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Using a sample of 122� 106 �ð3SÞ events recorded with the BABAR detector at the PEP-II

asymmetric-energy eþe� collider at SLAC, we search for the hbð1PÞ spin-singlet partner of the

P-wave �bJð1PÞ states in the sequential decay �ð3SÞ ! �0hbð1PÞ, hbð1PÞ ! ��bð1SÞ. We observe an

excess of events above background in the distribution of the recoil mass against the �0 at mass 9902�
4ðstatÞ � 2ðsystÞ MeV=c2. The width of the observed signal is consistent with experimental resolution,

and its significance is 3:1�, including systematic uncertainties. We obtain the value ð4:3� 1:1ðstatÞ �
0:9ðsystÞÞ � 10�4 for the product branching fraction Bð�ð3SÞ ! �0hbÞ �Bðhb ! ��bÞ.
DOI: 10.1103/PhysRevD.84.091101 PACS numbers: 13.20.Gd, 13.25.Gv, 14.40.Pq, 14.65.Fy

To understand the spin dependence of q �q potentials for
heavy quarks, it is essential to measure the hyperfine mass
splitting for P-wave states. In the nonrelativistic approxi-
mation, the hyperfine splitting is proportional to the square
of the wave function at the origin, which is expected to be
nonzero only for L ¼ 0, where L is the orbital angular
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momentum of the q �q system. For L ¼ 1, the splitting
between the spin-singlet (1P1) and the spin-averaged triplet

state (h3PJi) is expected to be �MHF ¼ Mðh3PJiÞ �
Mð1P1Þ � 0. The 1P1 state of bottomonium, the hbð1PÞ,
is the axial vector partner of the P-wave �bJð1PÞ states. Its
expected mass, computed as the spin-weighted center of
gravity of the �bJð1PÞ states, is 9899:87� 0:27 MeV=c2

[1]. Higher-order corrections might cause a small deviation
from this value, but a hyperfine splitting larger than
1 MeV=c2 might be indicative of a vector component in
the confinement potential [2]. The hyperfine splitting for
the charmonium 1P1 state hc is measured by the BES and

CLEO experiments [3–5] to be �0:1 MeV=c2. An even
smaller splitting is expected for the much heavier botto-
monium system [2].

The hbð1PÞ state is expected to be produced in �ð3SÞ
decay via �0 or di-pion emission, and to undergo a
subsequent E1 transition to the �bð1SÞ, with branching
fraction (BF) Bðhbð1PÞ ! ��bð1SÞÞ � ð40–50Þ% [2,6].
The isospin-violating decay �ð3SÞ ! �0hbð1PÞ is ex-
pected to have a BF of about 0.1% [7,8], while theoretical
predictions for the transition�ð3SÞ ! �þ��hbð1PÞ range
from �10�4 [7] up to �10�3 [9]. A search for the latter
decay process in BABAR data yielded an upper limit on
the BF of 1:2� 10�4 at 90% confidence level (C.L.) [10].
The CLEO experiment reported the 90% C.L. limit
Bð�ð3SÞ ! �0hbð1PÞÞ< 0:27%, assuming the mass of
the hb to be 9900 MeV=c2 [11].

In this paper, we report evidence for the hbð1PÞ state in
the decay �ð3SÞ ! �0hbð1PÞ. The data sample used was
collected with the BABAR detector [12] at the PEP-II
asymmetric-energy eþe� collider at SLAC, and corre-
sponds to 28 fb�1 of integrated luminosity at a center-of-
mass (CM) energy of 10.355 GeV, the mass of the �ð3SÞ
resonance. This sample contains (122� 1) million �ð3SÞ
events. Detailed Monte Carlo (MC) simulations [13] of
samples of exclusive �ð3SÞ ! �0hbð1PÞ, hbð1PÞ !
��bð1SÞ decays (where the hbð1PÞ and �bð1SÞ are here-
after referred to as the hb and the �b), and of inclusive
�ð3SÞ decays, are used in this study. These samples cor-
respond to 34 000 signal and 215� 106 �ð3SÞ events,
respectively. In the inclusive �ð3SÞ MC sample a BF of
0.1% is assumed for the decay �ð3SÞ ! �0hb [7].

The trajectories of charged particles are reconstructed
using a combination of five layers of double-sided silicon
strip detectors and a 40-layer drift chamber, both operating
inside the 1.5-T magnetic field of a superconducting sole-
noid. Photons are detected, and their energies measured,
with a CsI(Tl) electromagnetic calorimeter, also located
inside the solenoid. The BABAR detector is described in
detail elsewhere [12].

The signal for �ð3SÞ ! �0hb decays is extracted from a
fit to the inclusive recoil mass distribution against the �0

candidates (mrecoilð�0Þ). It is expected to appear as a small
excess centered near 9:9 GeV=c2 on top of the very large

nonpeaking background produced from continuum events
(eþe� ! q �q with q ¼ u, d, s, c) and bottomonium decays.

The recoilmass,mrecoilð�0Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE�
beam�E�ð�0ÞÞ2�p�ð�0Þ2

q

,

where E�
beam is the total beam CM energy, and E�ð�0Þ and

p�ð�0Þ are the energy andmomentumof the�0, respectively,
computed in the eþe� CM frame (denoted by the asterisk).
The search for an hb signal, requiring detection only of the
recoil �0, proved unfruitful because of the extremely large
associated �0 background encountered. In order to reduce
this background significantly, we exploit the fact that the hb
should decay about half of the time [2,6] to ��b, and so
require in addition the detection of a photon consistent with
this decay. The precise measurement of the �b mass [14]
defines a restricted energy range for a photon candidate
compatible with this subsequent hb decay. The resulting
decrease in hb signal efficiency is offset by reduction of the
�0 backgroundby a factor of about 20.A similar approach led
to the observation by CLEO-c, and then by BES, of the hc in
the decay chain c ð2SÞ ! hc�

0 ! �c��
0 [3–5], where the

�c was identified both exclusively (by reconstructing a large
number of hadronic modes) and inclusively.
The signal photon from hb ! ��b decay is monochro-

matic in the hb rest-frame and is expected to peak at
�490 MeV in the eþe� CM frame, with a small Doppler
broadening that arises from the motion of the hb in that
frame; the corresponding energy resolution is expected to
be �25 MeV. The Doppler broadening is negligible com-
pared with the energy resolution. Figure 1 shows the
reconstructed CM energy distribution of candidate photons
in the region 250–1000MeV for simulated�ð3SÞ ! �0hb,
hb ! ��b events before the application of selection
criteria; the signal photon from hb ! ��b decay appears
as a peak on top of a smooth background. We select
signal photon candidates with CM energy in the range
420–540 MeV (indicated by the shaded region in Fig. 1).
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FIG. 1 (color online). The reconstructed CM energy distribu-
tion of the candidate photon in simulated �ð3SÞ ! �0hbð1PÞ,
hbð1PÞ ! ��bð1SÞ events. The shaded region indicates the
selected E�ð�Þ signal region.
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We employ a simple set of selection criteria to suppress
backgrounds while retaining a high signal efficiency. These
selection criteria are chosen by optimizing the ratio of the
expected signal yield to the square root of the background.
The �ð3SÞ ! �0hb, hb ! ��b MC signal sample is used
in the optimization, while a small fraction (9%) of the total
data sample is used to model the background. We estimate
the background contribution in the signal region, defined
by 9:85<mrecoilð�0Þ< 9:95 GeV=c2, using the sidebands
of the expected hb signal region, 9:80<mrecoilð�0Þ<
9:85 GeV=c2 and 9:95<mrecoilð�0Þ< 10:00 GeV=c2.

The decay of the �b is expected to result in high final-
state track multiplicity. Therefore, we select a hadronic
event candidate by requiring that it have at least four
charged-particle tracks and a ratio of the second to zeroth
Fox-Wolfram moments [15] less than 0.6 [16].

For a given event, we require that the well-reconstructed
tracks yield a successful fit to a primary vertex within the
eþe� collision region. We then constrain the candidate
photons in that event to originate from that vertex.

A photon candidate is required to deposit a minimum
energy in the laboratory frame of 50MeV into a contiguous
electromagnetic calorimeter crystal cluster that is isolated
from all charged-particle tracks in that event. To ensure
that the cluster shape is consistent with that for an electro-
magnetic shower, its lateral moment [17] is required to be
less than 0.6.

A �0 candidate is reconstructed as a photon pair with
invariant mass mð��Þ in the range 55–200 MeV=c2 (see
Fig. 2). In the calculation of mrecoilð�0Þ, the �-pair invari-
ant mass is constrained to the nominal�0 value [1] in order
to improve the momentum resolution of the �0. To sup-
press backgrounds due to misreconstructed �0 candidates,
we require j cos�hj< 0:7, where the helicity angle �h is
defined as the angle between the direction of a � from a �0

candidate in the �0 rest-frame, and the �0 direction in the
laboratory.
Photons from �0 decays are a primary source of back-

ground in the region of the signal photon line from hb !
��b transitions. A signal photon candidate is rejected if,
when combined with another photon in the event (�2), the
resulting ��2 invariant mass is within 15 MeV=c2 of the
nominal �0 mass; this is called a �0 veto. Similarly, many
misreconstructed �0 candidates result from the pairing of
photons from different �0’s. A �0 candidate is rejected if
either of its daughter photons satisfies the �0 veto condi-
tion, with �2 not the other daughter photon. To maintain
high signal efficiency, the �0 veto condition is imposed
only if the energy of �2 in the laboratory frame is greater
than 200 MeV (150 MeV) for the signal photon (for the �0

daughters). With the application of these vetoes, and after
all selection criteria have been imposed, the average �0

candidate multiplicity per event is 2.17 for the full range of
mð��Þ, and 1.34 for the �0 signal region (110<mð��Þ<
150 MeV=c2). The average multiplicity for the signal pho-
ton is 1.02. For 98.4% of �0 candidates there is only one
associated photon candidate.
We obtain the mrecoilð�0Þ distribution in 90 intervals of

3 MeV=c2 from 9.73 to 10 GeV=c2. For each mrecoilð�0Þ
interval, the mð��Þ spectrum consists of a �0 signal above
combinatorial background (see Fig. 2). We construct the
mrecoilð�0Þ spectrum by extracting the �0 signal yield in
each interval of mrecoilð�0Þ from a fit to the mð��Þ distri-
bution in that interval. The mrecoilð�0Þ distribution is thus
obtained as the fitted �0 yield and its uncertainty for each
interval of mrecoilð�0Þ.
We use the MC background and MC �0-signal distribu-

tions directly in fitting themð��Þ distributions in data [18].
For each mrecoilð�0Þ interval in MC, we obtain histograms
in 0:1 MeV=c2 intervals of mð��Þ corresponding to the
�0-signal and background distributions. The �0-signal
distribution is obtained by requiring matching of the re-
constructed to the generated �0’s on a candidate-by-
candidate basis (termed ‘‘truth-matching’’ in the following
discussion). The histogram representing background is
obtained by subtraction of the �0 signal from the total
distribution.
For both signal and background the qualitative changes

in shape over the full range of mrecoilð�0Þ are quite well
reproduced by the MC. However, the�0 signal distribution
in data is slightly broader than in MC, and is peaked at a
slightly higher mass value. The mð��Þ background shape
also differs between data and MC. To address these differ-
ences, the MC �0 signal is displaced in mass and smeared
by a double Gaussian function with different mean and
width values; the MC background distribution is weighted
according to a polynomial in mð��Þ. The signal-shape and
background-weighting parameter values are obtained from
a fit to the mð��Þ distribution in data for the full range of
mrecoilð�0Þ. At each step in the fitting procedure, the �0
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FIG. 2 (color online). The result of the fit to the mð��Þ
distribution in data (data points) for the full range of
mrecoilð�0Þ. The solid histogram shows the fit result, and is
essentially indistinguishable from the data; the shaded histogram
corresponds to the background distribution.
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signal and background distributions are normalized
to unit area, and a �2 between a linear combination
of these MC histograms and the mð��Þ distribution
in data is computed. The fit function provides an
excellent description of the data (�2=NDF ¼ 1446=1433;
NDF ¼ number of degrees of freedom) and the fit result
is essentially indistinguishable from the data histogram.
The background distribution exhibits a small peak at the�0

mass, due to interactions in the detector material of the
type n�þ ! p�0 or p�� ! n�0 that cannot be truth-
matched. The normalization of this background to the
nonpeaking background is obtained from the MC simula-
tion, which incorporates the results of detailed studies of
interactions in the detector material performed using data
[20]. This peak is displaced and smeared as for the primary
�0 signal.

The fits to the individual mð��Þ distributions are per-
formed with the smearing and weighting parameters fixed
to the values obtained from the fit shown in Fig. 2. In this
process, the MC signal and background distributions for
eachmrecoilð�0Þ interval are shifted, smeared, and weighted
using the fixed parameter values, and then normalized to
unit area. Thus, only the signal and background yields are
free parameters in each fit. The �2 fit to the data then gives
the value and the uncertainty of the number of �0 events in
each mrecoil interval. The fits to the 90 mð��Þ distributions
provide good descriptions of the data, with an average
value of h�2=NDFi ¼ 0:98 (NDF ¼ 1448), and r.m.s. de-
viation of 0.03 for the distribution of values. We verify that
the fitted �0 yield is consistent with the number of truth-
matched �0’s in MC to ensure that the �0 selection effi-
ciency is well-determined, and to check the validity of the
�0 signal-extraction procedure.

To search for an hb signal, we perform a binned �2 fit to
the mrecoilð�0Þ distribution obtained in data. The hb signal
function is represented by the sum of two Crystal Ball
functions [19] with parameter values, other than the hb
mass, m, and the normalization, determined from simu-
lated signal�ð3SÞ ! �0hb events. The background is well
represented with a fifth-order polynomial function.

Direct MC simulation fails to yield an adequate descrip-
tion of the observed background distribution, although the
overall shape is similar in data and MC. This is due primar-
ily to the complete absence of experimental information on
the decay modes of the hb and �b mesons. Simulation
studies with a background component that is weighted to
accurately model the distribution in data show a negative
bias of�35% in the signal yield from a procedure in which
the background shape and signal mass and yield are deter-
mined simultaneously in the fit. Consequently, we define a
region of mrecoilð�0Þ chosen as the signal interval based on
the expected mass value and signal resolution. The signal
region includes any reasonable theoretical expectation for
the hb mass. We fit the mrecoilð�0Þ background distribution
outside the signal interval and interpolate the background to

the signal region to obtain an estimate of its uncertainty
therein. Figure 3(a) shows the result of the fit to the
distribution of mrecoilð�0Þ in data excluding the signal
region, 9:87 � mrecoilð�0Þ � 9:93 GeV=c2. The fit yields
�2=NDF ¼ 50:8=64, and the result is represented by the
histogram in Fig. 3(a), including the interpolation to the hb
signal region.
We then perform a fit over the 20 intervals of the signal

region to search for an hb signal of the expected shape. We
take account of the correlated uncertainties related to the
polynomial interpolation procedure by creating a 20� 20
covariance matrix using the 6� 6 covariance matrix
which results from the polynomial fit. The error matrix
for the signal region, E, is obtained by adding the diagonal
20� 20matrix of squared error values from themrecoilð�0Þ
distribution, and a �2 value is defined by
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FIG. 3 (color online). (a) The mrecoilð�0Þ distribution in
the region 9:73<mrecoilð�0Þ< 10 GeV=c2 for data (points);
the solid histogram represents the fit function described in the
text. The data in the hb signal region have been excluded from
the fit and the plot. (b) The mrecoilð�0Þ spectrum after subtracting
background; in the hb signal region the data points are shown as
squares, and the area with diagonal shading represents the
uncertainties from the background fit; the shaded histogram
represents the signal function resulting from the fit to the data.
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�2 ¼ ~VE�1V: (1)

Here V is the column vector consisting of the difference
between the measured value of the mrecoilð�0Þ distribution
and the corresponding sum of the value of the background
polynomial and that of the hb signal function for each of the
20 3 MeV=c2 intervals in the signal region. In Fig. 3(b) we
plot the difference between the distribution of mrecoilð�0Þ
and the fitted histogram of Fig. 3(a) over the entire region
from 9:73 GeV=c2 to 10:00 GeV=c2; we have combined
pairs of 3 MeV=c2 intervals from Fig. 3(a) for clarity. The
yield obtained from the fit to the signal region is 10814�
2813 events and the hb mass value obtained ism ¼ 9902�
4 MeV=c2 with a �2 value of 14.7 for 18 degrees of
freedom.

In order to determine the statistical significance of the
signal we repeat the fit with the hb mass fixed to the spin-
weighted center of gravity of the �bJð1PÞ states, m ¼
9900 MeV=c2. The signal yield obtained from the fit is
10721� 2806. The statistical significance of the signal,
calculated from the square-root of the difference in �2 for
this fit with and without a signal component, is 3.8 standard
deviations, in good agreement with the signal size obtained.

Fit validation studies were performed. No evidence of
bias is observed in large MC samples with simulated hb
mass at 9880, 9900, and 9920 MeV=c2. In addition, the
result of a scan performed in data as a function of the
assumed hb mass indicates that the preferred peak position
for the signal is at 9900 MeV=c2, in excellent agreement
with the result of Fig. 3(b).

We obtain an estimate of systematic uncertainty on the
number of�0’s in eachmrecoilð�0Þ interval by repeating the
fits to the individual mð��Þ spectra with the line shape
parameters corresponding to Fig. 2 varied within their
uncertainties. The distribution of the net uncertainty varies
as a third-order polynomial in mrecoilð�0Þ. We estimate a
systematic uncertainty of �210 events on the hb signal
yield due to the �0-yield extraction procedure by evaluat-
ing this function at the fitted hb mass value.

The dominant sources of systematic uncertainty on the
measured hb yield are the order of the polynomial describ-
ing the mrecoilð�0Þ background distribution, and the width
of the hb signal region. By varying the polynomial from
fifth to seventh order, and by expanding the region ex-
cluded from the fit in Fig. 3(a) from ð9:87–9:93Þ GeV=c2 to
ð9:85–9:95Þ GeV=c2, we obtain systematic uncertainties of
�1065 events and �1263 events, respectively, taken from
the full excursions of the hb yield under these changes.
Similarly, we obtain a total systematic uncertainty of
�1:5 MeV=c2 on the hb mass due to the choice of back-
ground shape.

The systematic uncertainty associated with the choice of
signal line shape is estimated by varying the signal func-
tion parameters, which were fixed in the fit, by �1�. We
assign the largest deviation from the nominal fit result as a
systematic error. Systematic uncertainties of �154 events

and �0:3 MeV=c2 are obtained for the hb yield and mass,
respectively.
After combining these systematic uncertainty estimates

in quadrature, we obtain an effective signal significance of
3.3 standard deviations. The smallest value of the signifi-
cance among those calculated for the varied fits in the
systematics study is 3.1 standard deviations. The hb yield
is 10814� 2813� 1652 events and the hb mass value
m ¼ 9902� 4� 2 MeV=c2, where the first uncertainty
is statistical and the second systematic. The resulting
hyperfine splitting with respect to the center of gravity
of the �bJð1PÞ states is thus �MHF ¼ þ2� 4�
2 MeV=c2, which agrees within error with model predic-
tions [7,8].
To convert the hb signal yield into a measurement of the

product BF for the sequential decay �ð3SÞ ! �0hb, hb !
��b, we determine the efficiency �S fromMC by requiring
that the signal�0 and the � be truth-matched. The resulting
efficiency is �S ¼ 15:8� 0:2%. Monte Carlo studies
indicate that photons that are not from an hb ! ��b

transition can satisfy the selection criteria when only the
�ð3SÞ ! �0hb transition is truth-matched. This causes a
fictitious increase in the hb signal efficiency to � ¼ 17:9�
0:2%. Therefore, the efficiency for observed hb signal
events that do not correspond to hb ! ��b decay is �� ¼
2:1%. However, there is no current experimental informa-
tion on the production of such nonsignal photons in hb and
�b decays. Furthermore, the above estimate of efficiencies
in MC does not account for photons from hadronic hb
decays, since the signal MC requires hb ! ��b. We thus
assume that random photons from hadronic hb decays have
the same probability �� to satisfy the signal photon selec-
tion criteria as those from �b decays. We assume a 100%
uncertainty on the value of��when estimating the system-
atic error on the product BF.
We estimate the product BF for �ð3SÞ ! �0hb, hb !

��b by dividing the fitted signal yield, N, corrected for the
estimated total reconstruction efficiency, by the number of
�ð3SÞ events, N�ð3SÞ, in the data sample. We obtain the

following expression for the product BF:

B ð�ð3SÞ!�0hbÞ�Bðhb!��bÞ¼ N

N�ð3SÞ�S
� 1
C
; (2)

where

C ¼ 1þ��

�S
� 1

Bðhb ! ��bÞ (3)

is the factor that corrects the efficiency �S for the nonsignal
hadronic hb and �b contributions. In this equation, we
assume a BF value Bðhb ! ��bÞ ¼ 45� 5% according
to the current range of theoretical predictions. The corre-
sponding correction factor is 1� C� 30%, with a system-
atic uncertainty dominated by the uncertainty on ��.
We obtain Bð�ð3SÞ ! �0hbÞ �Bðhb ! ��bÞ ¼

ð4:3� 1:1� 0:9Þ � 10�4, where the first uncertainty is
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statistical and the second systematic. The result is consis-
tent with the prediction of Ref. [8], which estimates
4� 10�4 for the product BF. Since the hb-decay uncer-
tainty reduces the significance of the product BF relative to
that of the hb production, we may also quote an upper limit
on the product BF. From an ensemble of simulated events
using the measured product BF value, and the statistical
and associated systematic uncertainties (assumed to be
Gaussian) as input, we obtain Bð�ð3SÞ ! �0hbÞ �
Bðhb ! ��bÞ< 6:1� 10�4 at 90% C.L.

In summary, we have found evidence for the decay
�ð3SÞ ! �0hb, with a significance of at least 3.1 standard
deviations, including systematic uncertainties. Themeasured
mass value,m ¼ 9902� 4ðstatÞ � 2ðsystÞ MeV=c2, is con-
sistent with the expectation for the hbð1PÞ bottomonium
state [2,21], the axial vector partner of the �bJð1PÞ triplet
of states. We obtain Bð�ð3SÞ!�0hbÞ�Bðhb!��bÞ¼
ð4:3�1:1ðstatÞ�0:9ðsystÞÞ�10�4 (<6:1�10�4 at 90%
C.L.).
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Note added in proof.—After this paper was submitted,

preliminary results of a search for the hb in the reaction
eþe� ! hbðnPÞ�þ�� in data collected near the �ð5SÞ
resonance have been announced by the Belle Collaboration
[22]. The hbð1PÞ mass measured therein agrees very well
with the value reported in this paper.
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