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ABSTRACT

While the usefulness of CADD in the production stages of the
architectural design process is now widely acknowledged, its
true benefits for earlier, schematic design phases remain
unclear. Due to the very subjective nature of that process and
the complexity of its overlap with other design stages,
schematic design is a difficult task to model and emulate,
therefore making the appraisal of CADD as a design aid a
delicate problem. The last few years have witnessed a large
increase of PC based CADD systems, most of which aspire to
qualify as "true design tools"; however, outside of product
release announcements and industry comparative checklists in
the professional press, there is little work on the assessment
of the role of CADD systems in preliminary design.
This thesis is an attempt to develop a strategy for the
evaluation of CADD systems as a tool for design in its early
conceptual stages. A specific system is selected and
assimilated to a level of proficiency. Its main
characteristics are then discussed and compared to the similar
characteristics of another "standard" generic system, which is
the most currently used system. They are analyzed in terms of
their relevancy as effective design aids, based on my own
observations of the system; they are also tested through a
short design exercise.
The purpose of the study is to identify what constitutes valid
parameters for the assessment of a system performance. Its
main functions are prioritized and investigated as to whether
they truly assist the user in his design process, with a
particular emphasis on geometric modelling, visualisation and
system interface. A set of performance criteria is derived
along with their desirable attributes, so as to develop a
comprehensive approach towards CADD evaluation.

Thesis Supervisor: Patrick A. Purcell
Title: Visiting Associate Professor of Computer Graphics
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INTRODUCTION

"It is ironic that the word CAD has come to assume two
very different and almost mutually exclusive terms,
design and drafting."[Stoker 83]

This statement applies very well to most design and drafting

disciplines. Design in itself is a complex process which

demands a different set of tools than those required by

drafting. These tools are used to manipulate abstract concepts

rather than concrete geometric primitives. I find the

argument only partly true, however, for architectural design

and drafting; many aspects of the design/drafting cycle

strongly differentiate it .

In most design processes, the draftsman is not an expert in

the field of knowledge of the artefact he is drafting. The

people who draft electronic circuit layouts know little about

the circuit they are representing. Architectural draftsmen,

on the other hand, mostly understand the drawing and what it

represents. They are often architects themselves.

Architects like the tools of their trade; they like to draw.

this partly explains their traditional suspicion towards any

alternative tools , fearing it will substitute to pencil and

paper.

In addition there is something about the architectural process

which makes it difficult to delineate exactly where design

ends and drafting starts. They are both intuitive and equally

ambiguous.



There is a very intimate connection between the designer's

thought process and the representation of the result of that

process in a sketch or a diagram. Conceptual schematic and

preliminary design are rather vague terms which overlap and

are interpreted differently by different designers. Where

does a bubble diagram fit in the design/drafting process

(assuming one even starts with bubble diagrams)? When do the

single wavy lines of an adjacency layout explode into double

lines of walls with varying degrees of privacy? Even the

careful hard line placement or dimensioning of an opening in a

all, during design development, involves a minimum amount of

decision-making by the draftsman which may qualify as a design

decision. Sketch designing or whatever we chose to call it,

is a process of browsing, doodling, and confirmation. The

wobbliness of lines in a sketch has an important role in

relation to the design solution which that sketch represents.

The texture of graphite on paper, the different pressures

applied on the line, the hand movements and hesitations, all

express a range of completeness and certainty; some of the

decisions on parts of the sketch have more permanency drawn

into them than others. Some of these qualities will remain

difficult or impossible for the machine to emulate.



On The Nature of
Architectural Design

There are a number of reasons for which it is difficult to

assess the performance of a CADD system in a design problem;

many of them are directly related to both the process and the

product of architectural design. Only in architecture is the

visual representation of a design problem so linked to its

solution. Whether we choose to call the product of that design

process the actual building, or the set of documents which

represent its description, that product is difficult to

evaluate. Virtually all literature pertaining to CAD begins

with a section dicussing the particularities of the

architectural process, which differs in many ways from other

design disciplines where CAD is already successfully

implemented.

Design as problem solving

Most design processes can be described as a process of goal

definition and problem solving. This is accomplished by

- stating the goal
- planning a strategy to reach that goal
- defining the constraints
- implementing the strategy.

The architectural design process is not dominated by the need

to work through structured, well-defined problems. As s

process of synthesis, it is not subject to explicit and
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complete constraints. The validating of the problem solution

may rely itself on conflicting criteria.

Another factor differentiating architectural design as problem

solving is the need to generate the state of potential

solutions before the design can be assessed. In addition,

there may be (and there usually is) many different acceptable

solutions.

There is a variety of ways in which architects view their

design. Design objects are subject to a wide diversity of both

expressions and perceptions. The physical artifacts resulting

from these solutions are often embedded in some form of

context.

Even in architectural drafting, there are less shared

conventions and pictorial symbols to communicate the design

product, than mechanical engineers for instance. There is

virtually no common standard way to communicate the result of

a preliminary design phase.

Design as an iterative process

Since the problem solutions have to be generated before they

can be assessed, parts of the design process may be seen as a

process of "event exploration", in which partial responses

lead to the constant redefinition of the goal.

The process is therefore an iterative cycle, where each

iteration of solution/evaluation influences the next one

[Greenberg 84]. It is an educated "trial and error" process
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which relies heavily on knowledge and experience. This search

through alternative solutions is similar to a loop through a

learning process; the tighter the loop is between solution and

evaluation, the more effective the final solution will be.

Data organisation

Architects rely on information which is by and large external

to the problem. The knowledge which guides the design process

can be described as abstract, ambiguous and often

contradictory. Using this information implies the selection

and prioritization of overlapping criteria; that process by

itself is as intuitive as the nature of the knowledge.

Intuitive knowledge refers to knowledge acquired by individual

experience, learned inwardly, and subjectively assessed.

The organisation of data is very different in architecture

from other design professions [Stoker 83]. As an example, an

electronic engineer uses a few chips to develop an extensive

circuit design. Since he uses many instances of a small number

of elements, his data structure is narrow and deep. The

architect, on the other hand, uses relatively few copies of a

very large number of components, ranging in type or scale from

a door knob to a precast wall panel; his body of data can be

characterized as broad and shallow, and therefore more

complex. There is no predefined organisation of his field of

expertise; it becomes a kind of repositery for a vast array of

information.

This does not necessarily imply that it is harder to

8



understand. The architect's desk, with its pile of yellow

trace, sketches, cardboard models and notes, is another

example of a broad database of random, ill-defined

information; yet this data can be quickly understood and

assessed by different individuals.



Current CADD Evaluations

Most current evaluations rely heavily on "benchmark" tests

and derive comparative checklist charts. Benchmark tests are

generalized assesment procedures, designed to test the system

performance in carrying out typical user tasks. Such activity

analysis can be derived for many disciplines. In architectural

design, though, it may be very difficult to define what

constitutes a typical user task, as working methods vary with

the designer. The question of whether it is possible to design

benchmarks for preliminary design is one worth asking.

Another problem with such reports is the fact that, due to the

rapid changes in the CADD industry, these evaluations tend to

become obsolete. Most sytems are regularly updated with the

addition of new releases, which invariably offer some of the

features other programs provide that they lacked. Often these

changes take place as the program itself is being evaluated.

There are even instances where, ironically, the evaluation

itself starts dictating the changes between tw.o successive

versions of a software. Benchmark tests provide for a rigorous

experimental evaluation of system effectiveness; they remain

nevertheless only indicative and short lived.

An alternative method is to test the system for real life

projects in a user environment, as opposed to testing it

through specific benchmarks and user interviews. This
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evaluation strategy has the benefit of reflecting the needs of

the user rather than those of the evaluation team. However, it

also occurs in specific users organizations and is tainted

with their design methods and philosophies, which other users

may find objectionable. It is impossible to simulate and model

all user environments; defining the evaluation context is

therefore critical.

Another strategy for assessing CADD might be to evaluate the

solution to a design problem and to compare it with the

solution produced without the help of the system. In this case

the difficulty lies in the assessment of the solution itself:

there are always more than one acceptable solution to a design

problem. How do we determine which of the two solutions, with

or without CADD, is the better one ? Does better mean more

efficient in terms of objective function, or does it include

aesthetic form appraisal ? What constitutes a valid measure of

a building "quality" ? There are all issues involved in this

type of strategy.

One of the first steps of any evaluation is establishing the

requirements of the user. The needs of an typical end user

utilizing the system for preliminary design are frequently

vague and sometimes contradictory. The key to a successful

evaluation is a comprehensive analysis of the expectations of

the user from the system; the measure of the performance will

always be relative to these requirements. The list of needs

can be ordered by priority and may be used later as a basic
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set of criteria.

The nature of the program for different applications often

dictates different approaches; for example, the need for

accuracy in architectural drafting and production is of little

importance to the casual user who uses the system for

preliminary geometrical modelling. A program suitable to a

user or an organization may not be suitable to others. The

evaluation should therefore examine the system performance

against a set of attributes; it is up to the reader to weigh

the relative successes and failures of the system, and

determine the suitability of a particular program for a given

individual or organisation. An evaluation strategy, therefore,

is always based on the merits of its subject; it should be

flexible and obey elementary rules, dictated by common sense.

However, the flexibility of a system to lend itself to

different users should not be confused with generality, where

the system reduces the program to the solutioning of a general

case [Bensasson 79]. There are two dangers for a system to

seek the solving of the general case:

- The general case may be so trivial that the use of the

computers for the solution may not be justified.

- The general case may be general in the sense that it

covers the majority of instances of a problem in a specified

way.This could lead to the adaptation of the CAD process to

fit the capabilities of the program, which is not acceptable.

Some of the less subjective criteria for the assessment can
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be divided in two categories [Teicholz 86]:

- Performance characteristics, which are related to the

system efficiency and capacity for useful work, such as

response time, throughput, potential for expansion,

reliability, online data storage and communication (fast

referencing of online graphic or textual data), potential for

integration,...

- Utility characteristics, which describe what the system

can do. The functional capabilities of a system describe the

kind of operations the system handles, and the relative

difficulty involved by the user in performing them. There is a

difference in assessing "what" the system can do as opposed to

"how" or "how well" it does it.

Ease of operation and ease of learning are directly linked to

the qualitative concept of relative difficulty in getting the

system to perform an operation. They are further discussed in

the section on the interface. They remain. however, subjective

criteria which are difficult to evaluate, for three reasons:

- They are a function of the user's skill.

- What is good for a "casual" operator is not necessarily

the same for a full time operator.

- Long term users may have learned to live with the

inconveniences of the system and work their way around them.

Other nonquantifiable factors an evaluation should take into

account are more subjective and rely on individual perception

of the system's potential role as a design assistant. There is
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nothing wrong with subjectivity of criteria, as long as the

assumption of its relevancy remains valid. An evaluation which

solely relies on definitive predetermined methods and rigid

facts runs the risk of being restricted to trivial

information. Such subjective criteria would attempt to answer

some questions about the general feeling of the system, its

limitations and possibilities from a design point of view, its

value for architects, what is new about it and what it does

best.

Preliminary sketches
of a rowhouse



CADD Definitions and Descriptions

The basic function of a CADD system is the creation of

individual entities of geometry and their manipulation through

a drawing editor to describe the potential solution of a

design problem. The graphic primitives may be points, lines,

arcs, circles, ellipses, curves or polygons; they are inputted

by means of a physical input device such as a digitizing

tablet, and edited through a set of commands instructed to the

system. A primitive can be moved, copied, modified, mirrored,

rotated, scaled or combined with other primitives, so as to

generate shapes and objects representing architectural

elements which will later describe parts or the totality of a

building.

Generic v/s Front End Systems

The process of going from the creation of the graphic

primitives to the building representation involves many steps

of combination of graphic elements, through different levels

of abstraction of the building.The lowest level of abstraction

is the one dealing with these basic geometric entities, the

points, lines, circles, etc. These entities have little to do

with any form of building representation; they are only the

indissociable units required to start assembling an object.

The highest level of abstraction is the one that deals

directly with explicit descriptions of the building as a

whole.
15



It is difficult for a CADD system to effectively handle both

ends of the abstraction process, in both low and high level

terms. In addition, since architects perceive and assess

their design solutions in many different ways, the highest

level of abstraction is also the most subjective. In other

words it is hard for a system to deal with both the back end

of the process (geometry creation and editing) and the front

end (assembling elements to generate a building). CADD systems

differ in their approach to this issue.

Generic CADD systems deal primarily with the lowest forms of

representation, those of individual geometric entities. They

are best at the creation and manipulation of lines, circles,

etc, into various parts, and do not attempt to address how

these parts describe a building. They are mostly drafting

tools and concentrate on providing effective drawing editors.

Back Front
End End



Autocad, from Autodesk is an example of a generic CADD

system. Its extensive drafting features have made it the de

facto standard in the PC based market. It can accomodate a

large number of all purpose drafting applications, from

mechanical or architectural to electronic circuit design.

Front end systems, on the other hand, are "application

specific". They focus on middle or high level of

representation of the CADD process, by providing specialized

functions geared to architectural purposes. The designer

starts dealing with concepts and physical terms which form the

tissue of his knowledge, such as walls, openings, volumes or

planes. Since that phase of the CADD process of transformation

and its product is also the most subject to interpretation,

front end systems vary in the way they assemble primitives

into elements that the architect understands. In addition to

the drawing editor, they provide a syntax of commands, menus,

templates and library of symbols. Current front end systems

may be of two kinds:

- Auxiliary support programs are implemented as "add-on's"

to an existing generic system. Their specialized functions are

designed as a combination of basic commands which are

assembled by means of a high level programming language,

provided with the generic system. For example, a number of

such systems currently use AutoLisp, a high level language

similar to the Lisp language, such as A/E Cadd.

- Another solution consists in providing two distinct modules

within one , handling the front and back ends of the process,



which usually communicate and share data. The two interfacing

systems are sometimes called "Drafting" and "Design", or "2D"

and "3D". However, it will quickly become clear that the

equation "back end" = "drafting" = "2D" versus front

end" = "design" = "3D" is not always valid and may prove to be

a gross simplification.

Case Study:
Personal Architect

There are currently about a dozen PC based architectural CADD

systems used in the profession, covering a wide range of

needs, costs and performances. The Personal Architect is a

system recently introduced by Computervision Corporation,

geared towards the high end of the low cost personal CADD

market. There were specific reasons for the selection of this

particular product:

- It is composed of two very different programs which are

meant to be used alternatively.

- It exhibits some unusual features with strong implications

about the architectural design process.

- A set of circumstances has led to exposure to it in a

particular time and context of its development.

THE TWO MODULES

The Personal Architect is an architectural CADD system which

attempts to link the phases of schematic design and design

production through the transfer between two different modules,



labeled "Design" and "Drafting".

The Drafting module is a generic all-purpose tool for geometry

creation, editing and modelling. Most systems which have the

option between 2D and 3D, and use it to differentiate between

"Drafting" and "Design", tend to rely heavily on the 2D

program for most of the drafting and production tasks. In this

case, however, the "Drafting" module happens to be a "true" 3D

program with a strong emphasis on 3D geometrical modelling.

The "Design" module is also a 3D system which is closer to a

typical front-end system and deals therefore with a higher

level of architectural elements. The basic entity to work with

is a six-sided rectangular volume with a top, a bottom, and

four sides. The designer uses a combination of these volumes

to generate a wireframe model of the building which is defined

by its floors, roofs and walls. The two modules communicate

through transfer programs which transform the models generated

by one module into a format understandable by the other. While

there are always many ways to use either module for a range of

purposes, in this case the intended working method as

suggested by the authors is the following :

- The user starts by using the Design module to construct

the wireframe model of the building through the successive

assembly and manipulation of volumes which are defined by

their planar boundaries (floors, roofs and walls). This model

may be quickly modified to generate alternative solutions

based on the programmatic requirements of the project.

- Alternatively, or simultaneously, the "Drafting" module is

used to build three-dimensional objects which may represent



any architectural element which is not a floor or a roof.

These objects, which may vary from wall openings, furniture or

equipment to columns, beams or partitions, are processed

through a transfer program. This first transfer allows these

elements to be inserted in three dimensions into the wireframe

model created in the Design module, for further building

definition.

- Once this model is complete and includes all the components

of the building, it is processed through a serie of executable

programs which contain user-defined and default information

about the construction technology of the building (the

technology file,described later). These programs perform two

kinds of operations: they calculate the building database and

they automatically generate a set of drawings describing the

building in terms of standard views (plans, sections or

elevations) or user-specified views such as axonometrics or

three-point perspectives.

-These drawings, created in the Design format, are then

transferred again to the Drafting module into two-dimensional

drawings which can be edited and "cleaned-up" for final

presentation or production drawings.

Since this second transfer involves the use of the drafting

module as a simple drawing editor focusing on the later phases

of the architectural process such as contract or client

documents, it does not fall within the scope of this work; the

first one, however, appears to be relevant in terms of

supporting the Design module, and should be examined within a
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design evaluation.

In addition, since the labelling "Design" and "Drafting" is,

as we will see, rather simplistic at best, from now on in this

work I will chose to use the "birthnames" of the two

programs,Keops for the design module and Microcad for the

drafting module (not to be confused with another PC system

called Microcad, by Imagimedia Technologies).

THE TECHNOLOGY FILE

One of the features which differentiates this particular

software from others, beside the concept of volumes, is the

the "Technology File". The technology file is a set of

construction parameters and design rules. It contains default

information about the different components created in the

wireframe model such as floors, roofs, walls, partitions,

handrails,...It is structured as a relational database

describing the technology of the project.

The user is guided through a hierarchy of menus and submenus

prompting him for sizes of dimensional elements; his input is

interpreted as a serie of if-then conditions which essentially

define the design rules of the project. Once this array of

information has been generated and saved, the user runs a

sequence of programs which create the project database by

merging the information of the technology file with the

wireframe diagram. These programs perform various operations

on the model based on the different values defined by the

user. For example, the system will create a plan by exploding
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the single lines of the wireframe into double lines with

thicknesses reflecting the design rule of that specific wall.

Similarly, it will cut a section through the building at a

user-defined location, with corresponding floors and roof

dimensions. All these values are related to initial parametric

assignment of "space categories" such as "heated", "unheated",

or "terrace". It is this database that the system uses for

generating the hidden line images of the building.

Once the project has been processed through the technology

file and the database programs, the architectural process may

be described as having reached the the "design development"

phase; the drawings are edited, completed and annotated for

contract documents; three types of information have been

calculated: dimensional information associated with all rooms

and openings, quantity takeoffs of materials, and cost.

From volumes to spaces



DEVELOPING CRITERIA

Standard CADD Functions

Most systems perform a minimum of functions in a similar way;

this core of functions is handled by virtually all systems

which qualify as generic ;it is the "common denominator" of

current systems. As an example, all systems offer a number of

ways to draw a circle: with three points on the

circumference, with two points defining the diameter, or with

one center point and an explicit radius dimension, just ot

mention a few . These types of functions are now taken for

granted, and are therefore not addressed in this work .

Other functions are performed by most systems but are handled

differently by each one of them. Different systems may perform

dimensioning, for instance, much better than another.

Finally a few systems will perform some functions which others

cannot do at all. Hidden line removal or perspective viewing,

for instance, are provided by few PC systems.

We have to bear in mind, though, that these differences keep

decreasing as every release of a software keeps leapfrogging

the pack. Softwares, particularly generic ones, tend to look

more and more alike.

If we look at standard industry evaluations as a starting

point for organizing general CADD functions, we may classify

them in the following categories:
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* Geometry creation
* Display control
* Dimensioning
* Text
* 3D

* Drawing aids

First let us keep in mind that these are functions, not

evaluation criteria. Other factors routinely mentioned in

professional comparative evaluations, such as vendor

friendliness, hardware or cost may constitute far more

important criteria than those mentioned above. One cannot

underestimate hardware or cost as critical elements of a

selection process from a professional point of view.

From a design point of view, though, these categories are very

broad and cover a range of functions from the indispensable to

the unnecessary. They also vary a great deal in the extent of

their relevancy to preliminary design. It is clear, for

instance, that while text and labelling are two important

components of construction drawings, they do not constitute a

significant aspect of preliminary design. I chose therefore

to disregard these "families" of functions as evaluation

criteria.

LOCATIONAL CONSTRAINTS

CADD systems provide for ways of restricting the position of

the cursor to specific points, either by referencing existing



Referencing existing geometry involves snapping the cursor to

some key point of the closest entity such as end points,

origin points, midpoints of lines, circles or arcs; all these

are provided with most systems. While such "object snaps"

greatly increase accuracy and speed, they have only limited

value in perliminary design except for geometric modelling and

complex object creation. A more helpful tool, however, is the

ability to define a set of legal positions for the cursor,

such as grids and snaps.

The simplest form of locational constraint is the orthogonal

mode, which insures that all lines drawn are either vertical

or horizontal, or , in some cases, at 45 degree angles.

Occasionally a system will allow the user to specify the

angular constraint. Locks are useful for designs with major

angle changes.

Grids permit the user to display a lattice of dots at

regularly spaced intervals which he can define. They can help

the designer by giving an approximation of the dimension of an

entity he is drawing. They allow him to assess the value of a

given dimension, by acting as dimensional estimators. Grids

may or may not restrict cursor positioning, depending on the

"snap" function, which is the next step up in locational

constraint.

The snap function restricts the crosshair to the nearest

increment of a given value. That value may or may not be the

same as the grid value; it is usually preferred to have them

independent from each other, letting the grid act solely as a

visual guide while the snap value controls the cursor
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position. Some snaps allow the crosshair to move anywhere and

only snap when digitising; others restrict the crosshair to

rest only on legal points. In addition, grids and snaps are

very often turned on and off; it is helpful to be able to do

so from within a single command, without having to go back to

the system prompt.

Grids and snaps vary mostly in the extent to which the user

can edit them to reflect his own system of positioning

constraints. The principle is the same as for other

functions; the more user-definable grids and snaps can be, the

more useful they are. This degree of freedom may range from

different X and Y values to rotating grids at certain angles;

some particularly handy features allow the user to define the

grid origin or , better yet, to simultaneously display a major

and a minor grid. In general, a grid is only as useful in

design as it can be modified to suit a particular working

session or project.

Keops, which utilizes grid lines rather than points, provides

some unusual grid editing functions. It displays both grid

and crosshair in a perspective mode; this allows for quick

dimensional estimation in a 3D node and makes up for the error

factor due to perspective distortion. Another valuable

feature in Keops is the ability to move, copy or erase every

single line independently. In this case the grid becomes more

than a modular constraint; grid lines can be used to identify

major directions in the building structure or organisation,



such as bearing walls, column lines or other directional

fields.

PARTS AND BLOCKS

As mentioned earlier, the process of assembling low level

graphics primitives into higher level explicit descriptions of

architectural physical elements is an important part of the

CADD design process. Most CADD systems provide in some way to

allow the combination of geometric primitives into various

types of groups. Operations may be performed on these groups

by treating them as single entities. The elements of the

group share some kind of property, and the relationship

between them nay be graphical or non-graphical (such as

attributes). The names for these groups vary with different

systems, which call them objects, parts, elements, blocks,

symbols, or simply shapes.

One of the most common arguments in favor of CADD is its

ability to automate repetitive tasks; the use of predrawn

shapes which can be recalled as a whole exemplifies this

aspect of the CADD process. That is why the way a system

handles symbols is considered essential for the effectiveness

and productivity of the software.

One of the simplest examples of parts is the libraries of

symbols, developed in user organizations, or supplied by third

party vendors as part of front end templates. Symbols in this

context refer to two things:

- A set of architectural pictorial symbols such as section



markers, HVAC symbols, or trees and people.

- A catalogue of windows, doors, and furniture of standard

sizes which can be inserted in a drawing.

The first type of symbols are used mostly for production and

presentation drawings and amount to little more than

"electronic Letrasets" of icons.The second type of symbols is

analogous to manufacturer's catalogues of windows and

furniture.

At some point, though, the user will need to create his own

libraries of parts, to suit his working methods. Systems

usually allow the combination of graphic primitives into other

primitives , which are filed and recalled as single entities.

Autocad calls its elements blocks or write blocks. They are

generated by selecting a group of entities according to

whichever criteria the user needs. These blocks are filed

with a name and stored for future reuse; when needed they are

retrieved and inserted in another drawing.

Microcad also provides for the selection of a group of

entities which may be filed as a whole. The command used for

the creation of the element is "File Part." When reinserted,

the element may be used in two ways:

- It may be inserted as a "symbol" (using the "Insert Symbol

command), meaning that it will behave as one single entity; an

operation performed on one of its entities affects the whole

symbol.

- It may be inserted as a "part" (using the "Insert Part"



command) meaning that it remains a group of separate entities;

the primitives which form the part may be individually edited.

This differentiation is similar to the "block" versus "*block"

in Autocad, where "block" refer to one entity, and "*block" to

separate ones.

Both options have their advantages and disadvantages. A

symbol treated as one entity is easier to manipulate when

inserted. It also uses less memory than a part which retains

its separate entities; for example, a room with ten identical

chairs will use less memory if every chair is treated as a

single entity. But if every chair is different,then there are

no savings in memory, because all the information associated

with the file of each symbol is inserted in the drawing as

well.

On the other hand, symbols are difficult to reference since

their only object snap point is the insertion point of the

symbol. Parts, since they retain their different entities,

may use the end points or origins of any of these entities

when the user wants to reference existing geometry.

An example of this is the arched window elements shown in

fig ( 3 ). While symbols were easy to manipulate as a whole,

the difficulty arose when I wanted to create a double window

element from two existing ones. If one window is inserted as

a symbol, and the user wants to insert another one aligned

with the first one, then the dimensions of the window have to

be known in advance and explicit coordinates used for the

second window to coincide and align. This is easier to do by

inserting the element as a part in which the origins and
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endpoints of individual entities are referenced for correct

alignment.

An alternative provided by the system is to insert the element

as a symbol and manipulate it as such. When there is a need

to use the individual entities, the symbol is broken down

using the "Explode" command, which will divide it into

separate components which may be referenced. However, it is

not possible to reassemble exploded symbols into their

original form, which is often desirable.

Another useful feature of parts and symbols is the ability to

scale, stretch or rotate any part when inserting it. This

allows for slight modification of the part being inserted

without having to redefine it. Parametric variations, for

example, a common exercise in CADD, consists in creating

different versions of an architectural element through the

scaling and rotating of its geometric parts. The corbels, for

instance, were created by inserting the half lintels with a 90

degree rotation around the Z axis to make them perpendicular

to the wall. Similarly, different sizes of openings were

created by verticular and horizontal scaling of the jambs and

sills, which were also filed as parts.

The capacity to edit parts, redefine them and file them as

they are being used is always a good option, allowing more

versatility in the manipulation of parts.

It is often desirable to create symbols that use other

symbols, or "nested symbols." Nested symbols contain other



symbol references; they make the geometric modelling process

an additive process with a hierarchical structure of elements.

These elements can be combined and nested at many levels to

generate larger and more complex objects in a "building block"

fashion. There may or may not be a limit to the nesting

complexity of symbols. The arched window elements use two

levels of nesting, where one element is comprised of sills,

jambs, and lintels which are themselves filed as parts.

Elements in CADD are stored in vector form, so that small

complex objects use less memory than a large simple one. As a

result, the physical limits in memory of a symbol are a

function of its complexity rather than its dimensions.

Another clear advantage of using parts is that in a drawing

which uses one symbol a large number of times, it is much

easier to update the symbol once rather than modify each

occurance. The system automatically updates the drawing by

finding the new version of the symbol. This allows to quickly

generate and store alternative design sketches by only

modifying the basic part. For example, a few elevation studies

may be created by only changing the basic opening.

Incidentally, such a use of the computer illustrates a case

where its ability to accomodate "grudgework" proves useful for

the design process.

The drag mode, which allows dynamic displacement of the symbol

as it is being inserted, is of great help when positioning the

symbol. It is a good example of tight interactivity in the

lexical output of the system.



Keops, on the other hand, does not allow the filing of part of

a project and its insertion in another one. This limitation

has two consequences:

- Since it is impossible to store and retrieve one version of

a model, every different element of that model has to be

created within the project. In this case, for a cluster of

three different units, every unit has to be modified

in the cluster, as opposed to creating each one and inserting

it in the cluster.

- While the system provides for some good symbol manipulation

and relocation through mirrorring and rotation, symbols cannot

be scaled or stretched as they are inserted. They have to be

modified separately in the Drafting module, and processed

through the tedious transferring program before they can be

reinserted. This method completely lacks interactivity. As a

result, Microcad becomes a more appropriate tool for elevation

studies, as it permits to finalize opening dimensions before

filing and transferring them.

In short, the efficiency of a system in handling symbol

creation, insertion and manipulation is an important factor of

the CADD process and constitutes a valid criterion in its

assessment.

Just as it is helpful to group entities into geometric blocks

and parts, the ability to assemble these blocks together

according to nongeometrical criteria and define them as part

of a group can be very handy. One can assign nongraphical
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according to nongeometrical criteria and define them as part

of a group can be very handy. One can assign nongraphical

properties, called attributes, to groups of objects. When

attributes (labelled properties in Microcad) are attached to

an object, it becomes possible to have classes of objects

which share attribute values. Operations can then be performed

on these classes of objects as a whole. It is often useful to

refer to a component as part of a larger organizational

system. For example, an object representing a wall panel may

belong to a group called "infill", or to another called

"prefabricated elements".

Building closure elements
by assembling parts
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LAYERS

Layers allow the user to selectively organize and display

information. They are similar to transparent overlays, which

can be viewed on top of each other or separately.

It is ironic that the most common analogy used to describe

layers is that of a tracing paper, when in reality the uses of

layers are completely different from those of tracing paper.

Layers are used to differentiate between classes of

information related to one project. For instance, one layer

may describe the structure, while another may include infill,

or another yet dimensions or HVAC symbols. By selectively

turning some layers on and off, the user may view and plot

each one individually. Obviously, this use is very different

from that of tracing paper. Perhaps a better analogy for

layers would be a complete set of production drawings,

including architectural, structural, mechanical and electrical

drawings.

The use of tracing paper, on the other hand, is very intuitive

one and may vary with different architects for preliminary

design. Its primary quality is related to the fact that it is

neither opaque nor transparent, but translucent. When a

designer sketches an initial alternative and lays another

sheet on top of it, the trace partially conveys the graphical

information in an indicative way. His next iteration through

the following sketch alternative will use the bottom trace as
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a guide, modifying some lines and retracing some others. The

top trace "filters" the graphics of the bottom one, which acts

as a "locational constraint", similar to a snap or a grid but

less constraining. While a snap allows the crosshair to rest

on specific legal points only, the trace is suggesting for the

pencil to rest on points "in the vicinity" of such point or

line.

Ideally, if layers were to be used as tracing paper, they

would require its characteristics. The idea of a translucent

layer is an appealing one. Another one would be to allow the

geometrical entities on one layer to act as a "partial

constraint", allowing the cursor to rest on points within some

distance of the bottom ones. As we know it, though, it is

difficult to input to a computer many-valued, non-discrete

qualities such as "nearness" or "sidedness".

Another important characteristic of layers is their ability to

allow the user to selectively discriminate what and how much

information he wishes to view. There are two problems if a

drawing on the screen has too much information: it loses its

legibility, and the screen is very slow to regenerate. The

issue of legibility is solved by turning off the unnecessary

layers. As for screen regeneration, turning the layers off

will only slightly decrease the search time, but not by very

much. What will really shorten the repaint time, though, is

the capability to "freeze" layers: when a layer is frozen, it

is considered as nonexistant and does not slow the system

processing time.



Autocad allows for an unfinite number of layers. These layers

may also be named rather than numbered; it is much easier to

understand and remember a layer labeled "Electrical" rather

than "Layer 16". The system restricts, however, a layer to one

color and one linetype. Layers, colors and linetypes are

therefore completely related.

Microcad allows for 256 layers, and has no restrictions on the

number of colors and linetypes per layer. Layers can only be

numbered, and they cannot be frozen.

Keops,on the other hand, must be one of the very few CADD

systems which does not allow layers. The system makes its own

decisions about organizing the information. For example, one

command will display the volumes, another will display

dimensions, or furniture, text, etc. The user has no control

whatsoever on how to structure all this information according

to his own criterias. This leads, in turn, to problems in

legibility particularly when viewing the wireframe in three

dimensions. It is a very authoritative assumption by the

system on behalf of the user.
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GEOMETRIC MODELLING

Designers solve their problems visually. In no other design

discipline is the end product so intimately related to its

visual representation. It is no surprise, therefore, that an

important aspects of evaluation criteria for designing with

CADD involves its potential for geometric modelling.

A model is by no means a finished product; it is an

approximation of that finished product, a physical prototype

of the specific state of what a temporary design solution

might look like. Once this prototype has been simulated, it

is visualized, analyzed, evaluated, and modified to explore an

alternative potential solution, before anything physically

tangible is created.

The model is useful for communicating the design solution to

other participants in the design process; these participants

may analyze it and evaluate it according to different

criteria. A model may be used for varied kinds of analysis

such as structural analysis, energy calculations, daylight

simulations, or cost estimates.

While these different forms of analysis may be performed at

varied phases of the design process, we are concerned here

with the use of geometric modelling in the early stages of

sketch design, for functional and visual assessment. While

many techniques of visual assessment are only initiated in the

later stages of design, there is a definite need for the quick

generation of models in the early conceptual phases, where

most major visual design decisions are taken [Bridges 83].



2D V/S 3D SYSTEMS

During conceptual design, architects not only think visually,

they also think in three dimensions. It is during these early

stages that the processes of form making and visual appraisal

dominate other kinds of assessment. This is illustrated by

the extensive use of physical scaled down models (i.e.

cardboard and others) in both academic studio environments and

professional organizations. It should be no surprise,

therefore, that three-dimensional geometric modelling ability

is widely acknowledged to be an important and popular feature

of current CADD systems.

Two dimensional systems, in general, are mostly production

oriented and primarily aimed at efficiently creating

architectural drawings, with little or no intelligence

concerning the geometric characteristics of the drawing. This

does not necessarily imply that 2D systems cannot be used for

visual description of the building. They can be used, for

example, to draw different isometric views of a building,

without any definition of 3D coordinates. These views,

however, are not related to each other; they do not share any

information about the building representation. Similarly,

some 2D systems allows the creation of automatic perspective

views, through the projection of the plan on a picture plane,

in a way similar to how architects manually construct their
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perspective views.

The next step up in geometric modeling involves systems which

understand the Z axis. A three dimensional object may be

generated by drawing a planar figure and extruding it along

the Z axis. AutoCad is an example of such a system; objects

may have a thickness and an elevation. These systems are

referred to as "2D 1/2" or axonometric extrusion, since they

do not have full 3D capability. Objects require a constant

cross-section along the Z axis, and remain parallel to the XY

plane. This precludes inclined planes such as sloped roofs,

or primitive shapes such as spheres and domes.

"True" three dimensional systems, on the other hand, are

characterized by the creation of a 3D "electronic" graphic

database. All elements of construction have 3D definitions.

Any line has end points with X, Y, and Z coordinates.

Entities can be extruded or rotated along any of the three

axes. As a result virtually any three-dimensional object may

be generated and visualized from any point in space, with no

limitations on its shape.

Perhaps the most important characteristic of a 3D system is

the existence of one central electronic model database. All

views, whether they are planar (plans or elevations),

isometrics, or perspectives, are extracted from this single 3D

model, as opposed to a set of nominally related 2D views; they



are said to be "model based" instead plan/elevation based.

Whenever the model is modified or edited, all views are

automatically updated. 3D systems allows the user to view the

model at scale from any point in space and examine its

interaction wiht other geometric elements.

WIREFR AMES

In most CAD systems the process of geometric modelling and its

visualization starts with the construction of the wireframe

model. "Wireframe" refers to a model in which all entities

are visible from any point; when viewed the model looks like a

sketch outline of an object, similar to an airplane model or a

bird cage, where all points, lines, and vertices are visible,

including the ones that would be obstructed by other planes

from a given point of view. Viewing a wireframe model is

similar to looking through the model; all the components of

the model, internal as well as external, are simultaneously

displayed. This allows for some interesting inside/outside

viewing mechanisms which are not possible with physical

models. While they can provide very valuable visualization

and simulation tools for some situations, particularly for

localized parts of a building, they remain, however,

indicative and lack solidity.
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Wireframe views from
within the model
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HIDDEN LINE REMOVAL

The removal of hidden lines on three dimensional wireframes is

a subject of much research in the field of computer graphics.

This technique is fairly standard on minicomputers and

mainframes. Few PC based systems offer it, though, partly

because it is a both a complex and computationally intensive

process,particularly for PC's. Two methods prevail for basic

hidden line removal [Witte 84]:

Surface Orientation This method imposes some restrictions

on the construction of the model for a given view. For

instance the drawing might need to be created in a counter-

clockwise direction. Overlapping objects and planes are not

treated. It necessitates therefore a certain amount of data

preparation and input. On the other hand, the processing time

required for calculating the resulting image is relatively

short.

Surface Priority This method has less limitations on

data input; it sorts objects, planes and polygons by distance

to the observer and checks for intersections. As a result, the

time required for image generation is considerably longer. It

is not unusual to see systems that will take up to thirty

minutes for a simple model.

Given the complexity of both processes, many users argue that

in most cases the removal of hidden lines is best done

manually. One way to do this is by locating them and editing

them on an image file. Another common way involves using large
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digitizers and a stylus. to trace the visible lines from the

hard plot of the wireframe view onto the screen

ELECTRONIC V/S PHYSICAL MODELS

The process of three dimensional modelling involves a frequent

succession of geometry construction and model visualisation.

While the wireframe model remains independent from the viewing

position, a hidden line removed image is directly connected to

one particular view. Therefore, the quick visualisation part

of the modeling process relies more on the wireframe views

than on static finished images. In fact, hidden lines images

are typically more used at the later phases of visual

assessment or presentation drawings, as opposed to wireframes

views which are a dynamic tool for the modeling process of

early design sketches.

There is an inherent analogy between electronic models created

in CADD systems and the physical scaled models which are

commonly used in architectural education and practice.

Wireframe views may be compared to what is referred to as

"working models" in preliminary design. These models are

usually partial descriptions of parts of the building in terms

of its constructional elements, such as structure and infill.

Hidden line images, on the other hand, are analogous to the

presentation models which focus on the building envelope and

are used for client presentation.

Obviously electronic models cannot compete with the dynamic

viewing of a physical model and its "permanent state" of

hidden lines removal (which is what animated "fly-through"
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Hidden line removal after 3D database



simulations try to achieve). One advantage, however of the

electronic model is the ability to quickly generate design

alternatives which can be stored for later comparison, and its

potential as a tool for documenting the design process.

WIREFRIAME LEGIBILITY

One of the arguments for CADD systems is the absence of a

scale factor when creating a drawing: all dimensions are

entered in real world coordinates. As a result a single model

may include various levels of information, ranging in scales

and sizes from a or a baseboard to a precast wall panel. A

view of the wireframe showing all windows and doors of a

building will look very different from one viewed from the

same point, which would be limited to a volumetric description

of major planes and masses.

For that reason wireframes may vary a lot in how well they can

convey visual information. If the model has too many lines, or

too many levels of information simultaneously displayed,

visual clutter will result in poor legibility. Typically a

wireframe image will be too dense in the center areas and

most legible at its edges. If on the other hand, the model

view is restricted to one type of information, or if the user

can effectively control how much information he wishes to

display, then the view of the wireframe remains legible. In

other terms the ability for the user to discriminate the

amount of information is a critical factor for the legibility

of the wireframe and its use as a visualisation tool.
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The issue of legibility of a wireframe is particularly

relevant for Keops because of the specific way it represents

the building.

Since the smallest entity is a four sided volume, the most

indivisible unit of the wireframe is a parallepiped with six

facets: four walls, floor and roof. The four vertices define

the planar boundaries of the volume. To create a L shaped

space in plan, one would simply delete the side shared by the

two volumes. When in plan mode, the appropriate command will

actually display the L space without the deleted side. In 3D

viewing mode, however, the vertices which correspond to the

ends of the deleted side are not removed; they remain visible

in the wireframe, despite the fact that they do not really

exist. In other terms when looking at a three dimensional view

of the model, the wireframe will always display all vertices

of all volumes, regardless of their prior deletion. The

relationship which exists in plan between spaces and volumes

does not exist in three dimensions.

A wireframe, therefore, can only be legible up to a certain

number of volumes, since all their vertices are always

displayed in the wireframe. As a result the physical

limitation for manipulating the model is more determined by

the number of volumes rather than the number of spaces or

rooms. In order to effectively remove the unnecessary

vertices, one would run the Hidden Line Removal program, and

the user ends up relying more on static hidden line images

for his visualisation, instead of using the more flexible
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wireframe viewing mechanisms.

VISUALISATION

Visualization refers to the process involved in setting

parameters for a particular view of the model. System vary

in the way they allow the use to select his viewing

mechanisms.

AutoCad uses an interesting solution. When in the elevation

mode, a small compass is displayed on the upper right of the

screen. The compass consists of two concentric circles; the

model viewed being in the center. By moving the stylus

around, the user can select his position relative to the model

for the X and Y coordinates, and its height by getting closer

or farther from the center. As the user does that, a X-Y-Z

axes tripod is dynamically changing to represent the current

position relative to the three axis origins. The user can

therefore construct an unlimited number of axonometric views.

It is an ingenous mechanism and relatively easy to use and

control, though it is not very compatible and does not try to

mimick the human process of an architect to view his building.

In Microcad, the user selects a view by rotationg the model

around its three axis. He inputs numerical values for the

angles of rotation, until he has reached a satisfactory

viewpoint; the view is then saved and assigned a number. It

is the model which is rotated instead of the observer being

displaced as in Autocad. In both Autocad and Microcad, the

user cannot control the focus point; he is always looking at
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the center of the model.

Microcad also allows for perspective views, though the user

has little control on its parameters; he just inputs an

arbitrary number to determine the distance to the objects,

thereby deciding on the amount of distortion.

In Keops, the viewing mechanism is the most complete and the

closest to the natural process, as the user controls most of

the view parameters. He starts by selecting the X-Y

coordinates of the focus point, or the center of the cone of

vision, on the drawing sheet; he also gives it an elevation.

He then selects the observer position, also in terms of X-Y

coordinates and height. The user therefore controls the degree

of distortion in a three point perspective, the cone of

vision, the distance between the observer and the object, and

the pitch.

It is often important to save a specific viewing of a model

instead of reinputting every parameter, where the view remains

independent from the model modifications. In AutoCad, a

specific view of the model can be saved as a "slide", an image

which cannot be edited. Keops behaves the same way, and

allows for the creation of images files containing all screen

display; the image files can be saved and redisplayed. They

are also non-editable.

In Microcad, on the other hand, the view parameters are angles

of rotation of the model aroun the three axis; the resulting

view, which is saved and numbered, is not related to the
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model. The user can therefore save a specific viewing

position and edit the model as seen from that position.

Visual clutter in the center area
of a wireframe
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North perspective
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System Interface

The quality of the interface may not seem to be a criterion

for a design evaluation at first. There are, however, many

reasons for the importance of user friendliness in CAD

systems:

- The architect's traditional suspicion of alternative tools

for his trade will discourage him from experimenting. He is

more likely to demand a "better" interface sytem, one which

will quickly alleviate his fears and feel natural to use.

- The performance of a CADD system depends on the user's skill

and his ability to make the most of his system. That, in turn,

is a function of the ease of use of the system and its

"friendliness."

- The fact that the design process is ill-defined, and the

need for many design alternatives, underscores the necessity

for highly interactive systems.

Some systems are cryptic, require memorization and are alien

to our design process; others are self-explanatory and

responsive to our needs. As mentioned earlier, the complexity

of the architectural design process makes it very difficult to

establish a simple model for the interface to emulate. The

connection between the pencil, the paper, and the brain is and

will remain much more direct than that of a digitizer, a

screen, and a brain.

The term interface loosely covers all instances in which the
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user interacts with the system. This includes input from the

user to the system through physical devices, command sequences

and syntax, and output from the system to the user through the

screen display. The user friendliness of an interface refers

to the ability of the system to bridge the gap between man and

machine.

THE USER-COMPUTER DIALOGUE

The concept "man-machine dialogue" is often used to describe

the interaction between the user and the system. The sequence

of input-output commands is analogous to a conversation, where

the user's language consists of words and commands, and the

machine's language consists of images and pictures.

The analogy is a useful one because it allows us to establish

natural language as a valid model for the design of an

interface, calling for some of the same desirable attributes

as a person-to-person conversation, such as consistency,

flexibility, and simplicity.

When the user interacts with the system there are really two

languages being used; one from the man to the machines,

defined as input, and the other from the machine to the man,

defined as output. Both of these languages occur at three

levels [Foley 82].

LEVELS OF CONVERSATIONS

The semantic level of a language involves functionality; the

meaning implied in a command and the amount of information

needed to execute it. Examples of semantic input are commands

which would be used to draw an entity, such as ADD, INSERT,
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CREATE, or DRAW. Examples of semantic output are prompting

for additional information, displaying current status

parameters, or displaying error messages.

The syntactic level of a languages specifies the rules by

which sequences of actions are formed. It has to do with

form, not meaning. For the user input, for instance, the

syntax controls the combination of words into sentences and

commands, very much as the grammar of a language controls the

use of its vocabulary. The output syntax of a system includes

the organization of the screen, such as positioning of

prompts, error messages, and on-screen or tablet menus.

The lowest level of a language is lexical; it determines how

primitives are entered or displayed to assemble sentences and

commands. Lexical input deals with whatever physical input

devices are available, such as keyboard, mouse or digitizer.

The lexical level of output determines how geometric

primitives such as line types, fonts, and colors combine to

form symbols or visual codings.

FEEDBACK

Another important aspect of the interface involves feedback.

In a natural conversation, one person's reaction to the other

person's statement may be another statement, a facial

expression, or a body gesture. This feedback is needed for

the two persons to confirm what they are talking about, and

acknowledge the understanding of their respective messages.

Similarly, in a CADD system feedback is an important component
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of interaction. Feedback occurs similarly to a language, on

all three levels:

- The lowest level of feedback is lexical; the crosshair

displacement as the stylus is moved, or the echoing of

characters as they are entered on the keyboard. Rubberbanding

and dragging are two quintessential examples of tight,

interactive lexical output, cherished by interface designers

and end users alike.

Dragging was mentioned in the sections on parts. It is a

technique which allows for dynamic tracking of an object on

the screen as the pen is moved. It is very useful for the

positioning of blocks and parts such as furniture, windows, or

columns. A similar technique is dynamic rotation or scaling

of the object being inserted.

In rubberbanding, after digitizing the first point of aline,

the line on the screen continuously follows the second

endpoint as the cursor moves, always displaying the status of

the line before the user finally selects a second point. Both

these techniques make heavy use of immediate dynamic feedback

on the lexical level.

- Syntactic feedback indicates whether the structure of the

command is grammatically correct. It informs the user that

both his word and his message are well formed. For example,

an object can be highlighted when selected , before the

command is executed, or the system can prompt for additional

input in the middle of a command.An example of syntactic

feedback is the fact that Microcad checks word by word the
63



command line, and beeps if it encounters an error, as opposed

to checking the entire command at its end. This makes error

recovery considerably quicker.

- Semantic feedback indicates explicit acceptance or rejection

of a request. It may tell the user that the command has been

understood, that it is being executed, or that it has been

completed by prompting for another command.

MENUS

Most CADD systems now use some form of menus, whether they are

screen menus or tablet menus. A menu can be described as an

organized list of options and commands, which can be displayed

either on a portion of the screen or on a rigid overlay which

fits on the digitizer tablet. Selecting an option from the

menu through an input device is similar to invoking a command.

The options corresponding to commands are listed in either

character strings and explicit messages or through symbols and

icons. Often the set of options is too large to fit in one

menu. The options are grouped in submenus with a hierarchical

tree structure, where the "root" or main menu may contain

different modes such as "draw" or "edit." The user moves up

and down the tree structure in order to select the appropriate

option.



COMMAND DRIVEN V/S
MENU DRIVEN SYSTEMS

Generally speaking, a user command structure may fall within

two categories, menu driven or command driven.

- User computer dialogues which use menus and submenus are

described as "computer initiated". The user is always faced

with a number of options from which he has to select one. The

software is therefore easier for beginners to use, because the

system permanently displays a set of alternatives and prompts

instructing the user for input; learning is done by

recognition of familiar options rather than by memorization.

However, menu driven systems are also described as

"authoritative" for the same reasons; the computer makes more

assumptions for the user, and guides him through the software.

This is particularly true for hierarchical tree-structured

menus if there is a need to go through many levels of submenus

before selecting a command. While very valuable for

beginners, submenu selection may be tedious and get in the way

of experienced users.

- On the other hand, "user initiated" dialogues refer to

system interfaces where the user himself enters, without being

presented with a set of options, a complete command sentence

with the appropriate syntax. These systems are also called

"command driven," or "language driven," becuase the selection

of a command requires an initiative from the user and an

understanding of the correct software syntax, with no

indication of a choice between alternatives.
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As a result, command driven systems are harder to learn, but

not necessarily to use; they may frustrate new users because

they imply the memorization of some of the vocabulary and its

syntax. However, they are also more flexible and better

suited for the experienced user, for whom the formulation of a

complete command is less of an obstacle than the rigid

structure of different levels of submenus.

Autocad is an example of a menu driven system. The right part

of the display area is reserved for listing the current active

menu options, as well as the root menu. The screen menu

allows the user to focus the attention to the screen only. The

user does not need to know ahead of time the command he wishes

to use; the options are listed, he only has to select one.

Using the screen menu, however, implies moving through

different levels of submenus until the desired complete

command is reached.

AutoCad, though, is sometimes described as both menu driven

and command driven, because one may use the keyboard to input

a command at any moment, thereby short-circuiting the

different levels of menu selection.

The general structure of a command does not vary much and

usually consists of verbs, nouns and modifiers.

The verb describes what operation the user is instructing the

system to perform. For example, a system may use INSERT, ADD,

DRAW, or CREATE to indicate a drawing mode.

The noun refers to the object on which the operation is to be
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performed. In generic systems, nouns represent low level

geometric entities such as LINE, ARC or CIRCLE. In higher

level systems, they describe a building component or concept,

such as WALL, OPENING or VOLUME.

The modifier specifies, when required, how the operation is to

be performed by further defining it. For example, it might

specify to draw a line tangent to a circle or at a certain

angle from an existing one (TANTO or ANG).

The meaning of words of such a complete command represents the

semantics, whereas the syntax determines how they may be

combined together to formulate a correct sentence,

understandable by the system.

Microcad, in comparison, best exemplifies a software that is

extremely command driven. The words which constitute its

vocabulary are globally similar to those of most generic CADD

systems; the vocabulary deals with low level entities such as

lines, points, and routine editing procedures such as copy,

move, etc...

The grammar, however, which dictates the rules according to

which these words may be assembled, though, would give

nightmares to a student in Latin. The syntax of Microcad takes

the concept of dialogue with the machine quite literally. It

is more analogous to a written dialogue, and relies on a

sophisticated and highly specific set of punctuations which

control the conversational loop. Every colon, semicolon or

period has a meaning at various parts of the command line.
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The language of Keops resembles that of Microcad, with

verbs, nouns and modifiers, without being dictated by

punctuation. The verbs used remain the same and are mostly

editing commands. It differs semantically, though, reflecting

its purpose as a front end system. The nouns describe

physical elements in high level terms; the user manipulates

volumes, walls, roofs, floors, openings.

There is no puntuation controlling the way these verbs, nouns

and modifiers assemble; every command is different and must be

memorised as such. As an example, instead of having a command

"Move entity" , we have "Move volume", "Move opening", "Move

side", "Move symbol", etc... The result is a staggering

amount of linear commands, with no hierarchical structure.

Paradoxically, an example of a very strong menu structure can

be found in the technology file of Keops.In this case the user

is driven through a rigid tree-structured set of options

prompting him for constructional information and dimensional

values.

Furthermore, in this case the menus occupy the whole screen

area. As a result, the connection between the building

components being defined and their graphic depictions is

nonexistent; there is no visual association whatsoever between

constructional elements and the model they are part of.



EASE OF LEARNING

The learning curve of a system describes the amount of time

needed for the user to become productive, or to accomplish a

minimum of tasks. Like other factors, it is difficult to

quantify. There are generally two tendencies in the learning

of a system, reflected once again in Autocad and Microcad. As

mentioned earlier, menu driven systems such as Autocad are

easier to learn in the initial period of acquaintance. They

provide operational guidance of the user through the software.

As a result Autocad beginner's learning curves climb quickly

to a certain level.

By contrast, Microcad is slow and tedious to learn, as the

beginner slowly understands the intricacies of its syntax and

its punctuation. The learning curve is slow, particularly at

first.

Very quickly though, because of the flexibility of the

language driven Microcad syntax, the user makes a slow but

steady increase of his abilities with the system. He

progressively masters the in's and out's of his program .

Meanwhile, the Autocad beginners reach a "plateau". After

learning quickly to do some amount of work, they find that in

order to move further into the program, a whole additional

learning process is required, which may involve scripts,

macro's or other sophisticated aspects of the system.

In short, the learning curve for Microcad - or for most

command driven systems - is slow at first but steadily
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increasing; whereas in AutoCad and menu driven systems, it

quickly attains a certain level which it difficult to bypass.

Many users claim their preference for a learning curve that is

constantly growing, not because of system is cryptic but

because of its depth.

This difference underscores an important distinction to be

kept in mind, that between ease of use and ease of learning.

One does not necessarily imply the other. Ease of learning

depends on a range of other factors such as on line help and

tutorials; this may affect very little the day to day ease of

operation of a proficient user.

This point is further illustrated in the command structure of

Keops, whose difficulty (due to quantity and not complexity)

was described above. Every single Keops command can be

replaced with two or three letter mnemonics, typed on the

keyboard. Obviously it is suggested that, at least for

beginners, the explicit commands be selected from the tablet

menu. Nevertheless, after a certain time, entering short

mnemonics from the keyboard proves to be faster and easier

than digitizing the menu. This is partly due to the fact that

several commands can be entered in a row and stored in the

keyboard buffer, freeing the user to await their execution.

This is more convenient than digitizing a tablet slot and

waiting for that command to be completed before another one is

activated. Mnemonics are by no means easier to learn (they do

not even correspond to any form of abbreviation...) but they

are certainly easier and faster to use.
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PHYSICAL INPUT DEVICES

The lexical level of input involves the use of physical

devices for coordinates and command entry, ranging in

compatibility from keyboards to touch sensitive screens,

including tracker balls, thumbwheels, rotary knobs or

joysticks. They vary in the extent to which they attempt to

emulate the designer's drafting process. For reasons of cost,

obsolesence and interactivity, most PC based now use

keyboards, mice and digitizers for input.

The keyboard

Input devices are either discrete or continuous. The keyboard

is a discrete device; it sends input information in discrete

packs of data, with a clear beginning and an end. It is not

very interactive, since the user repeatedly adjusts input.

Keypads, and to a lesser extent button cursors, are other

discrete device.

Though the keyboard seems to hardly be compatible and the

least natural of devices, it is not likely to disappear as an

essential part of any interface system. It is used for certain

tasks within the larger CADD environment such as operating

system functions, file manipulation, or commands to peripheral

devices such as plotters, or film cameras.

In addition, some elements of the designer's thought process

are alphanumerical as opposed to geometrical, and keyboards
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deals with them better than mice or digitizers. They include:

- Dimensioning, notes, or other alphanumeric data.

- Entering system parameters or status commands which remain

active for a session (i.e. "toggles"): linetypes, pen

thicknesses, color,...

- Naming and specifying: it is always preferable to have the

option of naming a group or a class of objects rather than

assigning numerical values to them. For example, it is better

to name a layer "Structure" than to call it "Layer 11".

The mouse

The major other two input devices, mouse and digitizer, are

referred to as continuous devices, because they allow for a

range of input values on an arbitrary scale, continuously fed

back to the user. Both are used to input two-dimensional

movements on a work plane. They differ mostly in their use of

relative versus absolute coordinates.

The mouse looks like a little box, slightly smaller than a

pack of cigarettes. It fits in the palm of the hand and is

rolled over the work plane, accordingly moving the cursor on

the screen. When the cursor reaches the desired position, the

user activates a switch by depressing a push button on top of

the mouse, to inform the system that the cursor is at the

selected position.

The mouse is a "relative" device, also called "unrestricted".

It is not associated to an absolute range of values. When it

is picked up and set on another location of the work surface,

the cursor remains stationary; its x-y movement on the screen



corresponds to the movement of the mouse relative to itself,

not to its location on the work surface. The cursor

displacement is made with respect to the body axis of the

mouse, as opposed to absolute screen coordinates.

One of the advantages of a relative device such as the mouse

is that it does not require a specialized surface; it may be

used on any plane, even on our laps when reclining on a chair.

Another advantage is that if the mouse is accidentally picked

up, the cursor on the screen remains fixed at its last

position. The user does not have to relocate it in order to

resume cursor movement from that position; he can start

anywhere, on any surface.

On the other hand, orientation of the mouse with regard to its

own body axis is a factor in the cursor displacement.If the

"nose" of the mouse is pointed forwards, and the mouse is

moved laterally, an oblique line will result. Therefore the

angular orientation of the mouse is a variable which the user

must control.

The mouse was very popular when introduced, and is a big step

up in interface friendliness from rotary knobs, thumbwheels or

joysticks, particularly for computer-illiterate users. Some

users argue that the CADD drafting process should not even

attempt to emulate pencil and paper, and that the mouse is the

best device for input. As a relative device, however, it is

not very good for drawing lines if no snap mode is active. The

mouse works best as a pointer for the selection of commands or

icons from on-screen menus, where orientation is not a factor.
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The digitizer

A digitizer is a form of electronic drafting board. It

consists of a stylus and a tablet. The stylus looks very much

like a pen, and is connected to the tablet with a wire. The

user controls cursor movement by moving the stylus on the

tablet, and selects a position by slightly pressing the pen on

the tablet, which activates a small switch at its tip.

The digitizer is a "restricted", because it produces values

from a finite range of values. It is also called an "absolute"

device and requires a specialized working surface. When the

user selects a stylus position on the tablet, the cursor moves

to a corresponding location on the screen. The stylus is

indicating an absolute location, with X and Y coordinates from

a specific origin. As a result, it may be used to trace

existing drawings or sketches.

The digitizing pad is often covered with plastic or cardboard

overlays which usually consist of two areas. One of them is

used to input coordinates to the cursor, and another is

reserved for tablet menu. The tablet menu is a set of commands

divided over a grid. By digitizing one slot of the grid, the

user activates a command as if it was typed from the keyboard.

Larger digitizers are used for the inputting of large existing

drawings. They usually substitute a puck instead to a stylus.

A puck looks similar to a mouse (though it remains an absolute

device). A fine crosshair is set within a small window on the

puck, allowing for higher accuracy in positioning the cursor.
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The puck usually has two or three buttons on top, one of which

is used to activate a point location; the others allow for the

quick selection of commands which are often used, such as a

repaint. The buttons may also be user defined.

Digitizers are currently by and large the most common means of

physical input devices. They feel the most natural to people

accustomed to pens and pencils, and as such are considered the

most "user friendly" of physical interfaces.

In general ,though, despite the rapid developments of

ergonomics in the field, CADD system interfaces remain far

from being natural, human based structures. Even mouse and

tablet remain relatively contrived solutions to the problem of

simulating a sketching process.

CUSTOMIZATION

Since we are working under the assumption that the

architectural design process varies with individuals, then the

flexibility of a CADD system to adapt to different working

method is an important factor in its effectiveness as a tool.

A system should lend itself to customisation on two levels: it

should allow flexibility of approaches for a wide range of

project types, and it should accomodate the needs of different

users. A modular system with an open architecture will

encourage modification and adaptation by different designners

and for various tasks.

There are many ways that a system may provide for
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customisation by the user, ranging in complexity and

usefulness. Perhaps the simplest example of customisation is

the ability to create one's own library of symbols, as

discussed earlier. Other forms of customisation include:

- Editing tablet menus: Most systems provide for some means

for the modification of part or all of the tablet menu. They

vary in the extent of freedom they allow: Autocad allows for

the complete recalibration of the tablet; the user may

redefine the number and sizes of command slots on three areas

of the tablet. Microcad just assigns a given area (with

constant key sizes) which can be edited to activate one or

several actions, using the command "Edit Key".

- Editing screen menus: Autocad's screen menus are stored in

text files which can be modified or recreated using a word

processor. This allows the user to generate his own custom

tree-structured menus and subordinate submenus. These menus

may be attached to a drawing or used by more than one person.

One may also write his own custom help text. Systems with

onscreen icon menus sometimes allow the redefinition of these

icons.

- Script and execute files: Sometimes the user needs to

activate more than one command at once. Autocad provides a way

of using the text editor to write sequence of commands and

actions, called script files. Microcad uses a command called

"Select Journal On/Off" which records every command entered

until turned off, and creates an "execute" file which is

stored for future recall. Alternatively, execute files may be
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created using the text editor. Scripts and execute files are

useful for repetitive tasks which are often routinely needed,

such as setting up a grid, a snap mode, or the limits and

borders of a drawing before starting a session. Some of these

routines are simply executed while others may prompt the user

for input.

- Macro's: The most complex form of customization involves

the use of macro's. They are similar to short programs,

written in some high level language provided with the software

(such as Autolisp for Autocad).They perform sequences of

actions which accept input variables, conditional statements,

and other programming characteristics. While beginners may not

recognize the usefulness of macro's at first, they are an

invaluable tool for the experienced user who can customize

them for specific purposes. Macro's are good at performing

grudgework such as calculating and drafting a stair, lay out a

column grid, draw parallel lines or cleaning up unnecessary

lines at wall intersections. Microcad currently offers a

language (called User Programming Language- UPL) with the

Drafting module. UPL, though, in its present form is not very

friendly (it is Fortran based )and not geared for architects.

Other kinds of customization more related to presentation and

production, include the creation of custom made line types,

text fonts, hatching and other pattern fills.



IDENTIFYING LIMITATIONS

Although that may seem like a rather negative approach at

first, an important aspect of evaluating a system involves

identifying what kind of limitations it exhibits. Some of

these limtations are physical, such as size or number of

entities; these are quantifiable, and designated as

"topological" limitations. Others are more qualitative in

nature, and referred to as "conceptual" limitations. They

will be discussed under those headings.

Another useful way to prioritize limitations can be according

to their degree of inflexibility:

- Some operations simply cannot be performed by the system.

- Other operations are not designed for the system, but the

user can find a strategy for getting around it.

- Other operations yet were not designed for the system; and

the extra effort involved in overcoming the problem is not

worth it.

TOPOLOGICAL LIMITS

Microcad has few limitations other than the size of the

drawing. Keops, on the other hand, has a number of

limitations and restrictions on the types of projects it can

understand.

* The maximum number of volumes which can exist in a single

project file is 500 volumes. We should keep in mind, though,
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that these are volumes and not rooms; a single volume may vary

in size from a closet to a whole floor of a building. The

relationship between volumes and rooms, as it is discussed

later, is what really determines the size of the project. In

addition, one should bear in mind that if these numbers are

the physical limits as provided by the manufacturer's, project

files nearing this size tend to because slow and awkward to

manipulate.

- A single volume cannot have more than 10 openings or wall

symbols.

- The walls of a volume cannot be inclined, neither can

floors; only roofs may be sloped.

- Volumes cannot overlap.

All the
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In other words, a single space covered by a gable roof

requires two volumes with roofs sloping in opposite

directions. A hip roof, similarly, will require three quasi-

triangular volumes.The relationship between volumes and roofs

is further discussed in the next section. Generally speaking,

modelling roofs of average complexity such as dormer or shed

roofs involves an intricate process requiring unusual volumes

layout and corner height modifications.

- The system does not understand arc

of curves. This causes problems at two

- Volumes cannot have a curved side
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adjacent volumes, the sides of whi

rectilinear segments of a curve. <FIG>

of modelling the volume sides in a

additional

definitely

size of these volume s, I

s, circles o

levels:

The way

to build a

ch make up

Given the

regular way,

found that

r any kind

to bypass

series of

the small

complexity

and the

limitation

not worth the extra effort involved in bypassing

it.

- Objects which are modelled in Microcad and transferred

cannot include curves, such as arched windows. If they do,

these curves must be exploded before the transfer, into

individual line segments. This results in a very slow repaint

of the object, as the system displays one segment at a time.

Positioning a toilet or circular table symbol, for instance,

ends up being a painfully slow process.

The problem can be partially alleviated by a powerful Microcad

function which allows the user to control chord tolerance (the

number of segments into which an are can be divided) thereby
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reducing repaint time;. the process nevertheless remains a

tedious one.

CONCEPTUAL LIMITS

Some of the limitations of a system may be less quantifiable

than the physical constraints such as the topological limits

on the volumes. They are more difficult to detect, because

they deal with a higher level of abstraction, and they are

derived from the assumptions that the system makes for the

user; they may be described as more intellectual. They are

also limitations around which a way can be found; the question

becomes whether they are worth the extra effort involved in

bypassing the problem. A good example of this type of

limitation in our case study would be the programmatic

labelling of the spaces into one of four categories (heated,

unheated, terrace, mechanical).

Generally speaking, there are two slightly different

approaches involved when describing a building in terms of

spaces versus boundaries:

- One approach would be to deal with objects which describe

the edges of adjacent spaces. The designer defines the limits

between different zones and is concerned primarily with the

boundaries. The spatial qualities are derived from these

boundaries; they are a consequence of the edge conditions.

- In the second approach, the designer defines the spaces
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themselves; their edge conditions result directly from the

descriptions of the spaces. The boundaries between two

adjacent spaces are derived from the qualities of these

spaces. This is the approach that Keops follows.

For example, let us suppose the user designates adjacent

volumes A and B as being respectively "heated" and "unheated".

By assigning a space category (which is more a value than a

spatial quality) to these volumes, the user is instructing the

system to accordingly define the boundary between them. The

design rule formulated in the technology file stated that "all

inside-outside walls will be 12" thick" and that "all window

frames on that wall are flush with the inside wall". Thus the

user, by defining the zone, lets the system extrapolate what

the boundaries will be like. It interprets the user's

definition of a space in order to generate the edge conditions

resulting from the volume category. As a result, both space

and edge are very strongly defined as being from one type or

another.

However, there are many situations in design where it is

preferred to decrease the definition of adjacent spaces. There

may be a need for one or many spaces with intermediate

qualities or categories, if a more gradual transition from one

to the other is sought. A designer will want to think in more

conceptual terms than "inside" and "outside". The concept of

volume labelling may not seem at first to accomodate the range

of qualities which may be desirable at a specific edge

condition. Similarly, the edges of a space may be more than
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two-dimensional planes with a given thickness. A boundary may

be defined with a combination of different architectural

elements, some of which may be three-dimensional.

In the case of the Personal Architect, the potential solution

to the problem resides within the interface between the two

modules. The three-dimensional modelling of complex objects in

Microcad, their transfer to Keops for insertion in the

wireframe appears to be a critical factor for the assessment

of the system performance in overcoming this conceptual

limitation. These objects can represent the physical elements

which, when combined and inserted in the volumes, will further

define the edge conditions and help to describe a range of

intermediate qualities of spaces.

These objects may be partial openings, screens, non-load

bearing partitions, parts of a structural framework such as

columns and beams, or any kind of "semipermanent" furniture.

They are the physical components which describe, more

effectively than a wall plane, the different territorial

conditions at the volume edges.

Similarly, there is often a need to think of a window or a

door as more than just an aperture in a wall plane. Microcad

can be used to model three-dimensional openings which may have

a usable depth dimension, thereby defining a transition zone

between inside and outside. Bay-windows, planters, shading

devices, portals, are all examples of architectural elements

which can physically define such a zone.



About volumes:

As discussed earlier, there are a number of ways by which a

building may be conceptualized and represented. It can be

thought off as collection of physical elements such as

columns, beams, assembled with specific constructional

relationships between them. It can be defined as an

assemblage of planes, surfaces and masses, with a set of

geometric relationships. Or it can be looked at as a set of

rectangular volumes with planar boundaries, sharing

organisational relationships.

The use of the volume as the basic entity to work with in

Keops is partially intended to keep the user a few steps ahead

in both 3D geometric modelling and constructional technology,

by making him think early in the design process in terms of 3D

volumes with associated floors, roofs and walls. When the user

inserts an orthogonal volume, his action may be thought off as

a sequence of low level generic commands producing a high

level result. By digitizing the opposite corners of a volume,

the user is instructing the system to

- define two corners of a space;

- draw orthogonal perpendicular lines from each point
oriented towards the other point;

- trim the intersection of these lines;

- project the resulting rectangle along the vertical Z
axis by some default value;

- designate the upper face of the volume as a roof, its
base as a floor and its sides as walls;

- assign default values to these elements;
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all in one command. The resulting volume may be a bay window

or a building, it remains the smallest indivisible entity of

which the building is made.

The first analogy a designer would make is to associate

concept of volume to a rectangular room, partly because of

topological limitation of four sides to a volume.

selectively deleting the sides of adjacent volumes, one

the

the

By

can

start generating spaces with more than four sides,

or U shaped spaces. Since more than one volume is

define a space with more than four sides, the

becomes a part of the space. The more complex and

the space is, the larger the number of volumes

required is, and the less the volume may be

associated to a room.

The same process of decomposing a space into a

volumes occurs when sloping the roof of that

topological limits of the system restricts the

such as L

required to

volume now

multisided

which are

graphically

number of

space. The

roof to a

single plane. This means that in order to create a single

space with a gable roof, that space must be divided into two

volumes with roofs sloping in opposite directions, and the

side between them deleted. Similarly, in order to roof a space

with a hip roof, the space has to be divided into three

volumes, one of which is almost a triangle with two corners

very close to each other (since the system does not allow

triangular volumes). The consequence of this roofing process

further decreases the association between volume configuration
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and room layout. Another noticable result is the tendency,

when working on the layout of upper floors (those with the

sloped roofs), to design in terms of ceiling plan instead of

space configuration, since the roofing configuration must be

known before the layout of the volumes. In fact, upper floor

plans read as ceiling plans.
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CONCLUSION

The Personal Architect concept of two interfacing modules

which communicate with each other is an innovative one. It is

ironic, however, that the so called "Drafting" module imposes

far less restrictions on building form than the "Design"

module. I perceive it as a far more powerful tool for

geometric modelling than its "Design" counterpart. There is

something bothersome about a system which takes a line drawing

(the wireframe model) and returns a complete set of

dimensioned working drawings. My best description of Keops is

yet another variation on the theme of CADD abbrevations, where

CADD here would mean "Computer Assisted Design Development".

When choosing any tool it is difficult to imagine a selection

process in which the user is not at least partially familiar

with the system being investigated. In this case the

evaluation was the result of a year long exposure to the

system. Benchmark tests may be easy to devise for a drafting

system, whereby the answer to a particular question from a

checklist is either yes or no; it is entirely different if not

impossible to define benchmark tests for a design methodology.

There are no standards whatsoever which constitute typical

design tasks, and it would be useless to even attempt to

formalize the architectural design process in such a way that

it could catagorized within any given mechanical process, no

matter how "intelligent".



designer describe a building in whatever terms he deems

appropriate; planes, shapes, privacies, masses or volumes.

Mythical systems would allow the user to input many-valued,

continuous qualities such as "finished" or "unfinished",

"empty" or "full", "nearness" or "farness". Mythical systems

would understand the user's concepts, his ambiguities or his

hints (i.e . Negroponte's idiosyncratic systems). Mythical

systems would behave as intelligent assistants rather than

perfect slaves. Mythical systems would expand the designer's

representation of a physical environment rather than restrict

it. Mythical systems...



CUMULATIVE LISTING OF FUNCTIONAL CHARACTERISTICS

Locational constraints:

- Orthogonal lock
- Angular lock
- User-defined angular lock
- Grids display
- Different X and Y grids
- Different X and Y snaps
- Different grid from snap values
- Grid off while snap still active
- User-defined grid origin
- Simultaneous major and minor grids
- Rotation of grid
- Grid viewing in isometric
- Grid viewing in perspective
- Three dimensional grids (X,Y and Z)
- Editing and moving of single rows or lines
- Grid functions accessible from within the command

Parts and blocks:

- Ability to create and file parts
- Option on entities organisation (parts v/s symbols, blocks
v/s write-blocks)

- Exploding of symbol
- Regrouping of symbol
- Stretching part on insertion
- Scaling part on insertion
- Rotating part on insertion
- Nested parts
- Placing symbols on multiple layers
- Automatic part updating
- Editing and redefining parts during use
- Automatic insertion of doors and windows
- Symbol library supplied
- Dynamic symbol dragging
- Showing symbol outline only

Layers

- Layers ability
- Limit on number of layers
- Different colors per layer
- Different linetypes per layers
- Freezing and thawing layers
- Moving object from layer to layer
- Copying object from layer to layer
- Naming of layers



Customization:

- User-defined library of symbols
- Tablet editing: - Designated keys only

- Complete recalibration
- User-defined screen menus
- User-defined screen icons
- Execute and script files: - Without variable input

- With variable input
- Macro's
- User-defined lines, patterns and fonts

Three dimensional modelling and visualisation:

- Geometric modelling:
- Vertical axonometric extrusion (2 1/2 D)
- Axonometric extrusion on any axis
- True 3D; extrusion and rotation around any axis
- 3D electronic wireframe model
- Complex curves and surfaces
- Option of volumes/planes/shapes
- Construction planes with local 3D coordinates
- Automatic section cut-away through the model
- Automatic plan cut-away through the model
- Automatic shading
- 3D solid modelling

- Construction technology:
- Automatic double lines wall thicknesses
- Removal of unnecessary wall lines ("Clean-up" of

intersecting L's and T's)
- Creating automatic floors, walls and roofs
- Inserting automatic 3D doors, windows and openings
- Quick, interactive deleting and relocating of doors and
windows

- Visualisation:
- Isometric view
- User-defined angle of isometric
- 2 points perspective
- 3 point perspective
- Selecting viewing parameters (station point, focal point)
- Saving viewing parameters
- Modifying cone of vision
- Viewing from within the model
- Real-time dynamic viewing
- Simultaneous multiple viewing windows on screen
- Automatic hidden line removal - Surface priority

- Surface orientation
- Naming/numbering views
- Saving views - Editable image files

- Non-editable views
- Automatic shading and surfacing
- Cursor and grids viewing in 3D
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