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Abstract. There is a natural continuous realization of the one-sided Bernoulli
shift on the p-adic integers as the map that shifts the coefficients of the p-adic
expansion to the left. We study this map’s Mahler power series expansion. We
prove strong results on p-adic valuations of the coefficients in this expansion,
and show that certain natural maps (including many polynomials) are in a
sense small perturbations of the shift. As a result, these polynomials share the
shift map’s important dynamical properties. This provides a novel approach
to an earlier result of the authors.

1. Introduction. In recent years, several authors have studied the dynamics that
result from various maps on the p-adics. In many cases they have shown that rela-
tively simple and natural transformations satisfy important dynamical properties,
such as ergodicity. For an overview of this work, the reader may refer to the recent
monographs [1, 6, 11], the survey [3], and the references therein. General references
are in [5, 9, 10].

In this paper, we continue this line of research by considering noninvertible
Bernoulli transformations on the p-adic integers. Bernoulli transformations are
those isomorphic with the “left shift” of infinite sequences on some alphabet. They
are ubiquitous throughout the field of dynamics, and come up in numerous guises
in several branches of mathematics. In measurable dynamics, the map Tn : [0, 1] →
[0, 1] for n a positive integer, taking x to nx mod 1, provides a simple example of
a (noninvertible) Bernoulli transformation. Taking base-n expansions of x, and ig-
noring the (measure zero) set of redundant expansions .n− 1, one sees that indeed
this map is just a left shift.

Moving to the p-adic context, the aim of this paper is to present a novel way of
realizing the one-sided Bernoulli shift on p symbols, where p is some prime. We
do this by starting with the most natural realization: Any x ∈ Zp has a unique
(possibly infinite) expansion of the form x =

∑∞

i=0 bip
i (bi ∈ {0, 1, . . . , p− 1}); one
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can define the “p-adic shift” S : Zp → Zp to be a left shift on this expansion, that
is S(x) =

∑∞

i=0 bi+1p
i. By showing that suitably small perturbations of S are still

Bernoulli, we can find many “nice” maps, such as polynomials, that behave like
the shift map S in this way. We originally discussed these maps in [7]; this paper
presents a novel and more direct way of obtaining them, as we will remark below,
and it can be read independently of [7]. Because we are working on the p-adics,
our proofs use divisibility properties of certain polynomials, and thus, we obtain a
connection between dynamics and number theory.

Our work was motivated by the article [3], which studied the measurable dy-
namics of polynomial maps on Zp. The authors in [3] asked when polynomial maps
can satisfy the measurable dynamical property of being mixing. (It turns out that
this was known to Woodcock and Smart, who showed in [13] that the polynomial

map x 7→ xp−x
p

defines a Bernoulli, hence mixing, transformation on Zp.) In [7],

the authors gave a detailed account of the dynamics that can result from a certain
well-behaved class of maps on the p-adics. In particular, we introduced a set of
conditions on the Mahler expansion of a transformation on the p-adics which are
sufficient for it to be Bernoulli (see Definition 3.10). We call the class of maps
meeting those conditions the Mahler-Bernoulli class.

The sufficiency of these conditions was proved in [7] via a structure theorem
for so-called “locally scaling” transformations (see Definition 3.1). The Mahler-
Bernoulli class conditions mentioned above were (roughly) that the transformation
be a small enough perturbation of x 7→

(

x
p

)

(which is part of the Mahler basis), and

so applying the structure theorem required a careful study of the dynamics of the
map x 7→

(

x
p

)

, including showing that it is Bernoulli. The approach of the present

paper turns out to be more direct than that of [7], to which it is in a sense dual:
we begin with the easily understood dynamics of S and work to better understand
its Mahler expansion, proving that it is “well-approximated” by x 7→

(

x
p

)

. Since we

are working in an ultrametric setting, the Mahler-Bernoulli class conditions may be
reformulated as defining exactly those maps that are small enough perturbations of
S, giving a more conceptual reason why they should be Bernoulli!

This paper is organized as follows. We begin by studying the p-adic shift and its
properties. Section 3 is devoted to developing our machinery and proving the main
result. We introduce locally scaling transformations (similarly to our discussion
in [7]) and then show what we mean when we say that certain maps are small
perturbations of the shift map. At the end of the section, we prove that certain
locally scaling transformations are indeed small perturbations of the shift map, and
hence Bernoulli. In particular, we define the Mahler-Bernoulli class and show that
all members thereof satisfy these properties. Finally, in Section 4 we briefly talk
about maps related to the p-adic shift.

We have discussed locally scaling transformations and their dynamical properties
in [7]. However, the interpretation that certain locally scaling transformations are
in some sense small perturbation on the shift map, and therefore remain Bernoulli,
is original to this paper (and is its main contribution).

The p-adic shift map has been previously investigated by other researchers. In
particular, ergodicity of the p-adic shift was established in [8]. Conditions for the
equivalence of a quadratic map to the shift were studied in [12], and a realization
of the Smale horseshoe map as a shift on Zp × Zp was considered in [2].
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2. The p-adic shift. Throughout the rest of this paper, we fix a prime p, and let
| · | be the p-adic absolute value.

The p-adic shift S : Zp −→ Zp is defined as follows. If x = b0 + b1p+ b2p
2 + · · · ,

where the bi ∈ {0, 1, . . . , p−1}, we let S(x) = b1+b2p+b3p
2+ · · · . We immediately

see that if Sk denotes the k-fold iterate of S, then we have that Sk(x) = bk +
bk+1p + · · · . Moreover, for x ∈ Z, it is the case that Sk(x) =

⌊

x/pk
⌋

where b·c is
the greatest integer function.

Clearly, the shift is continuous on Zp with respect to the p-adic metric (where
the distance between x and y is |x− y|).

By Mahler’s Theorem, any continuous T : Zp −→ Zp can be expressed in the
form of a uniformly convergent series, called its Mahler Expansion:

T (x) =

∞
∑

n=0

an

(

x

n

)

where

an =

n
∑

i=0

(−1)n+iT (i)

(

n

i

)

∈ Zp (1)

Remark 2.1. For an arbitrary function T : Zp → Zp, we can write down the
formal identity T (x) =

∑∞

n=0 an
(

x
n

)

for coefficients an ∈ Zp to be determined.
Then, substituting in x = 0, 1, 2, . . . in turn, we can inductively determine that
the an would have to be as in (1), noting that only finitely many summands will
be non-zero at each stage. The true content of Mahler’s Theorem is that for T
continuous on Zp, this series converges, which happens if and only if |an| → 0 as
n → ∞ by convergence properties on the p-adics.

Our first goal is to study the Mahler expansion of Sk. Throughout this paper,

we let a
(k)
n be the nth Mahler coefficient of Sk. In other words, we have

Sk(x) =

∞
∑

n=0

a(k)n

(

x

n

)

.

Theorem 2.2. The coefficients a
(k)
n satisfy the following properties:

(i) a
(k)
n = 0 for 0 ≤ n < pk;

(ii) a
(k)
n = 1 for n = pk;

(iii) Suppose j ≥ 0. Then, pj divides a
(k)
n for n > jpk−j+1 (and so, |a

(k)
n | ≤ 1/pj).

Proof. Our proof is closely based on Elkies’s short derivation of Mahler’s Theorem
[4]. Let

F (t) =
∑

n≥0

Sk(n)tn ∈ Zp[[t]] and A(u) =
∑

n≥0

a(k)n un ∈ Zp[[u]].

Recall the standard power series identities

1

1− t
=
∑

i≥0

ti and
t

(1− t)2
=
∑

i≥1

iti.
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Using them and the definition of Sk, we may compute that

F (t) =
∑

n≥0

Sk(n)tn =

pk−1
∑

a=0

∑

b≥0

bta+bpk

=





pk−1
∑

a=0

ta









∑

b≥0

b(tp
k

)b



 =

(

1− tp
k

1− t

)(

tp
k

(1− tpk)2

)

=
tp

k

(1− t)(1− tpk)

Before proceeding, we remark that

A(u) =
1

1 + u
F

(

u

1 + u

)

. (2)

Indeed, suppose T : Zp → Qp is any map. Set F̃ (t) =
∑

n≥0 T (n)t
n and Ã(u) =

∑

n≥0 anu
n where an is such that

∑

i ai
(

n
i

)

= T (n) for all k ≥ 0. Then,

F̃ (t) =
∑

n≥0

n
∑

i=0

ai

(

n

i

)

tn =
∑

i≥0

ai
∑

n≥i

(

n

i

)

tn =
∑

i≥0

ai
ti

(1− t)i+1

=

(

1

1− t

)

∑

i≥0

ai

(

t

1− t

)i

=
1

1− t
Ã

(

t

1− t

)

From this, (2) follows by taking F̃ = F, Ã = A, and t = u/(1 + u).

Now, note that because p|
(

pk

i

)

for all 0 < i < pk, we have (1 + u)p
k

− upk

=

1 + pR(u) where R(u) is a polynomial of degree pk − 1 in u without leading term,
so that

A(u) =
1

1 + u
F

(

u

1 + u

)

=
upk

(1 + u)pk − upk
,

which is equal to upk (

1 + pR(u) + p2R(u)2 + p3R(u)3 + · · ·
)

. Since R(u) has no
leading term, we can now conclude (i) and (ii). The case j = 0 of (iii) is trivial, so
we may assume j ≥ 1. Working modulo pj we obtain the equality (in (Zp/p

jZp)[[u]])

A(u) ≡ upk (

1 + pR(u) + · · ·+ pj−1R(u)j−1
)

(mod pj)

Note that the right hand side is a polynomial of degree pk + (j − 1)(pk − 1) =
jpk − j + 1. This allows us to conclude (iii).

As we will see, the next corollary will be of fundamental importance in the
following section, where we try to bound coefficients in the Mahler expansions of
maps related to the shift.

Corollary 2.3. The maximum possible value for pblogp nc|a
(k)
n | is pk and it is at-

tained only when n = pk.

Proof. We may assume a
(k)
n 6= 0. Let vp(a

(k)
n ) denote the integer ` so that p`

precisely divides a
(k)
n . We are asked to prove that

⌊

logp n
⌋

− vp(a
(k)
n ) ≤ k with

equality if and only if n = pk. Setting ` =
⌊

logp n
⌋

− k, we are thus to show that p`

divides a
(k)
n and p`+1 divides it unless n = pk.
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Note that p` ≥ ` so that

n ≥ pblogp nc = p`pk ≥ `pk ≥ `pk − `+ 1

and applying Theorem 2.2 yields that p` does in fact divide a
(k)
n .

If ` > 0, then p` ≥ `+1 so that we in fact have n ≥ (`+1)pk ≥ (`+1)pk−(`+1)+1

and so Theorem 2.2 yields that p`+1 does in fact divide a
(k)
n . Since a

(k)
n = 0 for

n < pk, by Theorem 2.2, it suffices to prove that p divides a
(k)
n for n > pk; but this

is immediate from Theorem 2.2.

3. Perturbing the shift.

3.1. Local scaling. The shift S cuts off the first digit term in the p-adic expansion
of x ∈ Zp. Notice that if the expansions of x and y agree on the first digit (i.e.
|x − y| ≤ 1/p), then S multiplies the distance between them by p. Thus, S scales
distances between points that are close enough.

This observation motivates the following definition from [7].

Definition 3.1. We say that T : Zp −→ Zp is locally scaling with scaling radius r
and scaling constant C ≥ 1, and write that T is (r, C)-locally scaling, if for all x, y
with |x− y| ≤ r, we have |T (x)−T (y)| = C|x− y|. We will always assume, without
loss of generality, that r = p` and C = pm, where ` ≤ 0 and m ≥ 0.

Proposition 3.2. The map Sk is (p−k, pk)-locally scaling.

Proof. Immediate.

Notice that if T is a locally scaling map, it is continuous, and for r′ ≤ r, the
restriction T |Br′ (x)

is injective into BCr′ (T (x)) . It is surjective as well, as the

following lemma in [7] shows; the proof is included for completeness.

Proposition 3.3. For T an (r, C)-locally scaling map and r′ ≤ r, the restricted
map T |Br′ (x)

: Br′ (x) −→ BCr′ (T (x)) is a bijection.

Proof. Let S = T |Br′ (x)
. Because injectivity of S is clear, we just prove surjectivity.

Let B ⊂ BCr′ (T (x)) be a ball of radius p−j ≤ Cr′ for j ∈ Z≥0. Assume furthermore
that there are η balls of radius (1/C) p−j contained in Br′ (x) . Pick one point in each
of these balls of radius (1/C) p−j (the representative of that ball). Because these η
representatives are all at least (1/C) p−j apart from one another and (1/C) p−j ≤ r′,
their images have to be at least p−j apart from one another by local scaling. Thus,
they have to occupy η distinct balls of radius p−j in the range. Finally, because
the number of balls of radius p−j contained in BCr′ (T (x)) is also η, one of the
representatives in Br′ (x) must map into B by the pigeonhole principle.

We conclude that the image of S is dense in BCr′ (T (x)) . Then, since S is
continuous and Br′ (x) is compact, S(Br′ (x)) must be closed. Thus it is all of
BCr′ (T (x)) .

3.2. (p−k, pk)-locally scaling maps. We now turn our attention to a special case
of local scaling, the (p−k, pk)-locally scaling maps. We will see that they behave
“nicely” under preimages. More precisely, when one takes the preimage of a given
ball, the result is a union of smaller balls that are very evenly distributed throughout
Zp.

We recall that for each k ≥ 1, the set Zp can be partitioned into pk balls of radius
p−k and we shall refer to these as the balls of radius p−k in Zp. Also, we denote
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Figure 1. An illustration of the local nesting property for
(1/3, 3)-locally scaling maps. Let B be the big ball at the bot-
tom of the figure; the arrows lead to its preimages B1, B2, and B3.
The shaded ball inside B is some B′. Its preimage consists of the
balls B′

1, B
′
2 and B′

3, one inside each of the Bi. The figure should
not be taken to imply that B and the Bi are disjoint; in fact, if
B = Zp, it will contain all the Bi.

Haar measure on Zp by µ and recall that it is completely determined by its value
on balls, the measure of each ball being its radius.

Let T be a (p−k, pk)-locally scaling map. In this case, each of the pk balls of
radius p−k in Zp is mapped bijectively onto Zp. It follows that given a ball B ⊂ Zp

of radius p−j , with j ≥ k, its preimage is

T−1(B) =

pk

⊔

i=1

Bi

where each Bi is a ball of radius p−(j+k), and the Bi are contained in distinct balls
of radius p−k. Furthermore, if B′ ⊂ B is a ball of radius p−j′ ≤ p−j , then

T−1(B′) =

pk

⊔

i=1

B′
i

where each B′
i is a ball of radius p−(j′+k), and each B′

i is contained in Bi. We
call this very nice property of preimages the nesting property (see Figure 1 for an
illustration).

We have proved:

Lemma 3.4. Let T : Zp −→ Zp be (p−k, pk)-locally scaling. Suppose that B is a ball

of radius p−kj . Then, T−1(B) consists of a union of pk balls of radius p−k(j+1), one
inside each ball of radius p−k in Zp. In particular, T is Haar measure-preserving.

3.3. Connections with Bernoulli maps. With our setup, we will be able to say
that certain maps (namely the (p−k, pk)-locally scaling ones) in many senses behave
“the same” as the p-adic Bernoulli shift (or one of its iterates). To make these
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notions more precise, we introduce some concepts in topological and measurable
dynamics.

Definition 3.5. Two maps T : Zp −→ Zp and S : Zp −→ Zp are said to be
topologically isomorphic if there exists a homeomorphism Φ : Zp −→ Zp such that

Φ ◦ T (x) = S ◦ Φ(x) (3)

for all x.
The maps are measurably isomorphic if there exists an invertible and measure-

preserving map Φ such that (3) holds for almost all x in Zp.

Close variants of the following theorem and proof are in [7].

Theorem 3.6. Let T : Zp −→ Zp be a (p−k, pk)-locally scaling map. Then T is
topologically and measurably isomorphic to Sk.

Proof. We will find a measure-preserving homeomorphism Φ : Zp −→ Zp such that
Φ ◦ T = Sk ◦Φ. Consider

Φ(x) =

∞
∑

i=0

di(x)p
i,

where, if i = qk+r for integer q and r with 0 ≤ r < k, we have that di(x) = (T q(x))r
(the rth digit in the p-adic expansion of T q(x)). From this definition, it is easy to
see that Φ ◦ T (x) = Sk ◦ Φ(x) for all x ∈ Zp.

We now proceed to show that Φ, as defined, is continuous, bijective and measure-
preserving. Because Zp is compact, continuity of the inverse follows by general facts
in topology. Therefore, we will have proved that Φ is a homeomorphism.

To show that Φ is continuous, suppose that |x − y| ≤ p−kη for η ≥ 1. It follows
by local scaling that |T (x) − T (y)| ≤ p−k(η−1), and in general, we can see that for
q ≤ η − 1, we have that |T q(x)− T q(y)| ≤ p−k. Therefore, the p-adic expansions of
Φ(x) and Φ(y) agree at least up to the p−(kη−1) term, and we see that |Φ(x)−Φ(y)| ≤
p−kη. Continuity follows.

To show injectivity, suppose that Φ(x) = Φ(y). Then, |T i(x) − T i(y)| ≤ p−k for
all i ≥ 0. But if |T i(x)− T i(y)| 6= 0 for some i, it follows by local scaling that there
is a j ≥ 0 such that |T i+j(x)− T i+j(y)| > p−k, a contradiction.

Suppose that y ∈ Zp and η ≥ 1. From the definition of Φ, it is clear that

x ∈ Φ−1
(

Bp−kη (y)
)

if and only if

x ∈ Bp−k (y)

T (x) ∈ Bp−k

(

Sk(y)
)

...

T η−1(x) ∈ Bp−k

(

S(η−1)k(y)
)

.

The balls of radius p−kη for η ≥ 1 generate the Borel σ-algebra of Zp. So, in order
to prove that Φ is measure-preserving it suffices to prove that

µ
(

Φ−1
(

Bp−kη (y)
))

= µ
(

Bp−kη (y)
)

= p−kη.

Since Zp is compact, this will also imply that Φ is surjective since Φ−1(y) will then
be the descending intersection of nonempty closed sets.
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We will prove by induction on η ≥ 0 that Φ−1
(

Bp−kη (y)
)

is a single ball of

radius p−kη. The case η = 0 is immediate. If η ≥ 1, then

Φ−1
(

Bp−kη (y)
)

=

η−1
⋂

i=0

T−iBp−k

(

Sik(y)
)

= Bp−k (y) ∩ T−1

(

η−1
⋂

i=1

T−(i−1)Bp−k

(

Sik(y)
)

)

= Bp−k (y) ∩ T−1Φ−1
(

Bp−k(η−1)

(

Sky
))

is a ball of radius p−kη by the inductive hypothesis and Lemma 3.4.

3.4. “Small” perturbations on Sk. At this point in the presentation, we have
determined that (p−k, pk)-locally scaling maps are Bernoulli. Furthermore, by un-
derstanding the Mahler expansion of the shift map Sk, as we did earlier, we hope
to understand the scaling properties of polynomial maps (namely, finite Zp-linear
combinations of the

(

x
n

)

), and thus, to find Bernoulli polynomials. As we will see,
we have an infinite class of polynomial maps such that any g in this class can be
written as a sum of Sk and a perturbing factor satisfying the Lipschitz property
(see below). In turn, this perturbing factor has small enough Lipschitz constant so
that g is (p−k, pk)-locally scaling, like Sk. We proceed to lay the groundwork for
this argument.

Definition 3.7. A function T : Zp −→ Zp is C-Lipschitz if |T (x)−T (y)| ≤ C|x−y|
for all x, y ∈ Zp.

If T is C-Lipschitz and a ∈ Qp, it is clear that aT is |a|C-Lipschitz. Also, because
of the strong triangle inequality, if Ti is Ci-Lipshitz,

∑

Ti is (supi{Ci})-Lipshitz,
provided this supremum exists (i.e., the Ci are bounded).

Lipshitz maps are important in our discussion because they provide us with a
way of slightly modifying a locally scaling function such that the resulting map is
still locally scaling. The following proposition demonstrates one such method.

Proposition 3.8. Let T : Zp −→ Zp be (r, C)-locally scaling, S : Zp −→ Zp be D-

Lipshitz with D < C, and suppose that u ∈ Z×
p = {Zp : |x| = 1}. Then T̃ = uT + S

is (r, C)-locally scaling.

Proof. Take x and y with |x− y| ≤ r. Then

|T̃ (x) − T̃ (y)| = |(uT (x) + S(x))− (uT (y) + S(y))|

= |u(T (x)− T (y)) + (S(x)− S(y))|.

But, |u(T (x)−T (y))| = C|x−y| > D|x−y| ≥ |S(x)−S(y)|. Therefore, we see that

|T̃ (x)− T̃ (y)| = C|x − y|, as desired.

In particular, if f̃(x) = Sk(x)+b(x) where b is pk−1-Lipshitz, then f̃ is (p−k, pk)-
locally scaling, and hence Bernoulli. This condition gives us sufficient conditions
on the Mahler expansion of a continuous map T : Zp −→ Zp for the map to be
isomorphic to Sk for some k.

Before stating the result, however, we need the following standard lemma:

Lemma 3.9. The Zp map x 7→
(

x
n

)

is pblogp nc-Lipshitz for all n.

Proof. See [9, pg. 227].
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Definition 3.10. Let T (x) be given by the uniformly converging Mahler series

T (x) =

∞
∑

n=0

An

(

x

n

)

and set C = maxn p
blogp nc|An|. Suppose that the following conditions hold:

• There exists a unique n0 which attains this maximum;
• n0 = pk for some k > 0;
• |An0 | = 1 (thus, C = n0 = pk).

Then, we say that T is in the Mahler-Bernoulli class.

Theorem 3.11. Let T be in the Mahler-Bernoulli class, with C = pk as in the
definition. Then T is (p−k, pk)-locally scaling and hence isomorphic to Sk.

Proof. A variant of this theorem is in [7]. The proof that follows uses the Mahler
expansion of Sk, and is original to this paper.

The idea of the proof is that by the Mahler-Bernoulli class conditions, the Apk

(

x
pk

)

term will be the dominant one in determining the scaling behavior of T. Indeed, as
we will see below, after multiplying by a unit as appropriate, T and Sk differ by a
pk−1-Lipshitz component; this follows by the Mahler-Bernoulli class conditions, as
well as the tight control guaranteed by Lemma 3.9. The details of this argument
are below.

Recall that for the map Sk, we have that a
(k)

pk = 1. Therefore, the fact that

|Apk
| = 1 in the Mahler expansion of T implies that there exists u ∈ Z×

p such

that ua
(k)

pk = Apk
. Consider the general term bn = ua

(k)
n − An. By choice of u,

we have bpk = 0. Furthermore, the strong triangle inequality tells us that |bn| ≤

max{|a
(k)
n |, An}. Regardless of what the maximum is for a particular n 6= pk, it is

the case that |bn|p
blogp nc < pk by definition and Corollary 2.3. Therefore, using

Lemma 3.9, we see that bn
(

x
n

)

is pk−1-Lipshitz for all n (since bpk = 0, the claim is

trivial for n = pk).
Hence, uSk(x)− T (x) =

∑∞

n=0 bn
(

x
n

)

is pk−1-Lipshitz. This implies, by Proposi-

tion 3.8, that T is (p−k, pk)-locally scaling and the theorem follows.

Remark 3.12. The reader may (rightly) point out that proving the local scaling
properties of maps like

(

x
pk

)

should not be much harder than proving Lipschitz

properties of the
(

x
n

)

, which we did not demonstrate in this paper, but rather quoted
from a standard text. Indeed, the local scaling proof was done directly in [7]. Going
through the Mahler expansion of the shift map provides us with not as much a
new proof of the local scaling properties, but an interpretation of the maps in the
Mahler-Bernoulli class, which satisfy them.

4. Other related maps. The p-adic shift is actually a special case of another
natural class of maps. First off, define g : Qp −→ Zp as follows. Given x ∈ Qp, we
can express it uniquely as x =

∑∞

i=` bip
i where ` ≤ 0 and bi ∈ {0, 1, . . . , p− 1} for

all i.
With our setup notation, we let g(x) =

∑∞

i=0 bip
i. In other words, g chops off

the negative powers of p in the p-adic expansion of x.
Take a ∈ Qp. Define fa : Zp −→ Zp by fa(x) = g(ax) where g is as above. Notice

that the p-adic shift is fa where a = 1/p.
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We will mostly be interested in fa with |a| > 1. Now, |a| > 1 implies that
a = a′/pk for a′ ∈ Z×

p and k > 0. Therefore, for x ∈ Zp, fa(x) = g(a′x/pk) where

a′x ∈ Zp and so, fa(x) = Sk(a′x).
We now make a few remarks about the topological dynamics of the maps fa.
For a with |a| < 1, we have that fa(Zp) ( Zp, so fa is not surjective, and cannot

be isomorphic to the shift.
The situation when |a| > 1 is quite different.

Theorem 4.1. For |a| = pk, with k > 0, fa is (p−k, pk)-locally scaling, and hence
isomorphic to Sk.

Proof. We know that fa(x) = Sk(a′x) where a′ ∈ Z×
p . Take x and y with |x− y| ≤

p−k. Then, |a′x− a′y| = |x− y| ≤ p−k. Therefore,

|Sk(a′x)− Sk(a′y)| = pk|a′x− a′y| = pk|x− y|

and so fa is (p−k, pk)-locally scaling.

Acknowledgments. This paper is based on research by the Ergodic Theory group
of the 2005 SMALL summer research project at Williams College. Support for the
project was provided by National Science Foundation REU Grant DMS – 0353634
and the Bronfman Science Center of Williams College. We would like to thank the
referee for suggestions and for references [2, 8, 12].

REFERENCES

[1] V. Anashin and A. Khrennikov, “Applied Algebraic Dynamics,” volume 49 of de Gruyter
Expositions in Mathematics, Walter de Gruyter & Co., Berlin, 2009.

[2] D. K. Arrowsmith and F. Vivaldi, Some p-adic representations of the Smale horseshoe, Phys.
Lett. A, 176 (1993), 292–294.

[3] J. Bryk and C. E. Silva, Measurable dynamics of simple p-adic polynomials, Amer. Math.
Monthly, 112 (2005), 212–232.

[4] N. D. Elkies, Mahler’s theorem on continuous p-adic maps via generating functions,
http://www.math.harvard.edu/~elkies/Misc/mahler.pdf.
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