nature's pace (build permanently)

(12) provide wildlife habitat (dense planting, berries,
shelters)
(13) provide human habitat (a foregone conclusion)
(14) moderate climate and weather (windbreaks, dense groves
of native plants)
(15) are beautiful (if you achieve the first 14, this one will
be automatic)

E. Build Personally: We lost a precious thing when we became the
only animals incapable of building their own nests. The miracle

it occurred to me lately that there is
a profound difference between the way
wood and rock are produced, and the
way plastic foam and flexible vinyl
windows are manufactured. Consider
that a tree is rendered into "build-
ing material" by the sun, with a
beautiful arrangement of minerals,
water, and air into a good smelling,
strong, durable building material.
Moreover, trees look good as they
grow, they help purify air, provide
shade, nuts to squirrels, and colors
and textures on the landscape. On
the other hand, most plastics are
derived by pumping oil from the
earth, burning/refining/mixing it,
with noxious fumes and poison in
the rivers and ocean, etc. Of
course, saw mills and lumber com-
panies rip stuff up with gasoline
motors and saws, smoke fumes, but
it strikes me that the entire pro-
cess of wood growing and cutting
is preferable to the plastic pro-
duction process. What is called for
is tree-respecting forest manage-
ment. This is something I intend
to investigate as soon as I have
time. -

Lloyd Kahn
(SBN)

Tony's zen-like shed, care and crafts-
manship, the first thing he'd built,-
telling how it's being small keeps him
outside a lot and that way he notices
the seasons change....

Lloyd Kahn
(SBN)30



that is a brick will be forever lost to the man who never lays
one. Build with your hands as much as you cane you'll never
regret it.

Altho all of these issues are important, this thesis deals pri.

marily with how to use the sun in your built environment. You won't

find Nobel-prize-winning solutions for solar energy collection or

storage but you will be able to cut down on your shelter's loss of

heat during the winter and collect and use solar energy. Such efforts

will not only reduce your fuel bill but they will also reduce air-

pollution and save our fast-depleting non-rdnewable fossil fuels.

Lying under an acacia tree with the
sounds of dawn around I became more
aware of the basic miracle of life.
Not life as applied humanly to man
alone but life diversified by God
on earth with superhuman wisdom
forms as evolved by several mill-
ion centuries of selection and en-
vironment. I realized that if I
had to choose, I would rather have
birds than airplanes -

(Charles Lindbergh)
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THE HOUSE-HEATING PROBLEM

We recognize the global environmental problem and understand that the

energy crisis (the shortage, its large consumption, its misuse, its

waste, its polluting effects and our inability to harness certain

types of energy) is a large part of this problem. "About 22% of the

nation's energy consumption is for space heating" (NET-321). We will

look at ways to affect this large use, both by decreasing the heat

loss of buildings (houses in particular, here after referred to as

shelters) and by finding ways to utilize the sun's energy, replacing

the use of our rapidly depleting fossil fuels, as a means of heating

and cooling these buildings (shelters in particular).

Let us first understand the economics of space heating.

Seasonal heating cost is the sum of fuel cost, capital cost, and

maintenance:

The analysis starts on the basis of
the traditional economic guide for
the measurement of practicality and
feasible. Other considerations, such
as government incentives or citizen
responsibility (toward helping to
solve the energy crisis) can also be
considered.

SEASONAL
HEATING =FUEL COST+ CAP)TAL COST +MAINTENANCE
COST i/yr
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FUEL COST- .0024 F Lk(iI cn)-j
I I I I L

3 Heat gain from sources other than the trad-
itional heating system: from appliances and
other household functions; from insolation on
the shelter or through windows; from solar en-
ergy collection and ventilation, from fire-
places. Stv/Sr.

rl- number of air changes in the shelter per hour,
depending on family living pattern, weather-
stripping, storm windows, etc.

C Btu/*F: Heat capacity of the air in the shel-
ter (-0.018 x house volume in cubic feet).

RU- Btu/*F/hr: RJ1 i ; Aj represents the various
kinds of area (windows, types of walls) com-
posing the exterior skin of the building; UJ
represents the various heat transfer coef[
icients through the various areas, BTU/Ft -
*F - hr;

D = Degree days/yr: the sum (65 - tai), for all

days, a, of the heating season, where ta is
the average outdoor temperature for each day,
a. (It is assumed that no heat is needed for
outdoor temperatures 65*). See appendii(fl
for some regional values of D.

F = Fuel cost, 0/10 5 Btu; (105 Btu - one therm).
Net heating value: oil at 18.50/gal, natural
gas at $1.30/1000 cu. ft., and electricity
at 0.484/KWh all correspond to 14 4/10 Btu.
These prices rise faster than the price of
living index.

E - Thermal efficiency of fuel used, percent:
Anthracite, hand-fired 60 - 75%
Bituminous coal, hand-fired 40 - 65%
Bituminous coal, stoker fired 50 - 75%
Oil and gas fired 65 - 80%
Electricity 100%

Poor furnace adjustment can reduce the above
figures by 5 to 10. Electricity is really
only about 30% efficient because of genera-
tion and transmission inefficiencies.
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CAPITAL COST = C
100

C- Capital expenditure, in dollars, on the com-
plete heating system, house insulation, storm
windows and doors, weatherstripping, and other
items for heat-saving (glazing, shading, tree
planting, materials used for thermal charac-
teristics, length:width ratio of shelters, or-
ientation of shelters to the sun; some of them
begin to be without numerical value, being
completely subjective in nature - we must
somehow include such values, however we wish
to assign them).

% = %/yr: interest plus depreciation on the capi-
tal Investment.

fNAIWTCAACE 11 tim $/yr: the annual cost of maintenance of the
heating system plus any difference in insur-
ance rates between two possible systems.
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The total seasonal heating cost then becomes

SEASONAL .0024 P D(f J I C
HEATING . + C i + M
CO5T E J

[FUEL COST] + [CAPITAL COST +[MAINTENANCE
(MOSTY FROM NET--325)

A simple application of this equation to minimize seasonal heating

cost is not possible because of the inaccuracies inherent in the

various figures. For example, fuel efficiencies, E, vary depending

on the particular furnace, its operating conditions, the thermostat

on-off setting, and air-fuel ratios (efficiencies are usually lower

than expected). The product AtT, the heat loss through the exterior

skin, varies with quality of construction and with inaccuracies in

experimental valves. The price of fuels, F, is constantly going up,

and its value in 50 years, even in 5 years, is unpredictable. De-

termination of the air infiltration through cracks and openings in

the exterior skin (for example around window sash and door jambs)

and through open doors is educated guesswork.

The capital cost, C, of all items involved in the heat-saving/

heat-providing effort is made complicated by the overlapping, dual

roles of many of the items (such as windbreaks -- walls, fences, or

trees -- which provide other additional amenities). The interest and

depreciation, i, not only varies with the different items under

capital cost but is also a function of prevailing interest rates,
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tax benefits, and accounting practices, not only complicating the

process but also usually tending to make it appear that the lives

of the building and of its heat-saving/heat-providing items are

shorter than they really are (for example, what is the 'lifetime' of

insulation? If its cost is amortized over a 20-year period, is it

then 'worthless'?)

Maintenance, M, is difficult to figure at best. Manufacturers

all claim maintenance-free products. The maintenance of a product

can vary from installation to installation. Insurance costs vary

from year to year, and are usually high for innovative methods such

as solar energy.

But in spite of the complexity of the issues, we can make some

simplifications as a basis for making comparisons and decisions

between alternative energy-economic tradeoffs.

This thesis will first of all try to demonstrate methods of

(1) lowering the heat loss of the shelter (decreasing in the seasonal

heating cost the term AV + CN), (2) of increasing heat gain from

other sources, g, especially through insolation on and into the

shelter, and (3) of balancing that against increased capital costs, C.

The thesis will then try to show the effect of collecting,

storing, and utilizing solar energy on cost, total energy consumption,

and pollution. This will be done through a discussion of previous

efforts in the field and through an analysis of what information is

needed to make intelligent decisions in this field (I will provide a

lot of this information). It will be seen that a percentage of the

capital cost of the collection and storage system plus the seasonal

It Is important that we first reduce
the energy needed to heat the shelter
and only then that we resort to al-
ternative energy-producing methods
(such as solar energy).
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cost of operating this system must be less than the cost of the fuel

which is saved through use of solar energy. By making adjustments in

our economic and attitudinal values, we may find that the use of

solar energy is more practical than previously supposed, when using

traditional economic cost-benefit methods.
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surface. The process works like a thermal rials in a Wild
bucket brigade. and air films.

the insulating
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I C or U. Thus,
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UR ASSIslo
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ie-aquaWe-foot chunk of inch-thick mate-

r wer a 1" temperature difference is
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C9 ireltr,.but'measures the heat flow
dIrough a given thickness of material. If

terized by thei
tion of R-11 m
11 resistance u
R value, the be

R is a simpl
describing all
kinds of dwelli
tion, for exam
the same insul
its material or
in a chart. nex

iterial's k, to find its C just
ickness. E-g: 3-thick insu-
of 0.30 has a C of 0.10. The
I C, the higher the insulat-

L COEFFICIENT OF HEAT
N-A measure of the ability
building section (such as a
the flow of heat. U is the

mal value of all the mate-
ing section, pius air spaces
rhe lower the Q, 'the higher
value..

RISISTANCL-A measure of
the flow of heat. R is sin-

matical reciprocal of either

1/C or R = 1/U
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sistance of a piece of insu-
nplete building section.
oducts are typically charac-
r R values. Thus, a specifica-
eans the insulation displays
nits. Clearly, the higher the
-tter the insulating ability.

common denominator for
types of insLilation and all
ng construction. All insula-
ple, that is rated R-11 has
ation ability no matter what
thickness, as demonstratea
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TABLE 4.5. Air Infiltration Through Windows*(OCA-G)
Expressed in cubic feet per ft of crack per hourt

Double-hung
wood as

windows
(unlocked)

Remarks

I Around frame in masonry wall-not calkedt

Wind Velocity, MPH

5 10 15 20 25 30-I- 8 1 2 23 18 14 20 2 7 315

Around frame in masonry wall-calked? 1 2 3 4 5 6

Around frame in wood frame construction? 2 6 11 17 23 30

Total for average window, non-weather-
stripped, ?g-in. crack and A-in. clearance. I
Includes wood frame leakagel1 7 21 39 59 80

Ditto, weatherstripped l 4 13 24 36 49 63

Total for poorly fitted window, non-weather-
stripped, fA-in. crack and f-in. clearance.
Includes wood frame leakagel1 27 69 111 154 199 249

Ditto, weatherstripped 11 6 19

Double-hung Non-weather stripped, locked 20 45 70 96 125 154
metal Non-weather stripped, unlocked 20 47 74 104 137 170
windows** Weather stripped, unlocked 6 19 32 46 60 76

Industrial pivoted, *-in. cracktt 52 108 176 244 304 372
Architectural projected, *-in. crackft 15 36 62 86 112 13t

Rolled Architectural projected, f-in. crackt 20 52 88 116 152 182
section Residential casement, f-in. crack§ 6 18 33 47 60 74
steel sash Residential casement, *-in. crackif 14 32 52 76 100 128
windows'[ Heavy casement section, projected, ft-in.

crackll1 3 10 18 26 36 48
Heavy casement section, projected f-in.
crackF,5 8 24 38 54 72 92

Hollow metal, vertically pivoted window** 3 88 145 186 221 24:

air infrlrbon and wind cottrol

'-WeATHERTRIP COMPIX,-TLY!
-- USE F:WER OPERA BL E WINDOWS; QsX, INST4TEAt

'oRAg.M1 WAI.LS' TO YENTILATE.
-- COVER WINDOWS WitTI tKsuLATEb 5HUTTfR6 (oR

CUTAIMS, SHADES, eTC) 4,T NiTE.

HEAT LOSS DUE To AIR IIPILTRA-ON, R,
TI*00GN WINDOW AND bOR CRACKS IS
GIVEN AS

w A1R town-rtArIN PC IHOUR,At *iVEN
1T4 T"iSKThI..5. To 11- EFTj CUBSc, Ffer
OF Alit PCR UR PER Poor IgN6GTIH
Or CRt^cK(!-V|hr-/ ft)

C- SPeCr-PlC 1EAT OF AIR,0.M4 1111.
a i PENSIT oF AIR.,'tt .0fC i/ft.
L - LNG-TI OF CAcyc, AePR6X(MAT4y TfEW.

som OF ALL- LMNGrTHS Of WINOQW-Te-
. FRAME CO6NECT10NC(U%.VALlq TFtE

PERfIMaTCR OF THe WINoW( OR DeOV)
'iI(EN Im PaerEt

- i DoeT-Or boo TAMrASvE.
Sia t E.ENCC, Pt4,aEE FAME(M~foF. O,
FORt A TOTAL $5ATgu' stAs'ON,

* From "Heating Ventilating Air-Conditioning Guide 1957." Used by permission. -NS MCoV IVC FQbUC O
t The values given in this table, with the exception of those for double-hung and hollow netal. cjs&.e /C

windows, are 20 per cent less than test values to allow for building up of pressure in rooms and atre
based on test data reported in the papers listed in chapter references.

t The values given for frame leakage are per foot of sash perimeter as determined for double-hung F0R Ait INFtLTRAlIOK HEAT LOSS fut
wood windows. Some of the frame leakage in masonry walls originates in the brick wall itsvlf In-SISAO W A
cannot be prevented by calking. For the additional reason that calking is not done perfectly
deteriorates with time, it is considered advisable to choose the masonry frame leakage values for
calked frames as the average determined by the calked and non-calked tests. (1-DPJ Rtulzswsw

I The fit of the average double-hung wood window was determined as i-in. crack and ,.
clearance by measurements on approximately 600 windows under heating season conditions.

The values given are the totals for the window opening per foot of sash perimeter and inciide K A eI4KTANT 2 1 d
frame leakage and so-called elsewhere leakage. The frame leakage values included are for w/, (0. 6/A/f) s4
frame construction but apply as well to masonry construction assuming a 50 per cent etficiene% xi
frame calking.

' A -in, crack and clearance represent a poorly fitted window, much poorer than average. Rf U&IN& ThE. IA INFILTRATION Cdr
** Wmdows tested in place in building. CHART (6N TtlE. tlur PA &I)ANb THE.
ttIndustrial pivoted window generally used in industrial buildings. Ventilators hiori",tiry

pivoted at center or slightly above. lower part swinging out.
:tArchitecturally projected made of same sections as industrial pivoted except that ouutuiI

framing member is heavier, and it has refinements in weathering and hardware. Used i --
monumental buildings such as schools. Ventilators swing in or out and are balanced on side --r:! Z E .TW6EN WEATKtL Th1PPeP AN b N4O-
f-in. crack is obtainable in the best practice of manufacture and installation, a -in. crack cunsiul de fArr-9t vrKriF'P v iN bOWS. F4I TKE
to represent average practice.

iI Of same design and section shapes as so-called heavy section casement but of lighter wK; MPtXS, WIND Vl-OcArY IS 15"nip).
.-in, crack is obtainable in the best practice of manufacture and installation, ft-in. crack constir r~ fljigf A x pe.'rhE DAYC vt

to represent average practice.
Made of heavy sections. Ventilators swing in or out and stay set at any degree of omn-i- .5 A AN I 1= 4 F

-in, crack is obtainable in the best practice of manufacture and installation, i-in. crack conl..' TA; A TttE*.M Oo'84i, O N
ered to represent average practice. C

i With reasonable care in installation, leakage at contacts where windows are attached to o // oojmu; A tA1J..f PLICATI&J
framework and at mullions is negligible. With ft-in. crack, representing poor installation. lau -
at contact with steel framework is about one-third and at mullions about one-sixth of that 4 en I-F: GTOR OF Z- IS I,5b, THL EKMPLLC
industrial pivoted windows in the table. AR.L M TTit tAbL P1OL.bWtN& OFN T.
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* AIR INFILTRATION COST CHART ''"~____i _ _
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SOLAR HEffT GAiN

Since we are concerned with decreasing total heating

demand, we should at the initial design stages, at-

tempt to increase the heat gain from solar insolation

(but attempt to decrease it during hot weather).

Customarily, solar gains have not been entered -into

the computation of seasonal heating demand. When

engineers size a furnace, they design for the coldest

days when there is no sun. This is right and logi-

cal, but building designers should have 'tools to

help them to reduce total seasonal energy consumption

for heating. Unfortunately, most research done on

solar gain is for hot weather conditions to aid in

making design decisions for cooling and refrigera-

tion. The data which is applicable to heating is

difficult to understand and even harder to use in the

design process. Translation of this data into useful

design tools is is partly begun here but extensive

work in this area would be of great benefit in help.

ing to lower our energy needs.

Openings in shelters, once without the benefits of'

glass, were used for the passage of people and their

accompanying possessions, for the passage of air pro-

viding natural ventilation, and for the passage of

natural light to the interiors. These openings also

allowed the people to look out, an opprtunity which

most of us require when we spend- time indoors.

But the openings also prevented the people from

having control of some of the detrimental qualities

of openness: animals and bugs had free access; the

inside tempetature was difficult to regulate; air

- movement, humidity, and air cleanliness could not

be controlled.

Although pieces of glass

have been dated as far back

as 2300 BC, its use in win-

dows probably -did not occur

'until the time of Christ.

Only in the last 75 years

has it become economically

and technologically possible

-to produce and use panes of

glass larger than eight or

SECTIOM THROUCH GLASS twelve inches on a side.tsw St~/Av. ON A vjegch&..

*4r~a &VTUZ@W St4 M16b- As technology and eco-
SUI~AWSO &T "014 LAT~rV&4A 

51WA"IM& sour"eIiST noics improve, glass is



increasingly being used to replace the traditional solid (masonry or

wood) exterior wall. But the design problems accompanying this substi-"

tution have often been ignored.

Besides reducing the electrical energy required for lighting,

glass exposed to sunlight admits heat in the manner shown in the dia-

gram on the previous page. Ex.perimental houses have been built with

the major parts of south-facing walls being entirely of glass. G F

Keck designed such a house near Chicago that was sponsored by Illinois

Institute of Technology.' Heat savings may have been as high as 18%,

and the house became overheated on clear winter days.(SHH -. 69) Other

'solar housee'have been reported to have saved up to 30% in fuel bills.

The 'greenhouse effect' is primarily responsible for this phenomenon.

Glass readily transmits the short-wave light radiation as shown in the

graph on the right but does not readily transmit. in the other direction

the long-wave thermal radiation resulti'ng when the light energy changes

to heat energy as it hits an interior surface.

The ASHBAE Handbook of Fundamentals gives massive tables on solar

heat gain for latitudes 24, 32, 40, 48, and 52 N for the twenty-first

day of each month. But these erudite tables are next to impossible for

a desianer to use as a source of obtaining a quick estimate of solar

heat gain. The designer should be able to find out by looking at a

chart (or several charts), how many Btu's of solar energy will enter

through a wall or window detail.

The HANDBOOK discusses means of predicting 'Solar and Total Heat

Transfer Through Fenestration Areas'. (HOP -476,7) This article ex-

ANLE OF INCIDENCE, DEGREES

.g. 12 Transminance of Solar Radiation Through
Glazing Materials for Vorkos; Aroles of Inridence

(ASHRAE GUIDE -191)
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plains that heat transfer through glass is affected by several factors,

among them:

1. Solar radiation intensity,I, and incident
angle, e . (figure 1)
2. Outdoor-indoor temperature difference., When
the sun is not shinging, heat flows according to
the usual laws of heat transfer (primarily)s

-H - 5(ti-t.)
This phenomenon was discussed in the section, "Heat
Loss Through the Exterior Skin"

The glass becomes hot when the sun shines on it, and heat then

flows by radiation and convection from its outer surface to the atmos-

phere and the surrounding environment, and from its inner surface to

the room air. The rate of heat flow inward by radiation and convection

from an unshaded single glass ist

total heat admission _ solar heat + condtictioi
through glass gain heat gain

H- :(N{)Xfjj SMAR~ +Ua. -ii)

N; is the inward-flowing fraction of absorbed radiation. For

unshaded single glazing,N; =J., and H becomes

c(=absorptance of solar radiation by the glass, percent; the
opposite of reflectivity. (See Appendix IV for values of
some common materials)

t=ingident solar radiation, Btu per suare foot per-hour (Btu/
ft /hr).

HT, f.,t, RbI; were al defined before.

3. Velocity and direction of air flow across the

t,, jotr:T
FOR 4O OiTA' .

flt. FACGE

SOLAC A'-T tTv:. . - Oo 3 SOLAR AZiMIJT11* 4 , t 30
ZENTH ANL. Z L OOV INCIDENT AC-E. e.4 QoP
WALL AZiMUTN. 'V L SOP WALL - SOL AR AZIMUTH 1. HOP

To find the wall-solcr azi.muth for other orientations,
For walls facing Ecst of South: For walls facing' West of South:

pf=0-* .m.' =4 0am

Treat negative a->e: of -, as if they were positive. If 1, is greater than 90
deg, the sur face is in the sSade.

Fig. 3 .... Sotar Angles for Vertical and Horizontal Surfaces
(HO F)
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exterior fenestration surfaces. This phenomenon
was also discussed earlier in this section under
"Wind Control".
4. Low temperature radiation exchanwe between the
surface of the fenestration and the surroundings.
This phenomenon is difficult to predict - it is
assumed to be included in the outer and inner sur-
face coefficients (air films), f and f.

Since L, It, and fb vary greatly, primarily because of the inci-

dent angle between the sun and the glass, the HANDBOOK has provided

the tables previously mentioned. (HOF - 470-4)

Extensive work on the concept of 'solar house' was done by F W

Hutchinson at Purdue University. In 1945, under a grant from Libbey-

Owens-Ford Glass Company, two nearly identical houses were built side

by side. The only difference was that one of the houses had consider-

ably more south-facing glass (two 4" clear glass panes separated by a

}" air space; I = 0.53 Btu/OF/ft2/hr). (SHO - 55) During the

first winter season, the solar house used 16.3% more heating energy

than did the house of orthodox construction. Inspite of this, Hutch-

inson reported in May 1947 that "the available solar gain for double

windows in south walls in most cities in the USA is more than suffi-

cient to offset the excess transmission loss through the glass."

(SHAR - 90)

The main design problem of south-facing windows becomes that of

making sure that the thermal heat capacity of the inside of the build-

ing is great enough to absorb and store the excess heat so that the

interior space does not require venting. The better the insulative

value of the walls and windows, the less heat will be lost through
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hat transmission and the greater will the heat

capacity needto be. This is shown in the graph

where the inside temperature in the unheated

solar house was 800 on January 15 while outside

it was below freezing.

It must be pointed out that large glass

areas require a larger first cost of a heating

system because of the extra heat loss involved

through the glass which would otherwise be solid

wall. Also, for a given latitude, solar inten-

sity does not vary (although cloudiness does),

but heat loss does vary according to the outside

temperature. It follows then that the use of

glass in mild climates has greater potential

for reducing seasonal heating demand than it does in

the same latitude.

The quantity of solar energy which' gets through

.LIT

'0-----

r
10 -- --

hi I

I I I !
0 a~a4 0 12 4 0

Fig. 3. Test results from operation of both houses without any heating. (S14 A R - 92)

cold climates at

a south-facing

window on an average sunny day in the winter is more than that which

is received through that same window on an average sunny day in sum-

mer. There are a number of reasons for this:

1. Although there are more daylight hours during
the summer than during the wintsr, there are more
hours of possible sunshine on a south-facing win-
dow in wintgr than in summer. For example, at
latitude 35 N, there are 14 hours of possible sun-
shine on June 21, but the sun remains north of
east until after 8:30 am and goes to north of west
before 3:30 pm, so that direct sunshine occurs for
only 7 hours on the south-facing wall. But on
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December.21, the sun is on the south wall for the
full 10 hours that it is above the horizon.
2. The intensity of insolation on a plane normal
to the sun's rays is approximately the same in
summer as in winter. The extra distance that they
must travel through the atmosphere is offset by
the sun's being closer to the earth during the
winter than during the summer.
3. Since the sun is closer to the horizon during
the winter, the rays strike the windows at more
nearly right angles than they do in the summer
when the sun is at a higher altitude. At 350N,
150 units of energy may strike a square foot of
window during an average winter hour; during the
summer this number would be 100 units.
4. Winter sky radiation (due to the scattering
effect of the atmosphere) is twice the amount of
summer sky radiation.
5.-The more nearly the sun's rays hit the window
at right angles, the greater the transmittance
(shown earlier). They are more nearly so in
winter than in summer.
6. With proper shading, the window can be shielded
from most of the direct summer radiation.

Hutchinson's conclusions are that more than -twice as much solar

radiation is transmitted through south-facing windows in winter as in

summer. If in summer the windows are shaded, the difference is even

greater.

The following chart, prepared by Hutchinson, can be used as a

design tool to approximate solar heat gain through windows for the'

seven-month heating season. The effects of window type and latitude

are relatively small compared with normal outside temperature and per--

cent of sunshine.

These two values can be found in the table on the page following

the next for about 48 cities in the US. The first'column gives the

ratio, F, of the average number of sunshine hours during the heating
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Fig. 5-Seasonal saving (or loss) attributable to 1 sq ft of double glass
window replacing an equal area of south wall with solar overhang of roof 1R BS - IG

(Note that the opaque wall area in not credited with any effective seasonal solar energy utsiomat) 

Example: A window conslstgef
two identical sheets of /8 i4
plate glass separated by a , in
space is to be used in a
which has an overall coefflci oef
heat transfer of 0.165 Btu/(hb) (sq
ft) (F). The normal outside ton-
perature for the locality is 85 F
and the sun shines for 65 per cent
of the maximum possible hours be-
tween October 1 and May 1. Lati-
tude is 40 degrees.

Solution: Enter bottom of the
upper left quadrant of Fig. 5 at the
heavy vertical line which is iden-
tified as applicable to % in. glass
with 1/ in. air- space at 40 deg
latitude. Rise along this line to
intersection with line for 65 per
cent sunshine then move horizon-
tally right (see dashed example
line) to enter upper right quadrant.
Now re-enter the figure at value of
U,==0.165 on scale at right of -
lower right quadrant. Follow the
directrix line from point of entry to
intersection with vertical for %8 in.
glass, 4 in. air space, 40 deg lati-
tude; then move horizontally left
'o intersect curve for t,=35 deg
and from this point move vertically
upward to intersect the horizontal
line already established in the up-
per right quadrant. The point of
intersection of these two lines gives
the answer as 107,000 Btu saved
per seven month heating season per
square foot of window.
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season (October 1 to May 1) to maximum possible

sunshine hours. The last two columns show

transmission losses through single and dou-

ble windows; such losses are for use in sizing

the heating plant for a shelter but. have little

significance with respect to operating cost.

The fourth and fifth columns give net gain

of energy (a negative number reprpsents a loss)

resulting in the use of one square foot of

single or double glass. All 48 cities show

net energy gains through the double glass. The

losses shown through the single glass in some

cities would have to be compared (using Hutch-

inson's chart and the 'Heat Transmission Cost

Chart' in this thesis) with the heat loss thru

the wall it wa-s replacing. The approximate

seasonal heat gain is the product of the value

in column four or five times the window area

times the number of hours in the heating sea-

son. Of course, there will be many days when

all of this heat cannot be used. Often, too,

other factors such as human desires to pull a

shade or close the curtains will reduce solar

gain. The analysis does not take into account

solar gain of south walls. Hutchinson's work

showed that this factor can be significant.

(SHAR)

City

1. Albany. N. Y.
2. Albuqueeque. N. M.
3. Atlans. Ca.
4. Baltimore, Md.

. inPingham, Ala.
S. slmarck. IN. D.
7. 1oise, lId.
8. Boston. Mass.

t. Burlington. Vq.
10. Chattanoega. Tens.
Il. Cheyenne. Wye.
12. Cleveland. Ohio

13. Columbia. S. C.
14. Concord N. H.
15. Dallas, Texas
16. Davenport. Iowa

17. Denver, Colo.
1. Detroit, Mich.
1[. Eugene, Ore.
20. Harrisburg. Pa.

21. Hartford. Conn.
22. Helena, Mont.
23. Huron. S. D.
24. Indianapolis. lad.
25. Jacksoavile. Il.
29. Jollet. 31.
27. Lincoln. Meb.
20. Little Sock. Ak.
29. Louisville, Ky.
30. Madison. Win.
31. Minneapoll. Miss,
32. Newark. N. 1.

33. New Orleans, 1.
34. Phoenix. Aris.
35. Portland. Me.
36. Providence, L.1.

37. Raleigh, N. C.
36. Reno, Nov.
39. Richmeond, Va.
40. St. Louis, No.

41. Salt Lake City, Uisth
42 San Francisco. Cal.
43. Seattle, Wash. .
44. Topeka. Kan.

45. Tulsa. Okla.
49. Vicksburg. Miss.
47. Wheeling. W. Va.
48. Wilmington. Del.
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sol-air temperature

The heat flux, H , into an opaque sunlit surface is

H= oIt +ha (tt)-6A-

H ,o, 74, and 4e have been defined.

ho=coefficient of heat transfer by radiation and convection at the
outer surface, Btu per deRree Fahrenheit per square foot per
hour (Btu/0F/ ft2/hr).

bs=outdoor surface temnerature, depree Fahrenheit (OF).
E=emittance of the surface, percent. The ratio of the ability of

the material to radiate its heat to the ability of a blackbody
(E=1) to do the same. (values for some materials are given in
Apcendix IV)

AR=the difference between the longwave radiation incident on the
surfice from the sky and the surroundings, and the radiation
emitted by a black body at o tdoor air temperature, Btu per
scuare foot per hour (Btu/ft /hr).

The sol-air temperature is an imapinary temperature of the out-

door air which eliminates the radiation terms in the above equation by

combinina them with the convective term so that the resultant tempera-

ture, te, is the one that the surface 'sees' because of both convection

and re-iation. In terms of te , N becomes

4= ho (te-t)
and is therefore

to.It/h. - ea R/h.

Table 25 of the ASHRAE HANDBOOK (HOF - 490) gives sol-air temp-

eratures for July 21 at 400 N latitude. For horizontal surfaces,

ARo20 tu/'t 2 /hr, Ci1, qnd %%, 3.0 Btu/OF/ft 2 /hr; R/A- -70F. For

verticil surfaces, 6ARA",0.
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The parameter 0/ has been given two values; 0.15 is for light-

colored surfaces, and 0.30 represents the maximum likely value (for

dark surfaces).

For example, at noon, on July 21, when the sun is shining on an

average sunny day, 109 Btu are striking a south-facing surface at 400N

latitude. If the air temperature is 900F and the surface Is light in

color, the surface 'sees' a sol-air temperature of 1120P.

As with the solar heat gain tables, this table is not a quick

useful design tool. Efforts should be made to make it possible, in

conjunction with solar heat gain information, for the designer to

readily adjust surface orientation, size, color, and composition,

knowing the effect of each decision on the heating (or cooling) demand

of the interior space.
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heat sto'rage capacity of materials

Not much has been written about the role of the total heat capacity of

buildings in diminishing the effect of fluctuating outdoor temperatures-

on indoor temperature and the resultant diminishing heating or cooling

de'nand. We know that heavy stone, earthen, or concrete structures

seem cool during warm weather and seem warm during cool weather. One

primary cause of this is the thermal heat capacity of materials. An

abbreviated explanation of this is that materials absorb and store

heat as they increase in temperature, in proportion to the product of

their specific heat times their density (see the table). Victor Olg-

yay in DESIGN WITH CLIMATE describes this phenomenon. Beginning on

this page and continuing on the following four pages, are a part of

his explanation. (DWC - 115-9) Research and translation of existing

information into usable design tools is necessary in order to make this

factor part of our design criteria.

9098,EAtI.OfG.C.Assr

au-r waOa oxs ,1700 U-Ke urs

ab - Comparnison of Various Low Cost
Materials on an Equal Volume Basis

Heat Capacity
Specific Heat Density of One Cu Pt.

Material Btu per Lb Lb per Btu per Cu ft
per F Cu Ft per F

Water 1.00 62.5 62.5
Iron, scrap 0.112 489 55 .
Concrete 0.27 140 38
Brick 0.20 140 "8
Magnetite, iron ore 0.165 320 53
Basalt, rocks 0.21) 180 36
Marble 0.21 180 38

RESISTANCE INSULATION OR HEAT
CAPACITY EFFECTS

To evaluate the desirable thermal behavior
characteristics for materials in a given climatic
region, a study of the yearly temperature con-
ditions with their relation to comfort condi-
tions is needed. From the yearly maximum
temperature range a direct relationship can be
established to the needed insulation value; and
from the daily temperature range a parallel
correlation with heat-capacity requirements
can be confirmed. On the latter, Leroux 7 rec-
ommends that in zones where the diurnal
range is 6 to 80 C (11 to 14* F) the construc-
tion should be of 300 kg of heavyweight ma-
terial, such as concrete or masonry, per cubic
metre of the building; for a range of 10 to
120 C (18 to 22" F) 600 to 700 kg per cubic
metre; and over 20* C (over 36* F) 1200 kg or
more per cubic metre. These recommendations,
although correct in principle, have been
criticized for application in particular.8 We
will offer below a more detailed approach to
the problem.
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OPEN WOOD BUILDING

The relationship of comfort conditions and
diurnal temperature variation can be illustrated
with regard to desirable material characteristics
in some typical examples. Heat capacity is
essential when the slope of the daily tempera-
ture curve (which is equivalent to amplitude)
is steep and the resulting flattened daily curve
remains in (A), or near (B) in the comfort
zone. Where the mean outdoor temperature is
expected to be 85* F or higher, heavyweight
construction by itself would stabilize tem-
peratures in the discomfort range. However,
with steep curves there is the possibility of us-
ing low diffusivity materials to absorb the
thermal conditions near to comfort situations
(C and D), and to maintain them during the
extreme periods of the day (with measures
such as closing openings to trap shade tem-
peratures or heat peaks).

Both heat capacity and resistance insulation
values are required in zones where seasonal
and daily variations are excessive (E). Under
conditions where the seasonal temperatures
are extreme (F) the importance lies in the
insulation value, and comfort conditions have
to be maintained by mechanical means. Here
the daily temperature variation is relatively
negligible; however, if it is rather steep, inter-
nally placed heat capacity materials can pro-
vide a diurnal balancing effect.

Two examples illustrate the marked differ-
ences in buildings of different materials under
similar conditions. Shown is a comparison
between an open, light structure and a heavy,
closed one, in locations where the wooden
building fluctuates with the ambient outside
temperature, reaching 25' daily amplitudes.
The closed brick house stabilizes the indoor
conditions with low mean temperatures where
the maximum diurnal cycle does not exceed
90 variations.

9
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TIME LAG AND CALCULATION
METHODS

Dady' Heat Balance of Structures. In an ex-
ample a comparison is shown between the be-
havior of light and heavyweight structures
under the same climatic circumstances. The
calculations were made for a housing develop-
ment in Baghdad, Iraq. The upper left graph
shows the heat transmission curves for wood
construction walls (U = 0.268, lag 2 hrs, color
light) under sunlit conditions in midsummer
(July 21). The curves on the lower left indi-
cate heat flow behavior of 9" native Iraq brick
w alls under the same conditions but with 10
hrs time-lag characteristics. Note that although
the total daily heat transmission of the build-
ing components at both structures is the same
(having equal insulation values), the amplitude
and the period of transmission is markedly dif-
ferent. The total daily heat flow behavior of
the structures is summarized in the upper
right graph; under it the shade-temperature
cuive illustrates the corresponding outdoor
conditions. Note that the light structure heats
up during the hot daytime hours (from 7 AM

till 7 PM) transmitting 450.5 Btus through
the differently oriented unit surfaces, while the
heavyweight structure transmits only 331.4
Btuis during the same period. Here the heavy-
weight components are markedly advantageous
in the daytime heat balance.

CALCULATION METHOD
LAG REQUIREMENTS

FOR TIME

The "shift in phase" effect of capacity insula~
tit \ ices the leew\ay to delay outside im-

p - , i heat lIoad pe-riols to a cooler tim1e
IJ11.:nsmIlit the niuiime li \ teml-

Fera. thr dl. me heat jr.sk Gener-

all it can be said that in zones *t L:.:h d arti.il

0

0

,A

0

0

0 2 4 6 8 10 12 14 16 18 2C 2

H

231. Behaviour of light wood structure, Iraq, July.
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234. Sol-air surface temperatures, Phoenix, July.
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235. Rearranged sol-air impacts according to desirable
time lags, Phoenix, July.

HOURS

236. Comparison of heat impact on structures with and
without use of time lag, Phoenix, July.

variation an approximate half-day time-lag
shift (that is, the delay of night coolness to the
day and the day warmth to the nighttime) will
result in daily thermal balance. However, as'
the sun's impact heats the various surfaces at
different hours, the problem has to be studied
in detail.

Such an analysis is applied for Phoenix,
Arizona sumnimer conditions (July 21, at clear

day, average temperature conditions, a = 0.7).

The sol-air temperature impacts on the dif.
ferently oriented surfaces are indicated. Here
the accumulated heat load concentrating at
the early afternoon hours is evident. In order
to shift the impacts to cooler periods different
exposures require different time lags. The
heaviest load falls on the horizontal surface
(roof), needing a shift of 1H to 12 hours. The
load on the east exposure would need from a
minimum 1V2 to an optimum 17 hour shift to
avoid delivering its heat during peak hours,
which indeed would be an extreme require-
ment. Therefore, the practical solution is to
have no lag at all for the east, and to let the
impact be felt at the inside while the daytime
temperatures are still low. The south side has
little importance; the desirable shift is mini-
mum 7 hours, optimum 10 hours. The west
side which receives the heaviest load among
the wall surfaces should have a minimum lag
of 5, an optimum shift of 10 hours. The north
wall has the least importance with regard to
lag characteristics, however a 5 to 10 hours'
delay helps somewhat in the daily heat distri-
bution. The sol-air effect distribution delayed
by optimum time lag requirements is shown.

The conseqjuent total heat impacts in a con-
struction unit resulting from the use of opti-
mum time lags are compared with an un-
balanced structure. The chart, it should be
remembered, is computed with sol-air values
excluding the insulation effect of the materials,
hence directly applicable only for lag calcula-
tions. In the graph tlhe full line indicates the
impactsconvcyed by the heavy construction,
the broken line that of the light structure. The
relationship of the curves with the outdoor
temperature is illustrated by a dotted line.
Note that during all daytimte hours (7 AM 10

7 PM4) the heavy stricturtre will transnii 1ower
temperatures to the i iterior than th lie bt 'is-

struction. In thi cvensing1, w\hen11 thek : 4
structure cools oil. the tu5t1do , 1(



drop oilers the possibility for the heavy con-
struction to utilize ventilative cooling. The
graph also indicates that under the analysed
comfort conditions the most balanced indoor
situation would occur in a house designed so
that daytime living areas were built of heavy
materials and nighttime areas of light mate-
rials.

OVERALL HEAT TRANSMISSION
COEFFICIENT (U) AND TIME LAG

CHARACTERISTIC DATA FOR
HOMOGENEOUS WALLS10

Material

Stone

Thickness,
Inches

8

12

16
24

2
4

Solid Concrete 6
8

12
16

Common Brick

Face Brick

Wood

Insulating Board

In the above table the U
surface conductance of 4.0
ance of 1.65 Btu/sq ft/hr

U value,

Btu/sq ft/hr
0.67

0.55
0.47

0.36

0.98
0.84
0.74
0.66

0.54
0.46

0.60
0.41
0.31
0.25

0.77

0.68
0.48
0.30

0.42
0.26

0.14

0.08

0.05

Time lag,
Hours

5.5
8.0

10.5
15.5

value is based upon an outdoor
, and an indoor surface conduct-
For composite constructions to

the individual sums of the time lags an additional estimated
lag should be added. It is customary for two laye. aid light
construction walls to add I hour more; for three or more
lby ers, or very heaisy constrlitions. one hour additional lav

is preferred

BALANCED INSULATION

The reduction of heat flow is most effi-
ciently achieved by the resistance-insulation
property of the material. The desired insula-
tion magnitude is in direct relationship to the
difference between outside thermal conditions
and comfort requirements. This relationship
can be based conveniently on the design tem-
peratures of the locality; and expressed as the
"insulation index." However, different expo-
sures, as a result of the sol-air action, have
different temperature impacts, diminishing or
adding to the thermal heat load. By using
"balanced insulation" values to account for
these differences, interior thermal conditions
may be equalized.

The calculation method for balanced insula-
tion effect is illustrated for four localities. In
the middle of the graphs is the plan of a
structure. Clockwise at each side the hours of
the day are indicated. In the main directions
the winter and summer sol air temperatures
are charted on unfolded elevations. The tem-
perature curves, computed for sunny days at
average conditions for light surfaces, are re-
lated to winter (70') arid summer (74*) com-
fort conditions. The section of the structure is
shown below to indicate roof impacts.

The design condition for each season was
selected according to the duration of under-
heated (when from 7 AM to 7 PM the tempera-
ture is mostly under 700) and overheated days
in the year. This underheated versus over-
heated relationship was found to be: in Min-
neapolis 75% to 25' (, in New York 72% to
28%, in Phoenix 37 . to 631. and in Miami
12% to 88'. Accordingl, in Minneapolis and
New York the cold condition (Jan. 21), and in
Phocnix and N11!n the hot conditiom (July

To e d c1 ndi th)t t tion s c icoatiVe

to ((w hI Yt ("nditimis (Onititilie the iali

objective in regard to balancing. The average
daily deviation from 70* (in winter) or 740 (in
summer) gives the measure for relative insula-
tion values in cases where the seasonal impacts
impose marked stresses on specific sides, such
as the horizontal surface (R = roof) in sum-
iner at higher latitudes, the evaluations were
calculated on a yearly basis. This results in the
following relationships at different exposures:

E S W N R

Minnteapli's
New Yoik
Phoenix
Miami

The values marked with t were related to winter loads,
those with $ to summer loads; values indicated with * were
adapted according to the duration and impact both o!
winter and summer loads.
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orientation

Since solar radiation strikes differently oriented surfaces with diff-

erent degrees of intensity, it follows that a shelter might benefit

if its axis were oriented in such a way so as to receive this heat in

the winter and shed it in the summer. Henry Niccolls Wright studied

this possibility in "Solar Radiation as Related to Summer Cooling and

Winter Radiation in Residences". (SRR) His conclusions for New York

City are summarized below:

The maximu heat value of solar radiation is
350 Btu/ft'.

The maximum heat value of solar radiation is the
same throughout the year, probably due to the
lower humidity in winter (less atmospheric absorp-
tion). Also, the earth is closer to the sun dur-
ing the winter.

The greatest average heat value reached. in winter
is in the late afternoon.

"The effective solar radiation on a wall facing
south is almost five times as great in the winter
as in the summer."

"The effective radiation on a wall facing west-
northwest is six times as great in the summer as
in the winter."

"The greatest effective solar radiation on vertical
walls occurs in the winter."

Therefore, "houses placed broadside to the south-
southwest, with most of the important rooms and
large windows located on that side - and with a
minimum of window area on the west-northest end -
will be a great deal easier to cool in the summer,
and more pleasant to live in and easier to heat
in the winter."

The following two figures (SRR - 5,22) are self-explanatory. In 66
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OLD PLAN:
Original design in worst

hOT IN SUMMER

Sun-heat in Living Room,

MAXIMUM

AVERAGE

R E SUJLT S NEW PLAN:
orientation I Revised design in best orientation

SUN -HEAT:

SUN - HEAT:

COLD IN WINTER

Sun -heat in Living Room.

MAXIMUM SUN -HEAT:

wN
AVERAGE SUN- HEAT:

-#I-

COOL IN SUMMER

Sun-heat in Living Room.

MAXIMUM SUN -HEAT:

AVERAGE SUN-HEAT:

i

WARM IN WINTER

Sun -heat in Living Room.

MAXIMUM SUN-HEAT

AVERAGE SUN-HEAT



"Helio rh ermic " Site Planning.



the first, solar radiation on a house of 'worst' orientation is com-

pared with that on one of 'best' orientation. In the second, wind,

shadows, view, and insolqtion are considered in the site planning of

'suburbia' (1930's). Winter winds are minimized and summer winds are

maximized. Shadows never hit another house. Orientation takes best

advantage of insolation.

length-width ratios

A shelter benefits in solar heat gain because of its

orientation; it also benefits because of different

ratios of its length to its width for the same rea-

son. The 'optimum' shape loses the minimum amount of

outward movinq heat and gains the maximum amount of

solar heat in the winter, and accepts the minimum

amount of solqr heat in the summer. Olgyay (DWC) has

shown that

in the upper latitudes (400 N +), south sides of
builiings receive nearly twice as much radiation
in winter as in summer. East and west sides re-
ceive 2i times more in summer than in winter.

Lower latitudes (350N-) gain even more on south
sides in the winter than in the summer. East and
west walls can gain two to three times more heat
than the south, in summer.

Well-insulated buildings and those with shad-
in7 devices show even wreater variances but those
with smqll windows or which are shaded show less.

"The square house is not the 'optimum' form
in any location."

All shapes elongated on the north-south axis
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work with less efficiency than the square one in
both winter and summer.

The optimum lies in evey case in a form elon-
rated along the east-west direction.

The graph on the following page (DWC - 89) shows

"basic forms and building shapes in different regions."

The four different climates are'represente.d by: cool,

Minneapolis, 440 N; temperate, New York-New Jersey,

400; hot-arid, Phoenix, 320; hot-humid, Miami, 240.

"Heat gains" represents the Btu impact per day on the

four sides and roof of a house as a function of solar

radiation and surface temperature, as it affects the

heat gain of the interior. "Optimum" ratio (eg, 1:1.1

for 'cool' climites) maximizes benefit from the sun in

winter, minimizes it in the summer. "Elasticity" ratio

(e.:, 1:1.3 for 'cool' climates) shows the "elongated

shape that is subjected to the same heat impacts as

a square form". (DWC - 88)
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Although lengthy histories of several experimental solar-heated houses

are given in Appendix 1, the following summary is in order.

The first solar-heated house was built at Massachusetts Institute

of Technology in 1939 through a generous donation by Dr. Godfrey L

Cabot, MIT '81. The puhlication by Hottel and Woertz, "The Performance

of Flat-Plate Solar-Heat Collectors", is still the basic guide for

flat-plate collector design.

MIT's House II tested the notion of combining the operations of

heat collection, storage, and Aelivery to the heated space by exposing

a storage 'wall' to the sun. The collected and stored heat was then

radiated or convected to the living space. Remodellina of this struct-

ure became MIT House III in 1948. The house was successfully heated,

larxelv by solar energy, for several years (a married student and his

family lived in it).

Using a slightly different approach to the collection and storage

problems (vertical, hot air collectors and salt (heat-of-fusion) sto-

rage), Dr. Maria Telkes and two other women completed a solar-heated

house in Dover, Massachusatts in 1949. Complications resulted in its

conversion to standard heating.

During the fifties, G 0 G Lof was instrumental in bringing to

completion two houses, a small bungalow in Boulder, Colorado and a

nine-room contemDorary residence in Denver. Dr. L6f explored the con-

cepts of hot air collection, mass-proiuced collectors, and crushed
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rock storage.

MIT House IV went into operation in 1959. Its purpose was to make

it possible for oolar heating to take its place on the American resi-

dential scene. It included summer cooling and solar-heated domestic

hot water. A series of complications and its economifallv noncompeti-

tive results led to a halt in MIT's efforts.

Since 1960, Harry Thomason, in Washington DC, has gained a great

deal of publicity for his efforts in the development of four solar-

heat houses. It appears that his comparativ'e unsophistication has re-

sulted in low-cost collectors, simplification of design, and long-term

storage. Few cost figures have been released to the public, however.

A good deal more than these works have been completed, many are

now under construction, and others are on the drawing boards, but this

summary and the extended summaries in Appendix I may aid in putting

present and future work in context. It is hoped that the following

pages will help to broaden this context.
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ENERGY COLLECTORS 00V9riGL053

COLLECifTR
PLRTES

HEAT
COLLECTION

C Ap-roximate cost is $2-5 per square foot (including stor,:-e), but this v-rr's
greatly with place,- ceople, and conditions. Materials could cost 11.50 'r
less but are usually around 22.00. Factory production is being investiro-
ted as are inflatable plastic collectors.

31ZE 0 An qo-roximate size for 30-45*N latitude is one square foot of collect
rer two square feet of shelter. %

* The huge surface imposes severe desiwn constraints.

S A collector works on the principal of the 'greenhouse effect', that plass
is trans ,arent to shorter-wave visible light but is opaque to longer-wave
infra red, which is the -heat reradiated back from the collector plate.

* One co-er glabs for wirm to hot climates (Phoenix-Miami) and two for cold
climates is optiial. Use glass of low iron content.

* Use.of plastic in flace of vlass has been of small success; plastic often
becomes brittle and deteriorates; it may also soften at high temperatures.
'U-V'- (ultra violet) treated plastic has a much longer life (up to ten
yenrs). Plastic films are cheapr, there is a disposal problem, and much
plastic is petroleum-based in its coimosition.

e Construction should be tirht enourh to keep out dust, rain, and water vaeOr.
* Efficiency is little affected by dirty glass.

*The absorbing surface, the collector plate, should have hi-h absorotivity
(or solar radiation) and low emIssivity (will not radiate the heet away but
holds it until it is transferred to the collection fluid). Values for ab-'.rp-
tivity and emiksivity are in Aprendix IV. Coatings and surface treat-ent-
have been developed (c-lled 'selective surfaces') to ia-rove these properti .

* Usually of hlackened (with a matte black paint) aluminum or copper.
SAlthough lichter thqn steel and more absorotive, aluminum requires five tir's
more energy in its -roduction and is a scarcer natural resource. (Coper 1-
out of the question) Asthalt and tar might do the Job cheaply.

0 Of the radiation which falls on a collector, about 55% can be collected on
clear days, 351 on partly cloudy days, and noe at all on cloudy days. (3T )
This low efficiency is due primarily to reflection and absorotion by the
cover Flass and reradiation anI transmission losses from the collector platp.

* Air or water circulates through the collector only when the collector is
50 hotter than the storage (the energy which is collected must more than
balance the enerlry used to circulate the water or air).

9 Efficiency of collection increases with increased difference between stora-i
and collector temperatures.

0 Circulation of about 6 pounds of water or 25 pounds of air per hour per
squire foot of collector is optimal. (PSHD - 124)

9 Efficiency of collection increases with increased speed of air or water thru
it; the temperature rise of the air or water increases with decreased sner--.

* Efficiency decreases with increased difference between outdoor air tempera-
ture and collector plate temperature.

* Efficiency is increased with evenness of distribution of collection fluid
over the collector plates.



HEAT STORAGE

TYPE

crushed rock or other solids

e inexpensive material
* large but inexpensive storage oompartment
* almost maintenance-free
* best for use with a system of using air to
remove heat from the collectore

* 1 -3 in-diameter rocks work well, but use
all the same size

* stores about 30 Btu per cubic foot for each
degree increase in temperature

water

* inexpensive material
* fairly expensive cylindrical tank (galvanized

steel, extra resistance to corrosion)
* maintenance can be expensive (replacement
of tank)

* stores 62 Btu per cubic foot for each degree
increase in temperature

Glauber's salts (chemicals)

* not too expensive a material
* unreliable - depends on a phase change from
solid to liquid to store heat but stirring is
required to reverse the process - this pro-
blem remains unsolved

a small volume needed - stores seven times more
heat jer volume than water (at temeratures
around its m'ltingt point, 900 F)

a expensive containers

* Thomason uses water as the heat collection
fluid, surrounds his water tank with 50 tons
of crushed rock, and uses forced warm air to
take heat from the storage to the living space.

AU>UT & t C Po~le'T OP AOc-I PR
QAFtRE. POOT O COLLALCTOe.
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SIZE
' must be large enough so that the storage tem-
perature is low (to increase the efficiency of
the collector). MIT House IV found a storage
temerature of 1100 to be optimal.

* optimum storage size (based on economics and
efficiency) is usually best at from one to
three days of cold, cloudy weather. (Thoma-
son has 7-10 days storage - this may be 'eco-
nomical in his terms.)

* possibly no more than 20 btu per pound of
water (about 400 Btu per square foot of col-
lector) can be stored during one day
in the winter. (SHSE - 395)

TABLE 4

Sewible Heat Storage Materials

Unit beat capacity

Spcific beat Density Btu
Its, -F

Btu lb
1b, 'F ft, No voids 30% voida

Water 1.00 62 62 (G2)
-rsp iron 0 112 46) 55 38

Magnetite 0.165 320 53 37
Serap alumlum 0 215 16 36 25
Concrete 0 27 140 38 26
Ihk 0205 ISO 37 26
* Bik 0 2 140 28 20

(SHD -54)

LOCATION
* locate within the living space - in the base-

ment or- attic if necessary but preferably as
~ interior walls, partitions, closets - so that
its heat loss will be to the heated interior.
Fully insulate stora'e space, especially bet-
ween it and the outside. Toi little insulation
between It r.d the living space may result in
overhe ting of that space.

* the cost of the solar system might have to
include the cost of the space occupied by
the storage.

* for a water heat-collection system, loc.ate the
storave below the level of the collector to
obtain self-dreining (so that water won't
freeze in the pipes).
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RUXILIRRY HEATING
SIZE

The coldest weather may come after a per-
iod of sunless days, draining the heat
from the storage system. As the cold
weather continues, the auxiliary system
must be big enough to satisfy the large
heating demand resulting from intense
cold. The conclusion follows that the
solar system is an addition to, and not
a replacement for, the traditional heat-
ing system.

Since extreme cold days and long periods of cloudy weather are occasional, the
extra solar energy system (collector and storage) size which would be required for
handling these occasions would be expensive for the relatively small amount of
fuel saved. Thus there is a need for an auxiliary heating system. (Thomason makes
his solar energy system large enough to handle up to 95% of the seasonal demand,
but his costs are not known. See Appendix I)

TYPE
* A triditional furnace shou3d synchronize

with the solar energy system so that
blowers, coils, piping, ducts or whatever,
need not be duplicated.

9 The auxiliary heating unit should not
heat the solar storage system (PSHD -125)
(unless the storage unit is within the
confines of the living'space),

* A system of forced warm air makes best
use of low temperature storage heat.

* The MIT House IV's water-to-air heat ex-
changer used storare temperatures as
low as 94

* Forced warm air systems can be used for summer cooling.

* Radiant heating panels have a long time lag (from the switching on
of the system.to when the heating begins) and need higher operating
temperatures (heat fror the storage unit therefor is not useful at
the lower temperatures that are able to be used by forced warm air
systems.

e Heat pumps are being used and investigated as means of
making low storage temperatures into useful heat (and for
obtaining economic summer cooling from solar heat collection.

* Since fossil fuels are rapidly depleting
in their supply, serious investigation
should be made into alternatives to the traditional fossil-fuel-
burning furnace. One route might be to leave out a central auxi-
liary system and instead use a number of smaller local (each room

in-^In Pu.M or each section of the shelter) and possibly different types of
units: fireplaces, space heaters (electric (occasio)nal use only),
wood-burning, methane (home-generated) gas-burning), heat from
compost piles.

0 Perhaps community centralized heating (and solar collection) is
the answer.in many situations. 7



OPER TION

NO SUN ; STORED ENERGY HEATS SHELTER

COLLECTOR

SOLAR SYSTEM COLLECTS AND STORES HEAT;-
NO HEAT DEMAND FROM SHELTER '

SOLAR SYSTEM COLLECTS ENERGY AND
HEATS SHELTER

NOSUN , NO USABLE HEAT LEFT IN STORAGE;
FURNACE HEATS SHTLTER

NOSUN ; FURNACE OR HEAT PUMP 'PAISES
STORAGE TEMPERATURE AND HEATS
SHELTER 79



SOLAR COLLECTION AND ARCHITECTURAL DUIl,

One of the best summaries of the architec-

tural problems of using solar energy vas

made in a talk by Lawrence B Anderson,

former Dean of the School of Architecture

and Planning at MIT, to the World Sympo-

sium on Applied Solar Energy at Phoenix

in 1955. This and the following page re-

print that talk. Most of the issues re-

main the same today, but some changes and

additions may be found on the pages

following, (Reprinted from WSO - 201,2)

The Architectural
Problem of Solar

Collectors-

A Roundtable
Discussion

LAWRENCE B. ANDERSON

Panel Moderator
Massachusetts Institute of Technology

In order to visualize the architectural problem we
must know something about how big collectors
have to be, we must apj reciate the requirements for
angle of tilt, and we must consider the practical
aspects of construction and weathering.

How big are flat-plat: collectors? If we relicd on
them as important cacrgy sources, would they be-
come conspicuous in ou- environment? Here I could
make a number of different calculations, with
widely varying results, depending on my assump-
tions. Instead I will simply state this: if you want
to build a house in New England, with heat and
hot water provided primarily but not entirely by
the sun, you will want to design the house so that
the sun at noon in winter will not shine on any part
of the house except windows and flat-plate col-
lectors. You will need all the heat you can conveni-
ently get. The solution is manageable but the col-
lector is fairly conspicuous.

From this one may deduce that a building in
a very cold climate, or in one where there are
very cloudy winters, or a'building with poor in-
sulation or whose sl'ape is unfavorable might
not intercept enough sunshine to take care of its
own needs, and might need a collector bigger than
its own projection on a plane normal to the sun's
rays. Under these conditions the problem becomes
unmanageable.

At the other end of the scale where because of
clarity of the skies or warmth of the winters, or
;'erhars because one is tryirg only to provide do-
mestic hot water or a very little space heating or
cooling. t'rC 'wOuld I-e siturations whece the col-
lector becomes i t.li e!v miion.,picuou-, arch ic-
tural future, pa :t, !ct.us say, for a f.iurly large

skylight.
Sie/c.de. on ho w mu.h erwrt gy you are try ing

to obtain. The roof of the new unit described by
Dr. Dani,:ls*, at 5 percent efficiency would furnish
28 kwhr vr day. On the present U. S. scale of con-
sumption the total energy needs are such that per
family ore would require one half-acre of cpllector
area or 21,000 sq. feet, at least ten times the floor
area ot the average house. There are other uses for
the land, too; it would be a mistake to cut all the
trees to avoid shading the collector. One half-acre
of land ptr family corresponds to a fairly sparse sub-
urban hoising density.

If the answer to the area question is that the col-
lector area for space heating tends to be of the same
order of magnitude as area of south-facing house
envelope, \vhat about angle of tilt? Ideal tilt, or
angle from the horizontal, is the same as latitude
for maximum twelve-month incidence, 15 to 20
degrees greater than latitude for winter optimum;
correspor-dingly less than latitude for summer op-
timum. How do these angles relate to the tradi-
tional ek1 ments of building enclosure? I remind you
that the building techniques of most countries have
seemingly settled on a class of elements called walls
that are ordinarily vertical and another class called
roofs that vary from-the completely horizontal to
a maximum tilt of about 45 degrees from the hori-
zontal G ptimum tilt for shingle materials appears
to be 25 Jegrees or so. -

Verticd south-facing (or in southern latitudes
north-facing) walls have limited applicability for
solar-energy collection. Their interception is sub-
stantially less than that of collectors of optimum
tilt. Con.,idering winter conditions only, it would
he oaly in Canadian or better latitudes that vertical
walls could hold their own. For summer collection
of solar energy or for any collection in latitudes

*Dr. D.-vlt .ip.r ii resented on pages 19 to 26.
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less than about 45 degrees, the vertical wall is sub-
stantially less than the best.

Roofs, whether flat or gently tilted, also have

limitations. Solar collection in the tropics or the

subtropics where the sun is much nearer the zenith

can use the roof to advantage. In these climatic

regions, the need for space heating is much dimin-

ished or even non-existent. Domestic energy needs

under these conditions will be dominated by the
domestic hot-water load, or perhaps if the standard
of living is high, by the hot season energy demand
of the mechanical cooling devices. This puts the

emphasis on the summ-r season for maximum col-
lection needs, and tends to make the collector tlatter

and more rooflike. It is easy to imagine a rather
effortless adaptation of building techniques to
solar-ener'gy collection in the warm regions, think-
ing in terms of skylight-resembling units mounted
on flat roofs or of south-facing roof slopes of very
conventional pitch. Wnere the interiors of houses
are not maintained warmer than the exterior am-
bient temperature, thc-e is no great advantage to
having collector surfa.:ces designed as part of the
house envelol-e. Collkctors intended to provide
energy only for domestic hot water or for space
cooling might better 1-. garden or terrace features.

The architectural problem of the flat-plate col-
lector is much the most acute in the temperate
zores, the latitudes 3 to 55 degrees, where one
would like to use a calecting surface tilted at a
marsardiananle (hit is classiniable hardly as wall
or as roof, and having an area big enough to inter-
cept most of thz cnergy failing on the house at mid-
day in Noveniber .to January. This poses a severe
limitation on the d. i'ner and will produce build-
ings that ditiei subst.artially in appearance from the
forms to which wye are accustomed. The collector

pline. I am inclined to say that existing urbanized
and industrialized cultures would have a hard time
indeed to make a total adaptation. First values will
probably appear in the more manageable sub-
tropics, with occasional brilliant contributions in
the sunnier climates of other latitudes.

We ha- e considered the area aspect and the tilt
aspect of collector design. We need also to mention
the technical problems of construction. As a rough
approximation, if a square foot of collector in
Massachusetts will collect and store during one
heating season no more than the equivalent of one
gallon of fuel oil, it is important to build collectors
cheaply. But collectors are relatively complex
building elements, having in most cases more than
one transparent layer backed by a blackened sur-
face, equipped with passages for air or a liquid to
carry off heat, and heavily back-insulated. The
outer layers must be as transparent to solar-energy
that works in the winter time, in a latitude where
winter days are short, and especially where many
days are cloudy, finds itself in competition for space
with the south-oricnted window. The collector puts
away sensible heat for use at night or on cloudy
days: the window offers instantaneous energy con-
sumption only, but this is consumption accom-
panied by spectacular and psychologically irre-
placeable visual stimulation. It is hard indeed to
make a fair allocation of the available radiation
when intangiblcs are on one side of the scale.

On the whole this temperate-zone collector de-
sign situation, while a stimulating challenge to the
arthitert, ntcrcsting as an exceptional and occa-
sional e w(ould be prohibitively restrictive if it
Lad to be ipphe to all constriiction in these

;:o It wul lmit urlan de:sities and put
idier de.ign on cery Ji It. ult geometr disti-

wavelengths as possible, but must remain impervi-
ous to the edge leakage of water and dust through
temperature gradients of up to 200 degrees F, while
presenting themselves to the elements at highly
vulnerable angles. They must be capable of keeping
these characteristics for a period of years.

Glass seems to be today's best material for these
transparent layers, but it is by no means easy to find
the material and the technique with which to do
the edge sealing cheaply and dependably. Glass
itself is in industrial material, cheap in mass pro-
duction, but it is heavy, fragile, and inflexible. In
transportation it imposes problems of handling to'
avoid breakage. With prefabrication there is always
the dilemma: whether to put the glass into the
components in the factory under controlled condi-
tions, or to plan this work for less desirable field
operation in order to make transportation more
compact and less hazardous in terms of breakage.

If we are trying to provide for the utilization of
solar energy in areas of the world where it is incon-
venient or expensive to transport conventional
fuels, the need to use glass may tend to defeat our
objective unless it is plentiful locally or can be
made so. What is the ideal structure and material
for a solar collector? If-plastics were really cheap,
if they were transparent to solar energy, and if they
would not deteriorate when exposed to ultra-violet
radiation, it is possible to imagine a multilayer
structure composed of thin, flexible films cemented
togethcr so as to form air spaces and tubes, a central
layer being pigmented, which would be the com-
plete collctor-front and back insulation, black
plate, and fluid transport all in one. This quilt
Lould be collapsed and rolled for shipment. Some
day such at structure may be available.
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collector size and shelter design

SotA-R C-oLLCToft AT OPTIMUM TILT

ANO MAIMUM4 ALA

EALL ARsA &XPneos TO TMG, wEATM'A

"HVeOTE.TICAL VIsposITIorj FOR MAXIMUM
SOLAR HEAT IN& ADVAN~TA6E"

(%1D - 49)

SUisPIMu A (FOR W INTEP)
caePcrc.i 'LT

'A COMPR OMISE WITH CoNveNTinQ
AND PRACTICALITY OF CONSTRUCTION"
(SHD-49)

EXTEND COLLECTOR
OUT BEYOWD EDG-E

%OF SHELTER

The enormous square footage of the required collector sur-

face (300-1200 ft2 ) is the primary difficulty in the in-

corporation of a solar energy system into the design of a

shelter. This page and the first page of this section

show a large number of variations on the same themes:

-minimum exterior surface area per inside volume to
decrease heat loss;

-optimum length-width ratio to take maximum advantage
of the sun (discussed in section two);

-incorporation of the maximum square footage of col-
lector surface possible into the south-faci-ig facade,
trying also to-include windows.

The main arguments for including the collectors as part of

the shelter's envelope are:

-The living space gains some of the heat from the
back side of the collector.

-The collector (plus normal roof insulation) make an
excellent insulative exterior wall/roof. It may have
a U -value of 0.03 Btu/0F/ft2/hr as compared with
0.07 for the usual roof (MIT House IV (WSO - 118)).

-The effective cost of the collector is less if it
uses the structure of the shelter as its foundation
and replaces the expense of what would otherwise
be a roof.

The main arguments against integrating collectors into the

shelter's facade are:

-It imposes a difficult architectural constraint: a
large expanse of glass facing south at a certain angle.

-Its use may not allow south-facing windows, which may
then result in more windows on the east, west, and
north walls, increasing the heat loss of the shelter.

-The collector is stationary and cannot change orien-
tation to follow the sun.

-It does not allow natural solar heat gain on the
south exposure of the shelter.

-It requires expert construction.
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DEC- Hottel describes figure 2 as the

L"ideklized effect of collector orientation
- on performance at 400N",- so a tilt angle

- ran-ing from 250 to 900 with only a 20%

- Variation in heat collection as shown is

- probably not "realistic" because of other

factors affecting efficiency, but it is

-- clear that we should be willing to use that

ran re in design work. Tradeoffs are in-

volved of course, but cost and fuel savinps

are nit the only factors affecting design

decisions. The "Rang-e of Tilt Angle" isf sire rd
50WICE further shown In Appendix VI.
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The optimum tilt angle is usually given as the sum of the

latitude plus 150, so that the collector is perpendicular to

the sun's rays in the middle or end of January, the coldest

days. Viewing the architectural solutions on the first page

of this section and of the work of most researchers in the

field, the tilt angle used has usually been the optimum one.

From figures 1 and 2, it is apparent that a vertical face

receives within 90% of the radiation which an optimally ang-

led (O-600) surface would receive. Over the course of the

heating season, however, the variation between the two sur-

faces is a bit more, perhaps an 85% figure instead of 90%.

To o to a tilt angle of 250 would result in nearly

the same collection for the season as the vertical collector,

and nearly the same collection in March as the optimum (550).

But ifi January it collects about 80% of the optimum (the 400



heat storage and shelter design

The three primary concerns - size, type, and location - were out-

lined on the pa; e HEA' STORAGE. The basic information for consi-

deration of its incorporation into the shelter ist

Chemical salts take up the least space (but are unreliable);
The cost is basically in the small, individual containers.

Water is a heap material. It normally requires about 1500
gal (200 ft plus insulation and access); the corrosion-re-
sistant tank is the main expense and will need replacing.

Crushed rock is a cheap material (especially if collected by
hand) and requires no maintenance; the main exornse is in
providing the large storage space, two to five times as large
as that needed for water.

Fivures 1 and 2 show the most basic forms of collection and

storape and can be included as parts of the total system. Fig-

ure 3 charts the relative efficiencies of the three types.

No matter how well Insulated it is, the storage tank will

lose heat. If it must be exposed to the exterior of the shelter, massively

insulate that interf-ice. 1he revort of the MIT House IV (Appendix I) showed

that during January 160, total solqr collection came to_7.4 million Btu, of

which 1.3 million was lost from the storage tank - good reason for making

sure that it is within the livine space. This can be done in many ways, two

of which are shwn abov2. If the storae'is a water tank, it can be placed

within a lar-e closet in th- livinv snace (on a strong floor). Large vol-

u-:es of rock are anoth mittor. I6r has contained them in large vertical

cylinders within his space. Thomason put them in a crawl space. (Appendix I)

Petter insulqtion of the stora e decreases the need for its placement

within the livin s;ice. If th- MIT tank had been insulated to the equiva-

lent of two inches o' tolyur-thane (therl resistance, R, - 15), the heat

loss would have been lp-i' thain half. A followine pqve, LONG TERM STORAGE,

discusses a water tank ? f"!'t ln.: and 20 feet in diameter for collecting

su'mer heat for winter use. This rossibility should be carefully studied.

3 (SHH- 70)
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Fig. 3. Calculated efficiency of south facing vertical solar
energy collectors. at Slue Hill. using two glass plates.
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R SEPARTED COLLECTOR ft/~
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CONSIDERATIONS IN USING A COLLECTOR SEPARATED FROM THE SHELTER

EXTRR COST S
* conrtruction of re- f or -ill n'

the 0helter which coilctor would
have retleced. If owner-built,
fi.ure only the cost of mqteri".ls.

e foundation and structure for the
se -reted collector, the mijor

increased expense. Cost varies
zre-tly with rar e of t'e aijust-
Tent of orientati-n an! tilt nn.-
le. No or little extra cost if
;art of a bqrn -r shed.

* ircrea-ed mechanicil runs pros
collector to storz--e: piring, in-
sul-ttion, buryinz.

e collector no lonner loses some
of its heat to the interior space.

" collector no longer adds to the
insulative value of the facade.

* there is extri loss of he!t thru
the mechonical runs from the col-
lector to the shelter.

SAVINGS
e les- recision needed for the

froming of the shelter

6 construction of collector can be
easier, less water-tight, if it is
not acting as a roof.

e collectors may take on new designs
if not a part of a shelter's skin
(inflatables, focusing collectors,

- etc), resulting in possible savings.

* allows solar heat gain through
south-facina windows, walls, and
roofs of the shelter.

* adjustable orientation and tilt
angle of a separated collector
results in higher efficiency.

0 now designs made possible by the
ser'iration from the shelter may
meen higher efficiencies.

* allows usual desin freedom of
t,,e shelter.

* collectors could still be.a part
of the south-facinr facade, but a
smnller part.

e the collector can be made larger.

q q seoarated collector can be built
qfter (or before) the shelter
is built.

EYAMPL ES
I)--+The owner does none of the work to build

.--+an adjustable (orientation and tilt
.angle) separated collector.

All of the extra costs and extra savings apply
to this situation. The figuring of economics
Is- difficult at best but design coneiderations
alone may swing the balance to the separated
collector.

2) --+The owner does the work of building
--+an adjustable separated collector.

The owner figures economics anyway he likes,
but will probably find a separated collector
economical if he doesn't firure labor costs.
He may be more inclined to heavily weigh the
ecological considerations of fossil fuel savings
and decreased pollution which result from his
collector's larger heat collection capacity.

3) --+The owner does the work of building
-+a collector on the south-facing wall

or roof of a barn or shed or other
auxiliary building.

The costs are similar to building the collector
onto the shelter. The main increased costs are
the longer mechanical runs from the collector
to the shelter, both in their initial cost and
in their heat losses. The main savings is in
the solar heat gain of the south-fpcing' facade
of the shelter, and of course in the design
freedom.
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LOR-TERM STORR[
H C Hottel of MiI reported (RUS - 107) that qn nnalysis of a sinile dwelling in the
1030l's -hwed that the collection of summer heat for use during the wirter was
unec-ni cal.

Ernpt Sc0,nholzer, an enrineer in Zwitzfer1n, look" -at
on i l rrer scle, in,. without economic 3nnlysis. Below
in- (HCW). Pis iarticular interest is in r-ducing city
ter, bit it would also reduce fosil fuels consur' tion.

the problem in 1969, but
is a summary of his find-
pollution during the win-

*-SPHERE 15 OPTIMiUM SHAPE TO
MINMIE-r "FAT LOSS

MASSIVELY INSULAT.D,
3ft THIc.K

H EAT STORAGE
SECTiON THROUGH SPHERE (HCW-380

SINGLE DWELLING
* As.-ure t -t a 1950? temoeriture cin be attained in

the storire: begin the solar heat collection on
April 1 at an 850 storaRe te.reriture ani continue
until October 1, reaching 145

* Assrne that the storaze temperature drops bck ,to
2o at the end of the heatin.g se-ason (43 0 -hours).

* Assu-e a sea-nnal heating demand of 40,000,000 Btu
(.:IT House IV used twice this amount, including
d,7-stic hot water).

* Use a cvlirirtcal water container with a diameter
eiual to the hei-ht and equal to 20 feet (6000 ft 3

ani about 48,000allons of water).

100 APARTMENTS
* Yaks the sane .assumrtions as above:

40,000,0C3 Btu/arartment/season, 4 x 109 Btu
total for 100 apartments;

the storaze temperature is 950 April 1 and
1Q50 ctober 1.

* 1'e i :ylinrical water cont' ner with a 1i.q-nfter
-t, te he'i-ht and equal to 45 feot ( 6o),000

f, ' i'out 4, '000,000 gallons of witor).

RESULTS
JL : 1-zer coT' uted that if the heit were not

used 4ur-n: the heating seoson, the teTnrer-ture of
the s-1 t-rnk would dron to 1700 an-i that of the
lar:e tink would droo to only 1'50 (for the period
October 1 to April 1). Fe made no econoTic anily-
sis but suggested that the large instilltion would
more likely be economical.

A STORAGE CONTAINER
1) Excavate a disc- or hemisphere-share

in the earth;
2) Spray 3 feet of foa's insulation inside

of the excavation;
3) Pour or spray a thin concrete shell on

top of the insulation, if necessary,
or just

4) Water-fill a plastic bav of agpropri-
ate size on top of the insulation;

5) Pour or spray a thin concrete shell
over the inflated bag, if necessary,
or just

6) Spray 3 feet of foam insulation on
top of the plastic bag;

?) Cover the insulation with earth (or
5ECTION. THROU&H DISC other) if necessary.

COLLECTING- HEAT
0 The collectors might have to be more excensive,
possibly of the focusing type, to attain tempera-
tures of 1950. However, each square foot of col-
lector will be saving larger amounts of fuel than
if it were operated only in the winter.

* The collectors could operate year-round, not just
in the summer, to furnish heat to the storare tank
even as it was being used to heat. This might
result in the use of a smaller tank than Schbnhol-
zer suggested, or instead, domestic hot water could
be added as part of the heat load.

* MIT House IV collected 350 Btu/ft2 /day during the
winter. It is 'not unreasonable to assume that
this figure could double during" the summer coll-c-
tion. If heat were to be collected on1 in summers,
collection might averame 126,000 Btu/ft-/summer.
To collect 40,000,000 Btu (an aoartment's heatinr
lod), the collector would have to be about 400
ft , far less than normally required. Collectors
might be able to be horizontal on flat roofs,
instead of tilted.



There are many factors involved in the decision of whether or not to

use solar energy for heating and cooling. Not only is there the moral

issue of trying to use less fossil fuels and to pollute less in the

heating/cooling process but there is also the economic issue of ob-

taining a reasonable return on the investment of a dollar. There are

countless ways of evaluating 'reasonable return' and it is almost im-

possible to here suggest that even a typical example would provide a

justified exploration into its definition. However, there are several

factors which every accounting system will evaluate and which have

been mentioned before:

- installation cost of the solar system
- maintenance cost of the solar system
- operating cost of the solar system
- savings in house cost and furnace cost
- savings in maintenance of furnace
- savings in fuel costs
- other costs and savings, for example, increased insurance costs,

savings from government incentives on non-polluting devices

This thesis shows ways of decreasing the heat loss of buildings,

of more advantageously using the gifts of nature to attain thermal

comfort. In making the economic evaluation of whether or not to coll-

ect and use solar energy, the effort is usually made to balance in-

creased costs against increased savings, primarily fuel savings. The

determination of installation, maintenance, and operating costs of

solar systems is still difficult, varying so greatly with design, lo-

cation, and the people involved. But in trying to evaluate fuel sa-

(RUS- 104)

*-3- LATITUDE

Fig. 1. Solar incidence on horizontal surfaces, average effect of
latitude and season.
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vings, it most simply can be said that if we know how many Btu's are

required by the shelter and how many can be delivered to the shelter

by the solar system, then, by knowing the cost of delivering this

heat in a conventional way by oil, gas, or electricity, we can deter-

mine the fuel savings.

Each building differs in its heating needs, both in the way it is

built and in the way it is used (the same building used differently

will probably have different heating needs). The price of fuel varies

greatly throughout the country and throughout the world. This section

deals with the issue of climatic variations which affect how much

heat the solar system can collect. The more Btu's that can be collect-

ed and delivered per square foot of collector surface, the greater will

be the fuel savings per square foot of surface (and the higher can be

the per-square-foot cost of the solar collection system).

Most basically, Tybout and L6f (SHE) and others have shown that

cold weather with a lot of sunshine offers the best combination for

economic success. (There are other considerations too such as the

amount of wind and the radiational and reflective qualities of the

immediate environment). Of course, as pointed out in INTRODUCTION TO

THE UTILIZATION OF SOLAR ENERGY, a "moderate, fairly uniform, heating

requirement throughout the year" (with a fairly uniform day-to-day, as

opposed to month-to-month, distribution of demand with a fairly uni-

form distribution of sunny days) is the ideal means of utilizing the

solar system to its fullest, but there are no such climates. Figure 1

shows that San Francisco has the most uniform temperature distribution

of the four cities shown. Its cloudy and foggy days may make the use

'Fuel savings' ought to include more
than Just the monetary savings. In
addition it should include some indi-
cation of intangible savings such as
lessening pollution, conservation of
fossil fuels, conservation of all the
energy and resources needed to bring
the fuel from the well to the shelter.

i
.Wai &uQ S~t OcW c Oft 0" t Pb Fa~ W c Am~ Ma a
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of solar energy disadvantageous, however. Figure 2 shows that a coll-

ector which can provide heat for 200 DD's (degree-days).. per month is

much too large for Miami, provides most of the heat needed in Phoenix,

and is utilized the greatest number of days by San Francisco and

Boston. A collector providing heat for 800 DD's would never be fully

utilized except by Boston, and except for the three coldest months,

it would not be fully utilized there either.

A quick look at Figure 1 is enough for us to realize that a coll-

ector large enough to provide for 100% of the heating demand will be

utilized only for very short periods of time. Thus it is not enough to

find the peak heating demand for the season and simply build a coll-

ector which is large enough to collect the necessary heat. We must

find one which will use every square foot to the extent that each

square foot pays for itself in fuel savings.

Dr Paul A Siple, at a Solar Energy Symposium at MIT in 1950, pre-

sented the map shown and described in Figure 3. It is shown here at

the risk of its being used to make decisions about whether or not so-

lar energy should be used for heating in certain parts of the country.

Such has often beent its use, unfortunately. Except where the sun

never shines, it is engineeringly possible (though almost always

economically very impractical) to build a big enough collector and a

big enough storage unit to provide for all of a building's heating

needs. Because of the low demand for heat in the South, where Dr

Siple has shown maximum feasibility, the collectors would be needed

very little, resulting in very small fuel savings and a very poor eco-

nomic return on the large investment in a solar installation.

140

120

z 100

0 80

60

40

20

o
0-

0 - - - I ~ :oston
Boston 1 0 5791 0-24
Soan Francisco 35 34291 0 31

0 pt.0 - - - -\- -01-
Waim 35 :916 10o.02

Son Francisco

0-

Phoenix

0-

July Aug Sept Oct Nov Dec Jon Feb Mar Apr May June
Months
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W1rather But-ra data.) (1 U * 22)

2 if an auxiliary heating source "could
handle the top 10% of the maximum an-
ticipated requirement, it would save
nearly 10% of the cost of the initial
solar installation and still would on-
ly amount to less than 1% of the en-
tire annual thermal requirement."

(IUSE - 224)

90

1800



Feasibility of Solar Heating Systems (SH4)

Region of Maximum Feasibility, compris-
ing Florida, the Gulf and southeastern
coastal plains, Texas, New Mexico, Ari-
zona, southern California and bordering
areas. Here, heat requirements for eve-
nings and the entire cool season can be
supplied by solar radiation collection
devices without elaborate or expensive
engineering. Region of Engineering Feasibility,

comprising the central Atlantic coastal
plains and piedmont, central Mississi-
ppi basin and plains, north central mid-
west and western states, and northern
California. Here, solar radiation can
supply most of the heating needs of
Spring and Fall but will require special
devices and careful engineering design
to assure reliable and economical solar
heating systems.

Region of Minimum Feasibility, compri-
sing northern New England, New York,
Pennsylvania, Virginia, Ohio, Michigan,
Wisconsin, Minnesota, N. Dakota, Mon-
tana, Idaho, Washington and Oregon.
Here, due to prolonged periods of in-
tense cold, heavy cloud cover, and low
angle of sun, solar rediation is en-
tirely inadequate for winter space hea-
ting with present engineering methods.
As supplementary heat source during
late Spring and early Fall, and for
lithosphere (sub-surface) rooms during
summer, however, solar heating offers
definite advantages in fuel economics
and humidity control. In certain areas
even the most elaborate solar heating
systems will require thermal support
from summer heat pump storage systems.
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Figure 4 is a map of average daily insolation values in the US in

Btu/sq ft/ average day. Like the map in Figure 3, it is very mislead-

ing, and cannot be used for work with solar energy heating. The fig.

ures given are for insolation on a horizontal surface (collectors are

at a tilt, usually about an angle from the horizontal of latitude

plus 5 to 25 degrees). Insolation on a horizontal surface varies

greatly from one season to the next; trigonometry would make

maps of average daily insolation for the winter months.usefuL.

We can assume that a collector of 45% efficiency can be built

within the continental United States; this has been done by most solar

energy experimenters. After all of the climatic rhetoric regarding

solar energy use has been digested and analyzed, the main criterion

for collector performance is how many Btu's of sunshine strike each

square foot of collector surface. Figure 5 is an illustration that

Lawrence Anderson, former Dean of MIT's School of Architecture, used

to show the quantity of sunlight which struck a given collector. When

the sun is perpendicular to a collector 'at a tilt angle offq and at a

northern latitude , it is at the same time perpendicular to a hori-

zontal surface at a southern latitude of (7-f). By finding that

value of insolation, we find the approximate value of insolation on

the collector. (altered of course by increased travel through the at-

mosphere and by local atmospheric conditions such as clouds and smog).

The same value is that of summer insolation on the northern latitude

(V-1) on a horizontal plane.

Once the value of possible insolation can be found, it is nece-

ssary to find out how local conditions of cloudiness and air cleaftli-

of heat, BtulI t@verttg day \I

4 F. 3. . tistribution of aversar daIly imenwAtion in tir l'nited State Ifrm . F. It.01I
19,13 nurtesy lInaIng and 'riyl.*I (. U1 E - 30

The local weather bureau may have this
Information.

These values can be found in "Monthly
Maps of Mean Daily Insolation For the
United States" by Iven Bennett in
SOLAR ENERGY, July-Sept '65; or in
ASHRAE HANDBOOK OF FUNDAMENTALS.
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Degree days per sunshine hour based on December and January data. The larger the number, as shown
on this map, the more elaborate is the heating system required. By Dr. Maria Telkes.

FROM HEATING AND VENTILATING'S REFERENCE SECTION

7
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ness (atmospheric transmissivity) affect that which is collectible.

The first designers, in order to determine the length of time for

which it was necessary (and economical) to store heat to get through

sunless days, had to go through agonizing information collecting and

analyzing. Tybout and L6f (SHE) and others have shown the optimum to

lie within a range of overnite (one day) to three days. (Thomason

stores heat five days and longer but cost figures are not available.

This may not be economically optimal in traditional economic terms

but may be in his). It has thus been found that since an auxiliary

heating system is necessary to get us through a long series of sun-

less days, it is the number of cloudy days (when we cannot collect

heat) versus the number of sunny days (when we can collect heat)

which is of importance in determining how much heat will be collected.

Figure 6 was prepared by F W Hutchinson and W P Chapman at Purdue

in their effort to find the heating affect of the sun penetrating

through glass facades of buildings. It shows, for representative

cities, F, "the ratio of the average number of sunshine hours in the

period from October 1 to May 1 to the maximum possible sunshine hours

(at the latitude of the city) for the same period." (RBS)

Dr Maria Telkes has elaborated on this information in Figure 7.

For the months of December and January, the map shows the number of

degree days per sunshine hour. By finding the number of degree days

for a particular locality from the weather bureau (utility companies

also have this information) and dividing it by the corresponding num-

ber on the map in Figure 7, the number of sunshine hours for the

month will be found. Then by finding the amount of sun which strikes

Of course,- if we try to carry the tot-
al heating load with Just solar energy,
the number of successive cloudy days
becomes important in the design of
storage capacity, but such systems are
not now economical.

6
(RBS -t 13)

Table 1-Values of Usage Ratio, F,
for Representative Cities.

[F is ratio of the average number
of sunshine hours in the period fr m
October 1 to May 1 to the maximum
possible sunshine hours (at the lati-
tude of the cityO) for the same
period.]

CitS F

Albany, N. Y. ..................... 0.4r3
Albuquerque, N. M................. 0.770
Atlanta, ia. ....................... 0.522
Baltimore, Md. ..................... 0553
Birmingham , Ala. ................. 0.510
Pism arek. N . .................... 0.5 46
B oise, Ida. ........................ 0.540
Boston, Mass. ...................... 0.540
Burlington. Vt. .................... 0. 41
Chattanooga, Tenn. ................. 0.0
Cheyenne, Wyo. ................. 0.6
Cleveland, 0. ...................... 0.40S
Columbia, S. C..................... 0.511
Concord, N . HT...................... 0.515
I)allas, T ex. ....................... 0.470
Davenport, Ia. ..................... 0.539
D enver, Colo. ...................... 0.705
Detroit, M ich . ..................... 0.429
Eugene. Ore. ...................... 0.439
Harrisburg, Pa. .................... 0.495
Hartford, Conn. ................... 0.5:12
Helena, M ont. ..................... 0.521
Huron, S. D. ..................... 0.579
Indianapolis, Ind. ................. 0.507
Jacksonville, Fla. .................. 0.400
Joliet, Ill. .......................... 0.530
Lincoln, Neb..................... * 0.614
Aittle Rock, Ark.................... 0.513
ouisville, Ky.~ .................... 0.514

Tadison, W is...................... 0 604
.\linneapolis, Minn. ................. 0.527
Newark, N. J....................... 0.5'0
New Orleans, La. ................. 0.370
Phoenix, Arizona .................. 0.590
Portland, Me. ...................... ( 55
Providence, R1. 1.................... 0-542

n igh, N. C...................... 0.570
no, Nov....................... 0.617

lnij mond, V a. .................... O0.94
St. Louis, Mo....... ............... 0.567
,a lt Lake City, Utah............... 0.592
Nan FrancisCo. Cal.................. 0.615
Seattle, W ash. .................... 0.340
T4peka. Ka s. ..................... 0.G12
T ulsa, f kla . ...................... 0.560
Vickshurg, Miss. ................... 0.447
W heeling, W . Va................... 0.40Z
W ilndhn ton, D l. ..... ............. 0.5.8
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the collector each sunny hour (as described above), a rough, but

important approximation can be found for the total amount of direct

sunlight which hits the collector.

In summary, we have:

derree days/month = sunshine hours/month
the number on Telkes' map

sunshine hours/month x insolation/sunshine hour/sq ft = insolation/
month/sq ft

When we use this method with the information on pages 5, 6, and 7

in the article about MIT House IV, 'Progress in Space Heating with

Solar Energy' (reprinted in the appendices), we find that it gives us

smaller values than what they recorded. Figure 8 reproduces Figure 6

from that article. It shows that considerable amounts of solar energy

was striking the collector when the temperature of the collector was

not high enough to justify collection of that energy (most of this

energy is diffuse radiation through clouds which the above method does

not try to include). The values which we find by using the above meth-

od more nearly represent the curve shown as 'solar incidence when so-

lar collector operating'.

It has been the intention here to suggest a means of circumventing

the very valuable and expert work done by engineers in this field in

an effort to give laymen a point from which to begin their explora-

tions. Engineering work of such notables as H C Hottel, B B Woertz,

A Whillier, and others may be necessary for detailed predictions of

collector performance, however. Continued work on such a simplified

analysis will result in progressively better approximations which

might readily be made by laymen.

Continued refinement of this method
could lead to simple estimating
graphs.

120

cr 100

W

t80

Soc
wI-

0
:j 60

-'SOLAR INCIDENCE
WHEN SOLAR

20 COLLECTOR
OPERATING 20

USEFUL COLLECTION

SEPT OCT NOV DEC JAN FEB MAR
30 28 25 30 27 24 30

Fig. 6 Solar collector performance during the winter
season 1959-1960. Cumulative values for every week

(PIS-S) are plotted in million Btu

See especially "The Performance of
Flat-Plate Solar-Heat Collectors",
Hottel & Woertz. (PFP)
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A STRATEGY FOR SOLAR ENERGY DEVELOPMENT

The past twenty or thirty years has seen a wide range in
the extent to which different applications of the utili-
zation of solar energy have been implemented. Developing
the engineering feasibility has not been enough of an im-
petus to accomplish wide-spread use of this free source
of energy. G 0 G Lof, D J Close, and J A Duffie, all three
of whom have been extensively involved in the use of sol-
ar energy, offer the following "Systematic Approach to
Solar Energy Development - The Blueprint" (Reprinted from
PFS - 247-9)

A SYSTEMATIC APPROACH TO SOLAR ENERGY DEVELOPMENT

THE BLUEPRINT

We believe that the following (idealized) procedure will be advantageous where the object of
the project is ultimately the provision of a useful system or process to meet an energy need. These
steps are not all sequential: they can be taken in parallel (in part) and with "feedback" from one
to another. (it is also recognized that in many cases studies will be carried out for scientific
curiosity and need no final usefulness as justification.)

First step - determination ofneeds

This step, which is one of the most important of the whole study, determines the need which
the final developed process is to fill. The term need is used in its broadest sense and covers the
social, political and economic requirements which the process must satisfy if it is finally to be
a marketable concept.

- The following questions are typical of those which must be answered in studies leading to
a reliable appraishi of needs. The list is not intended to be complete. other question.s requiring
answers in particular circumstances.

(i) Should the facility be individual family size. or community size with distribution of
heat, power. water, ice or other product?

(ii) Must its operation be automatic, or will the user be prepared to take some part in its
control?

(iii) Might the facility cause changes in the life patterns of all or part of the community.
so that either it is initially accepted and then rejected? Does it produce desirable or
undesirable side elfects such as secondary industry, or unemployment?

(Iv) What are the meteorological conditions?
(v) If comparable service is being provided by in existing facility employing a conven.

tional eneigy source. what advantages tami di'advant:igcs) will there be hv virtue of
sibstittiiig the solar ciiergy supply? What ire the alternatives to solar energy, in the
location in qiestion?

(vi) What are the possibilities of interest by manufamcturu ers i.C.. what is the profit potential)
in undertaking production and sale of solar cqiiipment ?

(vii) What proportion of their income will a comuiinity or an individual pay for such a
facility'

(viii) What are the possibilities of subsidies from government and other sources during
eat ly stages of commercialization?

(ix) If import of knowhow. maierials or finished produicts is required. because of local un-
availability. what tariff and quota restrictions may have to be faced?

The answers to questions of this sort will show. irstly. whether the project has any prospect
of success in the foresecable future and, secondly, the ultimate goals to be fulfilled in engineer-
ing the process.

Second step - broad choice ofti process

To any engineering problem. there are usumally several solutions. The task set in this step
is to sift the possible 'solutions and determine, on the basis of existing information, the most
promising from the standpoint of technical workability. (IEconomics are usually associated with
technical factors. but economic analysis is listed here as a separate step.) Taking the example
of solar refrigeration, the choice of possible solar processes ranges from vapor compressors
driven by a solar electric generator. to intermittent absorption cycles. There will also be alter-
natives operated from ot tier energy resources.

Third stelp - preliminary economic analysis

Through use of available and cost data on materials. fabrication methods, transport, in-
stallation. profits and other pertinent information, initial investment costs and operating ex-
penses are estimated for !he feasible processes identified in Step 2.These are compared with
the requirements established in Step 1. and a decision to continue or abandon the development
is made. Through each of the following steps. the cost study is refined as more information
becomes available, further decisions being based on the revised figures.

Fourth stel' - establishtent of a theoretical hasis
Generally, a certain amount of scientific and engineering knowledge. either not in existence

or notyet applied to the particular process, will be required. The ppssession of this knowledge
enables mathematical models of the process to be made. and the studies performed with the
models greatly simplify the prototype design. The availability of computers has shortened
and simplified this step, owing to the enormous amount of information which can be processed
in a vcry short time.

Fifth step - prototYpe design and testing

The purpose of the prototype is twofold. Firstly, it checks the validity of the theoretical
studies and. secondly. it provides a vehicle for further development. the final result of which
is the "finished" product. [hus the prototype establishes the context in which further work is
done. This means that it must be designed with the final economic and social requirements in
mind.

SLith step - derelopment

This involves the transformation of the prototype design into a marketable item. and may
involve procedures as different as, on the one hand. the complete redesign of a heat exchanger
and. on the other, the enclosing of working parts in an attractive and functional housing. [his
step forces the prototype into a form which satisfied the requirements as found in Step 1.

ield testing is part of this step. and evaluates the effects of imponderables (such as dust
buildup on glass or plastics, damage caused by animals. etc). The objective of field testing
is to put the developer into the position of being able to guarantee system performance over an
extended period of time.

Seventh step - marketing

This step is the "acid test" of the whole project. If the needs were correctly established by
Step I, and if the development in Step 6 adequately fulfilled these needs, then the marketing
should be successful. If the real needs have not been met, it may not be successful.
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V. of Mich, 615 E University, Ann Arbor
48106, 1966, 224 pp., $5+postage.

ARCHITECTURE WITHOUT ARCHITECTS Bernard
Rudolfsky, Doubleday & Co, Garden City
NJ 11531, 1964, 160 pp., $4.50 pd

ARCOLOGY: 1HE CITY IN THE IMAGE OF MAN
Paolo Soleri, MIT Press, Cambridge, Mass.

"Arcology of Paolo Soleri" S Moholy-Nagy
ARCHITECTURAL FORUM, 132s70-5, My 70

BIBLIOGRAPHY OF WEATHER AND ARCHITECTURE
John & M Joan Griffiths, Environmental
Data Service, US Dept of Commerce, ESSA-
Tech Memorandum EDS1MG, Silver Spring, Md
Apr '69, 72 pp.

BUILDING WITH NATURE Richard Neutra, New
York, Universe Books, 1971, 233 pp.,$18.50

"A ill for Less Enerrv, Setter Archi-
tectural Ideas" jane Holtz Nay, Boston
Sunday Globe, Aug 6 '72, p. SO-A.

CLIMATE AND ARCHITECTURE Jeffrey Ellis
Aronin, a Progressive Architecture Book,
Reinhold Publ Corp., NYC, c. 1953, 304 pp.

THE CLIMATE NEAR THE GROUND Rudolf Geiger
Harvard U Press, Cambridge, Mass.
A detailed, technical analysis of micro-
climate, extensive but not directly rela-
ted to design of shelters

CLIMATES OF THE STATES US Gov't Printing
Office, Division of Public Documents,
Washington DC 20402, 2 50/state.

CLIMATIC ATLAS OF THE US

DESIGN FOR THE REAL WORLD Victor Papanek
Pantheon Books (Random House) NYC, 1971,
339 pp., $7.95.
Looks like a good book - good attitude -
heavy on industrial design

DESIGN WITH CLIMATE Victor Olgyay Prince-
ton U Press, Princeton, NJ, 1963
A must for anyone interested in designing
with energy
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DESIGN WITH NATURE Ian L McHarg Doubleday
& Co. Inc, Garden City, NJ '71
A beautiful, sensitive book - an attitude
builder

"Designer in the Desert" W Karp, HORIZON
1230-9, Autumn '70
Soler's desert structures

"Designing for Survival" Colin Moorcraft
ARCHITECTURAL DESIGN, July '72, XLII:414-
421

DOMEBOOK II, Pacific Domes, Box 219,
Bolinas Cal 94924, 1971, 128 pp., $4.20 pd
A S2000 solar house. Essential for anyone
into geodesics. Instruction manual, geo-
metry, model making, construction. Expla-
nations & instructions on making jigs,
jointing techniques, ferro cement -struct-
ures. polyurethane foam, wind powered gen-
erators, solar energy bldgs. etc.

"The Earth" April *67 issue of PROGRESSIVE
ARCHITECTURE
Using the earth in building design

"An Ecologically Sound Architecture is
Possible" Malcolm Wells ARCHITECTURAL
DESIGN, 7/72, 433-434.

ENVIROtMENTAL TECHNOLOGIES IN ARCHITEC-
TURE Bertram York Kinzey Jr & Howard X
Sharp, Prentice-Hall, Englewood CliffsNJ
1963, 788 pp.
Very complete on mechanical systems but
little on solar heating

"Experimental Cooling-Heating System"
Clarence A Mills ARCHITECTURAL FORUM, Nov
1950, pp. 127-131
Using reflective interior surfaces to
keep heat in, to act as radiators

"Foamed Plastic Plans Work as Forms, In-
sulation, and Ceilinr" ARCHITECTURAL RE-
COR?, 145:1 7 A-6, Mr 69

GEODESICS Edward Popko, U of Detroit
Press, 4001 W McNichols Rd, Detroit,
Mich 48221, 1968, 124 pp., $4.00 pd.

GROWTH AND FORM d'Arcy Thompson

HANDBOOK OF AIR CONDITIONING SYSTEM DE-
SIGN Carrier Corp, McGraw-Hill Co, NYC
'65.
About cooling only

HEATING AND VENTILATING ENGINEERING DATA
BOOK American Society df Heating, Refri-
gerating, Air Conditioning Engineers, 1948
thermal values for dirt, stone, hair,
thatch

HEATING HANDBOOK A MANUAL OF STANDARDS,
CODES, AND METHODS Robert Emerik, McGraw-
Hill Book Co., NYC '64, 522 pp.

HOUSE BEAUTIFUL CLIMATE CONTROL GUIDE

"Houses of Rigid Foam" CHEMICAL 41:30-1,
o '68

"How You'll Make.Your Own Electricity in
Tomorrow's All-Gas Home" J R Free POPULAR
SCIENCE 199:46-47, Ag '71

JAPANESE HOMES AND THEIR SURROUNDINGS
Edward Morse, Dover Publications Inc
180 Varick St, NYC 10014, 1806, 1961,
372 pp, $2.50 pd

THE JAPANESE HOUSE - A TRADITION FOR CON-

1964, 445 rp., S25.50 pd

"Life Support Systems" PROGRESSIVE
ARCHITECT''RE Ocrt '71
Ramifications of energy crisis on building
design

T1HE LOG CABIN IN AMERICA C A Weslaver
Rutgers U Press,New Brunswick, NJ.,1969,
3 2 pp.
Beautiful history: great historical pic-
tures, including some tools and building
methods

"A Matter of Dign" Richard G Stein
ENVI?C*;7!'lT, c-t '72, p. 17 f{
Good methods of reducing energy consump-
tion of buildings

"Vetals Review" Whole Issue PROGRESSIVE
ARCHITECTURE, Oct '69.
About steel, copper, lead, aluminum

NATURAL PPIA'CIPLES OF LAND USE Edward H
Graham, Oxford University Press, 1944

7HE NATURE AND ART OF WORKMANSHIP David
Pve, Van Nostrand Reinhold Co. NYC, 1968
95 pp.
Interesting philosophical discussion of
workmanshiip

NEW SCIENCE CF STRONG MATERIALS J E Gor-
don, Walker & Co, 770 Fifth Av, NYC 10019
1968, ?9 rp., $6.50

OUTLAW BUILDING NEWS Making a place in
the country, Farallones Desians, Star
Route, Point Reyes Station, Ca 94956
Spring '72.

OWNER-BUILT H(ME Ken Kern Sierra Route
Oakhirst t:41 93644, 1961, $5.00, 300 pp.

"Paolo Soleri, Genius" J Harithas,
VOGUE, Ir6Q6-7, Aug 1 '70

PLASTICS FOR AHITECTS AND BUILDERS
Albert G P ')i-rtz, MIT Press, 50 Anes St.,
Cambridge, Mass 02142, 1969, 129 pp,
S7.Q5 pd

PLASTICS IN BUILDING Irvine Skeist Ed.
Van Nosersn--Reinhold, 450 E. 33rd St.,
NYC 10001, 1966, 466 pp., S20..0 pd

PLASTICS IN THE MODERN WORLD E G Couzens
V E Yarnley, Pelican Books, 7110 Amba-
ssador Rd., Baltimore, Md 21207, 1941,
1956, 1968, 396 pp., $1.65

"Putting Fly Ash to Work" COAL AGE, Feb '71

"A Rational Basis for Solar Heating Ana-
lysis" F W Uutchinson, W P Chap-nan. re-
print: ASHAE Journal Section, HEATISG,
PIPING AND AIR CONDITIONING, July '46
pp. 109-117.
The effects of solar radiation through
windows

"The Self-Heatinn, Self-Cooline House"
Wendell Thomas, THE MOTHER EART! NE,;S
Issue-No 10, pp. 76-79

SHELTER AND SOCIETY Paul Oliver ed.
Frederick Praeger, 111 4th Av, NYC 10003,
1969, 169 pp., $10.00 pd

"Small House Heating System Employs Doors
and Rooms as Valves and Ducts for effi-
cient Circulation of Warm Air" ARCHITECT-
URAL FORUM, Mar '47, pp. 120-121

"Smart but not Wise" Lloyd Kahn, Shelter
Publications, P 0 Box 279, Bolinas, Ca
94924, ' *72

SOIL-CEMENT- ITS USE IN BUILDING United
Nations Sales Section, NYC 10017, 1964,
85 pp., $1.50
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*The Solar House" F W Hutchinson, HEATING
AND VENTILATING, March '47, pp. 55-9,
The effects of solar radiation through
windows

"The Solar Houses Analysis and Research"
F W Hutchinson, reprinted for Libby-Owens
-Ford Glass Co.) from PROGRESSIVE ARCHI-
TECTURE, May o47.
The effects of solar radiation through
windows

'Solar Radiation As Related to Summer
Cooling and Winter Radiation in Residences"
Henry Niccols Wright, a preliminary.
study for John B Pierce Foundation, 40 W.
40th'St. NYC. Jan 20, '36.

'Space Heating Energy Conservation" D G
Stephanson, CANADIAN BUILDING DIGEST
#CBD 142, Nat'l Research Council of Cana-
da, Ottowa, Oct '71, 4 pp.

STANDARD HANDBOOK FOR MECHANICAL ENGIN-
EERS Baumeister and Marks, eds., 7th ed.
McGraw-Hill, NYC., '67.

'The Temperate House" Olgyay, ARCHITECT-
URAL FORUM, Mar 51, pp 179-194.
Climate control

TIME SAVERS STANDARDS John Hancock
Callendar, ed. 4th edition, McGraw-Hill
Co. NYC., -- 1966, 1300 pp.

re 2. 2L X!=S sun's energv

APPLIED SOLAR ENERGY RESEARCH, A Directory
of World! Activity and bihliopraphy of sig-
nificant literature, Associarevn for App-
lied Solar Energy, E. J. Eurds, a-.,
Stanfordl Research institute, Calif. 1955

ARCHITECT'JRE AND TIE.SUN. An international
survey of sun protection methods, Ernst
Danz. Thames & Hudson, London, 39.00, '67,
150 pp.
SUN PROTECTION -Same book, published by
Praeger Publishers, NY:.

THE COMING AGE OF SOLAR ENERGY Daniel S
Halacy Jr., Harper & Row. NY., Evanston
& London, 1964

THE WEATHER CONDITIONED HOUSE Groff
Conklin, Reinhold Publ. Corp., NY, 1958

THE WILDERNESS CABIN Calvin Rutstrum,
acmillan, NY., 1961, 169 pp., $5.95

'"A general guide to log and frame cabins,
locations, land for back taxes, water
supply, sewage disposal, fireplaces,
Franklin stoves, auxiliary structures,
building tools, food caches and living in
a cabin. Well illustrated by Les Kouba"

WINDMILLS AND WATERMILLS John Reynolds
Praeger Publishers, Inc., 111 Fourth St.,
NYC 10003, 196 pp., $13.95
Covers extensively architecture of wind-
and watermills, reference and inspiration
rather than construction manual

WINDOWS AND GLASS IN THE EXTERIOR OF
BUILDINGS Building Research Institute
P 0 B 478, National Academy of Sciences
Washington DC, 1957, 176 pp.

YOUR ENGINEERED HOUSE Rex Roberts, H.
Evans & Co., NY., '64. 237 pp. $8.95 pd
from J P Lippincott Co., E Washington St.
Phila, Pa. 19105

ZCME PRIMER Steve Baer, $3.00, 35 pp.
"Baer's zomes can be stretched, shrunk,
clustered like soap bubbles or packed
several deep. Gives the math of how itts
done."

"A Design Approach for Application of a
Solar Energy Heating System to a Geo-
desic Structure" Dept of Design, South-
ern Illinois U. "71.

'Desixn of a new Solar-Heated House Using
Double-Exposure Flat-Place Collectors"
H H Safwat, A F Souka, SOLAR ENERGY, Vol.
13. No 1, Apr '70, pp. 105-119.

DIRECT USE OF TEE SUN'S -ENERGY Ferrington
Daniels, Yale "' Press, 149 York St., New
Haven Conn. 06511, 1964, 374 pp., $10 pd

"Economic Feasibility Reached in Solar
Home" SUN AT WORK magazine, First Quart-
er, 1960, pp. 6,7.

Architectural hsian The Standard Catalogue
Co Ltd., 26 Bloomsbury Way, London WC lA
monthly, $15.00 +2.40 postage/yr
$9.60 + 2.40 postage/yr.

Architectural Frm monthly

Architectural eggg monthly

Canadian Bldinast 2Jgj11 Division of
Building Research, National Research Coun-
cil of Canada, Ottawa 7.

Popular Science

Proiressive Architecture monthly

'Engineering & Economic Problems in the
Production of Electric Power from Solar
Energy" George 0 G L7f, Vol IV, Mono-
graph No 1, World Power Conf, Rio de
Janeiro, '54

"Experience with Solar Houses" H-rry
Tiomason, SOLAR ENERGY, Vol 10 #1, Jan-
Mar '66, pp. 17-22

"French Switch on to Sun Power" BUSINESS
WEEK, p. 126+, My 9 '70.

"Future Uses of Solar Energy" Dr Maria
Telkes, TECH ENGINEERING NEWS, May '52,
pp. 12, 13, 40. Reprint from BULLETIN OF
ATOMIC SCIENTISTS Vol II, No 7-8, Aug '51
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"Gains Cited in Thin-Film Solar-Cell
Efforts" P J Klass, AVIATION WEEK, 891
74+, Ag 16, '68

HANDBOCK OF FUNDAMENTALS (HEATING REFRIG-
ERATING VENTILATING AND AIR CONDITIONI'n)
Published by American Society of Heating,
Refrigerating, and Air Conditionine Engin-
eers, 345 E 47th St.,NYL 10017, 1967,
530 pp.

"Heat from the Sun" ARCHITECTURAL FORUM
Jan '56, Vol 104 #1, P. 148-9

"Heating by Sunpower: A Progress Report"
A L Hesselschwerdt, Jr. HEATING AND AIR
CONDITIONING CONTRACTOR, Oct '56, p 44ff.

"The House That Stores the Sun" Richard
F Dempewolff, POPULAR MECHANICS Oct '57,
Vol 108, #4, pp. 158 ff.
About MIT House 3Y

"Hygienic Clean Winter Space Heating with
Solar and Hydroelectric Energy Accumulated
during the Sumer and stored in Insulated
Reservoirs' Ernst Schonholzer, SOLAR
ENERGY, Vol 12 #3, pp. 379-385, May '69

INTRODUCTION TO THE UTILIZATION OF SOLAR
ENERGY, ed by A M Zarem and Duane D Erway
McGraw-Hill 1963, NYC, 398 pp.

'Monthly Maps of Mean Daily Insolation
for the United States" Iven Bennett, SOLAR
ENERGY, Vol IX #3, July-Sept '65, pp.145-
158

'New Solar Home Design Incorporates Air
Conditioning' SUN AT WORK, Third Quarter,
1961, pp. 20, 21.

"On Future Power from the Sun" CHEIICAL
43s25, Mar '70.

"Performance of a Flat-Plate Solar Col-
ector" R X Bhardwaj, B K Gupta, R Prakash
SOLAR ENERGY Vol 11 #3 & 4, July-Dec '67,
pp. 160-162

'The Performance of Flat-Plate Solar-Heat
Collectors" C Hottel end B B Woertz,
TRANSCACTIONS of the ASMVE, Feb '42, pp.
91-104.

'A Philosophy for Solar Energy Develop-
ment" G 0 3 Lof, D J Close and J A Duffie
SOLAR ENE.GY Vol 12 #2, Dec. "68, pp.
243-250.

"The Possibilities of Solar Energy" The
President's Material's Policy Commission,
RESOURCES FOR FREEDOM, Vol.IV, THE PROMISE
OF TECHNOLOGY, Chap. 15, Washington, June
1952

"Power from the Suns Its Future" P E
Glaser, SCIENCE 162o857-61, Nov 22,'68

'Principles of Solar House Design'
Austin Whillier, PROGRESSIVE ARCHITECTURE
May '55, pp. 122-126

"Progress in Space Heating with Solar
Energy" C D Engebretson, N G Ashar,
ASME Pper No 60-WA-88, 29 W.39th St.NYC
Dec. '60, 8pp.

"Residential Uses of Solar Energy" H C
Hottel, Publication No 60, Godfrey L
Cabot Solar Energy Conversion Research
Project, MIT, Cambridge, Mass, in Fro-
ceedings of the WORLD SYMPOSIUM ON
APPLIED SOLAR ENERGY, Phoenix, Ariz, 1955

"Roundupt Recent Solar Heating Installa-
tions" PROGRESSIVE ARCHITECTURE, Mar '59

"The Search for Tomorrow's Power" Kenneth
Weaver and Emory Kristoff, NATIONAL GEO-
GRAPHIC, Nov '72, Vol 142 #5

"Solar and Atomic Energy" STUDIES IN BUS-
INESS AND ECONOMICS Vol 12, #4, Mar '49,
U of Maryland, College Park, Md.

- s in sCe on costs.
(!i1ring vs. heating, coolir)

SOLAR ENERGY Rau Hans Macmillan, NY, 1964
171 pp.

'Solar Energy and Its Use for Heating
Water in California" F A Brooks, Bulletin
602, Nov 1932, U of Cal at Berkeley

"Solar Energy Collection and Its Utiliza-
tion for House Heating" Austin Whillier,
ScD Thesis, MIT '53.

SOLAR ENERGY RESEARCH ed. by Farrington
Daniels, John Duffie, U of Wisconsin
Press, Madison '61, 290 pp.

'Solar Energy Researchers Trap a New Way
to Produce Electricity" BUSINESS WEEK June
12 '71, p. 7 2

"Solar Energy: The Largest Resource' Allen
L Hammond, SCIENCE, Vol 177, 22 Sept '71,
pp. 1088-90
Summary of solar possibilities

SOLAR .NERGY UTILIZATION Carol Sterkin
Calif Inst of Tech, Pasadena, 1971
A Bibliography

"Solar Heat Test Structure at MIT" F N
Hollingsworth, HEATING AND VENTILATING
May '47, pp.76,77

"Solar-Heated House Uses 3/4 hp For Air
Conditioning' ASHRAE JOURNAL, Nov '62,
pp. 58-62

'Solar Heating Design Problems" Lawrence
Anderson, Hoyt Hottel, Austin Whillier
SOLAR ENERGY RESEARCH, U of Wisconsin
Press, Madison, 1961, 290 pp.

"Solar Heating for Houses" Aladar Olgyay,
Dr. Maria Telkes, PROGRESSIVE ARCHITECTURE
Mar '59, p. 195-203

'Solar Heating of Houses by Vertical Wall
Storage Panels" A G H Dietz, Edmund L
Czapek, reprint ASHVE Journal Section,
HEATING, PIPING AND AIR CONDITIONING
About MIT Solar "House" 11

SPACE HEATING WITH SOLAR ENERGY Proceed-
ings of a course-symposium at MIT Aug 20-
26 '50, Space Heating Cosmittee, Cabot
Solar Energy Research, ed. by Richard
Hamilton, MIT Press, 1954, 161 pp.

'The Solar House" Phoenix Ass of Home
Builders THE SUN AT WORK, Association for
Applied Solar Energy

"Solar House Heating" Richard A Tybout,
George 0 G Lof, NATURAL RESOURCES JOURNAL
U of N Mexico School of Law, Vol 10 #2,
Apr '70

"Solar House Heating - A Problem of Stor-
age" Maria Telkes, reprint from HEATING
AND VENTILATION, May '47, Publication #19,
MIT Solar Energy Conversion Project

SOLAR HOUSES AND SOLAR
Harry E Thomason, from
Co., 101 E. Gloucester
NJ 08007, 36 pp.,$1.00

HOUSE MODELS
Edmund Scientific
Pike, Barrington,
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"Solar Space Heating and Air Conditioning
in the Thomason Home' SOLAR ENERGY JOURNAL
Vol 4 #4, Oct 1960, pp. 11-19

"Solar Space Heating, Water Heating,
Cooling in the Thomason Home" paper No
E/Conf. 35/S/3, 6 May 1961, UNITED NATIONS
CONFERENCE On New Sources of Energy
(paper presented in Rome, Italy August
21-31, 1961).

"Space Heating with Solar Energy" Maria
Telkes, THE SCIENTIFIC MONTHLY Vol LXIX
#6, Dec '49
Based on an address presented at UN
Scientific Conf on the Consumption and
Utilization of Resources, Lake Success,
NY., Aug 17-Sept 6 '49

'Sun-heated Ski Lodge Slit Into Mountain
Slope" Paul Jacques Grillo, INTERIORS
Jan '51, pp. 114-115

"Sun Power in the Pyrenees" TIME 95s
52-5, My 18, '70

whole-earth livina -- doink it yourself

BALL BLUE BOOK on canning, Ball Bros. Co.
Inc., Muncie, Indiana, 1966, 100 pp.,
35e pd

THE BASIC BOOK OF ORGANIC GARDENING
Robert Rodale ed., Ballantine Books,
Inc.. 1971, 377 pp., $1.25 pd

BEGINNER'S GUIDE TO HYDROPONICS Jane
Sholto Doualas, Pelham, England,
2.25. Domestic applications of
soilless culture.

BUILD YOUR OWN FURNITURE R. J. De
Cristoforo, Harper and Row, 49 E.
33rd St., NYC 10016, 1965, 176 pp..
$2.50 pd

BUTCHERING, PROCESSING AND PRESER-
VATION OF MEAT A MANUAL FOR THE FARM
AND HOKE Frank Ashbrook, Van
Nostrand - Reinhold Books, 450 W.
33rd St., NYC 10001, 1955, 318 pp..
$7.95 pd

"Sunlight and Bodies Heat This School"
SCI DIGEST 69o16-17, Jan '71

"Sunshine Power" Everett CarLeon, Jr.
THE MOTHER EARTH NEWS, Issue No 9, pp.
19-23

"Town Planning and Solar Architecture"
Secretariat des missions d'urbanisme et
d'habitat, No 50, SIEGE SOCIAL. 11 Rue
Chardin, Paris.
Solar energy in the third world

"Weather Controls Use of Asphalt Coatings
to tap solar energy" James F Black,
SCIENCE 139o226-227, Jan '63

WORLD SYMPOSIUM ON APPLIED SOLAR ENERGY
Proceedings, Stanford Research Institute
Menlo Park, Ca, 1956, sponsored by the
Association for Applied Solar Energy at
Phoenix, Nov '55

'World's Biggest Furnace Runs on Sunshine"
D Scott, POPULAR SCIENCE 196:88-9,Feb '70

CANADIAN WOOD-FRAME HOUSE CONSTRUCTION
Canadian Central Mortgage and Housing
Corporation, 650 Lawrence Av. W.,
Toronto 7, Ontario, Canada, 197 pp.,
free.

CCHPOSITION OF FOODS Bernice Watts,
Annabel Merrill, Superintendent of
Documents, U.S.Government Print
Office, Washington DC 20402, 1963,
190 pp., $2.00 pd

DIET FOR A SMALL PLANET Frances
Moore Lappe, A Friends of the
Earth Ballantine Book, NYC., 1971,
$1.25, 301 pp. How to make the
most of limited protein by com-
binations of protein.

'Do-It-Yourself Power Catches On;
Natural Gas to produce electricity
and heat' BUSINESS WEEK, p. 62+,
N30, '68. On 'total energy';
electric companies trying to stop
it.

veriodicals

Applied S.9aE Enegy bi-monthly, NY
Faraday Press

Heating Aa Ventilatina

2olar Energy The Journal of Solar Energy
Science and Technology, Pergamon Press,
Oxford, England for Solar Energy Society
Ariz State U., Tempe, Ariz. Quarterly.

FHA POLE HOUSE CONSTRUCTION US
Department of Housing and Urban
Development, FHA, Washington DC
20110, Free.

"Greenhouse All Around You" HOUSE
AND GARDEN, 135s150-1, Jan '69

"Greenhouse-kitchen Space is
Prodigal" HOUSE AND GARDEN, 135;
58-61, Jan '69

"Greenhouse That Pays for Itself
in One Season" ORGANIC GARDENING
AND FARMING, 16a80-1, Jan '69

HCME CANNING OF FRUITS AND VEG-
ETABLES Home and Garden Bulletin
#8, '69, 31 pp., 20c, Superinten-
dent of Documents, U.S.Government
Print Office, 4ashington DC 20402
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HME FREEZING OF FRUITS AND VEGETABLES,
Home and Garden Bulletin #10. '69,
47 pp., 20c, Superintendent of Docu-
ments, U..S.%"overnment Printing
Office, Washington DC 20402.

HOME GUIDE TO PLUMBING, HEATING, AIR
CONDITIONING George Daniels, 186 pp..
$3.95. "A step-by-step guide to
plumbing and related work"

HOW TO BE YOUR OWN ELECTRICIAN George
Daniels, 144 pp., $3.95. "All you
need to know to do your own wiring"

HOW TO BUILD YOUR HOME IN THE WOODS
Bradford Angier, 310 pp., $7.00, $2.45
ppbk. "A pretty fair guide to build-
ing the traditional north woods log
cabin and other structures. Good
discussions of hot and cold storage,
fireplaces, oil drum heaters and the
rest of cabin life. More nitty-gritty
basics than the new editions of
Kutstrum's book (The Wilderness Cabin)"

'How to Make a Glass and Plastic
Window" SUNSET au:92 +, Mr '68.

THE LAST WHOLE EARTH CATALOG
Stewart Brandt, ed., 558 Santa
Cruz Ave., Menlo Park, Ca 94025,
1971, Random House, $5.00

"Low-Cost Greenhouse You Can Build"
MECHANICS ILLUSTRATED, 65:90-3+,
Sept. '69.

"Low-Cost Greenhouses" MECHANICS
ILLUSTRATED, 64:98-100, Dec '68.

LOW4-COST WOOD HOMES FOR RURAL
AMERICA -- CONSTRUCTION MANUAL
L. 0. Anderson, Agriculture Hand-
book No. 364, May '69, U.S.
Department of Agriculture, Forest
Service, from Superintendent of
Documents, US Government- Printing
Office, Washington DC. $1.00 pd.
A basic introduction with step-
by-step procedures for the con-
struction of inexpensive homes;
foundations, framing, finish,
utilities, painting.

ORGANIC WAY TO PLANT PROTECTION
Rodale Books Inc., 33 E. Miror
St., Emaus, Pa 18049, 1966, 355
pp., $5.95 pd

STALKING THE HEALTHFUL HERBS
Ewell Gibbons, David McKay Co.
Inc., 750 Third Av., NYC 10017,
1966. 295 pp., $2.95 pd

STORING VEGETABLES AND FRUITS IN
BASEMENTS, CELLARS, OUTBUILDINGS
AND PITS Home and Garden Bulletin
#119. 18 pp., 15c, Superintendent
of Documents, U.S. Government
Printing Office, Washington DC
20402.

TOOLS FOR PROGRESS CatalogInter-
mediate Technology Group Ltd., 9
King St., Covent Garden, London WC 2,
1968, 192 pp., $2.10 + postage.

"Transparent Artistry" HOUSE
BEAUTIFUL 110:102-5, Sept '68.

"Underground Greenhouse" R. A. Walton,
ORGANIC GARDENING AND FARMING,
15:60-1, Nov '68.

WELL-DRILLING OPERATIONS Army-Air
Force Technical Manual, TM 5-297,
AFM 85-23, 1965, 249 pp., $1.00 pd
U.S. Government Printing Office,
Division of Public Documents,
Washington DC 20402

WIRING SIMPLIFIED H. P. Richter,
Park Publishers, Minneapolis,
29th ed., 1968, 143 pp., $1.00
"Not as many illustrations as

HOW TO BE YOUR OWN HOME ELEC-
TRICIAN, but it gives you the same
information and costs $3.00 less.
Also comes with an excellent
hole drilled right through the top
so's you can hang it up on a nail."

"Your Own Water-Power Plant" THE
MOTHER EARTH NEWS, #13 & #14, reprint
of 1947 POPULAR SCIENCE series of 5
articles; includes information on dams.

Clear Cr One South Park. San
Francisco 94107, monthly. $7.50/yr
$13.00/2 yrs.

he Gen RevoluXion The Green
Revolution, Route One, Box 129,
Freeland, Md 21053, monthly, $4.00
yr.

Lifestyle P.O.Box 1, Unionville,
Ohio 44188, bimonthly, on alter-
nate months with THE MOTHER EARTH
NEWS.

lha Mother Earth EtwA 1899 Hubbard
Road, North Madison, Ohio 44057,
bimonthly.

Organic Gardening WAn Farming 33
E. Miror St., Rodale Press, Emmaus
Pa 18049, monthly, $5.85/yr.

Plants and Gardens Brooklyn Bo-
tanic Garden, Brooklyn, NY 11225,
quarterly, $3.00/yr.

Wgd Ua&g Quarterly Lowther Press,
R.D.1, Wolcott, Vt 05680, 4 issues
yr., $3.00/yr.

Wood Preserving Formerly WOOD
PRESERVING NEWS.

THE MERCK MANUAL (Medical
Information) Look in college book-
stores. l1th edition 1966, 1850 pp
$7.50, or perhaps Merck & Co.,
Inc., Rahway, N.J.



havAi. or ATICNAL GoUPS, hav 'aApIZATItive , Aee onSTheeTion
having or trying to have a positive effect on the environment

American Forestry Association
919 17th St t.
,iash oC 20006
"Promotes conservation of
forests and allied resources"

American Institute of Archi-
tects (ALA)
1785 Mass Av NW
*Jash DC 70036, ph 202 265 3113
Michael 3 Barker, Administrator
Department of Environment and
Design

American Wood Preservers
Institute
1651 Old Meadow Rd
McLean Va 22101
ph 703 893 4005

Baker Manufacturing Co
Evansville Ais 53536
free info on hand pump stands

Boston Environment Inc
14 =eacon St Boston 02108
ph 227 2669
"Environ-ental information
center attempting to provide
information and referrals to
Boston r-sidents" - have infor-
mation and library

Bucknell Engineering Co
10717 E Rush St
South El Monte Ca
sell wind generators

Cambridae University, Alexander Fike,
University Lecturer in Architecture
Technical Research Division
Sept of Arch, I Scroope Terrace
Cambridge C1 12X England

Center for Environmental Structure
2531 itna St Berkeley Ca 94704

Deeprock Mft Co
Box 70 Opelika, Alabama 36301
sells Hydra-drill for $350, to dig your
own well

Dempster Industries Inc
P 0 Box 848
Beatrice Nebraska 68310
sell good equipment for pumping water

Dyna Technology Inc
P 0 Box 3263
Sioux City Iowa
sell wind generators

Earth Move
P 0 Box 13036
Washington DC 20009
information on how to convert existing
septic tanks to the collection of methane;
sell a kit ti convert cars to methane

Ecology Action
P 0 Box 9334
Berkeley Ca 94709

Environmental Action Inc
2000 P St NW
Washington DC 20036

Environmental Protection Agency
Washington DC 20460

Federal Extension Service
US Dept of Agriculture
Wash DC
"Education programs and field
agents help development of re-
sources, conservation practices
and recreational use."

Forest Service
US Dept of Agriculture
Wash DC
"Manages national forests and
grasslands, offers technical
and financial aid and research
to landowners for forest and
wildlife management"

Friends of the Earth
30 E 42nd St
NYC 10017
"Aggressive international
conservation organization"

Goldblatt Tool Co
511 Osage
Kansas City Kansas 66110
amazing catalog of specialized
builder's tools
free

Harmony
872 Mass Av
lCambridte. Mass 02139

ph 354-IZ48
"self-: rportine ecology group
will help anybody interested in
solving environmental problems"

Heller-Allen Co
Corner Perry & Oakwood
Napoleon, Gio 43545
sells equipment for pumping water

Hilfiker Inc
3900 Broadway
P 0 Drawer L
Eureka Ca 95501
sells sewage utility equipment

John Muir Institute for Environment-
al Studies
451 Pacific Av
San Francisco Calif 94133

James Leffel & Co
Springfield Ohio 45501
sells good but expensive hydraulic
turbines

Metropolitan Ecology Workshop
74 Joy St
Boston 02114
ph 723-6894
"Working on ecology projects at
the community level in Boston.
Have home ecology program....N

National Academy of Science
has information on resource re-
serves

National Center for Urban
and Industrial Health
US Dept of Commerce
Washington DC
Office of Solid waste: "Research
in waste disposal methods and
controls"
Environmental Sanitation Pro-
grams "Technical assistance
and starr'nr-s !ow-l1nert for
recreational areas, housing hy-
giene, urban noise and crowi-
ing. Conducts and supports
research and training"
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National Forest Products Ass-
ociation
1619 Mass Av
Washington DC 20036

Plastics Pipe Institute
250 Park Ave
NYC 10017

Quirk's Victory Light Co
33 Fairweather St
Bellevue Hill
NSW 2023
Australia
sells wind generators

Rachel Carson Trust for the
Livina Environment, Inc
P940 Jones Mill Rd
Wash DC 20015
"Serves as clearinghouse of in-
formation on environmental con-
tamination and ecology in gen-
eral"

Rife Hydraulic Engine Manufac-
turing Co
Box 367
Millburn NJ 07041
sells hydraulic rams

Sierra Club
Huron Ave
Cambridwe. Mass
Paul SwateK, Regional Manager
ph 962-933V
National Offices
1050 Millq Tower
San Francisco 94104

Small Homes Council - Building
Research Council
U of Illinois
Urbana Illinois
has publications on building
techniques

Soil Conservation Service
US Dept of Aericulture
Wash DC
"'Works with local water and
soil conservation districts
to provide technical assist-
ance in Dlanning and imple-
menting local projects. Con-
ducts soil surveys, publishes
basic water conservation and
land-use data"

Southern Forest Products
Association
P 0 Box 52468
New Orleans Louisiana 70150

Stanford Research Institute,
Stanford University,
assembles information of solar-related
activities has reference library, solar
enrineering exhibit.

Sunwater Co
10404 San Diego Mission Rd
San Diego Ca 92129
sells solar stills

USDA Forest Products Laboratory
Madison Wis 53705
Published Research Note FPL - 0134,
"Experimental Chromate Finish" a spray-on,
51c/gal four-year wood preservative.

World Wildlife Fund
910 17th St NW
Washington DC 20006
Published "What You Can Do"
by Malcolm Wells
10c, 8pp.

Zomeworks
P 0 Box 712
Albequerque, N M 87103
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APPENDIX I
SLCTION CF A TESTED

* "" S OL.AR - HEA T
cop"^ ruage COLLECTOR

MIT SOLAR HOUSE 1 C( -1

Modern research into the utilization of solar energy began in the late

1930's at the Russian Heliotechnik Institute in Tashkent and with

funds from Dr. Godfrey L. Cabot, MIT '81, at Harvard and MIT. The

first solar-heated house was built at MIT in 1939 (figure 1). Its

main purpose was to develop the methods for the calculation of the

performance of the solar energy collectors. The two-room laboratory

building had mounted on its south-facing roof a 360 sq ft blackened -108)

copper sheet collector behind three air-spaced glass plates in insu-

lated boxes (figure 2). Water from the 17,000-gal basement tank

.(about 2000 cubic feet) was circulated through copper tubes soldered MILATM

to the copper sheet. In addition to the collection of heat during
210--

the winter, heat was also captured during the summer and stored in TM TE RATM V1S7W OFiEAR

the large tank for winter use. No auxiliary heat was needed for two

seasons, since the minimum temperature reached by the collecor was

1250 F, as seen in Figure 3. Economic analysis, however, showed that

long-term heat storage was not practical. Equations were derived by

H. C. Hottel and B. B. Woertz for the performance of the collectors 2 - - -0

with varying numbers of glass plates as a function of the outdoor --

and the collector temperature. Their publication, 'The Performance of

Flat-Plate Solar-Heat Collectors' is still the basic guide for flat- W AUOI URI OCTI MXI DCCI MI FCLI MW &M

20 TT AT F 1 EAR

plate collector design. 3/ Fig. 6. Tank temperature in "b first sWar hous.11

(Ruo -108)



MIT SOLAR HOUSE I

It is believed that higher efficiency of operation can be achieved by

placing the heat storage units near the collector and within the con-

fines of the space which is to be heated. The maximum limit of such

proximities can be achieved by letting the collector and storage unit

be one and the same, and by using this collector-storage unit as one

wall of the living space (see figure 1). Such was the design of MIT's

solar house II. Figures 2 and 3 show the 8-fdot-high, 14 x 44 ft

building divided into seven 4-foot-wide cubicles for the purpose of

testing seven variations of collection-storage-heating.

A G H Dietz and Edmund L Czapek in their article 'Solar Heating

of Houses by Vertical Wall Storage Panels' in Heating, Piping Ad

&j= Conditioning, (~1941), detail the procedures, the problems, and

some conclusions. In summary, six of the cubicles had double glass on

the south front, the seventh having triple glass. The sun's rays would

penetrate through the glass to the storage units immediately adjacent

to the glass. The storage units would, as a result, heat up. In some

of the cubicles this heat would be radiated by the storage units to

the room. In other cubicles the heat would be transferred by convect-

ion (figures 4 and 5). Each cubicle had a set of double shades which

were automatically lowered at night or on sunless days to conserve

the stored heat. The storage medium was either water, which stored

sensible heat, or salt which utilized heat of fusion, changing from

solid to liquid at 90F and storing 100 Btu per pound. Temperature
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Fig. 5. Sun wall chemical heat storage.
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stratification within the storage media, heat loss of the system

through the glass to the outside, and the complications of trying to

increase the efficiency led to the cohclusion that further research

in this direction would not bring satisfactory solutions to the solar

heating problem.

OUTER SHADES
UP DURING DAY
DOWN AT NIGHT
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aY ROOM AIR
TEMPERATURE

INSULATING WALL
U*0.08 BTU /SO. FT.
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-- T/0" PINE BOARD

SOUTH INSULATION BOARD
2" AIR SPACE

,-ALUMINUMd FOILt

-- t'_&AIR SPACE
-4* ROCK WOOL
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lURED AT MEASURED AT TAR PAPER-

t0 SrIG -

7/e" BOARD
TAR PAPER - WATERPROOFING
i/2" INULATION BOARD

AIR SPACE
_ALU)MiNUM FOIL

-"AIR SPACE
/ 4" ROCK WOOL
, -- ROOFING PAPER

B" BOARD

Fig. 3
-- Cros sectionI of test3 housc- showing construction

(sWvw -2)

INTAKE FAN
(PROPELLER TYPE)

17 WATTS - 030 CFM

i MR. i *F

4 Fig. -Se maie repesenttIom of olar energy cel ting units 5
(sVWw - 2)

113



MIT SOLAR HOUSE III

In 1948 MIT remodelled house II, converting it into a small home of

608 sq ft for a married student and his family. (Figure 1,2,3) A

collector tilt of 570 south was used (latitude plus 150) to optimize

the collection of winter sun. In order to require auxiliary heating

(this concept is discussed elsewhere in the paper), the collector

(400 sq ft) and the water-storage tank (1200 gallons, about 150 cubic

ft) were purposely underdesigned. The performance of the system was

in close agreement with the predictions based on past experimentation,

and supplied about three-quarters of the heating load. Solar energy

was also 'collected' through the large south-facing windows (shaded

by an overhang in the summer), often necessitating ventilation of ex-

cess heat during sunny winter weather.

Figure 4 shows the details of the collector. Copper tubes, 3/8 in.

in diameterg 84 ft long and spaced 6 in. on center, were soldered to

the bottom of the collector. The surface of the air space below the

tubes was faced with aluminum foil, behind which was 4 in of mineral

wool insulation to reduce the heat loss from the collector to the

interior of the house (such a loss reduces the temperature, and thus

the efficiency of the collector). The tubes were connected to 3/4 in

copper tube headers at top and bottom.

South-facing glass totaled 180 sq ft, of which 26 sq ft was dou-

ble pane and 154 was triple. (Section two of this thesis shows the

energy-economic tradeoffs between these two options).

FIG. 5-Plan view of experimental solar energy
house built at M. 1. T. Note large glass areas on
south wall.

FIG. 6-East elevation of M. 1. T. solar house. Solar
energy collector was located on roof gable, which
also housed energy storage tank.

(4SPR- 47)
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Figure 5 schematically shows the collection system, the two energy

transport systems, the storage tank, and the radiant heating panels.

The storage tank was 36 in. in diameter and 30 ft long and was placed

in the attic space; such were the constraints of the remodelling prob-

lems. It is much better to have minimal surface area per cubic foot

of storage, and because of the weight of water, ground level location

is preferred. It'is also desirable to locate the tank so that the lost

heat is absorbed by the living quarters. Its capacity of 1200 gal pro-

vided 25 pounds of water per sq ft of collector and made it possible

to carry the heating load for two consecutive sunless days (assuming

that the storage water was at its maximum temperature at the start of

those two days). Three auxiliary immersion heaters of 4 kw capacity

each, were installed in the storage tank near its outlet.

A dry collector on the roof started the collector pump when its

temperature reached 50 above the storage temperaturel circulation

continued as long as this condition existed. Such a method prevents

operation during momentary periods of sunshine and the delivery of

warm storage water to a cold collector. When the pumps stopped, the

water drained back into the storage tank and thus did not require anti-

freeze.

The radiant heating panels operated in a conventional way. When

the thermostat called for heat, the pump began circulation and the

mixing valve mixed warm water from the storage tank with return water

from the panel, as required by the demand.

Before discussing the data it is interesting to note the following

figures (graphically shown in figure 6):

(HSPR)

FIG. 8-Schematic of solar heong system. 1. Ra-
diant panel pump. 2. One of 15 solar energy col-
lectors. 3. Flow diverting valves and collection
pump. 4. Solar storage tank: 12009al. water ca-
pacity. 5. Radiant panel. 6. Mixing valve. 7. Room-
temperature control. In original house, radiant
ceiling panels were used to transmit hear to oc-
cupied spaces. New test house will use conven-
tional warm-air heating system.
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- 667,000 Btu of solar energy in one heating season w8uld strike one
square foot of surface facing south and inclined 57 OUTSIDE THE
EARTH'S A'IOSPHERE.

- 219,000 Btu would strike this same surface at sea level.

- 67,000 Btu per square foot was actually available and used for house
heating during the season.

The huge drop from 667,000 Btu theoretically available to 67,000

Btu actually used is largely the result of the characteristics of the

atmosphere and is unavoidable. However, 30 percent of the energy

which struck the collector was actually used. for heat, a respectable

amount and a figure which is hard to improve upon,

Figure 7 shows the performance data for three heating seasons. To

find heating load, the sum of all of the energy delivered to the buil-

ding from appliances and animal sources is subtracted from the build-

ing heat loss (in conventional systems such contributions are usually

ignored). Note that the percentage of heating load carried by solar

energy includes both that energy which was collected by the collection

system and that which entered the house through the windows, Changes

in the piping system were responsible in large part for the improved

performance during the 1951-52 season. The changes improved and equa-

lized the collector circulation of water over the surface of the

collector.

Prof A L Hesselschwerdt, Jr, a member of the MIT solar research

team, wrote the article, "Heating by Sunpower: A Progress Report",

from which a lot of the previous material was taken. He concludes as

follows: (HSPR)

The house in question was located in a location where climatic

7
(HSPR
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FIG. 9-Summary of heating data collected during
three years of testing. Note high percentage of
load carrier --f--olar unit in all but coldest periods.

Season 19490 1950-51
Heating load of season,

thousands of Btu 40,022 35,414
Percentage of load by

solar system 74.1 75.0
Percentage of load by

auxiliary heat ^cn

1951-52

36,457

82.3

17.7

1952-53

37,530

69.0

31.0
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condition, of heavy heating load and poor atmospheric conditions,
do not favor solar heating. Despite these limitations, the foll-
owing conclusions can be drawn:

- Solar energy can be successfully utilized for space heating.

- To produce a solar energy system that will be competitive from
.an economical standpoint will require much more research and dev-
elopment work.

- The design of a solar energy system for space heating requires
the closest cooperation between engineer, architect, and contract-
or.

- The design of the energy transport system is extremely critical
and requires expert attention.

Yes, it is true that this house proved that "solar energy can be

successfully utilized for space heating", technologically... But the

second conclusion, that an economically competitive system will re-

quire much more research, lies at the base of the problem confronting

-the use of solar energy today. We have the technology and skill to use

solar energy in domestic heating (and this information has to be given

to the public) but unless such technology can, along with its other

benefits, be made economically competitive with the traditional meth-

ods of domestic heating (and cooling), it is without much value in the

solution of our energy needs.

The third conclusion, that the design of such a system requires

the close cooperation of engineer, architect, and contractor is an-

other indication that there are many problems yet to be solved and

that the final product will be expensive. (such collaboration is eco-

nomically expensive; perhaps one method of cost reduction is simpli-

city of design to require less collaboration),

The cautionary note of the fourth conclusion, that the design of
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the energy transport system requires great care, points to two poss-

ible problem areas. One of them is a problem which we have mentioned,

that of even distribution of the water over the surface of the coll-

ector so as to more efficiently make use of the heat surface. The

second problem area is that of keeping pumping costs low, the primary

cost being that of electricity. The design must insure that the ex-

penditure of electricity is more than offset by the gain in solar

heat.
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After 20 years of research, the solar heating team at MIT constructed

a two-storey, 1450 sq ft house in Lexington, Mass., a suburb of

Boston, in 1959. The solar heating system was to provide 75 to 80 per

cent of the house heat as well as a large part of the domestic hot

water. Its 640-square-foot collector (16 x 40 ft), tilted at 600, con-

sisted of two layers of glass covering a thin (.025" thick) aluminum

sheet painted a heat-absorbing black. Water from the 1500-gallon

storage tank (5 ft in diameter, 9 ft long) was warmed as it was cir-

culated through copper tubes attached to the aluminum plate (figure 1)

The warm water in turn was pumped through a heat-exchanger as needed

to warm the air which warmed the house. An oil furnace provided the

auxiliary heat. During the summer, a small tank was connected to the

collector for domestic hot water and a small (3/4 ton) refrigeration

compressor was applied to the large tank to provide cooling for the

house (figures 2 and 3).

The researchers at MIT knew that economically solar heating

might be impractical, but it was their intention to achieve a measure

of success upon which to build another house, selling House IV to

help finance it. That house would in turn be sold to finance yet an-

other house. A series of setbacks forced an abandonment of this plan,

however. Costs of the system were greater than anticipated, the system

provided a smaller percentage of the heat required by the house (about

46%) than was predicted, and MIT found itself in the unenviable pos-
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Fig. 3 A cross-section of the solar collector assembly
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ition of having to provide its highly trained scientists and enginb.

eers as repairmen of a domestic heating system. Although the solar

system operated fairly well, ordinary things, such as valves and

gauges, failed to function properly (probably no reflection on the

solar system itself).

The house's first heating season, 1959-60, was more severe than

predicted and there was less sunshine than usual. The total solar in-

cidence was 122.4 million Btu. Of this amount, 32.4 million Btu was

of too low intensity to justify attempted collection and 40.9 million

Btu was actually extracted from the collector and brought to the sto-

rage tank. This heat in turn provided 34.4 million Btu of the total

heating load of 74.5 million Btu, or 46%.

The following 8 pages are an ASME publication, 'Progress in

Space Heating with Solar Energy' by C D Engebretson and N G Ashar.

This rather detailed and well-written article about House IV will

give the reader further insight into the project.

GALL

3
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Solar House IV, Lexington (420 N, 710

Progress in Space Heating WITh Solar Energy
C. D. ENGEBRETSON N. G. ASHAR

The solar heated home of the present day is

serving as the pilot plant in the logical de-

velopment of the method by which general use of

solar energy for space heating may be accom-

plished. The record of the performance of such

an experiment during a heating season is intended

for use in justifying theory, and in orienting

the analytical and laboratory phases of solar-

energy utilization research.

The poor correlation between solar-energy

supply and space-heating demands is not encour-

aging; however, the performance of solar-energy

collectors and the influence of weather varia-

bility has received considerable study, the re-

ports of which permit reasonable prediction of

the capability of a particular design (1, 2).l

The art of space heating by other energy sources

is well known as measured by the 20 per cent of

the national energy consumption for this purpose.

The conclusion that some benefit is real-

izable by coupling the solar-energy collector

to the space-heating system has been reached by

many. The performance of a particular system

Numbers in parentheses designate references

at the end of the paper.

in a particular environment with evidence as to

how typical the environment was, during the
period of the experiment, should contribute to

knowledge of the validity of this conclusion.

MIT SOLAR HOUSE IV

The present MIT solar house is the fourth

experimental structure built under the direction

of the Space Heating Committee of the Solar Energy

Conversion Project financed by funds contributed

by Godfrey L. Cabot (3). The first two solar

houses included laboratory facilities only, while

the third was a small laboratory building re-

modeled to incorporate 608 sq ft of living facil-

ities for a family of three (4). Solar House IV

is unique in that it was designed as a solar

house to make the fullest use of cbllected energy

and waste as little energy as possible and at

the same time meet the comfort and space re-

quirements of modern living. Studies were made

to determine the optimum form and shape of house

to satisfy these requirements and give as nearly

as possible optimum and practical performance.

There studies indicated that a design by which

it could be possible to receive a maximum of

Fig. 1 The M.I. T.
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Fig. 2 A schematic diagram of the solar heating system

75 per cent of its heat from the sun was practi-
cal in the New England climate (5).

The house, Fig. 1, is of two-story design

containing 1450 sq ft of usable living area.
On the first-floor level are two bedrooms, bath,
dining room, kitchen, entry hall, and several

closets. The second-floor level contains the

living room, master bedroom, bath and dressing

room. Connected to the living room by a bridge

is a screened porch while across the brick patio

from the ground floor entrance is a carport.

The design is quite different from the popular

ranch or split-level house but it succeeds in

its purpose of being comfortable and convenient.

The south elevation of the house above ground

level consists entirely of 640 sq ft of solar

collector sloping at an angle of 60 deg to the

horizontal.
The house is of frame construction above

ground level, built of first-quality materials

and well insulated throughout. Except for the

back of the collector, which is heavily insula-

ted to prevent excessive back loss, the insula-

tion does not exceed the amount which should be

considered good building practice in this cli-

mate. All windows are thermopane or double

glazed and doors and movable sash are weather

stripped. The terrain has been manipulated so

that the major portion of the side walls of the

first floor are below grade to minimize heat

loss in this area.

ENERGY COLLECTION SYSTEM

The system for collection and storage of

solar energy is that portion of the schematic

diagram, Fig. 2, comprising the collector, 200-

gal expansion tank, 1500-gal storage tank, col-

lector circulating pump and connecting piping.
The collecting surface is made up of 0.025-in-
thick and 48-in-wide aluminum elements mechan-
ically attached to /8-in-OD copper tubes on

5-in. centers by clip channels. This assembly
with two layers of cover glass spaced 24-in.
apart is shown in cross section in Fig. 3. Two

coats of flat-black paint on the outer surface

of the aluminum and copper-tube assembly produces

an absorptivity originally equal to 0.97 by

measurement. Low-iron-content glass is used for

maximum transmittance of solar radiation. The

back of the collector, which is common with wall

and roof of the living space, is insulated with

a 3-in. layer of foil-faced fibrous-glass in-

sulation and a 4-in. air-space layer of multiple

reflective insulation. The hydraulic circuit

is completed with appropriate piping as indicated.

in Fig. 2. Both the expansion tank and the

1500-gal storage tank are heavily insulated with

loose-fill-type insulation. The energy transport

and storage medium is water.

HEATING SYSTEM

The heating system of the solar house is

somewhat more complex than conventional systems.

It must provide the means of removing energy
from storage and introducing it as heat into the
living space on demand. It must also include a

means of introducing energy from an auxiliary

system when the solar energy in storage is ex-

hausted or incapable of satisfying the demand

and be endowed with sufficient intelligence to

make the decision when this operation is neies-

sary. It should further be chosen to transfer

heat to the living area with a minimum tempera-

ture difference because of the sensitivity of

Circulating Fon
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Fig. 3 A cross-section of the solar collector assembly

solar-collector-efficiency to energy-storage-
tank temperature.

To satisfy the last of these requirements
a forced-hot-air system was chosen with a water-
to-air heat exchanger, larger than that corre-
sponding to conventional practice. 2

The water-to-air heat exchanger in the air-
distribution system of the house and the cir-
culating-pump blower are shown in Fig. 2. The
oil-fired water heater and motorized valve com-
prise the auxiliary unit and its connection with
the main system. With this design of solar
heating system some economic benefit is realizable
by use of heat from the solar storage tank down
to a tank temperature of approximately 84 F.

Control is accomplished by a two bimetal
room thermostat and thermostats in the solar-
energy storage tank and in the tank of the oil-
fired auxiliary tank.

A means of heating domestic hot water is
provided by coils submerged in the solar-energy
storage tank and in the auxiliary unit. A
thermostatic mixing valve tempers hot water in
the event the solar-energy storage-tank tem-
perature is beyond the temperature level which

2 Experience with radiant ceiling panel heating

in the MIT Solar House III (4) indicated the
higher temperature difference necessary to trans-
fer heat to the living area.

can be used safely at appliances and outlets
throughout the house.

INSTRUMENTATION

Correlation of the performance of this
house with the theory upon which the design was
based depends upon obtaining sufficient data to
construct an energy balance. For this reason
suitable instrumentation was provided to obtain
continuous solar-radiation measurements in the
60-deg plane of the solar collector and on a
horizontal plane. Total radiation pyrheliometers
and strip-chart recorders are used in this ser-
vice. Water meters were included in the collec-
tor energy-transport circuit, domestic hot-water
system, and heat-exchanger water circuit to
measure integrated water flow. Separate power
meters and operating time meters were included
in the electrical services to each motor in the
system. A total of 28 separate temperatures
were recorded continuously by multipoint strip-
chart recorders. One strip-chart recorder is
used to record the temperature difference in the
transport stream across the collector. Fuel-oil
consumnption is determined daily and readings of
the other meters recorded at the same interval.

One of the merits of water as an energy
transport and storage medium is the ease with
which energy-balance determinations can be made
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and energy quantity in storage assayed. Knowl-
edge of flow, time, and temperature permit anal-
ysis of the performance of any particular hy-
draulic circuit of the system.

MODE OF OPERATION

Human comfort is the primary purpose of any
heating system whether it be solar or otherwise.
The heating system and the control thermostat
were adjusted to suit the comfort requirements
of the occupants. No attempts were made to alter
individual habit patterns to favor the means of
heating. For example, it is possible to favor
the solar heating system by scheduling high
demands for domestic hot water at the time of
day when the storage unit is at its highest
temperature thereby reducing the amount of aux-
iliary heat required for "topping up" this de-
mand. However, this was not done and dish and
clothes-washing operations were carried out at

the convenience of the housewife. No "night

set back" of the thermostat was used and lower

temperatures in sleeping areas were accomplished
by manipulation of duct damper settings .and by

ventilation. The return-air temperature to the

heat exchanger remained in the range of 73 to 75
throughout the heating season.

HEATING-SYSTEM OPERATION

Heating-system operation is initiated by the

first-stage bimetal in the room thermostat, which

4
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anger characteristics

causes the heat-exchanger circulating pump and
blower to operate. Water is pumped from the
top of the 1500-gal storage tank through the
heat exchanger and returned to the bottom of the
tank. Return air from the living space is passed
through a filter bank and the heat exchanger and
redistributed to the house. When the demand for
heat is greater than supplied by the heat ex-
changer, the living space will continue to cool.
At the temperature 1 deg less than that necessary
to close the first-stage bimetal, the second-stage
bimetal will cause the motorized valve to oper-
ate causing the circulating pump to take hot
water from the oil-fired auxiliary system through
the heat exchanger and return it to the aux-
iliary tank. The water in the auxiliary system
is maintained continuously at a temperature of
from 145 to 160 F. This temperature is more than
adequate when supplied to a heat exchanger hav-
ing a UA of 1800 Btu/hr deg F at a water flow
rate of 3.4 gpm to satisfy the maximum demand
of the house. Air flow through the heat ex-
changer is 716 cfm with average air-filter con-
ditions.

When high demands beyond the capability of
the solar-energy storage are satisfied the sys-

F tem returns to operation with this source of
heat. Fig. 4 shows the water temperature and
heating-capacity relationship of the system,
and indicates a heat-exchanger efficiency of
83 per cent (ratio of air-temperature rise to
maximum possible rise, using a heat exchanger of
infinite surface). For a given demand it is
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Fig. 5 Economic study of influence of the storage tank temper-
ature on the savings in operating costs. Curve A: Operating
cost savings in $/million Btu delivered to the living area due
to use of solar heat instead of oil heat. Curve B: Operating
cost savings, $/day due to use of the present solar heating
system in a given month. Curve C: Total useful collection
using 640 sq ft at 600 tilt with a given monthly average air
temperature in million Btu/day. (Air temperature used for
these curves were 310 F in January and 360 F in February)

possible from this diagram to ascertain the

minimum storage temperature which will satisfy

the demand and the point where any subsequent

reduction in storage-tank temperature or increase
in demand will cause a change over to auxiliary

operation. A thermostat is provided in the solar-
energy storage tank which can be adjusted to

prevent operation which would be economically

unfavorable. Domestic hot-water use averages

85 gal per day and is heated from city water

temperature of about 50 F during the heating

season to approximately the temperature of the

solar-energy storage in passing through the coil

in the 1500-gal tank. It then passes through

the coil in the auxiliary tank for further

heating to temperatures in the range of 140 to

155 for distribution throughout the house.

A word is in order on the choice of solar

storage-tank temperature. Assume that, for a

given month, the space-heating requirements ex-

ceed the collector performance as to permit every

Btu collected from the sun to be used. The eco-

nomic optimum storage-tank temperature can then

be determined as shown in Fig. 5. The cost per
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Fig. 6 Solar collector performance during the winter
season 1959-1960. Cumulative values for every week

are plotted in million Btu

million Btu delivered to the living area is
first calculated for the solar and the oil-

heating systems. The operating costs consist

of the power costs at-3/ per kwhr to run the
collector pump (operating time based on a long-
term average of 63,000 Btu/hr collector opera-
tion), to run the heat-exchanger pump, air blower
and oil burner, and the cost of fuel oil at 15
per gal. The difference of these costs, the
excess of fuel-heat cost over the solar-heat cost,
is plotted versus the solar storage-tank tem-

perature in curve A. The increase in savings
with rising tank temperature is due to the re-
duced heat-exchanger operating time to deliver
a million Btu to the living area. But, allow-
ance must be made for the fact that the collec-
tion efficiency increases as the storage temper-
ature decreases, the outside air temperature
being constant. The useful solar-energy col-
lection can be estimated as shown by Hottel and
Whillier (2) by the use of the 0 or utilizability
curves. Calculations were made for useful col-
lection in millions of Btu per day versus
storage-tank temperature using a flat-plate col-
lector of 640 sq ft area and 60-deg tilt in the

Boston area during the months of January and
February (see curves C). For a given storage-
tank temperature, the daily savings in operating

5



TABLE 1 DE0REE DAYS PER MONTH (65 DEG P BASE)

Solr u V Flue Il Boston

1958-59 1959-60 19,8-59 1959-60 1958-9 1959-60 oral

October 540 339 488 42D 386 319 315

e.ember 62 735 691 716 547 a1u 618

December .164 1140 1316 997 1190 855 998

Jauary 1056 1395 1234 1163 1118 1048 1113

ebruar7 106 173 n48 93 1065 855 1002

rsh 6.3 1116 97 1108 862 992 849

taWl 5274 5798 50149 5347 5168 4710 4895

cost is the product of the useful collection in

million Btu per day and the savings in dollars

per million Btu transferred to the living area
using the present solar-heating system. This

daily operating savings for the months of Jan-

uary and February appear in curve B, Fig. 5.
The economic optimum tank temperature for Jan-

uary and February are 105 and 115 F, respectively
Similar calculations could be made for other

months but the flatness of the optimum indicates
-that 110 F is adequately near the seasonal opti-

mum.

ENERGY-COLLECTION-SYSTEM OPERATION

The operation of the collector circulating

pump and consequently the on-off cycling of the

collector is controlled by a pair of sensors one

of which. is in the energy-storage tank, the other

in the collector proper. These sensors are re-

sistance elements in the legs of an a-c bridge

circuit, the unbalance of which actuates an

electronic relay. This bridge-and-relay com-

bination is adjusted so that radiation on the

collector sufficient to cause approximately a

5-deg F temperature rise in the water-transport
stream through the collector, operation is in-
itiated. When radiation is inadequate to cause

a temperature difference of more than 3Y2 deg F

collection is terminated. A temperature rise

of 1 deg F is the "break-even point" at the

present cost of electrical energy to drive the

pump. A somewhat higher than "break-even" dif-

ferential-at start of collection is desirable

to prevent any short cycling or nervous operation

of the control and pump. Present water-circula-

tion rate through the collector is 8.2 lb/hr sq

ft.
The water automatically drains from the

collector at the completion of each collection

cyclL and is replaced by air from the top of

the expansion tank. This feature is extremely

desirable in a solar collection system to reduce

losses during cold cloudy periods and to reduce

freezing hazards. It is also the cause of the

6
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Fig. 7 Solar House IV performance during the winter

season 1959-1960. Cumulative values for every

week are plotted in million Btu

most difficult single operational problem of the

system, that of air entrainment in the transport

system. Considerable experimentation was neces-

sary before a system capable of returning this

entrained air from the points where it was dis-

engaged from the liquid to the expansion tank

was devised. The average power cost of collec-

ting one milliot Btu was 17.5 cents.

BIESULTS

The system and house herein described has,

during this past season, demonstrated a capa-

bility for providing a high degree of human com-

fort during a period of abnormal heating demand

and subnormal solar radiation. Table 1 shows

a comparison of degree-days data from near by

reporting weather stations and that taken at the

solar house. There exists a discrepancy due in

part to a difference in the method of interpre-

tation of the weather bureau and the solar-

house data, in computing average temperature

and degree days. The weather bureau stations

assume a normal distribution of temperature

around the arithmetic mean of high and low tem-

perature for a day while the solar-house degree

day is based upon average of measurements of air

temperatures recorded at 8-min intervals. When

normal distribution exists there is no differ-

ence due to the method, but January 1960 shows



that the distribution was somewhat skewed. Com-
parison of data with an air-base weather group,
2 2 miles away, has shown that by adopting the
weather-bureau system, the data are comparable to
the extent that differences are those normally
expected considering site, exposure, and eleva-
tion. However, it is felt that the method used
here more clearly represents the climatic condi-
tions surrounding the experiment. Boston
weather was warmer during this heating season
than the long term normal, but, the season was
more severe on the site than the previous season
when Boston was very near normal. Blue Hill data
as given in this tabulation show the same trend
as Boston. The one fact demonstrated clearly
is that in the temperate zone near a large body
of water, the variations in weather over a short
distance as one moves inland such as the 19 air
miles to Blue Hill and the 15 miles to Boston,
can be very great. Temperatures taken on the
site, therefore, have been used in the calcula-
tions of heat load.

Cumulative diagram, Fig. 6, shows that of
122.4 million Btu incident on the collector during
the season October 1959 through March 1960, 90
million Btu were received during periods of
collection of which 40.9 million Btu were col-
lected and transported to storage. Very apparent
is the plateau in the curve during November 1959
which was especially low in usable sunshine.
Collector efficiencies have been above 40 per cent
throughout the season, resulting in a long-term
average efficiency of 45.4 per cent. Cumulating
diagram Fig. 7 shows the use of the collected
solar energy for space heating and domestic hot-
water demands. Forty-four per cent of the space-
heating load and 57 per cent of the domestic hot-
water load were borne by the solar-energy system.
This results in a 46.1 per cent sharing of the
total heating load during the season. The monthly
values are given in Table 2. At all times suf-
ficient energy to accomplish the domestic hot-
water heating duty was in storage. However, its
level was rarely high enough to eliminate second
stage of "topping up" heating in the auxiliary
unit, hence the high percentage of this, load by
auxiliary means. The seasonal economic storage
temperature of 110 F, as indicated earlier, will
always necessitate auxiliary water heating means
regardless of the size of the collector.

This summary includes only that heat
intentionally transferred to the living space
metered and controlled. System losses which occur
within the structure contribute an unmetered
amount.

Contributions to the heating load of this
house from sources other than the heating system

TABI 2 ENEROY BALANCE ON SOIAR HOUSE IV (WINTER 1959-60)

No. October November December January rebruary Marth Total

1 Total 60e incidenee
an 0 rAt 21.6 12.4 16.7 21.8 21.7 28.2 122.4

2 600 incidence when
collector pump is
operating U.6 8.3 11.7 16.5 16.7 22.2 90.4

3 Total collection 6.3 3.5 5.5 7.4 8.1 10.1 40.9
4 Energy to heat exch.

by solar heated tank 3.1 1.5 3.5, 5.0 6.1 8.4 27.6
5 Energy to domestie

hot mater by solar
heated tank 1.5 0.8 1.0 1.1 1.2 1.2 6.8

6 Total energy suoplied
by the solar beated
tank 4.6 2.3 4.5 6.1 7.3 9.6 34.4

7 Solar tank losses 1.7 1.2 1.0 1.3 0.8 0.5 6.5
8 Energy to heat exch.

by oaxliary 0.0 6.? 9.0 9.0 5.8 4.9 34.9
9 Energy to dooestic hot

ater by suadliary 0.1 0.7 1.0 1.1 1.2 1.1 5.2
10 Total energy supplied

by the auxiliary 0.1 6. 10.0 10.1 7.0 6.0 40.1
11 Total heat each. load 3.1 7.1 12.5 14.0 11.9 13.3 62.5.
12 Total domestic hot

water load 1.6 1. - 2.0 2.2 2.4 2.3 12.0
13 Total heat load 4.7 9. 14.5 16.2 14.3 15.6 74.5
14 % of daeatio hot

water load shead
by solar tank 94 53 50 50 50 52 57

15 % of heat exch load
shared by solar tank 100 20 28 36 51 63

16 e of total heat load
oared by solar tank 98 25 -31 38 51 62 46

17 Predicted s of total
eat loand shared by

solar tank (5) 100 84 68 56 73 87 75

a cnrbt nes In the ac

proper can be classified as those of a normal
residence plus those peculiar to a solar house.
The average home experiences heat supplied by
occupants, lighting, appliances, and solar radia-
tion on the structure and through the windows.
In addition to this the solar house receives
a contribution from the back wall of the collec-
tor and the thermal losses from the energy-
storage unit within its envelope. The extent of
the contribution from the energy storage or from
the back wall of the collector has not been
fully explored. However, experimental results
indicate they exist. During operation of the
collector at temperatures considerably higher
than room temperature, heat transfer to the
living space is observed. During periods when
the solar collector is not active because of
inadequate radiation to permit economical opera-
tion, diffuse radiation observed will cause the
collector to achieve a temperature high enough
to accomplish some heating or to some extent
retard if not totally eliminate the heat loss to
the outside air from this portion of the enclo-
sure.

A portion of thermal losses from the 1500-
gal energy storage tank are to the basement
floors and walls and consequently directly to
the earth but an equal amount of surface area of
the tank enclosure is exposed to basement air.



Heating of the L:enrtii ari consequently the

lower floor someh;;at reduis-s tlhp de tnd _n the
heat cxchange r.

Exa=inatian of daita sn the b-1 -ir of this
structure indicates that dur 1 n- per- dz wh'n the
intensity of solar rai ation exceeds 150 Btu/sq-
ft hr, no heating-syster oc.ation was required
until the temperature difference between the
living space and the outside air exceeded
14 deg F. When tle solar incidence Is le.ss than
this value, heating-systen operation was gener-
ally requirid when the ter'perature difference
across the walls excecded 10 dOeg F. Since the
periods of Incidence below 150 Dtu/sq ft hr
greatly exceed these of higher solar incidence,
heat-load esti-ates have been made neglecting the
first 10 deg of tenperature difference.

The experimental d'ata yield a combined
UA-value for the house of 500 Btu/Ahr deg F when
fitted into the following expression for heat
load:

where
Q = (t - t - 10) 500i o

Q = hourly heat loss, Btu/hr
t = inside air temperature, deg F
i

to = outside air temperature, deg F
500 = UA = heat-loss coefficient and area

product, Btu/hr deg F

Using this experimentally determined UA-

value in the expression for the heat load of

this house it is possible to work backward and

roughly evaluate the contribution from the solar-

energy-system components. One concludes there

is no net gafn from insolation through the win-

dows and radiation on the structure during the

day because of an equal amount of back radiation

during the night, if one makes an evaluation by

hand-book methods (5). Electrical power used

averages about 750 kwhr per month. This amounts
to about 3555 Btu/hr which when added to the
probable 1500 Btu/hr for occupancy by three

persons and considering the UA-value of 500,
accounts for the lack of heat requirement for

the first 10 deg of temperature difference. The

low UA-value of 500 Btu/hr deg F can be attri-
buted to energy losses in the envelope from

components 'of the solar-heating system. The

collector-back contribution during periods of

low incidence is negligible. The collector-back

loss and miscellaneous radiation gain contribu-
tion during periods of incidence greater than

150 Btu/sq ft hr can then be assumed to be the
factor in the 4 deg greater temperature dif-
ference before heating is required. Hence, the
total miscellaneous radiation and collector-
back-loss contribution averages 2000 Btu/ir
during these periods.

COICLUO3ION
1 The degree of comfort reali::ed w I.-

dependent of the type of heating system and Liie
co.in,.tion of solar and auxiliary zystems

workable to achIeve this end.
2 Autiliary heating systems are required

in the northern latitude to provide satisfastcy
domestic hot-water temperature.

3 Special considerations are required in
designing the hydraulic circuit for the solar-
energy collection system owing to the presence
of air and water. Air transported to the com-
ponents of the system other than collector and
expansion tank can reduce the rates of water

flow and heat transfer.

4 The thermal perforrance of the collector
was in good agreement with the theoretical cal-

culations.

5 The construction of the collector assem-

bly was simplified by the mechanical attachment

of tube and aluminum plate with the clip chan-
nels. No loss in the heat-removal efficiency
was observed in spite of the reduced contact

area.

6 It would be desirable to have degree days

computed on weighted average air temperatures

rather than arithmetic mean of maximum and mini-

mum.

7 The economical seasonal operating storage-

tank temperature was about 110 F for the present

solar heating system.

8 It is logical to expect the system to

share a greater fraction of the total yearly

heating load than realized during the 6-month

test period. This period was deficient in solar

radiation and included more severe weather con-

ditions than normal.
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THE DOVER HOUSE

Dr. Maria Telkes, engineer, along with Miss Eleanor Raymond, architect,

and Miss Amelia Peabody, philanthropist, built a solar-heated house in

Dover, Mass (independent of MIT's work) based on the notion of complete

heating by solar energy. The nine days of heat storage was attained by

using Glauber's Salt (Na2SO4, 10H20) as the storage medium (60 lbs per

sq ft of collector). The heat of fusion (or "heat of transformation',

solid-liquid-solid) of this material is 104 Btu per lb. Its density is

92 lb per cu ft so that one cubic foot of this chemical can, theoreti-
FAN BLOWS WARM AIR COLLECTOR METAL SHEET

cally, store 9500 Btu at its melting point, which is about 90F. In the TO SIN THROUGH DUCT PLATES AIR CIRCULATES

IN AIR SPACE BEHIND METAL

temperature range of 80-100F, a cubic foot of water stores 1300 Btu

through the specific heat effect. The salt through the same range sto-

res 1500 Btu in specific heat in addition to its heat of fusion (9500

Btu) for a total of 11,000 Btu per cu ft. (SHH - 72)

The advantages of the salts are clear. Not only do they store WITH CONTAINERS HOLDING

seven or more times more heat per volume than substances relying on

specific heat, but they can collect and store the heat at a relatively

constant and moderate temperature. Its primary drawback has proven to :ROM SINTOROOM

be more than this house or subsequent work since has been able to solve;

the chemical salt stratifies in its container resulting in imperfect LOUVRE FORRETURtA

reversibility between liquid and solid. The Dover house was converted
FIG. 1. Heating system, sun-heated house, Dover, M-ass.

to standard heating.
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BOULDER HOUSE

HOT AIR OUTLET r.I. kIm..ic diagram ofT
happd-pl.ae " 0; heat"..

Dr. George 0 G Lof has been one of the foremost pioneers in the field GLASS COVER PLATE

of solar energy use. Prior to 1950 he designed a collector and applied

it to an existing five-room, 1000 sq ft, bungalow in Boulder, Colorado.

The primary objective in the design was "the maintenance of simplicity

and economy in construction and the development of a collector suitable

for large-scale factory production." (SHW) '

The solar collector unit (figure 1) consists of a sheet metal COATING

trough approximately 3 in deep, 2 ft wide and 4 ft long contain-
ing a series of single-strength glass plates arranged in a stair-
step fashion and separated by 1 in spaces. Each pane of glass is .
24 in wide, 18 in long and blackened with black paint or a black
elass coating in an area 6 in by 24 in. The glass is arranged so
that each black surface is beneath two clear surfaces. One or (/SO-/32)
more single-strength cover glasses 2 ft by 4 ft in size are supp- COLD AIR INLET
orted on the top edges of the trough and form a nearly air-tight
enclosure containing the overlapped plates. By means of this arr-
angement, solar energy is transmitted through the transparent
surfaces and absorbed in the black areas; the 'greenhouse effect'
causes the black surfaces to reach a relatively high temperature.
(SHW)

Air to be heated enters the lower end of the trough at a low

velocity and exits at the upper end at temperatures approaching that

of the black areas. Lof has found that best performance results when

the air encounters four sets of glass plates between entering and lea-

ving the trough.

Efficiency of heat collection ranges from 30 to 65 percent; as

air velocity increases, efficiency rises but exit air temperature de-

creases. Fifty percent efficiency is obtained at an air-flow rate of

1.6 cu ft per sq ft of collector surface. With surface-treated low-

reflective glass and two cover plates this efficiency increased to 59 131



percent.

For the Boulder house, a collector of 463 sq ft was mounted on

the roof (facing south at a 27 degree Angle with the horizontal) and

separated from the shingles by a one-half inch layer of celotex insula-

tion. The 180 cu ft basement storage bed consisted of 8.3 tons of 3/4

in gravel. Warmed air from the collector was gathered at the roof ridge

and was transported to the storage. It passed through the bed to return

to the lower end of the collector, becoming cooler as it transferred

its heat to the gravel. Figure 2 shows the heating system.

Costs of the system were difficult to determine and would be al-

most meaningless because of the experimental nature of the project. In

its first season of operation, the solar unit supplied 25.6 percent of

the heat, and the fuel savings "should have been at least $20.oo or 32

percent" (this in 1950). (WSO - 137)

Fig. S. Srhomedc disegra of

2 t SO- 135)
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George Lof found from his experience with the Boulder house that it was

practical to combine solar heating with an existing conventional in-

stallation. His next step was to plan and construct "an entirely new

and modern house heated by an improved solar heating system and (to

test) the house under actual living conditions." (WSO - 137)

The house originally conceived was called "Denver Design" and had

the solar collector as an integral part of the house roof. After con-

siderable planning and preparation (figure 1), construction was delayed

in favor of the possibility of incorporating solar cooling, which had*

yet to be adequately developed. Construction of what was now called the

"Denver House" was then scheduled for 1956, in Denver.

The main attitude difference from the Denver design was that it

was felt that "the house should be convenient for application of a Sol*

ar heating system which could be added to it as an appliance or a piece

of equipment rather than being made an integral part of it." (WSO -

142) The house was thus designed with a flat roof on which were placed

two banks of sloping (450 angle) solar collectors, each 6 ft high and

50 ft long for a total collector area of 600 sq ft.

The one storey, "contemporary" home of 2100 sq ft, designed by

James Hunter of Boulder, had many features for collecting heat and

keeping it inside the house, among them, south-facing windows; reflect-

ive-lined draperies; and shoji screens on the west designed to act as

one-way mirrors that can be reversed to reflect heat outward or to re-

-NOT MANIFOLD

COLLECTOR

E TAARUD A LO ER

HEAT STORAGE FILTERS

SUPPORTING IN"E
SCREEN

Fig. 7- 5.1., hin~g system for "Do

UWXR vr Dosie WSO)
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tain heat inside.

The collectors were based on the overlapped-plate principle of

the Boulder house. The heat was stored in two columns of 1.5 to 2.0 in

gravel. Each column was 3 ft in diameter and 18 ft high for a total of

about 12 tons of rocks. The house had a heat loss rate between 20,000

and 25,000 Btu per degree day. During the winter of 1959-60 this sys-

tem provided 26 percent of the heating load plus a portion of the heat

needed for domestic hot water. (It was predicted however that the.sys-

tem would provide 60 to 70 percent of the load, and this may account

for there being no more houses built by George Lof).

Figure 2 shows the heat flow diagram. Solar-heated air is drawn

through a duct inside one of the storage cylinders and supplied to the

bottom of the storage bed for flow up through the gravel and return to

the collector. This flow is automatically diverted when rooms require

heat. When the system is not collecting heat, house air flows down

through the heated gravel, then to the rooms. If this air is not warm

enough, the auxiliary duct heater increases its temperature.

FILOW DIAGAM (RCS -2 Q..)
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THE DONOVAN AND BLISS HOUSE

Raymond and Mary Bliss (of Donovan & Bliss, Amado, Arizona) completed a

100 percent solar space-heated installation in 1954. The system was

attached to a small, 25-year-old cheaply-built frame structure called

the Desert Grassland Station 30 miles south of Tucson.

The primary purpose of the installation was a "stepping stone

towards design of a complete solar air-conditioning system, capable of

high-quality performance the year around." (WSO - 151) Of secondary

importance was the desire to show that a house could be heated entirely

with solar energy according to design calculations.

The collector-storage system, for financial reasons, was separate

from the house. The collector uses four layers of black cotton screens,

spaced k in apart, through which air is passed, absorbing the incident

sunshine. The air is then passed through a rockpile, the heat from the

air being absorbed by the rocks (figure 1).

The collector, 34 ft long and 10 ft high, has an exposed glass

area of 315 sq ft and is tilted to face the midday sun squarely on 15

January. The cotton screens are probably much less durable than black-

enameled metal screening would be. On a clear day the collector collects

about 315,000 Btu, or about 1000 Btu per sq ft. This is twice the aver-

age daily heat requirement of the house.

The 1300 cu ft rockpile holds about 65 tons of 4-inch diameter

field rock, and has a heat storage capacity of about 27,000 Btu per

degree F.
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For summer cooling, cool night air is drawn through a large hori-

zontal porous screen exposed so that it loses heat by net radiant ex-

change with the night sky and forced through the rockpile (figure 2).

Performance is better than that produced by the conventional evapora-

tive cooler but not comparable to the comfort level attainable by high

quality refrigeration systems.

Operating cost of the cooling system is about the same as that of

an evaporative cooler, but the heating system operates at about $70

savings over a conventional system (utilizing butane). Although the to-

tal cost was $4000, a more realistic estimate for a house (up to 1500

sq ft) designed for it would be between $2000 and $3000, or about

$1500 over the cost of a conventional heating and cooling system. Such

an installation might show a fuel savings of $100 per year (1954

prices).

Fig. 7. Schematic arrangement
for aircooling "night radiator."

h0 ' g cc, o :10 -d heog.
09,@g. lackpie.

POROUS SCREEN LOSES HEAT
BY RADIANT EXCHANGE

WITH NIGHT SKY

-~~ ~

(WS 0 -153)

AIR TO FAN SUCTION

(WS0-155) 2
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AFASE SOLAR HOUSE
LOUV[R ACTUATOP LIVING ROOM WING LOUVER COLI

KITCHEN ~ KITCHEN ENCLOSED JWAL

COURT 0 i

AIR RETURN DUCT

SAIR SUPPLY DUCT
An( Fi, 2 -

The Association for Applied Solar Energy (now the Solar Energy Society)

and the Phoenix Association of Home Builders held an architectural

competition for a solar house which was completed in 1958. Peter R.

Lee, a student at the University of Minnesota, won the competition and

affiliated himself with Robert L Bliss, architect. Construction funds

were made available by G Robert Herberger, a Founder-Director of the

AFASE.

Figures 1 and 2 show a section and a plan of the house. The coll-

ector plates consist of 68 louvers in 17 parallel rows and collect heat

for the house, for the swimming pool, and for domestic hot water, Fig-

ures 3 through 6 show details of the louvers, which also shade the

southern exposed glazed areas during the summer (of course, they also

do this during the winter as well). Note that the louvers rotate on

swivel joints to follow the sun. A 2000-gal tank is insulated with four

inches of fiberglass and buried in the earth. Heat pumps convert the

stored water to useful house heat even when it has reached low tempera-

BEDROOM WING CARRIlR lILAT PUMPS

STORAGE TANK

FIG i - IFloor plan ot the Solar House.
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tures. For summer cooling, the task of the heat pump's compressor is

made easier by "circulating cool water from the storage tank through

the coils ahead of the condensers. The'heat thus added to the water is

transferred to the swimming pool, where it is dissipated by oversize

sprays." (SH - 5) Figure 7 schematically diagrams the system. Cu
sic

Cost data on this house is hard to find. However, Tybout and L'f A

(SHE) and others have shown that it is never economical to design a

solar system to provide 100% of the heating capacity, as this house has

done. Tybout and L~f also showed that such a'system in Phoenix must

provide heat at a cost approximating $2.00 per 106 Btu. Judging from

the complexity of the collector construction and of the system design,

as well as from the low demand which the Phoenix climate puts on such Al

a system, it is doubtful that this solution to solar heating is econo- T,
HOU

mically competitive with gas and oil. It must be kept in mind however

that the system also provides summer cooling, domestic hot water, and a

heated swimming pool. The architectural design and the collector design

offers possible directions for explorations into alternatives to the 7
large, single expanse of a flat plate collector. Solar systems are also

pollution-free, are clean in operation, and have no waste products.
l'(.5- Lotrv Lr end detail, shots nw method of (jonflecti flI. to
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SOLAR HOUSES BY HARRY UHOMASON

Harry Thomason, a physicist, lawyer, inventor, and do-it-yourselfer

from Washington DC, has been trying to solve the solar heating/cooling

problem for 13 years. The simplistic designs of his collectors and of

his heating/cooling systems and the lack of cost data and system per-

formance data made public have left his work open to skepticism. How-

ever, he does seem to have achieved two goals of solar systems, one of

constructing an inexpensive, easy-to-build collector and the other of

keeping the entire heating/cooling system free from complexity.

Mr Thomason has built four solar houses and has many patents on

his designs (his solar heating system is called the Thomason Solaris

System). His first house, of medium size, was constructed in Washing-

ton DC in 1959. The first winter required only $4.65 of auxiliary oil

heat. Without the use of the sun, the house would have needed $100 to

$125 worth of oil. The 840 sq ft collector and the five-day storage

tank cost $2500.

An article by Mr Thomason in 1965 evaluating the first house re-

ports that "no major flaw in design or construction has shown up."

(EWS - 17). There were a few leaks that had resulted in deterioration

of some wood. The polyethylene film over the corrugated aluminum coll-

ector plate (Figure 1) had disintegrated and the collector was rebuilt

without it, resulting in a single layer of glass over the aluminum.

(Tybout and Ldf (SHE) found that two glass plates are economically

optimal everywhere except in the warmest of climates such as Miami or
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Phoenix and most collectors that have been built use two). He re-

ports only slightly lower efficiency than the first design with the

film (44% as against 47%). This is coiparable to the 45% efficiency

reported by MIT House IV.

Mr Thomason believes that do-it-yourselfers can build their own

solar houses. Plans and licenses are available for the "Thomason

Solaris System" from Edmund Scientific Co., 150 Edscorp Bldg.,

Barrington, New Jersey 08007.

The following several pages describe the four houses. (SHAS)

FIG. 3-Collee or const rue ion (letails.

SOLAR EHELENK

CORARUGALT ED
WAT ER ALUM. CALKIN G

RAFTER

L AS PLY WOOD

PL ") I t R POLY[ T- THELENE

-- - SW OD EFLECTIVE
FOIL COVERED
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SOLAR HOUSES
HOUSE NUMBER 1

The relatively simple "Solaris Systems" for
heating and cooling homes will now be explained
in detail. The first house was designed as a
solar house from the basement up. Overall,
the house is 28 feet wide by 38 feet long. Total
floor space is about 1500 square feet, about
900 being heated and air conditioned. Approx-
imately one third of the lower level, an area
10 x 25 feet by 7 feet deep, is a heat storage
bin. The remaining two thirds of the lower level
is used for a basement, a recreation room, and

a bomb shelter.
The heat bin was waterproofed, made air-

tight, and lined with three inches of insulation.
Ordinary low-cost rough lumber was used to
protect the insulation from being crushed by
heat storage apparatus inside. Air distributing
ductwork of concrete building blocks was con-
structed in the bottom of the bin. A steel tank
4 feet in diameter by 17 feet long, for 1600
gallons of water, was placed on top of the
ductwork. Fifty tons, (3 truckloads) of fist-
sized stones were poured around the tank.

A separate insulated compartment was con-
structed inside of the heat bin to heat the dom-
estic water, both during the winter when the
home was being heated and during the summer
when the home was being air conditioned.

The top of the heat bin was formed by floor
joists of the living quarters. Because warmed
air from the heat bin rises, six inches of glass
fiber insulation was placed between the joists.
This minimized heat leakage up into the home
from the bin vhen heat must be stored for
cold days and kept the home from becoming
overheated in spring and autumn when some
days are warm and require little or no heat.

With this relatively simple low-cost heat
storage apparatus large quantities of heat could
be stored to keep the home warm for five or
more reasonably cold, cloudy days in succession
with no sunshine (temperatures of 25' 45* F).

The living quarters included 3 bedrooms,
living room, bath, dinette-kitchen, and utility
room. These areas, plus extensive closet space
beneath the heat collector, were located entirely
".,ove ground and over the basement and heat bin
a! ca. The front of the house faced Walker Mill
1., to the north. The front of the huuse, the front
roof and the east and west enrIs were of con-
ventional appearance. A solar icat collector was

constructed to form the south side and south roof
of the house.

The author departed from teachings of other
solar energy researchers that a solar heat col-
lector should face due south for optimum heat-
collecting ability. His collectors were turned
about 10 degrees west of south to take advantage
of afternoon solar heat collecting conditions
which are generally warmer and often clearer
than mornings. Because of warmer afternoon
air temperatures around the heat collector and
in the attic behind the collector, less heat is lost
and more is captured and transferred to the heat
storage apparatus.

The solar heat collector was constructed in two
sections. The top section was set at an angle of 45
degrees and extended from the peak of the roof
down to ceiling level of the living quarters. This
section was as long as the house, 38 fteet, and
measured 12 feet from top to bottom. TI-e lower
section was set at a steeper angle of 60 degrees
and extended from the level of the ceiling down
almost to the ground. This section was 3. feet
long and 10 feet from top to bottom.

The base supports for the heat collecto r were
the standard 2 x 6 roof rafters of the houE e. Ply-
wood sheeting was nailed to these rafters as in
usual building construction. A waterprcof cov-
ering was placed over the plywood. Wood strips
(2" x 3") were turned on edge andnailed through
the plywood sheeting and waterproof covering to

the rafters. Insulation bats 3 inches thick, with
reflective aluminum foil coverings, were placed
over the waterproof material and between the
wood strips.

Corrugated aluminum sheets two fe at wide
were treated on one side with special materials
to make them black to absorb solar heat. The
sheets were installed with the corrugations,
spaced 1-1/4 inches apart, extending from to to

bottom. Polyester plastic film, 5 mils thick, was
placed over the black corrugated aluminum and
clamped into place by screw s and redwood st rips
(3/4 x 1 inch). Ordinary window-glass panes were

fastened to the redwood strips by screws and
aluminum fasteners. This gave a spacing of 3/4
inch between the plastic film and the glass.

At the top of the heat collector 1/2-inch cop-

per tubing was used as a distributor manifold.

The tubing was drilled with hundreds of small

holes, one hole over each valley in the black cor-

rugated aluminum. At the botton of thu ccliecto-

was an insulated gutter.



Approximate costs of collector materials
were, for each square foot: insulation, 6C; cor-
rugated aluminum, 13c; transparent plastic, I 5;
glass, 160; paint, screws, wood strips, water dis-
tributor and collector manifolds, 25c; labor, 25 .

With this relatively simple apparatus large
solar collectors were constructedat the very low
cost of about a dollar per square foot. Collectors
built by others had cost $3 to $5 per square foot.

Heating
Sun rays passing through the glass and plastic

strike the black corrugated aluminum sheet and
are converted to heat. Within a short time the
black sheet becomes warmer than the water in
the 1600-gallon steel tank in the heat storage bin.
A small electric pump is automatically turned on
to pump cold water f rom the bottom of the tank to
the distributor mariifold at the top of the
collector. The water is warmed by the black cor-
rugated sheet as it flows down the valleys from
the top to the insulated gutter at the bottom. From
the gutter the warm water flows to the heat bin
where it passes through a heat exchanger and
warms the domestic water. The warm water
flows, from the heat ex:hanger into the top
of the 1600-gallon tank. The water is recircu-
lated through the solar heat collector until the

entire tank of water is warmed to 100-140'
deg. F (slightly hotter at times).

From the moment the 1600-gallon tank of
water begins to be warmed, it in turn warms
the 50 tons of stones around the tank; and this
transfer of heat continues day and night. By
the next morning the stones are war-med be-
cause the tank of water has given up much of
its heat to the stones. The water is cool and
ready to take on another load of heat when the
sun shines again and turns on the recirculating
pump.

An electric blower is turned on by a thermo-
stat whenever the home gets cool. The blower
draws cool air from the living quarters, filters
it and blows it into the distributor duc.work of
concrete building blocks in the bottorm of the
heat storage bin. These blocks are spaced
apart slightly to let the air out into tLe warm
stones and beneath the warm tank of water.
The air is warmed as it moves by aevious paths
through the stones, and then is piped to the
rooms of the home to warm them.

During periods of several sunny days the tank
of water and surrounding stones will bec >me in-
creasingly warmer until enough heat i. stored
to keep the home warm for up to sever. cloudy,
moderately cold days.

Winter Realinig cyele



Cooling
In Solar House No. 1 a reasonable amount of
cooling was accomplished with a very low a-
mount of power. A 1/6-HP pump was used to
carry water up to the north roof at night during
the summer. The water was distributed by a
perforated copper pipe at the crown of the roof
to flow down over the no-th roof like rain.
As it flowed it was chilled by evaporation,
radiation to the sky, and contact with the cool
night air. The cooled water, collected in the
house roof gutter, was returned to the 1600-
gallon tank where the cooled tank of water cooled
the surrounding 50 tons of stones.

On hot days a thermostat turned on the blower
to withdraw warm air from the home, filter it,

and blow it through the cooled stones to cool
it. The cooled air was piped to the living quarters
to cool the home.
. At times the cooling rate of the water by the
rooftop cooler was as high as 25,000 B.T.U. per
hour, roughly equivalent to two tons of cooling
but using 1/6 HP instead of 2 HP as in con-
ventional air conditioning units. However, when
nights were calm with little wind, humid, cloudy,
and warm, very little cooling of the water was
possible. Then, the system had to drav on
"coolness" stored from previous nights. For
specific cooling data and further detailed infor-
mation about this system see "Solar Space
Heating and Air Conditioning in the Thomason
Home," Harry E. Thomason, Solar Energy
Journal, Vol. 4, No. 4, Oct., 1960, pages 11-19.

Jumner C'oling Cycle



House number 2

"Solar House No 2 was constructed in 1960, a year after No 1. The

newer house was a 2 bedroom version having 1000 sq ft of floor space

with approximately 675 being heated.... The solar heat collector on

House No 2 has an area of 560 sq ft instead of 849 sq ft as in House

No 1. However, No 2 has a 336 sq ft aluminum reflector extending out

from the bottom of the solar heat collector.' Additional solar heat is

reflected up onto the collector to increase heat output by 15 to 30%

instead of using rooftop cooling of the water for air condition-

ing, a simple 3/4 HP air-cooled compressor unit is used. The compress-

or operates at night to extract heat from the 1600-gallon tank of

water and to discharge the heat through the condenser to night-time

air. Thus, as compared with conventional air conditioning units,

approximately twice as much cooling per hour is possible and only half

as much electricity is used per Btu of cooling produced. This system

was described in detail in the article, 'Solar-Heated House Uses 3/4

HP for Air Conditioning,' Harry E Thomason, ASHRAE Journal, Nov 1962,

pp. 58-62." (SHAS - 13)
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HOUSE NUMBER 3
In 1963 the third Thomason solar house was

constructed. Houses Nos. 1 & 2 were rented out,
but still yield valuable scientific and engineering
data. The third house was designed to be more
attractive, to incorporate many of the previously
tested desirable features and to provide a test-
ing ground for others. Some of its features can
be revealed but others must be kept secret.

The third house is 74 feet long and 44 feet wice.
It has seven heated rooms (4 bedrooms) and
2-1/2 baths. It has an enclosed solar-heated pool,
sun porch, garage-workshop, laundry room,
pump room and attic. It also has a recreation
room, bowling alley and archery-rifle target
range. Total usable floor space in the home is
approximately 3,400 square feet, not including
attic storage space. The seven rooms and two
baths which are heated have about 1500 square
feet of area.

A steep roof section over the attic supports
the salar heat collector. Large collector panels
are used, each being fot r feet wide by sixteen
feet high. Corrugations, 2-1/2 inches apart,
channel the water as it flows down fromthe top.
Reflective foil and glass fiber insulation are
used beneath the black corrugated heat collector
sheet. Glass panes are encased in aluminum
frames to cover the collector sheet.

The solar-heated pool and sunporch are
located along the south side of the house and
are covered by a slightly sloping roof section
approximately 15 by 40 feet. A reflective alu-
minum roof is used so that much of the low
wintertime sun will be reflected up onto the
solar heat collector. This reflector is not
visible from the ground, but functions similarly
to the reflector used at Solar House No. 2. An
open railing around the reflector-roof adds a
touch of colonial styling, yet lets most of the
sunlight in to the reflector and collector.

By keeping the solar heat collector and re-
flector up on the roof, landscape shrubbery and
shade trees 30 to 50 feet high cause very little

-"t SOLAR
Winter

LC)

interference to incoming sunshine-. Further
details of this house are given in "A Solar
House Completed -- Another Begun," Harry E.
Thomason, Sun At Work (magazine). Fourth
Quarter, 1963, pages 13-16.

The water from the swimming pool may be cir-
culated through a portion of the solar heat collec -
tor and warmed. The heat output of 20% of the
collector panels is sufficient to keep this indoor
solar heated pool warm nine months of -he year,
whereas an unheated open pool can normally be
used only about three months a year at this loca-
tion on the outskirts of Washington, D.C. The pool
is 11 x25feet, and 3to 5 feet deep. Holding 6,000
to 7,000 gallons of water, it is completely lined
with beautiful mosaic patterns of colorful ceram-
ic tile. Obviously the pool enhances the value of
the home, and the free solar-heating feature is
an additional bonus.

HOUSE NO. 3 .-- OPERATING PRINCIPLES

Sunrays at 2 strike collector A directly, rays 3 reflected
onto collector by reflector roof B, rays 4 enter sunporch
through glass to warm interior at 5 to "insulate" house
wall C by low-temperature heat.

Summer
High-angle sunrays at 6 striking reflector B are "bounced"
skyward while rays 7 do no enter windows, porch-pool
area remain cooler.



SOLAR HOUSE NUMBER 3

7MALL

(A) PLAN OF LOT

(B) HOUSE IN RELATION TO TREES

Shade trees 35 to 40 feet high, only
50 feet away, have little adverse ef-
fect on the new solar house.

HOUSE NUMBER 4
Solar House No. 4, built by Thomason Solar

Homes Inc., is of inexpensive Swiss Chalet
(A-frame) design. Low-cost "pancake" heat
storage equipment was placed under the floor.
(A shallow pond of water with Polyethylene liner
and cover, and insulation below and above, form-
ed the "pancake" design.) The heat collector was
of very low-cost construction, utilizing black
asphalt shingles as the solar heat collector sheet.

The low-cost solar heating system and the
low-cost A-frame house design appear compat-
able for a low-cost cottage or secondary home.
However, there are problems to be overcome.
No pinehole free Polyethylene could be found for
the pancake heat storage tank liner (bther
materials are more costly). Efficiency of the
black asphalt shingles is a little lower than for
black corrugated aluminum, and leakage is more
apt to occur. More rescarch and development
will determine what features are worthwhile in
this system.

501./A IN

T .OLAI HEATED PJ.t

G ALLEY

wApo) a.rom *&F

REC491A T/OwV ROOM~

owwDdariat, P4 oWP

(C) FOUNDATION PLAN

\ F ,.vrfo JUN PORCHAWL

FLOA ** ILA
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OTHER SOLAR HOUSES
In Mexico a fine large home was built with

a small solar heating system. The volcanic
pedregal was too hard to dig for a large heat
storage bin, the heat collector was too small,
and no insulation was used in the walls of the
large home. Therefore, the solar heating system
is too small to supply the major part of tne heat
load. In India a new system by Thomason is
being tested for a flat roof building.

A firm in South Carolina planned to build
Solar House No. 5 in 1965; but the project was
abandoned since financing could not be obtained.
In Warren, Vermont, University of Pennsylvania
architectual students have begun the largest
solar heated dwelling in the world: a condomin-
ium for five or more families. "Thomason Solaris
System" will provide some solar heat' but,
under the adverse conditions of cold, cloudy
weather the percentage of solar heat is expected
to be low. The total annual fuel saving could be
significant.

L__ -



APPENDI

TABLE 4.6. Healing Season Climatic Data

Compiled from Records of the U. S. Weather Bureau and Other Sources

City
Birmingham
Phoenix
Little Rock
Los Angeles
San Francisco
Denver
Washington
Jacksonville
Atlanta
Lewiston
Chicago
Indiana polis
Sioux City
Dodge City
Louisville
New Orleans
Boston
Detroit
Minneapolis
St. Louis
Billings
Lincoln
Santa-e -

Buffalo
New York
Raleigh
Bismarck
Cleveland
Oklahoma City
Portland
Philadelphia
Charleston
Knoxville
El Paso
San Antonio
Salt Lake City
Lynchburg
Seattle
Milwaukee
Cheyenne

Average
Tem-
pera-
ture,

Oct. 1-
May 1
53.9
59.15
51. 6
58. 6
54.3

39.3
43.2
61.9
51.4
42. 5
36.4
40.2
32. 1
40.2
45.2
61.5
37.6
35.4
29 6
43.3
34.7
37.0
38.0
34.7
40.3
49.7
24 5
36.9
48.0
45.9
41.9
56.9
47.0
53.0

60.7
40.0
45.2
45.3
33.0
33.9

Average
Design Wind
Tem- Veloc-
pera- ity,
ture Dec.,
Sug- Jan.,

gested Feb.,
by TAC implh

21 8.6
31 3.9
21 9.9
32 6.1

7. 5
0 7.4

14 7.3
31 8.2
22 11.8

4.7
-3 17

2 11.8
12.2
10.4

9 9.3
36 9.6

8 11.7
4 13.1

-15 11.5
3 11.8

-17 12.4
- 2 10.9

7.3
3 17.7

13 3
20 7.3

-21 9.1
6 14.5

14 12.0
22 6.5

11.0
26 11.0

6.5
10.5

32 8.2
7 4 9

5.2
24 9.1

- 6 11.7
- 3 13 3

Diree-
tion Nor-

of Pre- Inal
vailing Degree
Wind, DaYs,
Dec., Total
Jan., for
Feb. Year
N 2618
E 1446
NW 3005
NE 1390
N 3143
S 5863
NW 4518

NE 1161
NW 3002
E 4924
SW 6287
8 5487
NW 6909
NW 5077
SW 442S
N 1208
W 5943
Sw 651(0
NW 7989
NW 4610
W 7119
N 6010
NE 6124
W 6935
NW 5306
SW 32S1
NW 8969
SW 6171
N 3698
S 4379
NW 4749
N 1870
SW 3(W65
NW 2538
N 1424
SE 5637
NW 4082
SE 464
NW 7086
NW 7549

State
Ala.
Ariz.
Ark.
Calif.

Colo.
D. C.
Fla.
Ga.
Idaho
Ill.
Ind.
Iowa
Kan.
Ky.
La.
Mass.
Mich.
Minn.
Mo.
Mont.
Neb.
N. M.
N. Y.

N. C.
N. D.
Ohio
Okla.
Oreg.
Pa.
S. C.
Tenn.
Tex.

Utah
Va.
Wash.
Wis.
Wyo.

Lowest
Tem-
pera-
ture
-10

16
-12

28
27

-29
-15

10
-8
-13
-23
-25
-35
-26
-20

7
-18
-24
-33
-22
-49
-29

- -13
-21
-14
- 2
-45
-18
-17
-2
-11

7
-16
-2

4
-20
- 7

3
-25
-38



APPENDIX 1I
TABLE 4.1. Conductivities k,'Conduetances C, and Reustanes B of

Building and Insulating Materlal-Dealga Valuess
?hWse costante are expressed In gtub per'sq ft per deg F temperature difference.

Cgd--e-eitis A are per inch thickness and conductances C are for thickness or Construetion stated,
- not per inch thiekness.

Densit
. bps
eu It)

Position Heat Flow
Ilorisestal Up.
Sloping (46*) Up
Vertical Horizontal
Sloping (45") Down
Hlorizontal Down
Ioriaontal Down

Air eerfae Pusition
Still ai lo.riaz.ntal

Up Sl.ping (45)
Vertical I

loping (45*)
Hforisental

15-mph wind Any position -any direction
TI-mph Sind Any position-any dirketion

Gypsum or plasterboard
Gypon or plasterbkaard
l'in mo il

Thickness
1-4 in. -
I-4 in. -
1-4 in. -
1-4 in. -

t in.- -
Sin. -

leat Flow
I'p -
Up -

lorizontal -
Down -
Down -

I in. 50in. 50
34

lIud- l.acg gs.ear i .. , - pe meabIle 1.-It
£...r -sni. 2 I%.aese of mopped il-lb

, it
..-- i .laistic fti

I l.toring 
5

-s.t.:sh li.

matermal Cer.a wl1 tie I
( ... A n!.

- l1P!. .iu.,. subduor
lHe .-r .f jpla.tie tile
le-r.zzn

It u.4 hr~ardwod linish

I in.

in.
in.

b in.k
1 in.ii in.

1 ini.

1'ouit- fibe-re
Mlti.ral o.6l. ibrous form. prucessedl

rem.i ro k. slag, or ghass
Wu.-l thler-

tu fibe-r
. tilei ' in.
-!.'hing :impreg. or coated)

C.r i-Jg 1 lass

line-ral %oll (lasa. Plag. or rock)A ern teli expandle.

Cee,elt eertar
Li1htweight aggregales. ineluding ex-

paineldo shale. ilay. or date; ex-
panded slags; einders; pource:
i-rbte: % eriicelaite: also ce.lllar
i.,iften tea

SaLa and giavel or etiw iaggrekste (not
... 61. a isel)

I
& ~ I

(1)G)
- 1.18 - .0.85
- 1.11 - 0.90
- 1.03 - 0.97
- 0.97 - 1.03
- 0.98 - 1.02
-- 0.80 - 1.25

- 1.13 -- 0.61
- 1.60 - 0.62

- 1.40 - 0.68
- 1.32 - 0.76
- 1.08 - 0.92
- 6.00 - 0.17

- 4.00 - 0.25

- 3.10 - 0.32
- 2.25 - 0.43
0.80 - 1.25 -

- - 16.70 - 0.06

- - 8.35 - 0.12
-- - -- - NegI

1:10 - 24.80 - 0.04
- - 12.50 0.08

- - 3.0 - 0.28
- - I.28 - 0.78
110 - 42.40 - 0.02
- - 12.50 0.08
- - 1.02 - 0.18
- -- 1.47 -- 0.08

0.8-2.0 0.26 - 3.85 -

1.5-4.0
3.2-3.6

14.5

20.0
9.0
1.62

2.0-5.0
7.0

-O

40
20

TABLE 4.1 (Condnued)

Matielal Psesrlptlon

Masonry brik, somfnon
Units . Brick. fae

Clay tile, hollow
I cell deep
2 calls deep
8 cells deep
Concrete blocks, three oval core

Sand a gravel aggregate

Cinder aggregate

Gypsum partition tile:
3 X 12 X 30 in. 4-cell
4 X 12 X 30 in. 3-cell

Plastering Conent plaster, sand aggregate
Materials Gypsum plaster:

Sand aggregate
Sand aggregate on nictal lath : in.
Lightweight aggregate

Lightweight agg. on metal lath I in.

Roofing

Siding
laterials
(On fat sur-
face)

Woes

- 3.70 -
- 4.00 -
- 4.00 -

0.84 - 1.19
- 2.63
-- 2.0 -

- 3.45
3.33

- 2.08

0.U -- 2.78
0.19 - 6.20
0.12 - 8.33

- 0.20) -
- 1.19 -

- i. 40
- 0.8 --

-. 1.43 -

I-h0 12 00 - 0.08 -

Asplalt roll roofing
Asilvalt shingles -
Built-up roofing
Sheet metal
Wultdl Shingles

bensity
ebpsf

su It) 0
120
130

4 le.
a in.

12. In.

4 in.
a in. -

12 in.
4 in. -
8in. -

12 in.

*.M -

0.54
- 0.40

1.40
- 0.90

0.76
- 0.90

0.58
- 0.53

*a

ii54 ill.
(G)M(-)
039 - .
0.11-

-- I
*- 1.68

- 1.80
-2.0

- 0.71 -
-- 1.11-

- 1.28

1.72
-- 1.69

- - 0.74 - 1.35
- - 0.00 - 1.417

116 5.00 - 0.20 -

70
70

I In. 70

Shingl-s
Wfol, 16-in. 71-in. expiosure

Siding
Wood. drop. I X 8 in.
Wood. bevel. I X 8 ink.. la"wd
Wood. bevel. I X 10 inl.. lapp-ed
Wood, plywool. in., lapped

.\Xaple, uak, and asimilar hardwoods
Fir, pine. and similar suftwomlsa

5.60 -

- . 7.70
1.50 -
- 2.13

-- 6.50
- 3.0 W

400+
- 1.0

0.16-- S

-0.67

Neg

0.13

0.47

0.15
0.44
0.33

0. P4

- - 1.13 - 0.87

1.27
1.23
0.913
1.59

- 0.79
- 0.81
- 1.03
- 0.594

45 1.10 - 0.91 -
32 0.80 - 1.2 -

1tepresentative value-s for dry mterials at 75 F rean tenopersture, selected by the ASt AE
Technical Advisory Commite-e o.n luesulation. Tly are intendedl as design not sectaeificaition)
values for materials of bililing coistriction in noriual us.. For -ondletivity of a particular lerod-
uct. flte user mssay obtain tie valie suilicel by tie! mnifact erer ior .,eoeare the resdlt oef unhviasedl
tests.

6 .Air-mipace remistance valits ahnn here tre b-asedm ei a te-mle.rati ur dilference of L1) F sil a om-an
teip.-rateire of .0 F for spaces fael both sides with ordinary a e -etihc maesriale.

4Surfae resistance valtes Ahon iN here.are for oriinary moni -ef. #jia-- murerial.
4 .See alas Insulating .\laterials. Meard.

Iui-tdies pai-r iackinx anI facing if anify.
I lusahting vialles of acoustical te vary dfepesiding vin densat. -f the hoard andl on thei type, size.

and depth of the perforations.
9 The '. S. Depart malent of Commerce "Sinplifiede Practice tecomisiendation for Theritnal Con-

dicdtanee Factors for Pr-foee d Aboe-llek liof isulati." Ne. It 257.55. recognizes tie. speeti-
Calioi of rcif inailation ean thie lais f thee ie 1alciU ho.'. n4. lIt.. .iemeubiltio.n1 ismeeilc in thee lase a
to meeet lie-i value,. Therefore. thiLkn es., iilied 1,% .een eset mafatuiret eiers ae ary ilee.l.
inz un teat I ehe of hl.e partii.ltr im-tierid.
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APPLND IV

Table 3.4. Solar Absorptance (1.0-Albedo) and Long-wave Emittance of Varior
Surfaces (USE -S1)

Material

"Hohlraum," theoretical perfectly blackbody ..........
Magnesium carbonate. MgCOs (white reference, solid)...
Water (1.0-single surface reflectance, i - 60*)........
Ice, with sparse snow cover; sheet ....................
Snow, ice granules (approximate 12-in. diameter).......
Snow, fine particles like frost; fresh, brightest ...........
Frozen soil......................................
Sand, dry playa; Monterey powdered .................
Desert surface.......................................
Sand, dry..........................................
Sand, wet..........................................
Moist ground, 70-95 per cent bare ....................
Ground, dry plowed ...................... .........
G rass, high, dry ...................................
Common vegetable fields and shrubs ..................
Common vegetable fields and shrubs, wilted ...........
Oak leaves (1.0-reflectance, at 0.6 and 3 microns) .....
Alfalfa, dark green...............................
Oak woodland......................................
Pine forest.................... ..................
Paper, white ....... ......... ....................
Plaster, white ...................................
Bricks, red .......................................
Concrete.........................................
Asbestos slate ....................................
T.inoleum , red-brown................................
Wood, planed oak ...............................
Glass pane* (solar = 1.0-2 reflections, i = 35*) ........
White paint (0.017 in. on aluminum)..................
Black paint (0.017 in. on aluminum)..................
Aluminum paint, bright, new .........................
Aluminum foil .................. ...............
Aluminum combination finish (at 0.6 micron); new.....
Galvanized iron, clean, new ..........................
Galvanized sheet iron, gray oxidized ..................

Solar
absorp-

tanceo
(0.3 to 2.5
microns)

1.0
0.04
0.94
0.31
0.33 cale.
0.13

0.45t
0.75
0.82
0.91
0.88-0.91
0.75-0.80
0.67-0.69
0.72-0.76
0.70
0.71-0.78
0.97t
0.82
0.86
0.25-0.28
0.07.
0.5.5
0.60
0.81
0.84

0.90
0.20
0.94-0.98
0.20
0.15
0.32
0.65
(0.8)

Long-
wave

enmittance,
* (2.5 mi-
Orons up)

0.99 +
0.79t -
0.95-0.96
0.96-0.97
0.89
0.82
0.93-0.94
0.84

Iapprox.
.0.90

|~approx.
L 0.95

approx.L0.9
0.91-0.95

(0.95)
Lapprox.

0.9
0.95
0.91
0.92
0.88
0.96
0.92
0.90
0.94
0.91
0.88
0.43
0.01-0.05
0.10t
0.13t
0.28

Temperature, degrees Kelvin
e o o
g $$ $.

Key
I - Slate composition roofing
2 - Linoleum, red brown
3 - Asbestos slate
4- Soft rubber, gray
5 - Concrete
6 - Porcelain
7 - Vitreous enamel, white
8 - Red brick
9 - Cork

10- White dutch tile
II - White chomotte
12 - MgO, evaporated
13- Anodized aluminum
14- Aluminum point
15- Polished aluminum
16 - Graphite

The two dotted lines bound
the limits of data on gray
paving brick, asbestos paper,
wood, various cloths, plaster
of paris, lithopone and paper.
Individual values for these
materials are shown for the
temperature of the surface
of the sun.

OEO OO 0 00 00 OC
000 00 o 0000 
Lr L Go 0 0 0 000

Temperature, degrees Rankine

Fig 1.2. Absorptivities of various materials for radiation originating at temj-eratutres
ranging from approximately room temperaltire to the temperature of the sun.(lUss-(,1)

149

*\lsorption of solarenergy in double-strength pane is approximately 4 per cent.
t Calculated from spectral reflectance, assuming Moon's standard solar-en-

ergy spectrum for airpath - 2.0.
+Calculated from spectral rellectance, assuming that the 15-n determination

applies at all longer wavelergths.
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M gr
meem

0.10197
1.00848,

1

6.1383
1.14068

3.671 X 106
5.58478

.- 270000
5.43136

2.7375 X 10
5.43735
10.333

1.01421

4426.9
2.63036

107.6
2.03178

Energy or Wrk'Eqtdvents

Foot.-pefn -1

0.7376
41.80760

7.233
0.85932

1.

2.655 X 10
6.42410

1.9529 X 100
6.2908

1.98 X 106
6.29667

74.74
1.87353

3088
.8.48971

778.2
2.89110

watt-
homi

etre

hours

Hoeae~
powusa.~i

,~a'ww.

Iler-

O- ,

aloies

0.0.2775 .3777 10.0.3729 0.00969 . 2388 6.09478
.44370 'h&711 7.N118 -. 99421 487809 .97670

0.62724 0.03703 0.03653
1.43521 .56863 .56265

0.0.3766

1

0.7355
1.86658

0.7457
1.87356

0.062815
5.44952
0.001163
1.06558

0.02931
1.46697

0.081206
Ti70032

1.3596
0.13342

.1.0139
0.00598

0.043827
9.58284

0.001581
S.19002

0.033985
1.60042.

0,09678 0.002342
1.9579 5.38961

0.009295
I.96825

0.0.505051 .01338 i0IS238 0M-1 285
7,70333 2.12047.1.51029 13.1000

1.341 -
0.12743'

0.9863
!.99401

0.043775
5.57686'

0.001560
.19304

0.0,3930
1.59444

. 35529
6.55051

26131
4.41715

26493
4.42314

1

41.32
1.81618

10.41
1.01757

859.9
2,93443

632.4
2.80098

* 641.2
2.80699

0.02420
5.38382

'1

0.25200
T. 40139

3412
8.53308

2510
8.39961

2544
3.40557

0.09604
2.98246

3.968
0.59881

1

Conversion of Energy, Work, Heat *

Ft-lb Kilo- Kilo- Kilo-
to gram- Ft-lb Btu gram- calories Joules Calories

kilo- meters to to meters to to kilo- to to
tram- to Btu ft-lb kilo- gram- calories joules
meters ft-lb calories meters

0. 1383 7.233 0.001285 778.2 0.002342 426.9 0.2388 4.187
2 0.2765 14.47 0.002570 1.556. 0.004685 853.9 0.4777 8.374
3 0.4148 21.70 0.003855 2,334. 0.007027 1.281. 0.7165 12.56
4 0.5530 28.93 0.005140 3.113. 0.009369 1.708. 0.9554 16.75

5 0.6913 36.16 0.006425 3.891. 0.01172 2.135. 1.194 20.93
6 0 8295 43.40 0.007710 4.669. 0.01405 2,562. 1.433 25.12
7 0 9678 50.63 0.008995 5,447. 0.01640 2.989. 1.672 29.31
9 I 106 57.86 0.01028 6,225. 0.01874 3.415. 1.911 33.49

1 .244 65.10 0.01156 7.003. 0.02108 3.842. 2.150 37.68

EXAMPLE: 1 ft-lb = 0.1383 kg-m.

Thermal Conductivity
.5..,

.7. ~.7

celories per se Watt, per Calories per hr Nei per hr i* Air
per sqa q q em pra f

perm erc peram
perds perefn pesCpe deg 

14.187 3.600 241.9 69.670
0.2388 1 860 57.79 16.641
0.0002778 0.001163 1 0.0672 19.35
0.004134 0.01731 14.88 1 286
0.00001435 0.00006009 0.05167 0.00347 1

Thermal Conductance

Calories per see Calories per hr Btu per hr per Btu per day per
per sq cm per per sq cm per sq ft per sq ft per

degC perdegC degC degF degF

I 4.187 3.600 7.373 176.962
0.2388 1 860 1.761 42.267
0.0002778 0016 .4 91
0.0001356 0.0005678 0.4882 1 24
0.000005651 0.00002366 0.02034 0.04167 1

Heat Flow

Calories per see Watts per sq Calories per hr Btu per hr Btu per day
persqcm cm persqcm pereQmt persqft

I 4. 187 3.600 13.272 318,531
0.2388 1 860 3.170 76.081
0.0002778 0.001163 1 3.687 88.48
0.00007535 0.0003154 0.2712 24
0.000003139 0.00001314 0.01130 0.04167 1

(SH F - 83,84)

7uls

0. s1e2s7

1.356
0.1320

W e X 101
6.55630

2,68 X I06
a62M

,04S 10
4.42887
f91.33

2.W3M

3.4178
1875 '

3 m191
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APPENDIX VI

(IUSE -245)
1800

1500

". 1200

-a
.0 900 --- _

3 600 --
n1

(SHE- 2q 1)

300 -- --

0 10 20 30 40 50 60 70
Collector tilt (from horizontal), degrees

Fig. 11.1. Effect of tilt and type of glass on collector-area requirement. Coniputa-
tions based on nornial solar and temperature data at Denver, Colo., latitude -10 for
building having heat requirement of 22,500 Btu/degree day, equivalent to 61,000
Btu/hr at zero degrees outside temperature. Heat storage assumed adequate to smooth
fluctuations within each month; performance based on overlapped-plate collector with
single covers, four sections in series, operated at air rate of 1.5 ftl/niin per square foot
of collector.
Curve A Ordinary glass collector, -1/5 of 6000 deg.-dav annual loa I carried by solar
sy-stemi.
Ciurve I Low reflectivity glass cotleAtor, 4/5 of 6000 deg.-day annual liad ct arrieI by
solar svsteim.
Curve C Ordiinary glass collector, 2/3 of 6000 deg.-day annualI loal c:Irried by solar
systemu.

Curve 1) Low-reflectivity glass collector, 2/3 of 6000 deg.-daV annual load carried by
s olar system.
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Figure 7
Influence of Collector Tilt
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